Compare commits

...

34 Commits

Author SHA1 Message Date
Qukich
f9ede61287 final version 2024-02-29 14:11:43 +03:00
Qukich
afddc11d94 fix to project, delete atmel, add arduino, need fix uart 2024-02-28 10:10:17 +03:00
Qukich
d223f78392 fix com ports 2024-02-26 12:07:26 +03:00
Qukich
11b9374377 add com ports main 2024-02-23 20:05:03 +03:00
Qukich
2ad07a39c5 project atmel 2024-02-22 17:16:03 +03:00
Qukich
2870d4685e fix and add main.c 2024-02-22 10:36:10 +03:00
0ccb490096 Merge pull request 'uart' (#15) from uart into dev
Reviewed-on: #15
2024-02-22 07:26:08 +00:00
Qukich
7ba1e3146d fix and add main.c 2024-02-22 10:15:06 +03:00
Qukich
202598b23e version 2 protocol, test in main 2024-02-20 10:52:41 +03:00
Qukich
6bd1021c4e add protocol, test in main 2024-02-16 12:09:50 +03:00
Qukich
664e9e6640 Merge remote-tracking branch 'origin/dev' into dev 2024-02-14 10:50:34 +03:00
Qukich
4a658848dd maybe final version hdlc 2024-02-14 10:49:49 +03:00
c17371a76d Загрузить файлы в «/» 2024-02-13 18:47:51 +00:00
Kirill Kurshakow
e999651e09 tx interruption fixes 2024-02-13 19:25:57 +03:00
Kirill Kurshakow
69e8412315 uart init interruption allowed fixes 2024-02-13 18:19:38 +03:00
Kirill Kurshakow
458b145297 uart sending method fixed and interruption added 2024-02-12 21:46:21 +03:00
Kirill Kurshakow
5c4e2be040 modified uart receive method and some refactoring 2024-02-11 21:19:28 +03:00
Qukich
800f48bc11 fix final version(hdlc) 2024-02-11 17:16:36 +03:00
Qukich
80cd73c3d6 final version, gg 2024-02-09 12:36:55 +03:00
Qukich
ca36c67ba2 fix index 2024-02-07 19:39:27 +03:00
Qukich
0f99988c3e Merge branch 'dev' of https://git.vyatsu.ru/ICS-Microprocessor-2020/Display_Avr_3 into dev 2024-02-07 19:27:10 +03:00
Qukich
38b0a7f8ad fix i-frame 2024-02-07 19:27:01 +03:00
9d42cbee7f Merge pull request 'lcd1602_v2' (#12) from lcd1602_v2 into dev
Reviewed-on: #12
2024-02-06 07:34:23 +00:00
158df4a788 Merge pull request 'uart' (#11) from uart into dev
Reviewed-on: #11
2024-02-06 07:32:12 +00:00
Qukich
659ce6c581 delete trash 2024-02-06 10:30:03 +03:00
Qukich
a26f4d3366 create dev 2024-02-06 10:29:00 +03:00
Kirill Kurshakow
1f38dff368 uart.c updated and some code refactoring 2024-01-29 19:53:00 +03:00
Kirill Kurshakow
93c44a6f13 UART modified and added header file 2024-01-17 16:11:54 +03:00
Kirill Kurshakow
e6a1ad36c2 unused files deleted 2023-11-07 18:02:54 +03:00
Kirill Kurshakow
0a9eb215db uart modified 2023-11-07 12:01:09 +03:00
8dade4f9a0 Загрузил(а) файлы в '' 2023-09-28 14:26:24 +00:00
97f38c92d5 Загрузил(а) файлы в '' 2023-07-29 13:50:30 +00:00
be7bedb8c7 1602 2023-06-15 16:29:15 +00:00
037f7ce38a lcd 2023-05-11 08:24:30 +00:00
38 changed files with 2035 additions and 282 deletions

9
.gitignore vendored
View File

@ -1,9 +0,0 @@
hdlc1.c
hdlc1.h
hdlc_frame.c
hdlc_frame.h
main1.c
uart.c
uart.h
!./hdlc

8
.idea/.gitignore generated vendored
View File

@ -1,8 +0,0 @@
# Default ignored files
/shelf/
/workspace.xml
# Editor-based HTTP Client requests
/httpRequests/
# Datasource local storage ignored files
/dataSources/
/dataSources.local.xml

8
.idea/modules.xml generated
View File

@ -1,8 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/untitled1.iml" filepath="$PROJECT_DIR$/.idea/untitled1.iml" />
</modules>
</component>
</project>

6
.idea/vcs.xml generated
View File

@ -1,6 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="$PROJECT_DIR$" vcs="Git" />
</component>
</project>

BIN
.vs/hdlc_screen/v14/.atsuo Normal file

Binary file not shown.

View File

@ -1,6 +0,0 @@
cmake_minimum_required(VERSION 3.25)
project(untitled1 C)
set(CMAKE_C_STANDARD 11)
add_executable(untitled1 hdlc/fcs.h hdlc/fcs.c hdlc/hdlc.h hdlc/hdlc.c hdlc/main.c hdlc/client.c)

84
Lcd_print.ino Normal file
View File

@ -0,0 +1,84 @@
#include "MyLCD.h"
struct TextCounter {
unsigned long startTime;
int incrementValue;
int startIndex; // Новая переменная для отслеживания начального индекса строки
};
struct TextCounter textCounter;
void init_lcd(){
lcd_init(LCD_DISP_ON_BLINK); // инициализация дисплея
lcd_home(); // домой курсор
lcd_led(0); // вкл подсветки
textCounter.startTime = millis(); // Запоминаем время запуска программы
textCounter.startIndex = 0; // Инициализируем начальный индекс
}
void fillBuffer1(const char* source, char* buffer, size_t bufferSize, int incrementValue) {
int startIndex = incrementValue % strlen(source); // Определяем начальный индекс на основе incrementValue
int endIndex = startIndex + 16;
for (int i = 0; i < 16; ++i) {
buffer[i] = source[(startIndex + i) % strlen(source)];
}
buffer[16] = '\0';
}
void fillBuffer2(float value1, float value2, float value3, char* buffer, size_t bufferSize){
int val1_int = (int) value1;
float val1_float = (abs(value1) - abs(val1_int)) * 10;
int val1_fra = (int)val1_float;
int val2_int = (int) value2;
float val2_float = (abs(value2) - abs(val2_int)) * 10;
int val2_fra = (int)val2_float;
int val3_int = (int) value3;
float val3_float = (abs(value3) - abs(val3_int)) * 10;
int val3_fra = (int)val3_float;
snprintf(buffer, bufferSize, "%d.%d:%d.%d:%d.%d",
val1_int, val1_fra,
val2_int, val2_fra,
val3_int, val3_fra);
}
void print_lcd(struct DisplayData* disp){
unsigned long currentTime = millis(); // Текущее время
// Проверяем, прошло ли 500 мс с момента последнего увеличения incrementValue
if (currentTime - textCounter.startTime >= 500) {
textCounter.incrementValue++; // Увеличиваем incrementValue на 1
textCounter.startTime = currentTime; // Обновляем время
}
struct DisplayData displayData;
strncpy(displayData.topLine, disp->topLine, sizeof(displayData.topLine) - 1);
displayData.topLine[sizeof(displayData.topLine) - 1] = '\0';
displayData.value1 = disp->value1;
displayData.value2 = disp->value2;
displayData.value3 = disp->value3;
// Буферы для заполнения данных
char buffer1[17];
char buffer2[17];
// Заполнение буфера 1
fillBuffer1(displayData.topLine, buffer1, sizeof(buffer1), textCounter.incrementValue);
// Заполнение буфера 2
fillBuffer2(displayData.value1, displayData.value2, displayData.value3, buffer2, sizeof(buffer2));
// Создание массива для вывода на дисплей
char displayArray[32];
strncpy(displayArray, buffer1, 16); // Копирование первых 16 символов из buffer1 в displayArray
strncpy(displayArray + 16, buffer2, 16); // Копирование первых 16 символов из buffer2 в displayArray, начиная с позиции 16
// Вывод данных на экран
lcd_gotoxy(0, 0);
lcd_puts(displayArray);
lcd_gotoxy(0, 1);
lcd_puts(displayArray + 16);
}

22
MyLCD.h Normal file
View File

@ -0,0 +1,22 @@
#ifndef MYLCD_H_
#define MYLCD_H_
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD> <20><><EFBFBD><EFBFBD>
#include <avr/io.h>
#include <util/delay.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <compat/twi.h>
#include <inttypes.h>
#include <avr/pgmspace.h>
#include <avr/interrupt.h>
#include <stdio.h>
#include "lcdpcf8574.h"
#include "pcf8574.h"
#include "i2cmaster.h"
#include "lcd.h"
#endif

33
circular_buf.cpp Normal file
View File

@ -0,0 +1,33 @@
#include <stdio.h>
#include <stdlib.h>
#include "circular_buf.h"
void clear_buffer(struct circular_buffer* cb) {
cb->buf_head = 0;
cb->buf_tail = 0;
}
// Проверка, пустой ли буфер
int buffer_empty(const struct circular_buffer* cb) {
return cb->buf_head == cb->buf_tail;
}
// Проверка, заполнен ли буфер
int buffer_full(const struct circular_buffer* cb) {
return (cb->buf_tail + 1) % BUFFER_SIZE == cb->buf_head; //проверяем следующее число, если оно будет совпадать с индексом головы то будет false, при совпадении вывод true
}
// Запись в буфер
void write_buffer(struct circular_buffer* cb, int value) {
if (buffer_full(cb)) { // проверяем, заполнен ли буфер
return;
}
cb->buffer[cb->buf_tail] = value;// записываем значение в элемент массива в хвост
cb->buf_tail = (cb->buf_tail + 1) % BUFFER_SIZE;// присваивается cb->buf_tail, обновляется его значение на следующий индекс в буфере
}
// Чтение элемента
int read_buffer(struct circular_buffer* cb) {
if (buffer_empty(cb)) { // проверка на пустоту
return -1;// -1 как индикатор в случае ошибки
}
int value = cb->buffer[cb->buf_head]; // чтение по индексу головы
cb->buf_head = (cb->buf_head + 1) % BUFFER_SIZE; // увеличиваем индекс на 1
return value;
}

18
circular_buf.h Normal file
View File

@ -0,0 +1,18 @@
#ifndef CIRCULAR_BUFFER_H
#define CIRCULAR_BUFFER_H
#define BUFFER_SIZE 128
struct circular_buffer{
unsigned char buffer[BUFFER_SIZE];
unsigned char buf_head;
unsigned char buf_tail;
};
void clear_buffer(struct circular_buffer* cb);
int buffer_empty(const struct circular_buffer* cb);
int buffer_full(const struct circular_buffer* cb);
void write_buffer(struct circular_buffer* cb, int value);
int read_buffer(struct circular_buffer* cb);
#endif /* CIRCULAR_BUFFER_H */

