Выполнено задание для базовой нейросети
This commit is contained in:
parent
472f1f1a07
commit
ac41b0eb7a
104
.ipynb_checkpoints/week4_scikit_learn.ipynb-checkpoint.ipynb
Normal file
104
.ipynb_checkpoints/week4_scikit_learn.ipynb-checkpoint.ipynb
Normal file
@ -0,0 +1,104 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6af36011-9a8c-4dc1-85c5-910263c2d25e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Базовая нейросеть"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "2115d6e8-d6d0-4025-9ee0-32c46b20fe45",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" precision recall f1-score support\n",
|
||||
"\n",
|
||||
" 0 1.00 1.00 1.00 10\n",
|
||||
" 1 1.00 1.00 1.00 9\n",
|
||||
" 2 1.00 1.00 1.00 11\n",
|
||||
"\n",
|
||||
" accuracy 1.00 30\n",
|
||||
" macro avg 1.00 1.00 1.00 30\n",
|
||||
"weighted avg 1.00 1.00 1.00 30\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from sklearn.datasets import load_iris\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"from sklearn.preprocessing import StandardScaler\n",
|
||||
"from sklearn.neural_network import MLPClassifier\n",
|
||||
"from sklearn.metrics import classification_report\n",
|
||||
"\n",
|
||||
"# Загрузка и разбиение данных\n",
|
||||
"X, y = load_iris(return_X_y=True)\n",
|
||||
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
|
||||
"\n",
|
||||
"# Нормализация данных\n",
|
||||
"scaler = StandardScaler()\n",
|
||||
"X_train = scaler.fit_transform(X_train)\n",
|
||||
"X_test = scaler.transform(X_test)\n",
|
||||
"\n",
|
||||
"# Модель MLP — многослойный перцептрон\n",
|
||||
"clf = MLPClassifier(hidden_layer_sizes=(10,), activation='relu', max_iter=2500, learning_rate_init=0.001, random_state=42)\n",
|
||||
"clf.fit(X_train, y_train)\n",
|
||||
"\n",
|
||||
"# Отчёт о точности\n",
|
||||
"print(classification_report(y_test, clf.predict(X_test)))\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "125b3f46-cc81-4341-94f3-9de6dee8aff5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Модель работает очень хорошо и достигла 100% точности на тестовых данных, что является отличным результатом для этого набора данных."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8d032afd-fc98-48cd-9ec8-7a742fcf8a50",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "62c7892d-b296-4f0c-8886-514b4ee2bad6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.13.2"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
104
week4_scikit_learn.ipynb.ipynb
Normal file
104
week4_scikit_learn.ipynb.ipynb
Normal file
@ -0,0 +1,104 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "6af36011-9a8c-4dc1-85c5-910263c2d25e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Базовая нейросеть"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "2115d6e8-d6d0-4025-9ee0-32c46b20fe45",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" precision recall f1-score support\n",
|
||||
"\n",
|
||||
" 0 1.00 1.00 1.00 10\n",
|
||||
" 1 1.00 1.00 1.00 9\n",
|
||||
" 2 1.00 1.00 1.00 11\n",
|
||||
"\n",
|
||||
" accuracy 1.00 30\n",
|
||||
" macro avg 1.00 1.00 1.00 30\n",
|
||||
"weighted avg 1.00 1.00 1.00 30\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from sklearn.datasets import load_iris\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"from sklearn.preprocessing import StandardScaler\n",
|
||||
"from sklearn.neural_network import MLPClassifier\n",
|
||||
"from sklearn.metrics import classification_report\n",
|
||||
"\n",
|
||||
"# Загрузка и разбиение данных\n",
|
||||
"X, y = load_iris(return_X_y=True)\n",
|
||||
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
|
||||
"\n",
|
||||
"# Нормализация данных\n",
|
||||
"scaler = StandardScaler()\n",
|
||||
"X_train = scaler.fit_transform(X_train)\n",
|
||||
"X_test = scaler.transform(X_test)\n",
|
||||
"\n",
|
||||
"# Модель MLP — многослойный перцептрон\n",
|
||||
"clf = MLPClassifier(hidden_layer_sizes=(10,), activation='relu', max_iter=2500, learning_rate_init=0.001, random_state=42)\n",
|
||||
"clf.fit(X_train, y_train)\n",
|
||||
"\n",
|
||||
"# Отчёт о точности\n",
|
||||
"print(classification_report(y_test, clf.predict(X_test)))\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "125b3f46-cc81-4341-94f3-9de6dee8aff5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Модель работает очень хорошо и достигла 100% точности на тестовых данных, что является отличным результатом для этого набора данных."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "8d032afd-fc98-48cd-9ec8-7a742fcf8a50",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "62c7892d-b296-4f0c-8886-514b4ee2bad6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.13.2"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
Loading…
Reference in New Issue
Block a user