task4/.ipynb_checkpoints/week4_scikit_learn.ipynb-checkpoint.ipynb

105 lines
3.0 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"id": "6af36011-9a8c-4dc1-85c5-910263c2d25e",
"metadata": {},
"source": [
"Базовая нейросеть"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "2115d6e8-d6d0-4025-9ee0-32c46b20fe45",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" precision recall f1-score support\n",
"\n",
" 0 1.00 1.00 1.00 10\n",
" 1 1.00 1.00 1.00 9\n",
" 2 1.00 1.00 1.00 11\n",
"\n",
" accuracy 1.00 30\n",
" macro avg 1.00 1.00 1.00 30\n",
"weighted avg 1.00 1.00 1.00 30\n",
"\n"
]
}
],
"source": [
"from sklearn.datasets import load_iris\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.neural_network import MLPClassifier\n",
"from sklearn.metrics import classification_report\n",
"\n",
"# Загрузка и разбиение данных\n",
"X, y = load_iris(return_X_y=True)\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
"\n",
"# Нормализация данных\n",
"scaler = StandardScaler()\n",
"X_train = scaler.fit_transform(X_train)\n",
"X_test = scaler.transform(X_test)\n",
"\n",
"# Модель MLP — многослойный перцептрон\n",
"clf = MLPClassifier(hidden_layer_sizes=(10,), activation='relu', max_iter=2500, learning_rate_init=0.001, random_state=42)\n",
"clf.fit(X_train, y_train)\n",
"\n",
"# Отчёт о точности\n",
"print(classification_report(y_test, clf.predict(X_test)))\n"
]
},
{
"cell_type": "markdown",
"id": "125b3f46-cc81-4341-94f3-9de6dee8aff5",
"metadata": {},
"source": [
"Модель работает очень хорошо и достигла 100% точности на тестовых данных, что является отличным результатом для этого набора данных."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8d032afd-fc98-48cd-9ec8-7a742fcf8a50",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "62c7892d-b296-4f0c-8886-514b4ee2bad6",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}