128
client.cpp Normal file
View File

@ -0,0 +1,128 @@
#include "client.h"
#include <stdio.h>
#define SIZE_DATA_BUFFERS 64
int connecting_frame_timeout_bf;
void init_hdlc_client(struct Client* client, int connecting_frame_timeout){
client->state = IDLE_STATE;
client->connecting_frame_timeout = connecting_frame_timeout;
connecting_frame_timeout_bf = connecting_frame_timeout;
client->current_index_frame = 0;
client->current_state_hdlc.control_escape = 0;
client->current_state_hdlc.fcs = FCS_INIT_VALUE;
client->current_state_hdlc.start_index = -1;
client->current_state_hdlc.end_index = -1;
client->current_state_hdlc.src_index = 0;
client->current_state_hdlc.dest_index = 0;
}
void hdlc_connect(struct Client* client){
client->state = CONNECTING;
client->frameS.seq_no = 0;
client->frameS.frame = S_FRAME;
client->current_index_frame = client->frameS.seq_no;
}
int hdlc_send_data(struct Client* client, uint8_t data[], size_t data_len){
if (client->state != READY_STATE){
return ERR_INVALID_STATE;
}
client->state = RECIVING;
if (SIZE_DATA_BUFFERS < data_len){
return ERR_INVALID_DATA_SIZE;
}
client->frameI.seq_no = 0;
client->frameI.frame = I_FRAME;
client->data_i_frame = data;
client->len_data_i_frame = data_len;
client->current_index_frame = client->frameI.seq_no;
client->state = RECIVING;
return 0;
}
int hdlc_get_raw_frame(struct Client *client, uint8_t* buffer, size_t lenBuffer) {
if(client->state == RECIVING){
int ret = hdlc_frame_data(&client->frameI, client->data_i_frame,
client->len_data_i_frame, buffer, &lenBuffer);
if (ret < 0){
printf("err in get_frame: %d\n", ret);
}
}
if (client->state == CONNECTING){
int ret = hdlc_frame_data(&client->frameS, NULL, 0, buffer, &lenBuffer);
if (ret < 0){
printf("err in get_frame: %d\n", ret);
}
}
if (client->state == DISCONNECTING){
int ret = hdlc_frame_data(&client->frame_rej, NULL, 0, buffer, &lenBuffer);
if (ret < 0){
printf("err in get_frame: %d\n", ret);
}
}
return 0;
}
int hdlc_decode_recived_raw_data(struct Client* client, uint8_t* buffer, size_t len_buffer, uint8_t* recived_data, size_t* len_recived_data){
hdlc_control_t recv_control;
uint8_t recive[len_buffer];
int ret = hdlc_get_data_with_state(&client->current_state_hdlc,&recv_control, buffer, len_buffer, recive,
&len_buffer);
if (ret < 0) {
return ret;
}
if (recv_control.seq_no != client->current_index_frame){
client->state = DISCONNECTING;
client->frame_rej.seq_no = 0;
client->frame_rej.frame = S_FRAME_NACK;
return ERR_INVALID_SEQ_NUMBER_FRAME;
}
switch (recv_control.frame) {
case S_FRAME:
client->state = READY_STATE;
break;
case I_FRAME:
for (int i = 0; i < sizeof(recive)-2; i++){
recived_data[i] = recive[i];
}
*len_recived_data = sizeof(recive)-2;
client->state = SEND;
break;
case S_FRAME_NACK:
client->state = DISCONNECTING;
client->frame_rej.seq_no = 0;
client->frame_rej.frame = S_FRAME_NACK;
return ERR_INVALID_SEQ_NUMBER_FRAME;
}
client->connecting_frame_timeout = connecting_frame_timeout_bf;
return 0;
}
int hdlc_timeout_handler(struct Client* client, int delta_time){
client->connecting_frame_timeout -= delta_time;
if (client->connecting_frame_timeout <= 0){
return ERR_FRAME_TIME_OUT;
}
return 0;
}

49
client.h Normal file
View File

@ -0,0 +1,49 @@
#ifndef CLIENT_H
#define CLIENT_H
#include <stdint.h>
#include <stdbool.h>
#include "hdlc.h"
#define ERR_INVALID_DATA_SIZE -1
#define ERR_ALL_BUFFERS_FILL -2
#define ERR_INVALID_PARAMS -3
#define ERR_INVALID_STATE -4
#define ERR_FRAME_TIME_OUT -5
#define ERR_INVALID_SEQ_NUMBER_FRAME -6
#define ERR_TIMEOUT_ANSWER -7
enum HDLCState {
UNINITIALIZED_STATE = 0, // состояние до инцилизации
IDLE_STATE, // Состояние ожидания начала
READY_STATE, // Состояние принятия
CONNECTING, // состояние соединения
DISCONNECTING, // состояния отключения
RECIVING, // состояние приема и отправки
SEND, //данные отправлены
};
struct Client{
enum HDLCState state;
int connecting_frame_timeout; //-1
uint8_t current_index_frame;
hdlc_state_t current_state_hdlc;
hdlc_control_t frameS;
hdlc_control_t frameI;
uint8_t* data_i_frame;
size_t len_data_i_frame;
// hdlc_control_t frame3;
// hdlc_control_t frame4;
hdlc_control_t frame_rej;
};
//название функций
void init_hdlc_client(struct Client* client, int connecting_frame_timeout);
void hdlc_connect(struct Client* client);
int hdlc_send_data(struct Client* client, uint8_t data[], size_t data_len);
int hdlc_get_raw_frame(struct Client *client, uint8_t* buffer, size_t lenBuffer);
//принимает буффер с уарта
int hdlc_decode_recived_raw_data(struct Client* client, uint8_t* buffer, size_t len_buffer, uint8_t* recived_data, size_t* len_recived_data);
int hdlc_timeout_handler(struct Client* client, int delta_time);
#endif //CLIENT_H

View File

@ -2,14 +2,6 @@
#include "hdlc.h"
#include "stdio.h"
#define ERR_INVALID_DATA_SIZE -1
#define ERR_ALL_BUFFERS_FILL -2
#define ERR_INVALID_PARAMS -3
#define ERR_INVALID_STATE -4
#define ERR_FRAME_TIME_OUT -5
#define ERR_INVALID_SEQ_NUMBER_FRAME -6
#define ERR_TIMEOUT_ANSWER -7
#define SIZE_DATA_BUFFERS 64
int connecting_frame_timeout_bf;
@ -18,6 +10,7 @@ void init_hdlc_client(struct Client* client, int connecting_frame_timeout){
client->state = IDLE_STATE;
client->connecting_frame_timeout = connecting_frame_timeout;
connecting_frame_timeout_bf = connecting_frame_timeout;
client->current_index_frame = 0;
client->current_state_hdlc.control_escape = 0;
client->current_state_hdlc.fcs = FCS_INIT_VALUE;
@ -27,57 +20,53 @@ void init_hdlc_client(struct Client* client, int connecting_frame_timeout){
client->current_state_hdlc.dest_index = 0;
}
void connect(struct Client* client, hdlc_control_t* frame){
void hdlc_connect(struct Client* client){
client->state = CONNECTING;
client->frameS.seq_no = 0;
client->frameS.frame = S_FRAME;
*frame = client->frameS;
// if (client->frame1.seq_no == -4){
// client->frame1.seq_no = 0;
// client->frame1.frame = S_FRAME;
//
// *frame = client->frame1;
// } else if (client->frame1.seq_no == -4){
// client->frame1.seq_no = 0;
// client->frame1.frame = S_FRAME;
//
// *frame = client->frame1;
// }
client->current_index_frame = client->frameS.seq_no;
}
int send_data(struct Client* client, hdlc_control_t* frame, uint8_t* data, size_t data_len){
int hdlc_send_data(struct Client* client, uint8_t* data, size_t data_len){
if (client->state != READY_STATE){
return ERR_INVALID_STATE;
}
client->state = RECIVING;
if (SIZE_DATA_BUFFERS < data_len){
return ERR_INVALID_DATA_SIZE;
}
client->frameI.seq_no = 0;
client->frameI.frame = I_FRAME;
client->data_i_frame = *data;
client->data_i_frame = data;
client->len_data_i_frame = data_len;
*frame = client->frameI;
client->current_index_frame = client->frameI.seq_no;
client->state = RECIVING;
};
return 0;
}
int hdlc_get_raw_frame(struct Client *client, hdlc_control_t* frame, uint8_t buffer[], size_t lenBuffer) {
if (frame->frame = S_FRAME){
int ret = hdlc_frame_data(frame, NULL, 0, buffer, &lenBuffer);
int hdlc_get_raw_frame(struct Client *client, uint8_t* buffer, size_t lenBuffer) {
if(client->state == RECIVING){
int ret = hdlc_frame_data(&client->frameI, client->data_i_frame,
client->len_data_i_frame, buffer, &lenBuffer);
if (ret < 0){
printf("err in get_frame: %d\n", ret);
}
} else {
int ret = hdlc_frame_data(frame, &client->data_i_frame,
client->len_data_i_frame, buffer, &lenBuffer);
}
if (client->state == CONNECTING){
int ret = hdlc_frame_data(&client->frameS, NULL, 0, buffer, &lenBuffer);
if (ret < 0){
printf("err in get_frame: %d\n", ret);
}
}
if (client->state == DISCONNECTING){
int ret = hdlc_frame_data(&client->frame_rej, NULL, 0, buffer, &lenBuffer);
if (ret < 0){
printf("err in get_frame: %d\n", ret);
}
@ -86,7 +75,7 @@ int hdlc_get_raw_frame(struct Client *client, hdlc_control_t* frame, uint8_t buf
return 0;
}
int hdlc_decode_recived_raw_data(struct Client* client, uint8_t buffer[], size_t len_buffer){
int hdlc_decode_recived_raw_data(struct Client* client, uint8_t buffer[], size_t len_buffer, uint8_t* recived_data, size_t* len_recived_data){
hdlc_control_t recv_control;
uint8_t recive[len_buffer];
@ -97,17 +86,29 @@ int hdlc_decode_recived_raw_data(struct Client* client, uint8_t buffer[], size_t
return ret;
}
if (recv_control.seq_no != client->current_index_frame){
client->state = DISCONNECTING;
client->frame_rej.seq_no = 0;
client->frame_rej.frame = S_FRAME_NACK;
return ERR_INVALID_SEQ_NUMBER_FRAME;
}
switch (recv_control.frame) {
case S_FRAME:
client->state = READY_STATE;
break;
case I_FRAME:
for (int i = 0; i < sizeof(recive)-3; i++){
recived_data[i] = recive[i];
}
*len_recived_data = sizeof(recive)-3;
break;
case S_FRAME_NACK:
client->state = DISCONNECTING;
client->frame_rej.seq_no = 0;
client->frame_rej.frame = S_FRAME_NACK;
break;
return ERR_INVALID_SEQ_NUMBER_FRAME;
}
client->connecting_frame_timeout = connecting_frame_timeout_bf;
@ -120,4 +121,5 @@ int hdlc_timeout_handler(struct Client* client, int delta_time){
if (client->connecting_frame_timeout <= 0){
return ERR_FRAME_TIME_OUT;
}
return 0;
}

