Cognitive_technologies/лр8/.ipynb_checkpoints/hw1_part2_keras-checkpoint.ipynb

11432 lines
1.3 MiB
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![](https://hsto.org/getpro/habr/post_images/68f/fc1/d69/68ffc1d69c10d1ede103288c779c8f4e.jpg) \n",
"\n",
"# Наша первая нейросеть в Keras \n",
"\n",
"Изначально Keras создавалася как удобная надстройка над Theano. Отсюда появилось такое греческой название пакета (переводится как \"рог\"), ставшее отсылкой к Одиссее Гомера. Сегодня Keras поддерживает второй знаменитый фрэймворк Tensorflow, созданный Google и использует кго в качестве базового. \n",
"\n",
"## 1. О задаче, которую мы будем решать\n",
"\n",
"Для своего первого знакомства с нейросетками, мы будем использовать встроенный датасет под названием `boston_housing`. Как это не удивительно, речь пойдёт о недвижимости и ценах на неё. "
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"\n",
"plt.style.use('ggplot')\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from keras.datasets import boston_housing\n",
"\n",
"(X_train, y_train), (X_test, y_test) = boston_housing.load_data()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"(404, 13)"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X_train.shape"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(102, 13)"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X_test.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Проскалируем переменные."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.preprocessing import StandardScaler\n",
"\n",
"scl = StandardScaler()\n",
"X_train = scl.fit_transform(X_train)\n",
"X_test = scl.transform(X_test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Регрессия - моя профессия \n",
"\n",
"Оцените уже давно и до боли нам знакомую линейную регрессию. Посмотрите на качество модели. Прикрутите к ней $l_2$-регуляризатор, подберите оптимальное значение для гиерпараметра с помощью `greadsearch`. Посмотрите на качество модели. В качестве метрики используйте $MSE$. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Оценка линейной регрессии без регуляризации"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mean Squared Error (MSE) без регуляризации: 23.1956\n"
]
}
],
"source": [
"from sklearn.linear_model import LinearRegression\n",
"from sklearn.metrics import mean_squared_error\n",
"\n",
"# Создание модели линейной регрессии\n",
"lr_model = LinearRegression()\n",
"\n",
"# Обучение модели на тренировочных данных\n",
"lr_model.fit(X_train, y_train)\n",
"\n",
"# Предсказание на тестовых данных\n",
"y_pred = lr_model.predict(X_test)\n",
"\n",
"# Оценка качества модели с использованием метрики MSE\n",
"mse = mean_squared_error(y_test, y_pred)\n",
"print(f\"Mean Squared Error (MSE) без регуляризации: {mse:.4f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Линейная регрессия с $l_2$-регуляризацией"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mean Squared Error (MSE) с l_2 регуляризацией: 23.1055\n"
]
}
],
"source": [
"from sklearn.linear_model import Ridge\n",
"\n",
"# Создание модели линейной регрессии с l_2 регуляризацией (Ridge)\n",
"ridge_model = Ridge()\n",
"\n",
"# Обучение модели на тренировочных данных\n",
"ridge_model.fit(X_train, y_train)\n",
"\n",
"# Предсказание на тестовых данных\n",
"y_pred_ridge = ridge_model.predict(X_test)\n",
"\n",
"# Оценка качества модели с использованием MSE\n",
"mse_ridge = mean_squared_error(y_test, y_pred_ridge)\n",
"print(f\"Mean Squared Error (MSE) с l_2 регуляризацией: {mse_ridge:.4f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Подбор оптимального гиперпараметра с помощью greadsearch"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Лучшее значение alpha для l_2 регуляризации: 1\n",
"Mean Squared Error (MSE) с оптимальным alpha: 23.1055\n"
]
}
],
"source": [
"from sklearn.model_selection import GridSearchCV\n",
"\n",
"# Определение параметров для поиска\n",
"param_grid = {'alpha': [0.001, 0.01, 0.1, 1, 10, 100]}\n",
"\n",
"# Создание модели Ridge\n",
"ridge_model = Ridge()\n",
"\n",
"# Определение поиска по сетке параметров\n",
"grid_search = GridSearchCV(ridge_model, param_grid, scoring='neg_mean_squared_error', cv=5)\n",
"\n",
"# Обучение модели с подбором гиперпараметра\n",
