2labaPractica/week2_analysis.ipynb

154 lines
6.2 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "6ea73c34-1679-48e5-a566-8b1f4cea9652",
"metadata": {},
"outputs": [],
"source": [
"# Анализ данных - Неделя 2\n",
"**Автор:** Александр Писцов \n",
"Этот блокнот содержит базовый анализ с pandas и matplotlib."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "4b73c60f-cd31-402a-b3a8-97e9fa0eacb7",
"metadata": {},
"outputs": [
{
"ename": "ModuleNotFoundError",
"evalue": "No module named 'pandas'",
"output_type": "error",
"traceback": [
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
"\u001b[31mModuleNotFoundError\u001b[39m Traceback (most recent call last)",
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[3]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m \u001b[38;5;28;01mimport\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mpandas\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mas\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mpd\u001b[39;00m\n\u001b[32m 3\u001b[39m \u001b[38;5;66;03m# Создаем таблицу\u001b[39;00m\n\u001b[32m 4\u001b[39m data = {\n\u001b[32m 5\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mИмя\u001b[39m\u001b[33m\"\u001b[39m: [\u001b[33m\"\u001b[39m\u001b[33mАнна\u001b[39m\u001b[33m\"\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33mБорис\u001b[39m\u001b[33m\"\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33mВиктор\u001b[39m\u001b[33m\"\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33mГалина\u001b[39m\u001b[33m\"\u001b[39m],\n\u001b[32m 6\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mВозраст\u001b[39m\u001b[33m\"\u001b[39m: [\u001b[32m21\u001b[39m, \u001b[32m22\u001b[39m, \u001b[32m23\u001b[39m, \u001b[32m24\u001b[39m],\n\u001b[32m 7\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mБаллы\u001b[39m\u001b[33m\"\u001b[39m: [\u001b[32m89\u001b[39m, \u001b[32m76\u001b[39m, \u001b[32m95\u001b[39m, \u001b[32m82\u001b[39m]\n\u001b[32m 8\u001b[39m }\n",
"\u001b[31mModuleNotFoundError\u001b[39m: No module named 'pandas'"
]
}
],
"source": [
"import pandas as pd\n",
"\n",
"# Создаем таблицу\n",
"data = {\n",
" \"Имя\": [\"Анна\", \"Борис\", \"Виктор\", \"Галина\"],\n",
" \"Возраст\": [21, 22, 23, 24],\n",
" \"Баллы\": [89, 76, 95, 82]\n",
"}\n",
"df = pd.DataFrame(data)\n",
"\n",
"# Добавляем столбец\n",
"df[\"Бонусные баллы\"] = df[\"Баллы\"] * 1.1\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "c2e25c6c-bbda-4bb7-8b27-56579b481174",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Произведение матриц:\n",
" [[ 7 10]\n",
" [15 22]]\n"
]
}
],
"source": [
"import numpy as np\n",
"\n",
"# Создаем матрицу 2x2\n",
"matrix = np.array([[1, 2], [3, 4]])\n",
"print(\"Произведение матриц:\\n\", np.dot(matrix, matrix))"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d8412aa4-fb69-4da4-9d5e-ce6e1924c7ae",
"metadata": {},
"outputs": [
{
"ename": "ModuleNotFoundError",
"evalue": "No module named 'matplotlib'",
"output_type": "error",
"traceback": [
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
"\u001b[31mModuleNotFoundError\u001b[39m Traceback (most recent call last)",
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[2]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m \u001b[38;5;28;01mimport\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mmatplotlib\u001b[39;00m\u001b[34;01m.\u001b[39;00m\u001b[34;01mpyplot\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mas\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mplt\u001b[39;00m\n\u001b[32m 3\u001b[39m plt.figure(figsize=(\u001b[32m8\u001b[39m, \u001b[32m4\u001b[39m))\n\u001b[32m 4\u001b[39m plt.bar(df[\u001b[33m\"\u001b[39m\u001b[33mИмя\u001b[39m\u001b[33m\"\u001b[39m], df[\u001b[33m\"\u001b[39m\u001b[33mБаллы\u001b[39m\u001b[33m\"\u001b[39m], color=\u001b[33m'\u001b[39m\u001b[33mskyblue\u001b[39m\u001b[33m'\u001b[39m)\n",
"\u001b[31mModuleNotFoundError\u001b[39m: No module named 'matplotlib'"
]
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"plt.figure(figsize=(8, 4))\n",
"plt.bar(df[\"Имя\"], df[\"Баллы\"], color='skyblue')\n",
"plt.title(\"Баллы студентов\")\n",
"plt.xlabel(\"Имя\")\n",
"plt.ylabel(\"Баллы\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2b5c128b-f9a8-408e-b128-6360630b4f9f",
"metadata": {},
"outputs": [],
"source": [
"import seaborn as sns\n",
"\n",
"sns.scatterplot(data=df, x=\"Возраст\", y=\"Баллы\", hue=\"Имя\", s=100)\n",
"plt.title(\"Зависимость баллов от возраста\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "652d456d-8a78-40a2-84ea-b76caf74224f",
"metadata": {},
"outputs": [],
"source": [
"from tqdm import tqdm\n",
"import time\n",
"\n",
"print(\"Обработка данных:\")\n",
"for i in tqdm(range(100), desc=\"Прогресс\"):\n",
" time.sleep(0.02) # Имитация работы"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}