View File

@ -5,6 +5,14 @@
#include <stdbool.h>
#include "hdlc.h"
#define ERR_INVALID_DATA_SIZE -1
#define ERR_ALL_BUFFERS_FILL -2
#define ERR_INVALID_PARAMS -3
#define ERR_INVALID_STATE -4
#define ERR_FRAME_TIME_OUT -5
#define ERR_INVALID_SEQ_NUMBER_FRAME -6
#define ERR_TIMEOUT_ANSWER -7
enum HDLCState {
UNINITIALIZED_STATE = 0, // состояние до инцилизации
IDLE_STATE, // Состояние ожидания начала
@ -17,23 +25,21 @@ enum HDLCState {
struct Client{
enum HDLCState state;
int connecting_frame_timeout; //-1
uint8_t current_index_frame;
hdlc_state_t current_state_hdlc;
hdlc_control_t frameS;
hdlc_control_t frameI;
uint8_t data_i_frame;
uint8_t* data_i_frame;
size_t len_data_i_frame;
// hdlc_control_t frame3;
// hdlc_control_t frame4;
hdlc_control_t frame_rej;
};
//название функций
void init_hdlc_client(struct Client* client, int connecting_frame_timeout);
void connect(struct Client* client, hdlc_control_t* frame);
int send_data(struct Client* client, hdlc_control_t* frame, uint8_t* data, size_t data_len);
int hdlc_get_raw_frame(struct Client *client, hdlc_control_t* frame, uint8_t buffer[], size_t lenBuffer);
void hdlc_connect(struct Client* client);
int hdlc_send_data(struct Client* client, uint8_t* data, size_t data_len);
int hdlc_get_raw_frame(struct Client *client, uint8_t* buffer, size_t lenBuffer);
//принимает буффер с уарта
int hdlc_decode_recived_raw_data(struct Client* client, uint8_t buffer[], size_t len_buffer);
int hdlc_decode_recived_raw_data(struct Client* client, uint8_t buffer[], size_t len_buffer, uint8_t* recived_data, size_t* len_recived_data);
int hdlc_timeout_handler(struct Client* client, int delta_time);
#endif //CLIENT_H

View File

@ -122,7 +122,8 @@ int hdlc_get_data(hdlc_control_t *control, uint8_t *src,
//int hdlc_get_data_with_state(hdlc_state_t *state, hdlc_control_t *control, const char *src,
// unsigned int src_len, char *dest, unsigned int *dest_len)
int hdlc_get_data_with_state(hdlc_state_t *state, hdlc_control_t *control, uint8_t *src,
int
hdlc_get_data_with_state(hdlc_state_t *state, hdlc_control_t *control, uint8_t *src,
size_t src_len, uint8_t *dest, size_t *dest_len){
int ret;
char value;

View File

@ -43,24 +43,6 @@ typedef struct {
int dest_index;
} hdlc_state_t;
/**
* Set the hdlc state
*
* @param[in] state The new hdlc state to be used
* @retval 0 Success
* @retval -EINVAL Invalid parameter
*/
int hdlc_set_state(hdlc_state_t *state);
/**
* Get current hdlc state
*
* @param[out] state Current hdlc state
* @retval 0 Success
* @retval -EINVAL Invalid parameter
*/
int hdlc_get_state(hdlc_state_t *state);
/**
* Retrieves data from specified buffer containing the HDLC frame. Frames can be
* parsed from multiple buffers e.g. when received via UART.

121
emulate/main.c Normal file
View File

@ -0,0 +1,121 @@
#include <windows.h>
#include <stdio.h>
#include "hdlc/client.h"
#include "stdint.h"
#include "stdbool.h"
#include "protocol/protocol.h"
int main() {
struct Client hdlc;
HANDLE Port;
init_hdlc_client(&hdlc, 200);
//Открыть COM-порт
Port = CreateFile("COM3", GENERIC_READ | GENERIC_WRITE,
0, NULL, OPEN_EXISTING,
0, NULL);
if (Port == INVALID_HANDLE_VALUE) {
DWORD errorCode = GetLastError();
printf("Create file err: %lu.\n", errorCode);
return 1;
}
COMMTIMEOUTS timeouts1 = {0};
// Установка таймаутов чтения/записи
timeouts1.ReadIntervalTimeout = 100;
timeouts1.ReadTotalTimeoutConstant = 100;
timeouts1.ReadTotalTimeoutMultiplier = 50;
timeouts1.WriteTotalTimeoutConstant = 50;
timeouts1.WriteTotalTimeoutMultiplier = 50;
if (!SetCommTimeouts(Port, &timeouts1)) {
printf("err add timeout COM port.\n");
CloseHandle(Port);
return 1;
}
bool flag_connect = false;
while (!flag_connect){
uint8_t buffer_recive_connect[6];
DWORD received;
BOOL success = ReadFile(Port, buffer_recive_connect, sizeof buffer_recive_connect,
&received, NULL);
if (!success)
{
printf("Failed to read from port");
return -1;
}
hdlc_decode_recived_raw_data(&hdlc, buffer_recive_connect, sizeof buffer_recive_connect, 0, 0);
if (hdlc.state == READY_STATE){
struct Client tmp;
hdlc_connect(&tmp);
uint8_t buffer_send_connect[10];
hdlc_get_raw_frame(&tmp, buffer_send_connect, sizeof buffer_send_connect);
//Write frame from port 1
DWORD written;
BOOL success_write_send = WriteFile(Port, buffer_send_connect, sizeof buffer_send_connect,
&written, NULL);
if (!success_write_send){
DWORD errorCode = GetLastError();
printf("WriteFile err: %lu.\n", errorCode);
return -1;
}
if (written != sizeof buffer_send_connect){
printf("Failed to write all bytes to port");
return -1;
}
flag_connect = true;
}
}
struct message mess;
char str_v[] = "its working! wow! postavte 3 ";
mess.numbers[0] = 123.0;
mess.numbers[1] = 456.0;
mess.numbers[2] = 7.0;
mess.len_numbers = 3;
strcpy(mess.str, str_v);
mess.len_str = sizeof str_v;
uint8_t data[64];
size_t len_data;
protocol_encode(mess, data, &len_data);
int err = hdlc_send_data(&hdlc, data, sizeof(data));
printf("%d\n", err);
uint8_t buffer_for_ex_data[72];
hdlc_get_raw_frame(&hdlc, buffer_for_ex_data, sizeof buffer_for_ex_data);
DWORD written_data;
BOOL success_write_data = WriteFile(Port, buffer_for_ex_data, sizeof buffer_for_ex_data,
&written_data, NULL);
if (!success_write_data){
DWORD errorCode = GetLastError();
printf("WriteFile err: %lu.\n", errorCode);
return -1;
}
if (written_data != sizeof buffer_for_ex_data){
printf("Failed to write all bytes to port");
return -1;
}
while (true){
}
CloseHandle(Port);
return 0;
}

View File

@ -0,0 +1,53 @@
#include "protocol.h"
void protocol_decode(uint8_t encode_message[], size_t len_encode_message, struct message* decode_message){
int count_number = 0;
for(int i = 0; i < len_encode_message; i++){
if (encode_message[i] == FLAG_NUMBER){
if (count_number < 3){
union convert_float sample;
for (int z = 0; z < sizeof sample.buf; z++){
i++;
sample.buf[z] = encode_message[i];
}
decode_message->numbers[count_number++] = sample.fVal;
decode_message->len_numbers++;
}
}
if (encode_message[i] == FLAG_WORD){
i++;
decode_message->len_str = encode_message[i];
for (int z = 0; z < encode_message[i]; z++){
i++;
decode_message->str[z] = encode_message[i];
}
}
}
decode_message->len_numbers = count_number;
}
void protocol_encode(struct message message, uint8_t encode_message[], size_t* len_encode_message){
size_t count = 0;
if (message.len_numbers > 0){
for (int i = 0; i < message.len_numbers; i++){
encode_message[count++] = FLAG_NUMBER;
union convert_float sample;
sample.fVal = message.numbers[i];
for (int z = 0; z < sizeof sample.buf; z++){
encode_message[count++] = sample.buf[z];
}
}
}
if (message.len_str > 0){
encode_message[count++] = FLAG_WORD;
encode_message[count++] = message.len_str;
for (int i = 0; i < message.len_str; i++){
encode_message[count++] = message.str[i];
}
}
*len_encode_message = count;
}

View File

@ -0,0 +1,32 @@
#ifndef PROTOCOL_H
#define PROTOCOL_H
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "stdio.h"
#define FLAG_NUMBER 0
#define FLAG_WORD 1
struct message{
float numbers[4];
size_t len_numbers;
char str[64];
size_t len_str;
};
union convert_float{
float fVal;
uint8_t buf[4];
};
union convert_char{
char* cVal;
uint8_t buf[64];
};
void protocol_decode(uint8_t encode_message[], size_t len_encode_message, struct message* decode_message);
void protocol_encode(struct message message, uint8_t encode_message[], size_t* len_encode_message);
#endif //PROTOCOL_H

41
fcs.cpp Normal file
View File

@ -0,0 +1,41 @@
#include "fcs.h"
/*
* CRC-Type: CRC16 CCIT
* Polynomial: 0x1021 (x^16+x^12+x^5+1)
* Lookup Table: Reflected
*/
static const unsigned short fcstab[256] = {
0x0000, 0x1189, 0x2312, 0x329b,
0x4624, 0x57ad, 0x6536, 0x74bf, 0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c,
0xdbe5, 0xe97e, 0xf8f7, 0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c,
0x75b7, 0x643e, 0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff,
0xe876, 0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5, 0x3183,
0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c, 0xbdcb, 0xac42,
0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974, 0x4204, 0x538d, 0x6116,
0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb, 0xce4c, 0xdfc5, 0xed5e, 0xfcd7,
0x8868, 0x99e1, 0xab7a, 0xbaf3, 0x5285, 0x430c, 0x7197, 0x601e, 0x14a1,
0x0528, 0x37b3, 0x263a, 0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960,
0xbbfb, 0xaa72, 0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630,
0x17b9, 0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738, 0xffcf,
0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70, 0x8408, 0x9581,
0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7, 0x0840, 0x19c9, 0x2b52,
0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff, 0x9489, 0x8500, 0xb79b, 0xa612,
0xd2ad, 0xc324, 0xf1bf, 0xe036, 0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5,
0x4f6c, 0x7df7, 0x6c7e, 0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7,
0xc03c, 0xd1b5, 0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74,
0x5dfd, 0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c, 0xc60c,
0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3, 0x4a44, 0x5bcd,
0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb, 0xd68d, 0xc704, 0xf59f,
0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232, 0x5ac5, 0x4b4c, 0x79d7, 0x685e,
0x1ce1, 0x0d68, 0x3ff3, 0x2e7a, 0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a,
0xb0a3, 0x8238, 0x93b1, 0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb,
0x0e70, 0x1ff9, 0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9,
0x8330, 0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78 };
FCS_SIZE calc_fcs(FCS_SIZE fcs, unsigned char value) {
return (fcs >> 8) ^ fcstab[(fcs ^ value) & 0xff];
}

