{ "cells": [ { "cell_type": "markdown", "id": "6af36011-9a8c-4dc1-85c5-910263c2d25e", "metadata": {}, "source": [ "Базовая нейросеть" ] }, { "cell_type": "code", "execution_count": 2, "id": "2115d6e8-d6d0-4025-9ee0-32c46b20fe45", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", " 0 1.00 1.00 1.00 10\n", " 1 1.00 1.00 1.00 9\n", " 2 1.00 1.00 1.00 11\n", "\n", " accuracy 1.00 30\n", " macro avg 1.00 1.00 1.00 30\n", "weighted avg 1.00 1.00 1.00 30\n", "\n" ] } ], "source": [ "from sklearn.datasets import load_iris\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.neural_network import MLPClassifier\n", "from sklearn.metrics import classification_report\n", "\n", "# Загрузка и разбиение данных\n", "X, y = load_iris(return_X_y=True)\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", "\n", "# Нормализация данных\n", "scaler = StandardScaler()\n", "X_train = scaler.fit_transform(X_train)\n", "X_test = scaler.transform(X_test)\n", "\n", "# Модель MLP — многослойный перцептрон\n", "clf = MLPClassifier(hidden_layer_sizes=(10,), activation='relu', max_iter=2500, learning_rate_init=0.001, random_state=42)\n", "clf.fit(X_train, y_train)\n", "\n", "# Отчёт о точности\n", "print(classification_report(y_test, clf.predict(X_test)))\n" ] }, { "cell_type": "markdown", "id": "125b3f46-cc81-4341-94f3-9de6dee8aff5", "metadata": {}, "source": [ "Модель работает очень хорошо и достигла 100% точности на тестовых данных, что является отличным результатом для этого набора данных." ] }, { "cell_type": "code", "execution_count": null, "id": "8d032afd-fc98-48cd-9ec8-7a742fcf8a50", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "62c7892d-b296-4f0c-8886-514b4ee2bad6", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.2" } }, "nbformat": 4, "nbformat_minor": 5 }