154 lines
6.2 KiB
Plaintext
154 lines
6.2 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "6ea73c34-1679-48e5-a566-8b1f4cea9652",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Анализ данных - Неделя 2\n",
|
||
"**Автор:** Александр Писцов \n",
|
||
"Этот блокнот содержит базовый анализ с pandas и matplotlib."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"id": "4b73c60f-cd31-402a-b3a8-97e9fa0eacb7",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"ename": "ModuleNotFoundError",
|
||
"evalue": "No module named 'pandas'",
|
||
"output_type": "error",
|
||
"traceback": [
|
||
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
|
||
"\u001b[31mModuleNotFoundError\u001b[39m Traceback (most recent call last)",
|
||
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[3]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m \u001b[38;5;28;01mimport\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mpandas\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mas\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mpd\u001b[39;00m\n\u001b[32m 3\u001b[39m \u001b[38;5;66;03m# Создаем таблицу\u001b[39;00m\n\u001b[32m 4\u001b[39m data = {\n\u001b[32m 5\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mИмя\u001b[39m\u001b[33m\"\u001b[39m: [\u001b[33m\"\u001b[39m\u001b[33mАнна\u001b[39m\u001b[33m\"\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33mБорис\u001b[39m\u001b[33m\"\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33mВиктор\u001b[39m\u001b[33m\"\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33mГалина\u001b[39m\u001b[33m\"\u001b[39m],\n\u001b[32m 6\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mВозраст\u001b[39m\u001b[33m\"\u001b[39m: [\u001b[32m21\u001b[39m, \u001b[32m22\u001b[39m, \u001b[32m23\u001b[39m, \u001b[32m24\u001b[39m],\n\u001b[32m 7\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mБаллы\u001b[39m\u001b[33m\"\u001b[39m: [\u001b[32m89\u001b[39m, \u001b[32m76\u001b[39m, \u001b[32m95\u001b[39m, \u001b[32m82\u001b[39m]\n\u001b[32m 8\u001b[39m }\n",
|
||
"\u001b[31mModuleNotFoundError\u001b[39m: No module named 'pandas'"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"\n",
|
||
"# Создаем таблицу\n",
|
||
"data = {\n",
|
||
" \"Имя\": [\"Анна\", \"Борис\", \"Виктор\", \"Галина\"],\n",
|
||
" \"Возраст\": [21, 22, 23, 24],\n",
|
||
" \"Баллы\": [89, 76, 95, 82]\n",
|
||
"}\n",
|
||
"df = pd.DataFrame(data)\n",
|
||
"\n",
|
||
"# Добавляем столбец\n",
|
||
"df[\"Бонусные баллы\"] = df[\"Баллы\"] * 1.1\n",
|
||
"df"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"id": "c2e25c6c-bbda-4bb7-8b27-56579b481174",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Произведение матриц:\n",
|
||
" [[ 7 10]\n",
|
||
" [15 22]]\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"import numpy as np\n",
|
||
"\n",
|
||
"# Создаем матрицу 2x2\n",
|
||
"matrix = np.array([[1, 2], [3, 4]])\n",
|
||
"print(\"Произведение матриц:\\n\", np.dot(matrix, matrix))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "d8412aa4-fb69-4da4-9d5e-ce6e1924c7ae",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"ename": "ModuleNotFoundError",
|
||
"evalue": "No module named 'matplotlib'",
|
||
"output_type": "error",
|
||
"traceback": [
|
||
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
|
||
"\u001b[31mModuleNotFoundError\u001b[39m Traceback (most recent call last)",
|
||
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[2]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m \u001b[38;5;28;01mimport\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mmatplotlib\u001b[39;00m\u001b[34;01m.\u001b[39;00m\u001b[34;01mpyplot\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mas\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mplt\u001b[39;00m\n\u001b[32m 3\u001b[39m plt.figure(figsize=(\u001b[32m8\u001b[39m, \u001b[32m4\u001b[39m))\n\u001b[32m 4\u001b[39m plt.bar(df[\u001b[33m\"\u001b[39m\u001b[33mИмя\u001b[39m\u001b[33m\"\u001b[39m], df[\u001b[33m\"\u001b[39m\u001b[33mБаллы\u001b[39m\u001b[33m\"\u001b[39m], color=\u001b[33m'\u001b[39m\u001b[33mskyblue\u001b[39m\u001b[33m'\u001b[39m)\n",
|
||
"\u001b[31mModuleNotFoundError\u001b[39m: No module named 'matplotlib'"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"import matplotlib.pyplot as plt\n",
|
||
"\n",
|
||
"plt.figure(figsize=(8, 4))\n",
|
||
"plt.bar(df[\"Имя\"], df[\"Баллы\"], color='skyblue')\n",
|
||
"plt.title(\"Баллы студентов\")\n",
|
||
"plt.xlabel(\"Имя\")\n",
|
||
"plt.ylabel(\"Баллы\")\n",
|
||
"plt.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "2b5c128b-f9a8-408e-b128-6360630b4f9f",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import seaborn as sns\n",
|
||
"\n",
|
||
"sns.scatterplot(data=df, x=\"Возраст\", y=\"Баллы\", hue=\"Имя\", s=100)\n",
|
||
"plt.title(\"Зависимость баллов от возраста\")\n",
|
||
"plt.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "652d456d-8a78-40a2-84ea-b76caf74224f",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from tqdm import tqdm\n",
|
||
"import time\n",
|
||
"\n",
|
||
"print(\"Обработка данных:\")\n",
|
||
"for i in tqdm(range(100), desc=\"Прогресс\"):\n",
|
||
" time.sleep(0.02) # Имитация работы"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.11.9"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|