18
fcs.h Normal file
View File

@ -0,0 +1,18 @@
#ifndef FCS_H
#define FCS_H
#define FCS_INIT_VALUE 0xFFFF /* FCS initialization value. */
#define FCS_GOOD_VALUE 0xF0B8 /* FCS value for valid frames. */
#define FCS_INVERT_MASK 0xFFFF /* Invert the FCS value accordingly to the specification */
#define FCS_SIZE unsigned short
/**
* Calculates a new FCS based on the current value and value of data.
*
* @param fcs Current FCS value
* @param value The value to be added
* @returns Calculated FCS value
*/
FCS_SIZE calc_fcs(FCS_SIZE fcs, unsigned char value);
#endif

262
hdlc.cpp Normal file
View File

@ -0,0 +1,262 @@
#include "hdlc.h"
// HDLC Control field bit positions
#define HDLC_CONTROL_S_OR_U_FRAME_BIT 0
#define HDLC_CONTROL_SEND_SEQ_NO_BIT 1
#define HDLC_CONTROL_S_FRAME_TYPE_BIT 2
#define HDLC_CONTROL_POLL_BIT 4
#define HDLC_CONTROL_RECV_SEQ_NO_BIT 5
// HDLC Control type definitions
#define HDLC_CONTROL_TYPE_RECEIVE_READY 0
#define HDLC_CONTROL_TYPE_RECEIVE_NOT_READY 1
#define HDLC_CONTROL_TYPE_REJECT 2
#define HDLC_CONTROL_TYPE_SELECTIVE_REJECT 3
static hdlc_state_t hdlc_state = {
.control_escape = 0,
.fcs = FCS_INIT_VALUE,
.start_index = -1,
.end_index = -1,
.src_index = 0,
.dest_index = 0,
};
int hdlc_set_state(hdlc_state_t *state) {
if (!state) {
return -EINVAL;
}
hdlc_state = *state;
return 0;
}
int hdlc_get_state(hdlc_state_t *state) {
if (!state) {
return -EINVAL;
}
*state = hdlc_state;
return 0;
}
void hdlc_escape_value(char value, char *dest, int *dest_index) {
// Check and escape the value if needed
if ((value == HDLC_FLAG_SEQUENCE) || (value == HDLC_CONTROL_ESCAPE)) {
dest[(*dest_index)++] = HDLC_CONTROL_ESCAPE;
value ^= 0x20;
}
// Add the value to the destination buffer and increment destination index
dest[(*dest_index)++] = value;
}
hdlc_control_t hdlc_get_control_type(unsigned char control) {
hdlc_control_t value;
// Check if the frame is a S-frame (or U-frame)
if (control & (1 << HDLC_CONTROL_S_OR_U_FRAME_BIT)) {
// Check if S-frame type is a Receive Ready (ACK)
if (((control >> HDLC_CONTROL_S_FRAME_TYPE_BIT) & 0x3)
== HDLC_CONTROL_TYPE_RECEIVE_READY) {
value.frame = S_FRAME;
} else {
// Assume it is an NACK since Receive Not Ready, Selective Reject and U-frames are not supported
value.frame = S_FRAME_NACK;
}
// Add the receive sequence number from the S-frame (or U-frame)
value.seq_no = (control >> HDLC_CONTROL_RECV_SEQ_NO_BIT);
} else {
// It must be an I-frame so add the send sequence number (receive sequence number is not used)
value.frame = I_FRAME;
value.seq_no = (control >> HDLC_CONTROL_SEND_SEQ_NO_BIT);
}
return value;
}
unsigned char hdlc_frame_control_type(hdlc_control_t *control) {
unsigned char value = 0;
switch (control->frame) {
case I_FRAME:
// Create the HDLC I-frame control byte with Poll bit set
value |= (control->seq_no << HDLC_CONTROL_SEND_SEQ_NO_BIT);
value |= (1 << HDLC_CONTROL_POLL_BIT);
break;
case S_FRAME:
// Create the HDLC Receive Ready S-frame control byte with Poll bit cleared
value |= (control->seq_no << HDLC_CONTROL_RECV_SEQ_NO_BIT);
value |= (1 << HDLC_CONTROL_S_OR_U_FRAME_BIT);
break;
case S_FRAME_NACK:
// Create the HDLC Receive Ready S-frame control byte with Poll bit cleared
value |= (control->seq_no << HDLC_CONTROL_RECV_SEQ_NO_BIT);
value |= (HDLC_CONTROL_TYPE_REJECT << HDLC_CONTROL_S_FRAME_TYPE_BIT);
value |= (1 << HDLC_CONTROL_S_OR_U_FRAME_BIT);
break;
}
return value;
}
void hdlc_get_data_reset() {
hdlc_get_data_reset_with_state(&hdlc_state);
}
void hdlc_get_data_reset_with_state(hdlc_state_t *state) {
state->fcs = FCS_INIT_VALUE;
state->start_index = state->end_index = -1;
state->src_index = state->dest_index = 0;
state->control_escape = 0;
}
//int hdlc_get_data(hdlc_control_t *control, const char *src,
// unsigned int src_len, char *dest, unsigned int *dest_len)
int hdlc_get_data(hdlc_control_t *control, uint8_t *src,
size_t src_len, uint8_t *dest, size_t *dest_len){
return hdlc_get_data_with_state(&hdlc_state, control, src, src_len, dest, dest_len);
}
//int hdlc_get_data_with_state(hdlc_state_t *state, hdlc_control_t *control, const char *src,
// unsigned int src_len, char *dest, unsigned int *dest_len)
int
hdlc_get_data_with_state(hdlc_state_t *state, hdlc_control_t *control, uint8_t *src,
size_t src_len, uint8_t *dest, size_t *dest_len){
int ret;
char value;
unsigned int i;
// Make sure that all parameters are valid
if (!state || !control || !src || !dest || !dest_len) {
return -EINVAL;
}
// Run through the data bytes
for (i = 0; i < src_len; i++) {
// First find the start flag sequence
if (state->start_index < 0) {
if (src[i] == HDLC_FLAG_SEQUENCE) {
// Check if an additional flag sequence byte is present
if ((i < (src_len - 1)) && (src[i + 1] == HDLC_FLAG_SEQUENCE)) {
// Just loop again to silently discard it (accordingly to HDLC)
continue;
}
state->start_index = state->src_index;
}
} else {
// Check for end flag sequence
if (src[i] == HDLC_FLAG_SEQUENCE) {
// Check if an additional flag sequence byte is present or earlier received
if (((i < (src_len - 1)) && (src[i + 1] == HDLC_FLAG_SEQUENCE))
|| ((state->start_index + 1) == state->src_index)) {
// Just loop again to silently discard it (accordingly to HDLC)
continue;
}
state->end_index = state->src_index;
break;
} else if (src[i] == HDLC_CONTROL_ESCAPE) {
state->control_escape = 1;
} else {
// Update the value based on any control escape received
if (state->control_escape) {
state->control_escape = 0;
value = src[i] ^ 0x20;
} else {
value = src[i];
}
// Now update the FCS value
state->fcs = calc_fcs(state->fcs, value);
if (state->src_index == state->start_index + 2) {
// Control field is the second byte after the start flag sequence
*control = hdlc_get_control_type(value);
} else if (state->src_index > (state->start_index + 2)) {
// Start adding the data values after the Control field to the buffer
dest[state->dest_index++] = value;
}
}
}
state->src_index++;
}
// Check for invalid frame (no start or end flag sequence)
if ((state->start_index < 0) || (state->end_index < 0)) {
// Return no message and make sure destination length is 0
*dest_len = 0;
ret = -ENOMSG;
} else {
// A frame is at least 4 bytes in size and has a valid FCS value
if ((state->end_index < (state->start_index + 4))
|| (state->fcs != FCS_GOOD_VALUE)) {
// Return FCS error and indicate that data up to end flag sequence in buffer should be discarded
*dest_len = i;
ret = -EIO;
} else {
// Return success and indicate that data up to end flag sequence in buffer should be discarded
*dest_len = state->dest_index - sizeof(state->fcs);
ret = i;
}
// Reset values for next frame
hdlc_get_data_reset_with_state(state);
}
return ret;
}
//int hdlc_frame_data(hdlc_control_t *control, const char *src,
// unsigned int src_len, char *dest, unsigned int *dest_len)
int hdlc_frame_data(hdlc_control_t *control, uint8_t *src,
size_t src_len, uint8_t *dest, size_t *dest_len){
unsigned int i;
int dest_index = 0;
unsigned char value = 0;
FCS_SIZE fcs = FCS_INIT_VALUE;
// Make sure that all parameters are valid
if (!control || (!src && (src_len > 0)) || !dest || !dest_len) {
return -EINVAL;
}
// Start by adding the start flag sequence
dest[dest_index++] = HDLC_FLAG_SEQUENCE;
// Add the all-station address from HDLC (broadcast)
fcs = calc_fcs(fcs, HDLC_ALL_STATION_ADDR);
hdlc_escape_value(HDLC_ALL_STATION_ADDR, dest, &dest_index);
// Add the framed control field value
value = hdlc_frame_control_type(control);
fcs = calc_fcs(fcs, value);
hdlc_escape_value(value, dest, &dest_index);
// Only DATA frames should contain data
if (control->frame == I_FRAME) {
// Calculate FCS and escape data
for (i = 0; i < src_len; i++) {
fcs = calc_fcs(fcs, src[i]);
hdlc_escape_value(src[i], dest, &dest_index);
}
}
// Invert the FCS value accordingly to the specification
fcs ^= FCS_INVERT_MASK;
// Run through the FCS bytes and escape the values
for (i = 0; i < sizeof(fcs); i++) {
value = ((fcs >> (8 * i)) & 0xFF);
hdlc_escape_value(value, dest, &dest_index);
}
// Add end flag sequence and update length of frame
dest[dest_index++] = HDLC_FLAG_SEQUENCE;
*dest_len = dest_index;
return 0;
}

109
hdlc.h Normal file
View File

@ -0,0 +1,109 @@
//
// Created by 79513 on 15.12.2023.
//
#ifndef HDLC_H
#define HDLC_H
#include "fcs.h"
#include <errno.h>
#include <stdint.h>
#include <stddef.h>
/** HDLC start/end flag sequence */
#define HDLC_FLAG_SEQUENCE 0x7E
/** HDLC control escape value */
#define HDLC_CONTROL_ESCAPE 0x7D
/** HDLC all station address */
#define HDLC_ALL_STATION_ADDR 0xFF
/** Supported HDLC frame types */
typedef enum {
I_FRAME,
S_FRAME,
S_FRAME_NACK,
} hdlc_frame_t;
/** Control field information */
typedef struct {
hdlc_frame_t frame;
unsigned char seq_no :3;
} hdlc_control_t;
/** Variables used in hdlc_get_data and hdlc_get_data_with_state
* to keep track of received buffers
*/
typedef struct {
char control_escape;
FCS_SIZE fcs;
int start_index;
int end_index;
int src_index;
int dest_index;
} hdlc_state_t;
/**
* Retrieves data from specified buffer containing the HDLC frame. Frames can be
* parsed from multiple buffers e.g. when received via UART.
*
* @param[out] control Control field structure with frame type and sequence number
* @param[in] src Source buffer with frame
* @param[in] src_len Source buffer length
* @param[out] dest Destination buffer (should be able to contain max frame size)
* @param[out] dest_len Destination buffer length
* @retval >=0 Success (size of returned value should be discarded from source buffer)
* @retval -EINVAL Invalid parameter
* @retval -ENOMSG Invalid message
* @retval -EIO Invalid FCS (size of dest_len should be discarded from source buffer)
*
* @see hdlc_get_data_with_state
*/
int hdlc_get_data(hdlc_control_t *control, uint8_t *src,
size_t src_len, uint8_t *dest, size_t *dest_len);
/**
* Retrieves data from specified buffer containing the HDLC frame. Frames can be
* parsed from multiple buffers e.g. when received via UART.
*
* This function is a variation of @ref hdlc_get_data
* The difference is only in first argument: hdlc_state_t *state
* Data under that pointer is used to keep track of internal buffers.
*
* @see hdlc_get_data
*/
int hdlc_get_data_with_state(hdlc_state_t *state, hdlc_control_t *control, uint8_t *src,
size_t src_len, uint8_t *dest, size_t *dest_len);
/**
* Resets values used in yahdlc_get_data function to keep track of received buffers
*/
void hdlc_get_data_reset();
/**
* This is a variation of @ref hdlc_get_data_reset
* Resets state values that are under the pointer provided as argument
*
* This function need to be called before the first call to hdlc_get_data_with_state
* when custom state storage is used.
*
* @see hdlc_get_data_reset
*/
void hdlc_get_data_reset_with_state(hdlc_state_t *state);
/**
* Creates HDLC frame with specified data buffer.
*
* @param[in] control Control field structure with frame type and sequence number
* @param[in] src Source buffer with data
* @param[in] src_len Source buffer length
* @param[out] dest Destination buffer (should be bigger than source buffer)
* @param[out] dest_len Destination buffer length
* @retval 0 Success
* @retval -EINVAL Invalid parameter
*/
int hdlc_frame_data(hdlc_control_t *control, uint8_t *src,
size_t src_len, uint8_t *dest, size_t *dest_len);
#endif //HDLC_H

View File

@ -1,179 +0,0 @@
//#include "hdlc.h"
#include "stdio.h"
#include "client.h"
#include <stdlib.h>
#include <inttypes.h>
int main(){
struct Client hdlc;
init_hdlc_client(&hdlc, 200);
hdlc_control_t frame;
connect(&hdlc, &frame);
uint8_t buffer_for_ex[25];
uint8_t fake_buffer[2];
hdlc_get_raw_frame(&hdlc, &frame, buffer_for_ex, sizeof(buffer_for_ex));
for (int i = 0; i < 200; i++){
int z = hdlc_timeout_handler(&hdlc, 1);
if (z < 0){
printf("%d\n", z);
}
hdlc_decode_recived_raw_data(&hdlc, fake_buffer, sizeof(fake_buffer));
}
hdlc_get_raw_frame(&hdlc, &frame, buffer_for_ex, sizeof(buffer_for_ex));
int i = hdlc_decode_recived_raw_data(&hdlc, buffer_for_ex, sizeof(buffer_for_ex));
printf("%d\n", i);
hdlc_control_t frame_data;
uint8_t data = 003;
send_data(&hdlc, &frame_data, &data, sizeof(data));
uint8_t buffer_for_ex_data[128];
hdlc_get_raw_frame(&hdlc, &frame_data, buffer_for_ex_data, sizeof(buffer_for_ex_data));
i = hdlc_decode_recived_raw_data(&hdlc, buffer_for_ex_data, sizeof(buffer_for_ex_data));
printf("%d\n", i);
// uint8_t send[64];
// uint8_t buffer[134];
// for (int i = 0; i < sizeof(send); i++) {
// send[i] = (uint8_t) (rand() % 0x70);
// }
// send_data(&hdlc, send, sizeof(send_data));
// //get_frame(&hdlc, buffer, sizeof(buffer), send_data, sizeof(send_data));
//
// hdlc_get_raw_data(&hdlc, buffer, sizeof(buffer));
// test 1
// int ret;
// uint8_t frame_data[8], recv_data[8];
// size_t i, frame_length = 0, recv_length = 0;
// hdlc_control_t control_send, control_recv;
// // Run through the supported sequence numbers (3-bit)
// for (i = 0; i <= 7; i++) {
// // Initialize the control field structure with frame type and sequence number
// control_send.frame = HDLC_FRAME_ACK;
// control_send.seq_no = i;
//
// // Create an empty frame with the control field information
// ret = hdlc_frame_data(&control_send, NULL, 0, frame_data, &frame_length);
//
// // Get the data from the frame
// ret = hdlc_get_data(&control_recv, frame_data, frame_length, recv_data,
// &recv_length);
//
// // Result should be frame_length minus start flag to be discarded and no bytes received
// if(ret != (int )frame_length - 1){
// printf("err");
// }
// }
// if (recv_length != 0){
// printf("err2");
// }
//
// if (control_send.frame != control_recv.frame){
// printf("err3");
// }
//
// if (control_send.seq_no != control_recv.seq_no){
// printf("err4");
// }
// test 2
// Run through the supported sequence numbers (3-bit)
// for (i = 0; i <= 7; i++) {
// // Initialize the control field structure with frame type and sequence number
// control_send.frame = HDLC_FRAME_DATA;
// control_send.seq_no = i;
//
// char* input = "311";
// uint8_t data = (uint8_t)atoi(input);
//
// // Create an empty frame with the control field information
// ret = hdlc_frame_data(&control_send, &data, 3, frame_data, &frame_length);
// if (ret != 0){
// printf("err123\n");
// }
//
// // Get the data from the frame
// ret = hdlc_get_data(&control_recv, frame_data, frame_length, recv_data,
// &recv_length);
//
// // Result should be frame_length minus start flag to be discarded and no bytes received
// if(ret != (int )frame_length - 1){
// printf("err333\n");
// }
// if (recv_length != 0){
// printf("err2\n");
// }
//
// // Verify the control field information
// if (control_send.frame != control_recv.frame){
// printf("err3\n");
// }
//
// if (control_send.seq_no != control_recv.seq_no){
// printf("err4\n");
// }
// }
// int ret;
// hdlc_control_t control;
// uint8_t send_data[512], frame_data[530], recv_data[530];
// size_t i, frame_length = 0, recv_length = 0, buf_length = 16;
//
// // Initialize data to be send with random values (up to 0x70 to keep below the values to be escaped)
// for (i = 0; i < sizeof(send_data); i++) {
// send_data[i] = (uint8_t) (rand() % 0x70);
// }
//
// // Initialize control field structure and create frame
// control.frame = HDLC_FRAME_DATA;
// ret = hdlc_frame_data(&control, send_data, sizeof(send_data), frame_data,
// &frame_length);
//
// // Check that frame length is maximum 2 bytes larger than data due to escape of FCS value
// if(frame_length >= ((sizeof(send_data) + 6) + 2)){
// printf("1");
// }
// if(ret != 0){
// printf("2");
// }
//
// // Run though the different buffers (simulating decode of buffers from UART)
// for (i = 0; i <= sizeof(send_data); i += buf_length) {
// // Decode the data
// ret = hdlc_get_data(&control, &frame_data[i], buf_length, recv_data,
// &recv_length);
//
// printf("%zu: %s\n", i, recv_data);
//
// if (i < sizeof(send_data)) {
// // All chunks until the last should return no message and zero length
// if (ret != -ENOMSG){
// printf("3");
// }
// if (recv_length != 0){
// printf("1231");
// }
// } else {
// if (ret > 7){
// printf("332");
// }
// if (recv_length != sizeof(send_data)){
// printf("88888");
// }
// // The last chunk should return max 6 frame bytes - 1 start flag sequence byte + 2 byte for the possible
// // escaped FCS = 7 bytes
//// BOOST_CHECK(ret <= 7);
//// BOOST_CHECK_EQUAL(recv_length, sizeof(send_data));
// //printf("5");
// }
// }
}

42
i2cmaster.h Normal file
View File

@ -0,0 +1,42 @@
#ifndef _I2CMASTER_H
#define _I2CMASTER_H
// <20><><EFBFBD><EFBFBD>, <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> i2c
#define I2C_READ 1
// <20><><EFBFBD><EFBFBD>, <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> i2c
#define I2C_WRITE 0
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD> <20> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define SCL_CLOCK 100000L
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
void i2c_init(void);
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD>
void i2c_stop(void);
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD>
unsigned char i2c_start(unsigned char addr);
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>(<28><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>)
unsigned char i2c_rep_start(unsigned char addr);
// <20><><EFBFBD><EFBFBD>, <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>-<2D><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>, <20> <20><><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD>
void i2c_start_wait(unsigned char addr);
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
unsigned char i2c_write(unsigned char data);
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
unsigned char i2c_readAck(void);
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20> <20><><EFBFBD><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD>
unsigned char i2c_readNak(void);
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20> <20><><EFBFBD><EFBFBD>
unsigned char i2c_read(unsigned char ack);
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>
#define i2c_read(ack) (ack) ? i2c_readAck() : i2c_readNak();
#endif

14
lcd.h Normal file
View File

@ -0,0 +1,14 @@
#ifndef Lsd_print_h
#define Lsd_print_h
struct DisplayData {
char topLine[64];
float value1;
float value2;
float value3;
};
void init_lcd();
void print_lcd(struct DisplayData* displayData);
#endif

315
lcdpcf8574.cpp Normal file
View File

@ -0,0 +1,315 @@
#include "MyLCD.h"
// задержеки через асемблер
#define lcd_e_delay() __asm__ __volatile__( "rjmp 1f\n 1:" );
#define lcd_e_toggle() toggle_e()
volatile uint8_t dataport = 0;
static void toggle_e(void);
// сама реализация задержек
static inline void _delayFourCycles(unsigned int __count)
{
if ( __count == 0 )
__asm__ __volatile__( "rjmp 1f\n 1:" );
else
__asm__ __volatile__ (
"1: sbiw %0,1" "\n\t"
"brne 1b"
: "=w" (__count)
: "0" (__count)
);
}
// тупа оборачиваем функцию в макрос
#define delay(us) _delayFourCycles( ( ( 1*(F_CPU/4000) )*us)/1000 )
// переключение пина для начала записи команды
static void toggle_e(void)
{
pcf8574_setoutputpinhigh(LCD_PCF8574_DEVICEID, LCD_E_PIN);
lcd_e_delay();
pcf8574_setoutputpinlow(LCD_PCF8574_DEVICEID, LCD_E_PIN);
}
// отправка байта для контроллера LCD
static void lcd_write(uint8_t data,uint8_t rs)
{
if (rs) //отправка данных (RS=1, RW=0)
dataport |= _BV(LCD_RS_PIN);
else // отпрака инструкций(RS=0, RW=0)
dataport &= ~_BV(LCD_RS_PIN);
dataport &= ~_BV(LCD_RW_PIN);
pcf8574_setoutput(LCD_PCF8574_DEVICEID, dataport);
// отправка старшего полубайта
dataport &= ~_BV(LCD_DATA3_PIN);
dataport &= ~_BV(LCD_DATA2_PIN);
dataport &= ~_BV(LCD_DATA1_PIN);
dataport &= ~_BV(LCD_DATA0_PIN);
if(data & 0x80) dataport |= _BV(LCD_DATA3_PIN);
if(data & 0x40) dataport |= _BV(LCD_DATA2_PIN);
if(data & 0x20) dataport |= _BV(LCD_DATA1_PIN);
if(data & 0x10) dataport |= _BV(LCD_DATA0_PIN);
pcf8574_setoutput(LCD_PCF8574_DEVICEID, dataport);
lcd_e_toggle();
// отправка младшего полубайта
dataport &= ~_BV(LCD_DATA3_PIN);
dataport &= ~_BV(LCD_DATA2_PIN);
dataport &= ~_BV(LCD_DATA1_PIN);
dataport &= ~_BV(LCD_DATA0_PIN);
if(data & 0x08) dataport |= _BV(LCD_DATA3_PIN);
if(data & 0x04) dataport |= _BV(LCD_DATA2_PIN);
if(data & 0x02) dataport |= _BV(LCD_DATA1_PIN);
if(data & 0x01) dataport |= _BV(LCD_DATA0_PIN);
pcf8574_setoutput(LCD_PCF8574_DEVICEID, dataport);
lcd_e_toggle();
// завершаем передачу
dataport |= _BV(LCD_DATA0_PIN);
dataport |= _BV(LCD_DATA1_PIN);
dataport |= _BV(LCD_DATA2_PIN);
dataport |= _BV(LCD_DATA3_PIN);
pcf8574_setoutput(LCD_PCF8574_DEVICEID, dataport);
}
// чтение байта
static uint8_t lcd_read(uint8_t rs)
{
uint8_t data;
if (rs) // запись данных (RS=1, RW=0)
dataport |= _BV(LCD_RS_PIN);
else // запись инструкций (RS=0, RW=0)
dataport &= ~_BV(LCD_RS_PIN);
dataport |= _BV(LCD_RW_PIN);
pcf8574_setoutput(LCD_PCF8574_DEVICEID, dataport);
pcf8574_setoutputpinhigh(LCD_PCF8574_DEVICEID, LCD_E_PIN);
lcd_e_delay();
// чтение страшего полубайта
data = pcf8574_getoutputpin(LCD_PCF8574_DEVICEID, LCD_DATA0_PIN) << 4;
pcf8574_setoutputpinlow(LCD_PCF8574_DEVICEID, LCD_E_PIN);
lcd_e_delay();
pcf8574_setoutputpinhigh(LCD_PCF8574_DEVICEID, LCD_E_PIN);
lcd_e_delay();
// чтение младшего полубайта
data |= pcf8574_getoutputpin(LCD_PCF8574_DEVICEID, LCD_DATA0_PIN) &0x0F;
pcf8574_setoutputpinlow(LCD_PCF8574_DEVICEID, LCD_E_PIN);
return data;
}
// ждем пока ЖК освободится
static uint8_t lcd_waitbusy(void)
{
register uint8_t c;
// ждем
while ( (c=lcd_read(0)) & (1<<LCD_BUSY)) {}
// задержка
delay(2);
// получаем адрес
return (lcd_read(0));
}
// перемещение курсора по строкам
static inline void lcd_newline(uint8_t pos)
{
register uint8_t addressCounter;
#if LCD_LINES==1
addressCounter = 0;
#endif
#if LCD_LINES==2
if ( pos < (LCD_START_LINE2) )
addressCounter = LCD_START_LINE2;
else
addressCounter = LCD_START_LINE1;
#endif
#if LCD_LINES==4
if ( pos < LCD_START_LINE3 )
addressCounter = LCD_START_LINE2;
else if ( (pos >= LCD_START_LINE2) && (pos < LCD_START_LINE4) )
addressCounter = LCD_START_LINE3;
else if ( (pos >= LCD_START_LINE3) && (pos < LCD_START_LINE2) )
addressCounter = LCD_START_LINE4;
else
addressCounter = LCD_START_LINE1;
#endif
lcd_command((1<<LCD_DDRAM)+addressCounter);
}
// служебная функция для отправки команд дисплею
void lcd_command(uint8_t cmd)
{
lcd_waitbusy();
lcd_write(cmd,0);
}
// отправка байта на дисплей
void lcd_data(uint8_t data)
{
lcd_waitbusy();
lcd_write(data,1);
}
// перемещение курсора по координатам
void lcd_gotoxy(uint8_t x, uint8_t y)
{
#if LCD_LINES==1
lcd_command((1<<LCD_DDRAM)+LCD_START_LINE1+x);
#endif
#if LCD_LINES==2
if ( y==0 )
lcd_command((1<<LCD_DDRAM)+LCD_START_LINE1+x);
else
lcd_command((1<<LCD_DDRAM)+LCD_START_LINE2+x);
#endif
#if LCD_LINES==4
if ( y==0 )
lcd_command((1<<LCD_DDRAM)+LCD_START_LINE1+x);
else if ( y==1)
lcd_command((1<<LCD_DDRAM)+LCD_START_LINE2+x);
else if ( y==2)
lcd_command((1<<LCD_DDRAM)+LCD_START_LINE3+x);
else
lcd_command((1<<LCD_DDRAM)+LCD_START_LINE4+x);
#endif
}
// тырим координаты
int lcd_getxy(void)
{
return lcd_waitbusy();
}
// очистка дисплея
void lcd_clrscr(void)
{
lcd_command(1<<LCD_CLR);
}
// вкл и откл подсветки
void lcd_led(uint8_t onoff)
{
if(onoff)
dataport &= ~_BV(LCD_LED_PIN);
else
dataport |= _BV(LCD_LED_PIN);
pcf8574_setoutput(LCD_PCF8574_DEVICEID, dataport);
}
// курсов в начало координат
void lcd_home(void)
{
lcd_command(1<<LCD_HOME);
}
// отображение символа в текущей позиции курсора
void lcd_putc(char c)
{
uint8_t pos;
pos = lcd_waitbusy();
if (c=='\n')
{
lcd_newline(pos);
}
else
{
#if LCD_WRAP_LINES==1
#if LCD_LINES==1
if ( pos == LCD_START_LINE1+LCD_DISP_LENGTH ) {
lcd_write((1<<LCD_DDRAM)+LCD_START_LINE1,0);
}
#elif LCD_LINES==2
if ( pos == LCD_START_LINE1+LCD_DISP_LENGTH ) {
lcd_write((1<<LCD_DDRAM)+LCD_START_LINE2,0);
}else if ( pos == LCD_START_LINE2+LCD_DISP_LENGTH ){
lcd_write((1<<LCD_DDRAM)+LCD_START_LINE1,0);
}
#elif LCD_LINES==4
if ( pos == LCD_START_LINE1+LCD_DISP_LENGTH ) {
lcd_write((1<<LCD_DDRAM)+LCD_START_LINE2,0);
}else if ( pos == LCD_START_LINE2+LCD_DISP_LENGTH ) {
lcd_write((1<<LCD_DDRAM)+LCD_START_LINE3,0);
}else if ( pos == LCD_START_LINE3+LCD_DISP_LENGTH ) {
lcd_write((1<<LCD_DDRAM)+LCD_START_LINE4,0);
}else if ( pos == LCD_START_LINE4+LCD_DISP_LENGTH ) {
lcd_write((1<<LCD_DDRAM)+LCD_START_LINE1,0);
}
#endif
lcd_waitbusy();
#endif
lcd_write(c, 1);
}
}
// вывод строки на дисплей
void lcd_puts(const char *s)
{
register char c;
while ( (c = *s++) ) {
lcd_putc(c);
}
}
// вывод строки из памяти
void lcd_puts_p(const char *progmem_s)
{
register char c;
while ( (c = pgm_read_byte(progmem_s++)) ) {
lcd_putc(c);
}
}
// инициализация дисплея
void lcd_init(uint8_t dispAttr)
{
#if LCD_PCF8574_INIT == 1
//инициализация pcf
pcf8574_init();
#endif
dataport = 0;
pcf8574_setoutput(LCD_PCF8574_DEVICEID, dataport);
delay(16000);
// первоначальная запись на ЖК-дисплей — 8 бит
dataport |= _BV(LCD_DATA1_PIN); // _BV(LCD_FUNCTION)>>4;
dataport |= _BV(LCD_DATA0_PIN); // _BV(LCD_FUNCTION_8BIT)>>4;
pcf8574_setoutput(LCD_PCF8574_DEVICEID, dataport);
// дрючим дисплей чтобы он начал работать
lcd_e_toggle();
delay(4992);
lcd_e_toggle();
delay(64);
lcd_e_toggle();
delay(64);
// переходим в 4 битный режим
dataport &= ~_BV(LCD_DATA0_PIN);
pcf8574_setoutput(LCD_PCF8574_DEVICEID, dataport);
lcd_e_toggle();
delay(64);
lcd_command(LCD_FUNCTION_DEFAULT); // настраиваем кол-во строк
lcd_command(LCD_DISP_OFF); // вырубаем дисплей
lcd_clrscr(); // чистим экран
lcd_command(LCD_MODE_DEFAULT); // запускаемся в стандартном режиме
lcd_command(dispAttr); // отправляем настройки
}

110
lcdpcf8574.h Normal file
View File

@ -0,0 +1,110 @@
#ifndef LCD_H
#define LCD_H
#define LCD_PCF8574_INIT 1 //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> pcf
#define LCD_PCF8574_DEVICEID 0 //id <20><><EFBFBD>-<2D><>
#define LCD_FUNCTION_DEFAULT LCD_FUNCTION_4BIT_2LINES
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>: <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>/<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>, <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>/<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_ENTRY_DEC 0x04 // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>, <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_ENTRY_DEC_SHIFT 0x05 // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>, <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_ENTRY_INC_ 0x06 // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>, <20><><EFBFBD>. <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_ENTRY_INC_SHIFT 0x07 // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>, <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>/<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>, <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>/<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>, <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_DISP_OFF 0x08 // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_DISP_ON 0x0C // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD>, <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD>
#define LCD_DISP_ON_BLINK 0x0D // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD>, <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD>, <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>
#define LCD_DISP_ON_CURSOR 0x0E // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD>, <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD>
#define LCD_DISP_ON_CURSOR_BLINK 0x0F // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD>, <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD>, <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>/<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_MOVE_CURSOR_LEFT 0x10 // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_MOVE_CURSOR_RIGHT 0x14 // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_MOVE_DISP_LEFT 0x18 // <20><><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>
#define LCD_MOVE_DISP_RIGHT 0x1C // <20><><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
// <20><><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>: <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_FUNCTION_4BIT_1LINE 0x20 // 4-<2D><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>, <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>, 5x7 <20><><EFBFBD><EFBFBD><EFBFBD>
#define LCD_FUNCTION_4BIT_2LINES 0x28 // 4-<2D><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>, <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>, 5x7 <20><><EFBFBD><EFBFBD><EFBFBD>
#define LCD_FUNCTION_8BIT_1LINE 0x30 // 8-<2D><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>, <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>, 5x7 <20><><EFBFBD><EFBFBD><EFBFBD>
#define LCD_FUNCTION_8BIT_2LINES 0x38 // 8-<2D><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>, <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>, 5x7 <20><><EFBFBD><EFBFBD><EFBFBD>
#define LCD_LINES 2 // <20><><EFBFBD>-<2D><> <20><><EFBFBD><EFBFBD><EFBFBD>
#define LCD_DISP_LENGTH 16 // <20><><EFBFBD>-<2D><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_LINE_LENGTH 0x40 // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_START_LINE1 0x00 // DDRM <20><><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD> 1 <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_START_LINE2 0x40 // DDRM <20><><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD> 2 <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_WRAP_LINES 1 // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_DATA0_PIN 4 // <20><><EFBFBD> <20><><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_DATA1_PIN 5 // <20><><EFBFBD> <20><><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_DATA2_PIN 6 // <20><><EFBFBD> <20><><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_DATA3_PIN 7 // <20><><EFBFBD> <20><><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_RS_PIN 0 // <20><><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD> RS
#define LCD_RW_PIN 1 // <20><><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD> RW
#define LCD_E_PIN 2 // <20><><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_LED_PIN 3 // <20><><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> HD44780U.
#define LCD_CLR 0 // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_HOME 1 // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>
#define LCD_ENTRY_MODE 2 // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>
#define LCD_ENTRY_INC 1 // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_ENTRY_SHIFT 0 // <20><><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_ON 3 // <20><><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_ON_DISPLAY 2 // <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_ON_CURSOR 1 // <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_ON_BLINK 0 // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_MOVE 4 // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_MOVE_DISP 3 // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_MOVE_RIGHT 2 // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_FUNCTION 5 // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_FUNCTION_8BIT 4 // 8 <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>
#define LCD_FUNCTION_2LINES 3 // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>
#define LCD_FUNCTION_10DOTS 2 // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define LCD_CGRAM 6 // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> CG RAM
#define LCD_DDRAM 7 // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> DD RAM
#define LCD_BUSY 7 // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD>
#define LCD_MODE_DEFAULT ((1<<LCD_ENTRY_MODE) | (1<<LCD_ENTRY_INC) )
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
void lcd_init(uint8_t dispAttr);
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
void lcd_clrscr(void);
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
void lcd_home(void);
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
void lcd_gotoxy(uint8_t x, uint8_t y);
// <20><><EFBFBD> <20> <20><><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
void lcd_led(uint8_t onoff);
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
void lcd_putc(char c);
// <20><><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
void lcd_puts(const char *s);
// <20><><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
void lcd_puts_p(const char *progmem_s);
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
void lcd_command(uint8_t cmd);
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
void lcd_data(uint8_t data);
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define lcd_puts_P(__s) lcd_puts_p(PSTR(__s))
#endif

115
pcf8574.cpp Normal file
View File

@ -0,0 +1,115 @@
#include "MyLCD.h"
uint8_t pcf8574_pinstatus[PCF8574_MAXDEVICES];
// инициализация pcf
void pcf8574_init() {
#if PCF8574_I2CINIT == 1
// инитим i2c
i2c_init();
_delay_us(10);
#endif
uint8_t i = 0;
for(i=0; i<PCF8574_MAXDEVICES; i++)
pcf8574_pinstatus[i] = 0;
}
// получаем статус вывода
int8_t pcf8574_getoutput(uint8_t deviceid) {
int8_t data = -1;
if((deviceid >= 0 && deviceid < PCF8574_MAXDEVICES)) {
data = pcf8574_pinstatus[deviceid];
}
return data;
}
// получаем статус пинов вывода
int8_t pcf8574_getoutputpin(uint8_t deviceid, uint8_t pin) {
int8_t data = -1;
if((deviceid >= 0 && deviceid < PCF8574_MAXDEVICES) && (pin >= 0 && pin < PCF8574_MAXPINS)) {
data = pcf8574_pinstatus[deviceid];
data = (data >> pin) & 0b00000001;
}
return data;
}
// настройка вывода
int8_t pcf8574_setoutput(uint8_t deviceid, uint8_t data) {
if((deviceid >= 0 && deviceid < PCF8574_MAXDEVICES)) {
pcf8574_pinstatus[deviceid] = data;
i2c_start(((PCF8574_ADDRBASE+deviceid)<<1) | I2C_WRITE);
i2c_write(data);
i2c_stop();
return 0;
}
return -1;
}
// установить выходные контакты, заменить фактический статус устройства из pinstart для i2c
int8_t pcf8574_setoutputpins(uint8_t deviceid, uint8_t pinstart, uint8_t pinlength, int8_t data) {
if((deviceid >= 0 && deviceid < PCF8574_MAXDEVICES) && (pinstart - pinlength + 1 >= 0 && pinstart - pinlength + 1 >= 0 && pinstart < PCF8574_MAXPINS && pinstart > 0 && pinlength > 0)) {
uint8_t b = 0;
b = pcf8574_pinstatus[deviceid];
uint8_t mask = ((1 << pinlength) - 1) << (pinstart - pinlength + 1);
data <<= (pinstart - pinlength + 1);
data &= mask;
b &= ~(mask);
b |= data;
pcf8574_pinstatus[deviceid] = b;
//рестартим
i2c_start(((PCF8574_ADDRBASE+deviceid)<<1) | I2C_WRITE);
i2c_write(b);
i2c_stop();
return 0;
}
return -1;
}
// настройка пинов вывода
int8_t pcf8574_setoutputpin(uint8_t deviceid, uint8_t pin, uint8_t data) {
if((deviceid >= 0 && deviceid < PCF8574_MAXDEVICES) && (pin >= 0 && pin < PCF8574_MAXPINS)) {
uint8_t b = 0;
b = pcf8574_pinstatus[deviceid];
b = (data != 0) ? (b | (1 << pin)) : (b & ~(1 << pin));
pcf8574_pinstatus[deviceid] = b;
//рестартим
i2c_start(((PCF8574_ADDRBASE+deviceid)<<1) | I2C_WRITE);
i2c_write(b);
i2c_stop();
return 0;
}
return -1;
}
// установка высокого уровня на выходных пинах
int8_t pcf8574_setoutputpinhigh(uint8_t deviceid, uint8_t pin) {
return pcf8574_setoutputpin(deviceid, pin, 1);
}
// установка низкого уровня на выходных пинах
int8_t pcf8574_setoutputpinlow(uint8_t deviceid, uint8_t pin) {
return pcf8574_setoutputpin(deviceid, pin, 0);
}
// получение входных данных
int8_t pcf8574_getinput(uint8_t deviceid) {
int8_t data = -1;
if((deviceid >= 0 && deviceid < PCF8574_MAXDEVICES)) {
i2c_start(((PCF8574_ADDRBASE+deviceid)<<1) | I2C_READ);
data = ~i2c_readNak();
i2c_stop();
}
return data;
}
// получение входного контакта (высокий или низкий)
int8_t pcf8574_getinputpin(uint8_t deviceid, uint8_t pin) {
int8_t data = -1;
if((deviceid >= 0 && deviceid < PCF8574_MAXDEVICES) && (pin >= 0 && pin < PCF8574_MAXPINS)) {
data = pcf8574_getinput(deviceid);
if(data != -1) {
data = (data >> pin) & 0b00000001;
}
}
return data;
}

21
pcf8574.h Normal file
View File

@ -0,0 +1,21 @@
#ifndef PCF8574_H_
#define PCF8574_H_
#define PCF8574_ADDRBASE (0x27) // <20><><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD>-<2D><>
#define PCF8574_I2CINIT 1 // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> i2c
#define PCF8574_MAXDEVICES 1 // <20><><EFBFBD><EFBFBD> <20><><EFBFBD>-<2D><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
#define PCF8574_MAXPINS 8 // <20><><EFBFBD><EFBFBD> <20><><EFBFBD>-<2D><> <20><><EFBFBD><EFBFBD><EFBFBD>
void pcf8574_init();
int8_t pcf8574_getoutput(uint8_t deviceid);
int8_t pcf8574_getoutputpin(uint8_t deviceid, uint8_t pin);
int8_t pcf8574_setoutput(uint8_t deviceid, uint8_t data);
int8_t pcf8574_setoutputpins(uint8_t deviceid, uint8_t pinstart, uint8_t pinlength, int8_t data);
int8_t pcf8574_setoutputpin(uint8_t deviceid, uint8_t pin, uint8_t data);
int8_t pcf8574_setoutputpinhigh(uint8_t deviceid, uint8_t pin);
int8_t pcf8574_setoutputpinlow(uint8_t deviceid, uint8_t pin);
int8_t pcf8574_getinput(uint8_t deviceid);
int8_t pcf8574_getinputpin(uint8_t deviceid, uint8_t pin);
#endif

53
protocol.cpp Normal file
View File

@ -0,0 +1,53 @@
#include "protocol.h"
void protocol_decode(uint8_t encode_message[], size_t len_encode_message, struct message* decode_message){
int count_number = 0;
for(int i = 0; i < len_encode_message; i++){
if (encode_message[i] == FLAG_NUMBER){
if (count_number < 3){
union convert_float sample;
for (int z = 0; z < sizeof sample.buf; z++){
i++;
sample.buf[z] = encode_message[i];
}
decode_message->numbers[count_number++] = sample.fVal;
decode_message->len_numbers++;
}
}
if (encode_message[i] == FLAG_WORD){
i++;
decode_message->len_str = encode_message[i];
for (int z = 0; z < encode_message[i]; z++){
i++;
decode_message->str[z] = encode_message[i];
}
}
}
decode_message->len_numbers = count_number;
}
void protocol_encode(struct message message, uint8_t encode_message[], size_t* len_encode_message){
size_t count = 0;
if (message.len_numbers > 0){
for (int i = 0; i < message.len_numbers; i++){
encode_message[count++] = FLAG_NUMBER;
union convert_float sample;
sample.fVal = message.numbers[i];
for (int z = 0; z < sizeof sample.buf; z++){
encode_message[count++] = sample.buf[z];
}
}
}
if (message.len_str > 0){
encode_message[count++] = FLAG_WORD;
encode_message[count++] = message.len_str;
for (int i = 0; i < message.len_str; i++){
encode_message[count++] = message.str[i];
}
}
*len_encode_message = count;
}

32
protocol.h Normal file
View File

@ -0,0 +1,32 @@
#ifndef PROTOCOL_H
#define PROTOCOL_H
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "stdio.h"
#define FLAG_NUMBER 0
#define FLAG_WORD 1
struct message{
float numbers[3];
size_t len_numbers;
char str[64];
size_t len_str;
};
union convert_float{
float fVal;
uint8_t buf[4];
};
union convert_char{
char* cVal;
uint8_t buf[64];
};
void protocol_decode(uint8_t encode_message[], size_t len_encode_message, struct message* decode_message);
void protocol_encode(struct message message, uint8_t encode_message[], size_t* len_encode_message);
#endif //PROTOCOL_H

107
sketch_feb27a.ino Normal file
View File

@ -0,0 +1,107 @@
#include "client.h"
#include "protocol.h"
#include "uart.h"
#include "MyLCD.h"
struct Client hdlc;
struct DisplayData wait;
struct DisplayData recive_data;
bool wait_for_connect = false;
void setup() {
init_lcd();
init_hdlc_client(&hdlc, 500);
char str[] = "wait for connect... ";
strncpy(wait.topLine, str, sizeof(str));
wait.value1 = 1.0f;
wait.value2 = 20.0f;
wait.value3 = 300.0f;
char str_data[] = "wait for data... ";
strncpy(recive_data.topLine, str_data, sizeof(str_data));
recive_data.value1 = 4.0f;
recive_data.value2 = 50.0f;
recive_data.value3 = 600.0f;
UART_init();
}
void loop() {
if (!wait_for_connect){
print_lcd(&wait);
hdlc_connect(&hdlc);
uint8_t buffer[6];
wait.value2 = 21.0f;
hdlc_get_raw_frame(&hdlc, buffer, sizeof buffer);
UART_send(buffer, sizeof buffer);
bool recive_connect = false;
while(!recive_connect){
print_lcd(&wait);
uint8_t buffer_recive[6];
UART_receive(buffer_recive, sizeof buffer_recive);
int err = hdlc_timeout_handler(&hdlc, 1);
if (err == ERR_FRAME_TIME_OUT){
hdlc_get_raw_frame(&hdlc, buffer, sizeof buffer);
UART_send(buffer, sizeof buffer);
continue;
}
err = hdlc_decode_recived_raw_data(&hdlc, buffer_recive, sizeof buffer_recive, 0, 0);
if (err < 0){
if (err == ERR_INVALID_SEQ_NUMBER_FRAME){
uint8_t buffer_rej[10];
hdlc_get_raw_frame(&hdlc, buffer_rej, sizeof buffer_rej);
UART_send(buffer_rej, sizeof buffer_rej);
return err;
}
return err;
}
if (hdlc.state == READY_STATE){
wait_for_connect = true;
recive_connect = true;
}
}
} else {
print_lcd(&recive_data);
uint8_t buffer_receive[74];
UART_receive(buffer_receive, sizeof buffer_receive);
if (buffer_receive[0] != 126){
recive_data.value2 = 51.0f;
uint8_t data_receive[64];
size_t len_data_receive;
int err = hdlc_decode_recived_raw_data(&hdlc, buffer_receive, sizeof buffer_receive, data_receive, &len_data_receive);
if (err < 0){
if (err == ERR_INVALID_SEQ_NUMBER_FRAME){
uint8_t buffer_rej[10];
hdlc_get_raw_frame(&hdlc, buffer_rej, sizeof buffer_rej);
UART_send(buffer_rej, sizeof buffer_rej);
return err;
}
//return err;
}
if (hdlc.state == SEND){
recive_data.value2 = 51.0f;
struct message resp;
protocol_decode(data_receive, len_data_receive, &resp);
recive_data.value1 = resp.numbers[0];
recive_data.value1 = resp.numbers[0];
recive_data.value2 = resp.numbers[1];
recive_data.value3 = resp.numbers[2];
strcpy(recive_data.topLine, resp.str);
}
}
}
}

117
twimaster.cpp Normal file
View File

@ -0,0 +1,117 @@
#include "MyLCD.h"
// инициализация интерфейса i2c
void i2c_init(void)
{
// предделитель тактовой частоты равен 1
TWSR = 0;
// рассчет скорости передачи данных
TWBR = ((F_CPU/SCL_CLOCK)-16)/2;
}
// передача условия СТАРТ на шину
unsigned char i2c_start(unsigned char address)
{
uint8_t twst;
// отправка условия СТАРТ
TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN);
// ожидание завершения передачи условия СТАРТ
while(!(TWCR & (1<<TWINT)));
// проверка значений регистра
twst = TW_STATUS & 0xF8;
if ( (twst != TW_START) && (twst != TW_REP_START)) return 1;
// отправка адреса устрой-ва
TWDR = address;
TWCR = (1<<TWINT) | (1<<TWEN);
// ожидание ответа от ведомого уст-ва
while(!(TWCR & (1<<TWINT)));
// проверка полученных значений
twst = TW_STATUS & 0xF8;
if ( (twst != TW_MT_SLA_ACK) && (twst != TW_MR_SLA_ACK) ) return 1;
return 0;
}
// ждем, если устрой-во занято, а потом передаем условие СТАРТ на шину
void i2c_start_wait(unsigned char address)
{
uint8_t twst;
for(;;)
{
// отправка условия СТАРТ
TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN);
// ожидание завершения передачи условия СТАРТ
while(!(TWCR & (1<<TWINT)));
// проверка значений регистра
twst = TW_STATUS & 0xF8;
if ( (twst != TW_START) && (twst != TW_REP_START)) continue;
// отправка адреса устрой-ва
TWDR = address;
TWCR = (1<<TWINT) | (1<<TWEN);
// ожидание ответа от ведомого уст-ва
while(!(TWCR & (1<<TWINT)));
// проверка занято ли ведомое уст-во
twst = TW_STATUS & 0xF8;
if ( (twst == TW_MT_SLA_NACK )||(twst ==TW_MR_DATA_NACK) )
{
// устройство занято, отправьте условие остановки для прекращения операции записи
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
// ждем освобождения шины
while(TWCR & (1<<TWSTO));
continue;
}
break;
}
}
// тупа повторяем условие СТАРТ
unsigned char i2c_rep_start(unsigned char address)
{
return i2c_start(address);
}
// передача условия СТОП на шину
void i2c_stop(void)
{
// отправка условия СТОП
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
// ждем выполнения условия остановки
while(TWCR & (1<<TWSTO));
}
// отправка данных, если функция вернет 0, то все успешно, иначе нет
unsigned char i2c_write( unsigned char data )
{
uint8_t twst;
// отправляем данные на уст-во
TWDR = data;
TWCR = (1<<TWINT) | (1<<TWEN);
// ждем завершения передачи
while(!(TWCR & (1<<TWINT)));
// записываем ответ от ведомого уст-ва
twst = TW_STATUS & 0xF8;
if( twst != TW_MT_DATA_ACK) return 1;
return 0;
}
// читаем данные и продолжаем вещание
unsigned char i2c_readAck(void)
{
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWEA);
while(!(TWCR & (1<<TWINT)));
return TWDR;
}
// читаем данные и после их получения передаем услови СТОП
unsigned char i2c_readNak(void)
{
TWCR = (1<<TWINT) | (1<<TWEN);
while(!(TWCR & (1<<TWINT)));
return TWDR;
}

69
uart.cpp Normal file
View File

@ -0,0 +1,69 @@
#include <avr/io.h>
#include <avr/interrupt.h>
#include <stdint.h>
#include <string.h>
#include "circular_buf.h"
#include "uart.h"
struct circular_buffer uartRxBuffer;
struct circular_buffer uartTxBuffer;
// #define HI(x) ((x)>>8)
// #define LO(x) ((x)& 0xFF)
// #define BAUDRATE 9600L // скорость передачи по UART
// #define BAUDRATE_REG (F_CPU/(16*BAUDRATE)-1)
void UART_init(void) {
UCSR0B = (1 << RXEN0) | (1 << TXEN0) | (1 << RXCIE0) | (1<<TXCIE0); // прерывание по приему и передаче
UCSR0C = (1 << UCSZ01) | (1 << UCSZ00);
UBRR0H = 0;
UBRR0L = 103;
}
void UART_send(uint8_t* data, size_t length) {
for (size_t i = 0; i < length; i++) {
if (!buffer_full(&uartTxBuffer)) {
write_buffer(&uartTxBuffer, data[i]);
} else {
break; // если буфер передачи заполнен, то отправка прерывается }
}
}
UDR0 = read_buffer(&uartTxBuffer);
UCSR0B |= (1 << TXCIE0);
}
// Получение данных из буфера
int UART_receive(uint8_t* data, size_t length) {
char overflow = 0; // Флаг переполнения, который устанавливается, если превышен размер массива
uint32_t byteCount = 0; // Счетчик байтов, принятых из буфера приема
// Пока буфер приема не пуст и не превышен лимит длины массива,
// функция продолжает читать байты из буфера и сохранять их в массив data.
while (!buffer_empty(&uartRxBuffer) && byteCount < length) {
int reader = read_buffer(&uartRxBuffer); // Прием и запись символа в переменную
data[byteCount] = reader; // Запись в массив с индексом byteCount
byteCount++;
}
// Проверка переполнения
if (byteCount > length) {
overflow = 1;
}
//clear_buffer(&uartRxBuffer);
return overflow ? -1 : byteCount; // Возвращает количество успешно принятых байт или -1 в случае переполнения
}
// прерывание по завершению приема
ISR(USART_RX_vect) {
uint8_t data = UDR0; // читаем из регистра UDR0
if (!buffer_full(&uartRxBuffer)) {
write_buffer(&uartRxBuffer, data);// записываем символ в буфер приема
}
}
ISR(USART_TX_vect) {
if (!buffer_empty(&uartTxBuffer)) {
UDR0 = read_buffer(&uartTxBuffer);
} else {
UCSR0B &= ~(1 << TXCIE0); // отключаем прерывание, когда все данные отправлены
}
}

13
uart.h Normal file
View File

@ -0,0 +1,13 @@
#ifndef UART_H
#define UART_H
#include <stdint.h>
#include <stddef.h>
#define F_CPU 16000000
void UART_init(void);
void UART_send(uint8_t* data, size_t length);
int UART_receive(uint8_t* data, size_t length);
#endif /* UART_H */