"grid_search.fit(X_train, y_train)\n",
"\n",
"# Лучший параметр alpha\n",
"best_alpha = grid_search.best_params_['alpha']\n",
"print(f\"Лучшее значение alpha для l_2 регуляризации: {best_alpha}\")\n",
"\n",
"# Оценка модели с лучшим alpha\n",
"y_pred_best_ridge = grid_search.predict(X_test)\n",
"mse_best_ridge = mean_squared_error(y_test, y_pred_best_ridge)\n",
"print(f\"Mean Squared Error (MSE) с оптимальным alpha: {mse_best_ridge:.4f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. Нейросеть - регрессия\n",
"\n",
"Как это не удивительно, линейная регрессия это частный, самый простой случай нейросети. Постройте в keras нейросеть из одного нейрона. Обучите её. Посмотрите на качество, сравните с обычной регрессией. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Построение простой нейросети с одним нейроном"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step\n",
"Mean Squared Error (MSE) нейросети с одним нейроном: 23.9677\n"
]
}
],
"source": [
"from tensorflow.keras.models import Sequential\n",
"from tensorflow.keras.layers import Dense, Input\n",
"from tensorflow.keras.optimizers import SGD\n",
"from sklearn.metrics import mean_squared_error\n",
"\n",
"# Построение модели нейросети с одним нейроном\n",
"model = Sequential()\n",
"\n",
"# Использование слоя Input для определения входной формы\n",
"model.add(Input(shape=(X_train.shape[1],))) # Входной слой\n",
"\n",
"# Один нейрон с линейной активацией\n",
"model.add(Dense(1, activation='linear'))\n",
"\n",
"# Компиляция модели\n",
"model.compile(optimizer=SGD(learning_rate=0.01), loss='mean_squared_error')\n",
"\n",
"# Обучение модели\n",
"history = model.fit(X_train, y_train, epochs=100, verbose=0, validation_data=(X_test, y_test))\n",
"\n",
"# Предсказание на тестовых данных\n",
"y_pred_nn = model.predict(X_test)\n",
"\n",
"# Оценка качества модели с использованием MSE\n",
"mse_nn = mean_squared_error(y_test, y_pred_nn)\n",
"print(f\"Mean Squared Error (MSE) нейросети с одним нейроном: {mse_nn:.4f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Визуализация процесса обучения"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj0AAAHJCAYAAABueoiTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABpBElEQVR4nO3deXwU9cHH8c/smZMkQCIghPtWFAHRgoIHUpGWohTPCqK2BYrW1qulnqUiasWraFUUH9SnKhVFQUXxQBDBm0cRFAGjHJJAQu69Zp4/NruwJEBINrMh+b5fr7ySnZmd+e1vF/LN7xrDsiwLERERkSbOkegCiIiIiNhBoUdERESaBYUeERERaRYUekRERKRZUOgRERGRZkGhR0RERJoFhR4RERFpFhR6REREpFlQ6BEREZFmwZXoAohI81RZWcmqVatYv349hYWFlJWVYRgGM2bMSHTRRKSJMnQbChGx2wMPPMAtt9xCUVFRzPb09HS+//57srKyElMwEWnS1L0lTYJhGLX+2rJlS6KL26z9/ve/5+qrr6Zdu3a8+OKLFBYWYlkWlmVRXFyswCMiDUbdW9Kk3HLLLQfcd99997Fnzx4bSyP7W7RoEf/+978ZPnw4ixcvJiUlJdFFEpFmRN1b0iQYhgHAwT7OnTp14vvvv2fz5s106tTJppLJvoYMGcKnn37Kpk2baNu2baKLIyLNjLq3pNkzDIPhw4ezbds2fvOb35CTk0NycjIDBgzg2WefrfE5pmkyZ84cBg0aRFpaGqmpqQwcOJA5c+ZgmuYBr1GTefPmYRgG8+bNq3H///7v/3LaaaeRlZVFUlISvXv3ZsaMGfh8vhqPX79+PZMmTaJTp054vV5ycnI45ZRTePjhh+t17IFs27aNKVOm0KlTJzweD9nZ2YwdO5aPPvoo5rhgMMiHH37IwIEDWbRoEQMHDiQ1NZXU1FQGDRpUre4KCwtJSUmha9euBwyzo0ePxjAMPvnkEwBuvfVWDMPg3XffrXbs8OHDo+F4f2+88QajRo2idevWeL1eunbtynXXXVdtzBGEw/OBQvO7776LYRjceuuttbp2cXExbdu2xTAMJk6cWG3/qlWrGD16NNnZ2Tidzphu2toG9y1btkSfc/7559d4zE033RQ9pqa6e/PNNxk5ciQtW7YkKSmJ7t27c8MNN9RYP/u/5pq+anqtEP48Tpw4kQ4dOuD1ejnqqKO46KKL2LBhQ1yuc6D37vvvvyclJaXG906aFnVviRD+BTtkyBAyMjK47LLLKCoq4vnnn+fiiy9m69atXHfddTHHX3TRRTz33HPk5uZyxRVXYBgGCxcuZOrUqSxfvpz//Oc/cSnX5ZdfzhNPPEGHDh0477zzyMjI4MMPP+Smm25i2bJlLF26FLfbHT1+8eLF/PrXv8bn8/Hzn/+cCy+8kMLCQr744gvuuusuJk+eXKdjD2TTpk0MHTqU7du3c8YZZ3DhhRfyww8/8MILL7B48WJeeOEFxowZA8CuXbswTZNVq1axYsUKOnbsyJVXXglQY91lZWVxwQUX8OSTT/LWW28xYsSImGv/8MMPvPbaawwYMIABAwbUuY5vv/12brnlFlq1asU555xDTk4Oa9eu5Z577mHJkiV88MEHZGRk1Pn8B3PTTTexY8eOGvetXbuW4cOHEwwGOfvss+nXrx8ejwcId9UeLqfTyYsvvsi2bdto165ddLvf7+fRRx/F6XQSCoWqPW/OnDn84Q9/IDU1lfHjx5Odnc0777zDXXfdxaJFi/jggw8OOg5r3y7noqIi7r///hqPe/311zn33HMJBoOMHj2abt268eOPP/Liiy+yePFi3nnnHU444YR6X6cmV111FRUVFbU+Xo5glkgTAFiH+jh37NjRAqzNmzfX+Nxf//rXVigUim7ftGmTlZWVZbndbuu7776Lbn/mmWcswBo4cKBVWloa3V5aWmqdcMIJFmA9/fTT1a4xbNiwGsv15JNPWoD15JNP1rh93LhxVkVFRcy+W265xQKs2bNnR7fl5+dbLVq0sNxut/Xee+9Vu05eXl6djj2YESNGWIB15513xmx///33LYfDYWVlZVnFxcWWZVnWzp07o3W9f92VlJTUWHcff/yxBVjnnXdetWvfdNNNFmA9+uij0W233nqrBVhvv/12teOHDRtW7TPy9ttvW4A1ZMgQq6ioKGZfpP6vvvrqmO0dO3a0OnbsWGN9vPPOOxZg3XLLLYe89ueff245nU5r0KBBFmBNmDAhZv/1119f47kOVYb9bd682QKsc845x/J6vdbNN98cs/9//ud/LMA699xzLcB65513Yp7rdrutFi1aWBs2bIh53u9+9zsLsK644ooarzt06NBqrzlSlv1f6+7du63MzEyrdevW1tdffx2z78svv7RSU1Ot448/vsbrDBkypNbXqaneXnnlFQuIvg811bc0HereEiH8V/CsWbNwOPb+k+jcuTNXXXUVgUCA+fPnR7c/8cQTAMycOZPU1NTo9tTUVO68804A5s6dW+8y3X///bjdbh577DGSkpJi9t100020atWKZ555Jrrtqaeeori4mMmTJ3PqqadWO1+HDh3qdOyB/Pjjj7z55pt07NiRP//5zzH7hg4dygUXXEBhYSELFy4EiHkNs2bNiqm7tLS0GutuwIABDBo0iEWLFvHTTz9Ft4dCIebOnUt6ejoXXXRRdPtRRx0FhLsrauOBBx4A4NFHH63WmjNx4kSOP/74A3Zx1odlWUyZMoWkpCT++c9/1nhMWVkZAMccc0xcrtm6dWsuuOACHn30UQKBQHT7gw8+yLBhwzj22GOrPefpp58mEAgwbdo0evToEbPvjjvuIC0tjaeffrrGrtaKiopoy9Sh/M///A9FRUXcdttt9OrVK2Zf3759ufLKK/n888/56quvqj03EAjg9XprdZ2aynjVVVfRrl07brrppjqdQ44s6t4SAXJzc+ncuXO17cOHD+e2227js88+i2777LPPcDgcDBs2rNrxp512Gk6nk08//bRe5SkvL+eLL76gdevWB+zK8Hq9rF+/Pvr4ww8/BODss88+5PkP59gDidTJKaecgstV/b+SM888k2effZZPP/2USy+9NPqLyel01hi0DlR3U6ZM4bLLLuOJJ57gL3/5CwCvvPIK27ZtY/LkyTHhafDgwRiGwaxZsxgwYAB9+/aNCbL7W7VqFW63m+eff77G/X6/n/z8fHbt2kWrVq2i24uKimoc+1Hb5RCeeOIJPvjgA2bNmnXAgDl48GD+9a9/8Y9//IPOnTtz7LHH1jpEHMi0adN46qmnWLBgARdeeCGrV6/mo48+YsGCBfzf//1fteMj7/Fpp51WbV/Lli054YQTWL58OV9//TXHH398zP7ImKzaWLVqFQCff/55jfX6zTffAOExP3379o3ZV1xcXO2Pgtq644472Lx5M8899xzp6el1OoccWRR6RNjbQrC/Nm3aAMRMdd+zZw8tW7aMGUsT4XK5aN26NTt37qxXeSJr1+Tn53PbbbfV6jmRQaVHH310XI89kEidROpof5HZWZHjPB5PtH5qCkkHqrvzzz+fP//5zzz++OPceOONGIbBv//9byC85s+++vfvz1//+lfuuOMO+vXrd8jXsGvXLoLB4CHruLS0NCb07Nmzp9bvy/52797NjTfeSO/evbnmmmvYunVrjcddcsklrFy5kkcffZSBAwdW29+xY8fDvvaAAQM4+eSTeeihh7jwwgt58MEHad++PWPGjKkx9BzuexxhWRbbtm2jS5cutSrXrl27AHjssccOelxpaWm1bQUFBeTk5NTqOvv69ttvufvuuznzzDMZP358jQO4pelR95YIxHSd7CsyyHTfro+MjAx2794d00UQEQwGKSgooEWLFvUqT+R6/fv3jy7cd6CviMzMTIAD/hLd1+Ece6gyHmgg7vbt22OOg3C4LCgoqHHA7IHqLjk5mYkTJ7Jp0ybefPNNtmzZwtKlSznppJNqDDYzZszgk08+4f777+eWW26JftUUEjIyMsjKyjpkHe//3I4dO9Z43DvvvHOIWoO//OUvFBQU8K9//avG4BxhGAaPPPIIb775JgA9e/aMvpb6DKyeNm0aH3zwAa+//jovvPACv//972sMoVC39xjCLTKVlZX07NmzVmWKPP+LL7446PswYcKEmOft2bOHgoKCGltpD2XatGlYlsVDDz102M+VI5dCjwiQl5dXY9dE5K+//v37R7f1798f0zRZvnx5teOXL19OKBQ66CyT2khLS6Nv37589dVX7N69u1bPOemkk4Dw9Ot4HnsgkTpZsWIFwWCw2v5IANi3LgYPHkwwGGTFihXVjj9Y3U2ePDnawvPYY49hmia/+93vDlq2q666iltvvTX6VdNU5ZNOOonCwsIax4o0hDVr1vD4449z0UUX1dhltL9AIMBf//pXvF4vzz//fPS1REJrXYwbN462bdtywQUXYBgGv/3tbw94bOQ9rqkVpKioiM8//zy6jMK+3nrrLSDc9Vkbkc/j+++/X6vjIz744AOAGlvCDmbBggW88cYbXHvttbUOZtJENPxYaZGGRxxmb40fP77G2Vsul8vauHFjdHtk9tagQYOssrKy6PaysrLoDJB4zN6aO3euBVhjxoyxCgsLqz1v9+7d1ieffBJ9HJmR5fF4rBUrVlQ7/ocffqjTsQcTmb119913x2z/8MMPLafTGTN7y7Is69VXX7UA66STTrLKy8uj2w9WdxFnnXWW5XK5rNatW1uZmZkxz6+NmmZQvfXWWxZgnXzyydbWrVurPae0tNRatWpVzLb6zN4aMGCA1aJFC2vbtm3RfQeaaWRZlnXDDTdYgPXAAw/Uugz7q+n8s2bNso4++mhrypQp0W2RGYE1zd7KyMiwvv3225jz/uEPf6hx9lZFRYXVq1cvy+VyVavTA73WgoICKzMz08rOzrZWr15d7TWEQqGYclmWZZWXl1unnHKKBViffvppra7TsWNHKycnx2rfvr3VsWPHmH+/B3rvpGnRmB4RoF+/fqxZs4YBAwZw1llnsWfPHp577jmKioq466676Nq1a/TYiy66iJdffpnnn3+evn378qtf/QrDMHjppZfYvHkz48eP5+KLL652jW3btvHII49U2x4ZxPnOO+/gdrujz500aRKffPIJc+bMoWvXrowcOZLc3Fx2797N5s2bWb58OZdddln0nK1bt+bZZ59l3LhxnHrqqYwaNYpjjz2WPXv2sHbtWn788Uc2b9582McezCOPPMKQIUO47rrrWLp0KQMHDoyu0+NwOHjyySdjBoiec845XHbZZTz55JPRurMsi5deeoktW7YcsO4g3NqzdOlSCgoKuOqqq0hOTj5k+Q7ljDPO4M477+Qvf/kL3bt3Z9SoUXTu3JnS0lK+//573nvvPYYOHcrrr79e72sBfPLJJ9x33321Wo36nXfe4e677+acc85h2rRpcbl+xPXXX8/1119/yOM6derEfffdx9SpUznhhBOi6/S89957rFq1il69ejFr1qzo8S+99BJ///vfWb9+PZ06deLRRx+NOV9kLFlkwPIf//hHMjMzadWqFQsWLGDs2LGcdNJJnHHGGdFB6Hl5eaxatYpdu3ZRWVkJhNcpmj17Nnl5eVx11VUxLbGHEhkz9tJLL+k2KM1RolOXSDxQz5aeYcOGWVu3brUuvvhiKzs72/J6vVb//v2tZ555psZzhUIh61//+pc1YMAAKzk52UpOTrZOOOEE66GHHoppLdq/fIf6qumv91deecU655xzrOzsbMvtdltHHXWUNWjQIGv69OnV1jSxrPC6Jr/5zW+sdu3aWW6328rJybFOPfVU69///ne9jj2QH3/80fr9739v5ebmWm6322rVqpU1ZswYa82aNTUeb5qm9cgjj1gDBw6sVd1FBINBq3Xr1hZgffXVV7UuX0RNLT0R77//vvXrX//aatu2reV2u63WrVtbxx13nHXNNddYH330Ucyx9Wnp6devnxUMBmP21dQqUVBQYB199NFWmzZtrJ07d1a7Tn1bempSU0tPxBtvvGGNGDHCyszMtDwej9W1a1fruuuuq9YCOWHChFp/1mv6t7h582Zr6tSpVrdu3Syv12ulp6dbPXv2tC655BJr4cKF0eN+8YtfWMOGDTtgq+DBWnoAa9SoUdWeo5ae5kH33pJmzzAMhg0blvDZG7feeivz5s3TXeAP4LvvvqN79+4MHTq0xvFUkngTJ05ky5Yth/y39O6773LaaafpPnhiOw1kFpEjwt13341lWfzhD39IdFFE5AilMT0ijcTAgQNrnAbfnH3//ffMnz+fb7/9lvnz59O/f3/GjRuX6GLJAfzqV7866E1IIzp16sQtt9xSr1loInWh7i1p9hpL95ZUF+kGSU1Njd79Xd0hIlJXCj0iIiLSLGhMj4iIiDQLCj0iIiLSLCj0iIiISLOg2Vs1KCwsrPFeQvWRnZ1Nfn5+XM8pNVNd20d1bR/VtX1U1/aKR327XC6ysrIOfVy9rtJEBYPBuE4dNgwjel6NG29Yqmv7qK7to7q2j+raXnbXt7q3REREpFlQ6BEREZFmQaFHREREmgWFHhEREWkWNJBZRESanGAwSHl5eZ2eW1FRgd/vj3OJ5EBqW98pKSm4XPWLLQo9IiLSpASDQcrKykhPT8fhOPwODbfbrZv/2qg29W2aJiUlJaSmptYr+Kh7S0REmpTy8vI6Bx5pnBwOB+np6XVuvYueJ07lERERaTQUeJqeeLyn+lSIiIhIs6DQIyIiIs2CQo+IiIg0Cwo9IiIiTdS4ceO4+eabE12MRkNT1m1gFe0iSAgraIHTmejiiIhII3P00UcfdP+vf/1r7rvvvsM+72OPPYbb7a5jqcL++Mc/UlxczBNPPFGv8zQGCj02CE3/Pdt9lThnPgatj0p0cUREpJH57LPPoj8vWrSIe+65h+XLl0e3JSUlxRwfCARqFWaysrLiV8gmQN1bdoh8MANa4VNExG6WZWH5KhPzZVm1KmNOTk70Kz09HcMwoo99Ph+9e/dm0aJFjBs3ji5duvDiiy+ye/dupkyZwoABA+jatStnnHEGL730Usx59+/eGjx4MA888AB/+tOf6NGjB4MGDeLpp5+uV/2uWrWKc845h86dO9O/f3/uuOMOgsFgdP+rr77KGWecQdeuXenbty/nn39+dL2dDz74gJEjR9KtWzd69+7NmDFj+PHHH+tVnoNRS48d3F6gBLSsuYiI/fw+zD+Mr/Xhvjhe2vHQ8+BNOvSBtXDHHXdw8803c++99+LxePD5fPTr148pU6aQnp7OsmXLuOqqq8jNzeWEE0444Hn+/e9/c9111zFt2jQWL17MX/7yF0466SS6det22GXavn07v/nNbxg/fjz3338/Gzdu5LrrrsPr9fLnP/+Zn376ialTpzJ9+nTOPvtsSktLWb16NZZlEQwGufzyy7nkkkt46KGHCAQCfPbZZxiGUZ9qOiiFHjuopUdEROrpiiuuYNSoUTHbfv/730d/njRpEu+88w6vvvrqQUPP6aefzsSJEwGYOnUqjz32GB988EGdQs9TTz1Fu3bt+Mc//oFhGHTr1o0dO3Zwxx13cM0117Bz506CwSCjRo2iffv2APTu3RuAwsJCiouLOeuss+jUqRMA3bt3P+wyHA6FHju4PQBYwQANl19FRKRGHm+4xaWW4nrvLY83PucBjjvuuJjHoVCIhx56iFdeeYXt27fj9/vx+/2kpKQc9Dx9+vSJ/mwYBtnZ2ezatatOZdq4cSMDBgyIaZ0ZNGgQZWVlbN++nT59+jB06FDOOOMMhg0bxrBhwzjnnHPIzMwkKyuL8ePHc/7553PKKadwyimn8Itf/IKjjmq4sa8a02OHqtCjlh4REfsZhoHhTUrMVxy7apKTk2Me//vf/+axxx5j8uTJPP/88yxdupRhw4YdMrDtf8NOwzAwTbNOZbIsq9pr3Hcck9Pp5D//+Q9PP/00PXr04Mknn+TUU08lLy8PgNmzZ7NkyRIGDhzIokWLOOWUU/jkk0/qVJbaUOixQyT0aEyPiIjEyerVqxk5ciTnnXceffv2pWPHjmzevNnWMnTv3p2PP/44Juh8/PHHpKWl0bZtWyAcqgYNGsS1117LG2+8gdvt5rXXXosef+yxxzJt2jQWLVpEz549qw3Gjid1b9nAcLuxQC09IiISN506dWLJkiV89NFHZGZm8uijj5Kfn98g42KKi4v58ssvY7ZlZWUxYcIEHn/8cf72t79x2WWX8d133/HPf/6T3/72tzgcDj799FNWrFjBsGHDaN26NZ9++im7d++me/fu5OXl8cwzz3D22WfTunVrvvvuOzZt2sS4cePiXv4IhR47qHtLRETi7I9//CM//PADF198McnJyVx88cWMHDmSkpKSuF9r1apVjBw5MmZbZMHE+fPnM2PGDEaMGEFmZiYXXnghV199NQDp6emsXr2axx9/nNLSUo4++mhuvvlmTj/9dPLz89m4cSOTJk2isLCQnJwcLrvsMn7zm9/EvfwRhlXbRQSakfz8/PgNYgPMf9+F9fEKHBf+FuP00XE7r1RnGAZt27Zl+/bttV4fQ+pGdW0f1fXhKS4upkWLFnV+flwHMsshHU59H+i9dbvdZGdnH/L5GtNjh2hLj/4RiYiIJIpCjx20To+IiEjCKfTYoWqdBkuhR0REJGEUeuzgUkuPiIhIoin02EGzt0RERBJOoccGRnRMjwYyi4iIJIpCjx0i915RS4+IiEjCKPTYQbO3REREEk6hxw4ujekRERFJNIUeO3i0OKGIiBzY0UcffdCvP/7xj3U+9+DBg3nsscfidtyRTPfeskPV7C2t0yMiIjX57LPPoj8vWrSIe+65h+XLl0e3JSUlJaJYTY5aeuygMT0iInIQOTk50a/09HQMw4jZ9uGHH/Lzn/+cLl26cPLJJ3PvvfcSDAajz//nP//JoEGD6Ny5MyeccAI33XQTAOPGjePHH3/k1ltvjbYa1dVTTz3Fz372Mzp16sQpp5zCggULYvYfqAwA8+bNY8iQIXTp0oXjjjuOK6+8ss7lqA+19NjA0Do9IiIJY1kWvlDtb9QawiQQNONyba/TwDCMep3j3Xff5aqrruL2229n8ODBfP/991x//fUA/OlPf+LVV1/lscceY86cOfTs2ZOdO3eybt06AB577DFGjBjBxRdfzMUXX1znMrz22mvccsst3HrrrZxyyim89dZb/OlPf6Jt27YMGTLkoGX44osvuPnmm3nggQcYOHAgRUVFrF69ul51UlcKPXaIhB6/Qo+IiN18IYvzn/smIdd+7vweJLnqF3oeeOABpk6dyvjx4wHo2LEj1113Hf/4xz/405/+xNatW8nOzuaUU07B7XZz9NFH079/fwCysrJwOp2kpaWRk5NT5zI88sgjjB8/nokTJwLQtWtXPv30Ux555BGGDBly0DJs3bqVlJQUzjzzTNLS0mjfvj3HHHNMveqkrtS9ZQfdZV1EROpo7dq13HfffXTv3j36df311/PTTz9RUVHB6NGjqays5OSTT+a6667jtddei+n6ioeNGzcycODAmG2DBg1i48aNAActw6mnnkr79u05+eSTmTZtGi+++CIVFRVxLV9tqaXHDpHQE1RLj4iI3bxOg+fO71Hr490uN4FgfP5I9Trr18oD4e65P//5z5x99tnVz+/1cvTRR7N8+XLef/993n//ff7617/y8MMP89///hd3ZExpHOzfTWdZVnTbwcqQlpbG66+/zgcffMDy5cu55557+Oc//8mSJUvIyMiIW/lqQ6HHDhrTIyKSMIZhHFYXk9vtwNmIOkKOOeYYvvvuOzp37nzAY5KTkznrrLM466yzmDBhAsOGDWP9+vUce+yxuN1uQqFQvcrQrVs3PvroI379619Ht3388cd069atVmVwuVyceuqpnHrqqfzpT3+id+/erFy5klGjRtWrXIdLoccOkaQdDGKZIQyHM7HlERGRI8Y111zDhAkTaNeuHaNHj8bhcLBu3TrWr1/PDTfcwHPPPYdpmvTv35/k5GT++9//kpSUFJ2p1aFDB1avXs2YMWPwer20bNnygNfasWMHX375Zcy2o48+msmTJ/P73/+eY445hqFDh/Lmm2/y2muv8Z///AfgoGV48803ycvLY/DgwWRmZrJs2TJM06Rr164NV2kHoNBjh0hLD0AgCF6FHhERqZ3hw4fz1FNPMXv2bObMmYPb7aZbt25ceOGFAGRkZPDQQw9x2223EQqF6NWrF/PmzYuGm2uvvZYbbriBIUOG4PP52Lp16wGv9cgjj/DII4/EbLv33ns5//zzue2223jkkUe4+eab6dChA/feey8/+9nPDlmGjIwMXnvtNe69914qKyvp3Lkz//rXv+jZs2cD1diBGZZl1X4eXzORn59PIJ6Djk2T0O9+BYDjvmcwUtPjd26JYRgGbdu2Zfv27eij3bBU1/ZRXR+e4uJiWrRoUefnu93u+P4OkIM6nPo+0HvrdrvJzs4+5PMbT6dlE2Y4neCsat3RtHUREZGEUOixieHxhn/QYGYREZGEUOixiaG1ekRERBJKoccm0ZYerdUjIiKSEAo9NomGHo3pERERSQiFHpsYHi1QKCJiF9OMzw1DpfGIx3uq0GOTvaFHY3pERBpSSkoKJSUlCj5NiGmalJSUkJKSUq/zaHFCmxiepPAPGtMjItKgXC4XqamplJaW1un5Ho8Hv4Yi2Ka29Z2amorLVb/YotBjk0hLj+X3U//bz4mIyMG4XK46LVCohSDtZXd9q3vLLrrpqIiISEIp9Nhk7+KEGtMjIiKSCAo9NtkbenyJLYiIiEgzpdBjE83eEhERSSyFHpvo3lsiIiKJ1ehmby1cuJD//d//ZdSoUUycOBEAy7J44YUXWLZsGaWlpXTv3p3LL7+cDh06RJ8XCASYP38+K1euxO/3c8wxx3DFFVfQqlWrBL2SWBrTIyIikliNqqVn48aNvPXWW3Ts2DFm+8svv8zixYuZNGkSM2fOJDMzkxkzZlBRURE9Zt68eaxZs4arr76a22+/ncrKSu68885GszjV3u4tjekRERFJhEYTeiorK3nwwQf53e9+R2pqanS7ZVksWbKEsWPHMnjwYHJzc5k6dSo+n48VK1YAUF5ezttvv82ll15Kv3796Ny5M9OmTSMvL4+1a9cm6iXF0F3WRUREEqvRdG89/vjj9O/fn379+vHiiy9Gt+/cuZOioiKOO+646Da3202fPn3YsGEDI0aMYNOmTYRCIfr16xc9pmXLluTm5vLNN99w/PHH13jNQCBAYJ8QYhgGycnJ0Z/jxTCMfe6yHojruSVWpG5Vxw1PdW0f1bV9VNf2sru+G0XoWblyJZs3b2bmzJnV9hUVFQGQkZERsz0jI4OCgoLoMS6Xi7S0tGrHRJ5fk4ULF7JgwYLo486dOzNr1iyys7Pr+EoOrLQq9CQ5DFq3bRv380usNm3aJLoIzYbq2j6qa/uoru1lV30nPPQUFBQwb948pk+fjicy7qUG+6fA2ixXfahjxo4dy+jRo6tdIz8/n2AweMjz15ZhGKRXvbbKkhK2b98et3NLLMMwaNOmDTt27NAS8g1MdW0f1bV9VNf2ild9u1yuWjVYJDz0bNq0iT179nDjjTdGt5mmyddff83rr7/OfffdB4Rbc7KysqLHFBcXR1t/MjMzCQaDlJaWxrT2FBcX07NnzwNe2+1243a7a9wX7w97pHvLCvj1D8kGlmWpnm2iuraP6to+qmt72VXfCQ89xx57LPfcc0/Mtocffph27doxZswYjjrqKDIzM1m7di2dO3cGIBgMsm7dOi6++GIAunTpgtPpZO3atfzsZz8DoLCwkLy8vOgxiaZ1ekRERBIr4aEnOTmZ3NzcmG1er5f09PTo9lGjRrFw4ULatm1LmzZtWLhwIV6vl6FDhwKQkpLC6aefzvz580lPTyctLY358+eTm5sbM7g5kfZOWVfoERERSYSEh57aGDNmDH6/n8cff5yysjK6devG9OnTozOtACZMmIDT6WT27NnRxQlvuOEGHI7GMSvfcGtxQhERkUQyLHVaVpOfnx8zlb2+DMOgZcludl4zAVpm45w1N27nlliGYdC2bVu2b9+u/vgGprq2j+raPqpre8Wrvt1ud60GMjeOZpBmQGN6REREEkuhxyYKPSIiIoml0GOTvQOZNaZHREQkERR6bBIdyBwKYpmhxBZGRESkGVLosYnh9e59oNYeERER2yn02MTYd+VnjesRERGxnUKPTQynC5zO8AO19IiIiNhOocdO7shgZl9iyyEiItIMKfTYya0ZXCIiIomi0GOnyLgejekRERGxnUKPndTSIyIikjAKPXbSmB4REZGEUeixk1p6REREEkahx04a0yMiIpIwCj02ityKwlJLj4iIiO0UeuwUbenRmB4RERG7KfTYSWN6REREEkahx04a0yMiIpIwCj12qhrTg1+hR0RExG4KPXaKtPQEFXpERETsptBjJ43pERERSRiFHhsZnkjoUUuPiIiI3RR67OSqCj0a0yMiImI7hR47Rcf0qHtLRETEbgo9dqoa02Ope0tERMR2Cj128qh7S0REJFEUeuwUmb2lKesiIiK2U+ixk0tT1kVERBJFocdOug2FiIhIwij02MjQmB4REZGEUeixk8b0iIiIJIxCj510GwoREZGEUeixk1vdWyIiIomi0GMndW+JiIgkjEKPnSKzt0IhrFAosWURERFpZhR6bHD14k2MfmQlBYF9qlv33xIREbGVQo8NCsqC/FTio2Lf6ta4HhEREVsp9NjA6zIA8JkGOF3hjVqgUERExFYKPTZIdoer2Rc0947r0WBmERERWyn02MDrDFdzRcDUtHUREZEEUeixQZKrqqUnZGmBQhERkQRR6LFBUlX3VmVwn5YejekRERGxlUKPDZKqBjJXBjSmR0REJFEUemzgddXQ0qMxPSIiIrZS6LFBUg2hx9KYHhEREVsp9Nhgb+ix9nZvaUyPiIiIrRR6bBDb0uMNb1ToERERsZVCjw0iA5l9QRNDLT0iIiIJodBjg5rG9GidHhEREXsp9NggNvSopUdERCQRFHps4I0ZyKwxPSIiIomg0GODZLX0iIiIJJxCjw1qXJxQY3pERERspdBjg+htKNTSIyIikjAKPTaI3HDUp3V6REREEsZVlydVVlaybt061q9fz+7du/H7/bRo0YL27dvTt29fOnToEO9yHtH2XZHZdLkxAEuhR0RExFaHFXq2b9/OK6+8wsqVK6msrAQgNTUVt9tNWVkZgapxKrm5uZx99tkMHz4ch0ONSZHQA+B3efGCxvSIiIjYrNahZ968eSxdupR27dpx3nnn0adPHzp37ozT6YweU1hYyDfffMNHH33EvHnzWLx4MVOmTKFr164NUvgjhcdpRH/2uTxVoceXsPKIiIg0R7UOPZs3b+Zvf/sbffr0OeAxWVlZDB48mMGDB1NeXs6SJUvYsGFDsw89DsMg2e2kIhCi0uGhBailR0RExGa1Dj233XbbYZ04JSWFcePGHXaBmqpkt6Mq9Gj2loiISCJowI1NktzhbkBfNPSopUdERMROtQ497733HiUlJTHbdu/ejWma1bY999xz8SldE5JSFXoqHVWNa2rpERERsVWtQ8+cOXP46aefoo9N02Ty5Mls2bIl5rhdu3bx4osvxq2ATUVyJPSg0CMiIpII6t6ySVI09FTNdlP3loiIiK0UemyS4qka02NEQo+mrIuIiNipTisyx9PSpUtZunQp+fn5ALRv355x48bRv39/ACzL4oUXXmDZsmWUlpbSvXt3Lr/88phVnwOBAPPnz2flypX4/X6OOeYYrrjiClq1apWQ11STaEuPVRV6TBMrFMLYZ50jERERaTgJb+lp2bIlF110ETNnzmTmzJkcc8wx3HXXXfzwww8AvPzyyyxevJhJkyYxc+ZMMjMzmTFjBhUVFdFzzJs3jzVr1nD11Vdz++23U1lZyZ133lltkHUiRcf0WHsXKtS4HhEREfscVkvPV199xa5du4BwC0xkW6SVBsK3qjgcAwcOjHl84YUXsnTpUr799lvat2/PkiVLGDt2LIMHDwZg6tSpXHnllaxYsYIRI0ZQXl7O22+/zbRp0+jXrx8A06ZNY/Lkyaxdu5bjjz/+sMrTUCKzt3zmvqEnAEnJCSqRiIhI83JYoefZZ5+ttu3pp5+OW2FM02TVqlX4fD569OjBzp07KSoq4rjjjose43a76dOnDxs2bGDEiBFs2rSJUCgUDTwQbj3Kzc3lm2++OWjoCQQC0fuFARiGQXJycvTneDEMg6SqMT2VJuByQTCIEfTH9Tqy931TvTY81bV9VNf2UV3by+76rnXoueWWWxqsEHl5eUyfPp1AIEBSUhLXXnst7du3Z8OGDQBkZGTEHJ+RkUFBQQEARUVFuFwu0tLSqh1TVFR00OsuXLiQBQsWRB937tyZWbNmkZ2dHYdXFSv5+y0AONxJGB4vVjBIdmYm7rZt434tgTZt2iS6CM2G6to+qmv7qK7tZVd91zr0HOyeW/XVrl077r77bsrKyli9ejX/+te/Ym57sX8CjHStHUxtjhk7diyjR4+udp38/HyCwWBti39IRtW9twAKS0qxnOFVmfO3bcWIrNAscWEYBm3atGHHjh21+gxI3amu7aO6to/q2l7xqm+Xy1WrBou4zN4qLy9n+/btZGVl0bJly8N+vsvliqa8rl278t1337FkyRLGjBkDhFtzsrKyoscXFxdHW38yMzMJBoOUlpbGtPYUFxfTs2fPg17X7XbjdtccOuL9YY+EnoqACR5P+Bp+H+gfVYOwLEv/YdlEdW0f1bV9VNf2squ+az17a926dTWutPzKK69w5ZVX8te//pXJkyczZ86cehfcsiwCgQA5OTlkZmaydu3a6L5gMMi6deuigaZLly44nc6YYwoLC8nLy6NHjx71Kkc8RUKPL2iCWzcdFRERsVutW3reeOONmGniAOvXr+fpp58mMzOTn/3sZ2zdupX33nuPbt26cdZZZ9XqvM8++yz9+/enVatWVFZWsnLlSr766iumT5+OYRiMGjWKhQsX0rZtW9q0acPChQvxer0MHToUCN/N/fTTT2f+/Pmkp6eTlpbG/Pnzyc3NjRncnGjRKetBC1zhlh6tyiwiImKfWoeeTZs2xYx/AVi2bBkOh4ObbrqJ9u3bA/DPf/6T5cuX1zr07Nmzh4ceeojCwkJSUlLo2LEj06dPjwaWMWPG4Pf7efzxxykrK6Nbt25Mnz49OssKYMKECTidTmbPnh1dnPCGG27A4Uj4MkRRyZHZW2rpERERSYhah57i4mLa7jfTaO3atXTp0iUaeACGDh3Kww8/XOsCTJ48+aD7DcNg/PjxjB8//oDHeDweJk2axKRJk2p9XbvtbekxweMFwAr40aRIERERe9S5KaSoqIiioiK6d+8esz0jIwO/Xy0Y+9OYHhERkcSqdejJyclh48aN0cdffvklQLXBwiUlJaSnp8epeE1HdPaWxvSIiIgkRK27t4YMGcJLL71Eq1atyMzMZMGCBSQlJUVvDBqxYcMGLepUg0joCZoWptsTTpu607qIiIhtah16zj77bD755BPmzJkDgNPp5Le//W3MgOJgMMiKFSs4/fTT41/SI1wk9ABUepJJAbX0iIiI2KjWocfr9XLbbbfx9ddfU1JSQteuXautflhZWcnEiRMb1fo4jYXbaeA0IGSBz51UFXo0pkdERMQuh7Uis8PhoG/fvgfcn5aWxkknnVTvQjVFhmGQ5HJQFjCpcCaRBWrpERERsVHjWcimGfC6wtXtcyeFN6ilR0RExDa1bun5wx/+UOuTGobBgw8+WKcCNWXJVaGn0hmZvaXQIyIiYpdah578/HxSUlIOeRNPOTCvK7wUoUKPiIiI/Wodevr06cO6devIy8tj2LBhnHbaaeTk5DRk2ZqcpEj3lqMq9GgRRxEREdvUOvTccsst7Ny5k7fffpv33nuPhQsX0qdPH04//XQGDx6MO7LKsBxQZExPZVXosdTSIyIiYpvDmr2Vk5PDBRdcwPnnn88XX3zB22+/zcMPP8zcuXMZMmQIZ511Frm5uQ1V1iNesrsq9ERWZK6sOMjRIiIiEk+HFXoiDMPg+OOP5/jjj6e0tJRXX32Vl19+maKiIq699tp4l7HJiM7ecoZvOEpFWQJLIyIi0rzUKfQAWJbF559/zjvvvMPHH39MUlISvXv3jmfZmpykyEDmyJieivIElkZERKR5OezQs2PHDt555x2WL1/O7t276du3L1OmTOHEE0/E4/E0RBmbjKTomJ6qalfoERERsU2tQ897773H22+/zfr162nVqhWnnXYaw4cP1wyuwxCdvWVEQk8ZlmVhGEYCSyUiItI81Dr0zJkzh+TkZM444wz69euHYRhs3ryZzZs313j84MGD41bIpiLa0kPVzUdNE/w+8CYlsFQiIiLNw2F1b1VUVLBs2TKWLVt2yGOfe+65OheqqYqGHtMAwwGWGR7MrNAjIiLS4A5rnR6pn2joCVmQnAzlZeFxPZmtElwyERGRpu+wVmSW+onchsIXNCE5NRx6yjVtXURExA66y7qNojccDZqQnBLeqAUKRUREbFHr0PP4449TVFR0WCdfvXo177///uGWqcny1hR6tEChiIiILWrdvbVt2zb+8Ic/cOKJJ3LqqafSu3dvvF5vteN27NjBRx99xLvvvsvu3buZNm1aXAt8JIuO6Qla4e4twKooRxPWRUREGl6tQ8/NN9/MRx99xEsvvcTMmTNxOBy0bduWjIwM3G43paWl/PTTT5SWlpKUlMSwYcM477zzyMjIaMjyH1Gi6/QETYzkFCxQS4+IiIhNDmvK+qBBgxg0aBCbN2/mk08+4dtvv6WwsBC/3096ejqDBg2iT58+DBo0iOTk5IYq8xErehuKoIlV1dKjVZlFRETsUad7b3Xu3JnOnTvHuyxNXqSlx7QgkJSKGxR6REREbKLZWzaKDGQGqExKD/+gKesiIiK2UOixkdNh4HFWdXF5w7O3LLX0iIiI2EKhx2aR1h6fV1PWRURE7KTQY7OkqpYen7tqoLdaekRERGyh0GOzJHfVWj2R0FOp0CMiImIHhR6bRRcodFUt7KiWHhEREVso9NgsOqbHGQk9GtMjIiJihzqt0wOwfPlylixZwtatW/H7/dX2P/fcc/UqWFOVXLVAYYXDHd4QDGIF/BhuTwJLJSIi0vTVqaXn448/5uGHH6ZTp074/X5OO+00hgwZQlJSEm3btmXcuHHxLmeTEW3pMVxgVN11S609IiIiDa5Ooeell17inHPO4be//S0AZ511FldddRX3338/pmnSqlWruBayKYnefysEJFUNZi7XuB4REZGGVqfQs23bNvr16xd9bJomAJmZmZx77rksXrw4PqVrgrzRO62bkBxZq0ehR0REpKHVKfSYponL5cLhcOD1eikqKorua926NT/99FO8ytfkJO8bepK0QKGIiIhd6hR6cnJy2L17NwAdO3ZkxYoV0X0ffvghWVlZ8SldE+Td507raukRERGxT51mbx1zzDH83//9H0OHDmXUqFHcd999fPfdd7hcLrZt28bFF18c73I2GdExPUELklMBsCrKMBJZKBERkWagTqHnwgsvJBAIAHDyySfjcDh4//33MQyDMWPGMHz48HiWsUmJhJ6KoImRnIIFWpVZRETEBnUKPW63G7fbHX08ePBgBg8eHLdCNWV7W3rMaEuPZm+JiIg0vDoPZD6Yzz//vC6nbRY0pkdERCQx6hR6Iuvx7C8YDDJv3jzuvPPOehesqUquccq6Zm+JiIg0tDqFnrVr1/LAAw/EBJ8ff/yRv/zlLyxbtowrrrgibgVsavau02NBSmQgs1p6REREGlqdQs/06dP54osvosHn9ddf58Ybb8TlcjFr1izOPPPMeJezyYgd06OWHhEREbvUaSBzt27dmD59Ov/4xz+YOnUqRUVF/PKXv2T8+PE4nc54l7FJSYrccDRoYiRVzd5SS4+IiEiDq1NLD+wNPpWVlfTq1Yvzzz9fgacWIi09/pCFmVQ1e0uhR0REpMHVKfQUFBRQUFBAZmYmv/vd7/jmm2944IEHotsLCgriXc4mIxJ6AHzeqhuOqntLRESkwdWpe2vq1KnVtq1atYpVq1ZFHz/33HN1L1UT5nEaGIAFVLqT8YJaekRERGxQp9AzefLkeJej2TAMA6/LQWXQpNKTTAZAwI8VDGC43Id6uoiIiNRRnUKPbjNRP0kug8og+JzevRsrKiBdoUdERKSh1Hkgc8Tu3bvJy8uL3nVdDi06bd00wJsU3qhxPSIiIg3qkC09oVCIDz/8kMGDB+Ny7T38448/5umnn2b79u3Rbe3ateOSSy5hwIABDVPaJiJp/1WZfZUa1yMiItLADtnS4/P5eOCBB/jxxx+j29auXcs999yDaZqcd955XHHFFZx77rmEQiHuuece1q5d26CFPtJ5Y0JPZNq6WnpEREQa0iFbepKTkzEMI+aWE//973/p3bs3f/vb32LW5vn1r3/N3//+d/773//Sr1+/hilxE5Ckm46KiIjY7pAtPYZhkJ6eTmVlZXTbpk2bGDVqVLXFCB0OB2effTabNm2Kf0mbkJjuraRw6LHU0iMiItKgajWQuV27dnz++efRx16vF8uyajzWsiwMw4hL4ZqqvfffsjDU0iMiImKLWoWek046icWLF/Pll18C0KVLF1555RWCwWDMccFgkFdffZXu3bvHv6RNSExLT4rG9IiIiNihVuv0nHXWWaxcuZKZM2dyxhln0KlTJ15++WWmTZvG4MGDycrKorCwkNWrV1NcXMwtt9zS0OU+omlMj4iIiP1qFXqcTic333wzzzzzDG+//TZ+vx8Ir9Hz2muvRY/p27cv559/Pt26dWu4EjcB3v2nrINCj4iISAOr9YrMHo+Hyy67jAsvvJDt27fj8/nweDy4XC6SkpJo2bJlzDo+cmB7u7esfaasK/SIiIg0pMNOKUlJSXTu3LkhytJsVFucEM3eEhERaWh1app57733DnnMsGHD6nLqZiHZHQ495QETIy0VC9TSIyIi0sDqFHrmzJlzyGMUeg6shTe8vlGpL6QxPSIiIjapU+hp164dO3bsYOTIkZx99tk4HPW+b2mzkl4Veop9Id2GQkRExCZ1Cj333HMPr776Ki+++CJfffUVl19+Ob169apTARYuXMiaNWvYunUrHo+HHj16cMkll9CuXbvoMZZl8cILL7Bs2TJKS0vp3r07l19+OR06dIgeEwgEmD9/PitXrsTv93PMMcdwxRVX0KpVqzqVqyGle8Khp8QXguS08Ea19IiIiDSoOjXROJ1OxowZw+zZs2nXrh233norDz30EEVFRYd9rnXr1jFy5Ej+8Y9/8Le//Q3TNJkxY0bMbS9efvllFi9ezKRJk5g5cyaZmZnMmDGDioqK6DHz5s1jzZo1XH311dx+++1UVlZy5513xtwzrLGIdG9VBE0C3qruLV8lViiUwFKJiIg0bfWaY96yZUuuueYavvzyS5544gn++Mc/Mn78eH7+85/Xustr+vTpMY+nTJnCFVdcwaZNm+jTpw+WZbFkyRLGjh3L4MGDAZg6dSpXXnklK1asYMSIEZSXl/P2228zbdq06I1Op02bxuTJk1m7di3HH398jdcOBAIEAoHoY8MwSE5Ojv4cL5FzRb6nep04DDAtKHUmkRE5rrICIy09btdtjvava2k4qmv7qK7to7q2l931XafQU1BQEPO4TZs2XH/99SxZsoT58+fzzjvvcPfdd9epQOXl4W6etLRwt8/OnTspKiriuOOOix7jdrvp06cPGzZsYMSIEWzatIlQKBRzZ/eWLVuSm5vLN998c8DQs3DhQhYsWBB93LlzZ2bNmkV2dnadyn4obdq0if6ckfwdheUBkrJyMDxeLL+PnPRUXG3aNsi1m5t961oaluraPqpr+6iu7WVXfdcp9EydOvWg+/Py8upUGMuyeOqpp+jVqxe5ubkA0S6zjIyMmGMzMjKi4auoqAiXyxUNSvsec7Aut7FjxzJ69Ojo40jSzM/Pr3ZfsfowDIM2bdqwY8eO6I1aU10GhcCmH3fQOykZ/D525n2PYWlQeH3UVNfSMFTX9lFd20d1ba941bfL5apVg0WdQs/kyZPr8rRDmjt3Lnl5edx+++3V9u3f9FWbyjnUMW63G7fbXafn1oVlWdHzRsb17PEFwzO4iouwyktB/8jiYt+6loaluraP6to+qmt72VXfdQo9w4cPj3Mx4IknnuCTTz7htttui5lxlZmZCYRbc7KysqLbi4uLo60/mZmZBINBSktLY1p7iouL6dmzZ9zLGg+RaeslWqtHRETEFgnvS7Esi7lz57J69WpuvvlmcnJyYvbn5OSQmZnJ2rVro9uCwSDr1q2LBpouXbrgdDpjjiksLCQvL48ePXrY80IOU+xaPboVhYiISEOrU0vPvffee9D9hmFwzTXX1Opcc+fOZcWKFVx//fUkJydHx+CkpKTg8XgwDINRo0axcOFC2rZtS5s2bVi4cCFer5ehQ4dGjz399NOZP38+6enppKWlMX/+fHJzc2MGNzcmLWJaenTTURERkYZWp9Dz9ddfH3B6mWmalJSU1PpcS5cuBeDWW2+N2T5lypRoN9qYMWPw+/08/vjjlJWV0a1bN6ZPnx6dXg4wYcIEnE4ns2fPji5OeMMNNzTa1aL3bekxklPC998qV0uPiIhIQ6lT6HnssccOuG/r1q386U9/qvW5nn/++UMeYxgG48ePZ/z48Qc8xuPxMGnSJCZNmlTraydSC43pERERsVXcm0G0oFPt1DSmR6FHRESk4TTOvp9moIWnpjE96t4SERFpKHXq3nrvvfcOuK+wsLDOhWlO0pP2CT2tIrO31NIjIiLSUOoUeubMmRPvcjQ7kZaesoBJKCk13ORWqdAjIiLSUOoUembOnHnAfTt37mT27Nl1LlBzkepxYgAWUOpOoQVoTI+IiEgDqlPo6dKlywH3JSUl1bkwzYnTYZDmcVDiNylxRUKPxvSIiIg0FA1kTqDoDC6HN7xBLT0iIiINpk4tPaWlpQfcV1am1oraSve6oCRAicMT3lBZgWWaGI10QUUREZEjWZ1Cz+WXXx7vcjRLLbzhcFNsVd3p3bKgsgJSUhNYKhERkaapTqHnvPPO0yKEcZDuDVd/SRBwuiAUDHdxKfSIiIjEXZ1Cz8FuByG1F70Vhd8Mr8pcWlw1mDk7sQUTERFpguo8eMSyLIqLiykpKcGyrHiWqdnQrShERETsc9gtPd988w0vvfQSX375JT6fDwCv18sxxxzD2LFj6d69e9wL2VTtveloENJaQP4OKNmT4FKJiIg0TYcVet544w3mzZsHhNfqyc4Od8Pk5+fz2Wef8dlnnzFx4kRGjhwZ94I2RXtbekzIaAmAtacQjZYSERGJv1qHnm+++YYnn3yS/v37c8UVV9CqVauY/bt27eKxxx5j3rx5dO3alW7dusW9sE3N3puOBjEys7AA9uxOaJlERESaqlqP6Xn11Vfp3r071113XbXAA9CqVSuuv/56unXrxqJFi+JayKYq5qajGVnhjXt0w1YREZGGUOvQs379ekaOHInjIAvnORwOzjrrLNavXx+XwjV1kZaeUr9JqMXe7i0RERGJv1qHntLSUlq3bn3I47Kzsw+6YrPslVY1pscCytPCoUfdWyIiIg2j1qEnPT2d/Pz8Qx5XUFBAenp6vQrVXLgcBqnu8FtQkpwZ3qiWHhERkQZR69DTs2dPli5dimmaBzzGNE1ef/11evXqFZfCNQfRGVzetPCG4j1YZiiBJRIREWmaah16Ro8ezbfffss999xDYWH11ojdu3dzzz338N133/GLX/wiroVsyiKhp8SVDIYDLBOKtVaPiIhIvNV6ynqPHj2YMGECTz31FFOmTKFr167k5OQAsHPnTr777jssy2LixImarn4YogsUBixokRHu3tpTCJktE1wyERGRpuWwFic8++yz6dy5My+99BJfffUV3377LQAej4fjjjuOsWPH0rNnzwYpaFMVcyuKjKyq0LMb6JrYgomIiDQxh30bil69enHjjTdimiYlJSVAeJDzwaayy4FFu7d8oapVmTdpVWYREZEGUKe7rEN4TZ6MjIx4lqVZarFPS4+RoVWZRUREGoqaZxIs3aNVmUVEROyg0JNgLZL2794Cq0ihR0REJN4UehIs0tIT6d4KP1DoERERiTeFngRr4VX3loiIiB0UehIsOnvLH8JskRneuGc3lmUlrlAiIiJNkEJPgkVaekwLylOqZsMFg1Cum7aKiIjEk0JPgrmdDpJcVTcdDTkhpeoeXBrMLCIiElcKPY1Ai326uPaO69FaPSIiIvGk0NMIRG9FURmK3nPL0mBmERGRuFLoaQT2bekx1NIjIiLSIBR6GoG9Nx0Natq6iIhIA1HoaQT2rtVjRldlVugRERGJL4WeRqCmlh5L3VsiIiJxpdDTCOx701Ej0tKjKesiIiJxpdDTCLTw7r3/lsb0iIiINAyFnkYgfd/7b2VWhR5fBVZlRQJLJSIi0rQo9DQC+7b0GEkp4E0K71Brj4iISNwo9DQC+7b0WJalVZlFREQagEJPIxBp6QlZUB4w95nBpZYeERGReFHoaQS8LgcepwHsN4NLLT0iIiJxo9DTSNR401FNWxcREYkbhZ5GIjPJBcCu8qBWZRYREWkACj2NxFFpbgB+Kg1oVWYREZEGoNDTSERDT1kAI1MLFIqIiMSbQk8jkZMaDj07S/3q3hIREWkACj2NRE3dW5SVYAUCCSyViIhI06HQ00gcleYBwqHHSkkDV3hgM8Vq7REREYkHhZ5GIifVhQH4QhbFfhNaRKatazCziIhIPCj0NBJup4OWyeHWnZguLo3rERERiQuFnkYkdlxPeDCzbkUhIiISHwo9jUhOWmQG177T1tW9JSIiEg8KPY3I3rV6/OreEhERiTOFnkbkqFR1b4mIiDQUhZ5GZN9p60Zm1QKFhbsSWCIREZGmQ6GnEYl0bxWUBwhltw1v/GkrlhlKYKlERESaBoWeRqRlsguXA4Im7E5tBS43BPxQsDPRRRMRETniKfQ0Ik6HQeuUcGtPfrkJbdqHd2z/IYGlEhERaRoUehqZmLutt8sFwNqWl8giiYiINAkKPY3M3gUK/dCuQ3jjNrX0iIiI1JdCTyNzVOo+M7jU0iMiIhI3rkQXAGDdunUsWrSIzZs3U1hYyLXXXsuJJ54Y3W9ZFi+88ALLli2jtLSU7t27c/nll9OhQ4foMYFAgPnz57Ny5Ur8fj/HHHMMV1xxBa1atUrES6qznH1vRdGl6vXt+AHLNDEcyqgiIiJ11Sh+i/p8Pjp16sSkSZNq3P/yyy+zePFiJk2axMyZM8nMzGTGjBlUVFREj5k3bx5r1qzh6quv5vbbb6eyspI777wT0zTtehlxse+YHrLbhGdw+f2wSzO4RERE6qNRhJ7+/ftzwQUXMHjw4Gr7LMtiyZIljB07lsGDB5Obm8vUqVPx+XysWLECgPLyct5++20uvfRS+vXrR+fOnZk2bRp5eXmsXbvW7pdTL5HQs7s8SBAD2hwd3qFxPSIiIvXSKLq3Dmbnzp0UFRVx3HHHRbe53W769OnDhg0bGDFiBJs2bSIUCtGvX7/oMS1btiQ3N5dvvvmG448/vsZzBwIBAoFA9LFhGCQnJ0d/jpfIuWpzzswkF16ngS9kUVAe4qh2uVg/boHteRjHn3jI5zd3h1PXUj+qa/uoru2juraX3fXd6ENPUVERABkZGTHbMzIyKCgoiB7jcrlIS0urdkzk+TVZuHAhCxYsiD7u3Lkzs2bNIjs7Oz6F30+bNm1qddzRWT+wqaCMgCeN9J59KF6znKSiAlq1bdsg5WqKalvXUn+qa/uoru2juraXXfXd6ENPxP4p0LKsQz7nUMeMHTuW0aNHV7tGfn4+wWCwDqWsmWEYtGnThh07dtSq3K28BpuAr/N+okN6+B5c5Rs34N++PW5laqoOt66l7lTX9lFd20d1ba941bfL5apVg0WjDz2ZmZlAuDUnKysrur24uDja+pOZmUkwGKS0tDSmtae4uJiePXse8Nxutxu3213jvob4sFuWVavzRmZw7Sj1Q9u9qzKboZBmcNVSbeta6k91bR/VtX1U1/ayq74b/W/QnJwcMjMzYwYkB4NB1q1bFw00Xbp0wel0xhxTWFhIXl4ePXr0sL3M9XVU6j7T1rPbgssFfp9mcImIiNRDo2jpqaysZMeOHdHHO3fuZMuWLaSlpdG6dWtGjRrFwoULadu2LW3atGHhwoV4vV6GDh0KQEpKCqeffjrz588nPT2dtLQ05s+fT25ubszg5iNFZAbXzrIAhtMJRx0NW78P34MrW/3MIiIiddEoQs93333HbbfdFn38P//zPwAMGzaMqVOnMmbMGPx+P48//jhlZWV069aN6dOnR2daAUyYMAGn08ns2bOjixPecMMNOI7A7qCj9l2gEDDa5WJt/R5rWx5Gv0GJLJqIiMgRq1GEnr59+/L8888fcL9hGIwfP57x48cf8BiPx8OkSZMOuMDhkSQSeop9ISoCJl7dg0tERKTejrxmkGYgxe0k3RN+a34q9eseXCIiInGg0NNI5aRV3Xi0LABVoYcdP2IdYbfVEBERaSwUehqp6GDmfWdw+Sphd36CSyYiInJkUuhppPadth6dwQXhGVwiIiJy2BR6GqmYu62DxvWIiIjUk0JPI9UmPTym58c9vvAGzeASERGpF4WeRqpbyyQAtpUE2FMZxGirlh4REZH6UOhppNK9TnIzwq096/Mr9s7g2v6D7gcjIiJSBwo9jVjv7BQA1uVXhG8/4dQMLhERkbpS6GnEemeHb7PxdX45hssFbapmcKmLS0RE5LAp9DRifXLCoee73ZX4giZGbhcArG++SmSxREREjkgKPY1YTqqbrGQXQRM27qqEvicAYH35aYJLJiIicuRR6GnEDMOgT7SLqwKjz/FgGPDjZqyi3YktnIiIyBFGoaeRi4zrWZdfjpGeAR27AWCt+yyRxRIRETniKPQ0cpEZXOsLKjAtC6Nv//AOdXGJiIgcFoWeRq5zlpckl0GZ3+SHPX6MY6rG9az7HMsMJbh0IiIiRw6FnkbO6TDo0bqqi2tnOXTuCcmpUFYCWzYmuHQiIiJHDoWeI0DMYGanE/ocB2gWl4iIyOFQ6DkCRMb1fJ1fAYARmbr+lUKPiIhIbSn0HAF6tE7CYcDOsgAF5YFo6GHzt1ilxYktnIiIyBFCoecIkOJ20jnLC8DXOyswWraGozuCZWJ9/UWCSyciInJkUOg5QvSKdHEVRLq4NHVdRETkcCj0HCGig5l3lgOx43osy0pYuURERI4UCj1HiMjKzFuKfJQHQtC9D3i8sKcQftyS2MKJiIgcARR6jhCtUtzkpLoxLVifX4Hh9kDPYwHN4hIREakNhZ4jyPFtw+N63tsSnrEVXZ1Z43pEREQOSaHnCHJm10wAPsgrodQXwjh2YHjHN19i7diauIKJiIgcARR6jiA9WiXRMdOLP2Tx3pZijOw2cOxAsCyspQsTXTwREZFGTaHnCGIYBiO7ZQLwxsYiLMvC8fPzALBWvY1VtDuBpRMREWncFHqOMMM6tcDjNPi+yMc3uyrDs7i69oJgEGvZK4kunoiISKOl0HOESfM6+VluOgBLNxZhGAaOn58LgPXea1jlZYksnoiISKOl0HMEOquqi2vF98XhNXv6nQhtO0BFOdby1xNbOBERkUZKoecI1Cc7mfYtPFQGLZZvKcZwODBGVrX2vPUKViCQ4BKKiIg0Pgo9RyDDMKKtPUs37glvG3wqZLWGPbuxPnwngaUTERFpnBR6jlCndW6By2Hw3e5KvttdieFyY5z5SwCsNxZimaEEl1BERKRxUeg5QrVIcnFShzQgPKAZwDj1LEhJhZ+2Yq1ensDSiYiIND4KPUewyJo9b2/aw0+lfoykFIwRYwCwnnkYa2teAksnIiLSuCj0HMGOPSqFY45KwR+y+PdHP2FZFsbZv4Ze/cBXiTnnDqzy0kQXU0REpFFQ6DmCGYbB5EFH4XIYfLKtjA/ySjCcThy/vQ5aZsPObZiP34tlmokuqoiISMIp9Bzh2md4Gde3JQCPffwTZf4QRnoGjil/BbcH/u9jrFf+N8GlFBERSTyFniZgXN9WtEv3UFgZYv7n+QAYHbti/GYqANarz2F99mEiiygiIpJwCj1NgNvpYMrgowB4/dsiNhRUAOA4+TSMM34BgPno3ZjL38CyrISVU0REJJEUepqIY49K5fQuGVjAnNU7CJrhcGOMuwyOPwmCAaz5/8J64j4sX2ViCysiIpIACj1NyGX9s0n3OtlS5OP+D7bjD5kYLheOyTdinHspGA6sD9/BvONarO0/Jrq4IiIitlLoaUJaJLmYemIbnAYs/76Y6W/mUVgRxHA4cJw9DsefZ0BGFmzLw/zHnzCXvKAp7SIi0mwo9DQxJ+emc+vpHUjzOPhmVyXXvr6FLYXh7iyj5zE4broPeh4LvkqshfMxb7gcc8GTWEW7EltwERGRBqbQ0wT1a5PKXSM70S7dQ0F5kBuWfs8HecXhxQszsnD86XaMSdfA0R2hsgLrjYWYf7kSc+5srE9XYVVWJPoliIiIxJ0r0QWQhnF0Cw93j+zIrBVbWbujnFnvb6NvTjIX98um71EpGCefhnXScPi/jzFf+y9sXIf14TvhO7S7XNDzWIzjTsTo3APatMdISk70SxIREakXhZ4mLM3r5JbTOvDMF/m8sr6Qr3ZW8Ne38ji+bSoX92tNj9bJ0G8Qzn6DsL5bj/XR+1hrP4L8HfDVZ1hffUZ0gnurHGjbAaPN0dAqGyMrO7zqc6vWkNYCw+FM5EsVERE5JMPSwi3V5OfnEwgE4nY+wzBo27Yt27dvT9g6OQXlAV74chdvbiwiVFWENmluemUn0yc7hd7ZybTP8GAA7PgR64s1WOs+hx+3QMmeQ18gOTV8h/fUdEhNg5RUjJS0vduTksHjBY8Xwxv+jsu998vtBqdr788ud7jFyTAAI/zdAAwHhmEcsBiNoa6bg4qAydYSP960TFo7ykl2qac8nizLImhaVAQtKgMmvpBFWmZLdu0qAGvvP4dkt4OWyS68NdS/ZVmUBUwMIMV98H83dVERMPE4DZyO+J63oVQGTfZUBqkImCS7HaR6nKS4HTj2q5dE/h8SMi2KKoOUBUxaJbtI9Ry5f0yGTIvdFUF8IZNAyMIfsgiELAKmRb+jUqKfm3jVt9vtJjs7+5DHKfTUoCmGnoifSv385/928e7mPZj7FSXN46BX62R6V4Wgbq2S8LocWCXFsP0HrO0/wM5tsLsAa3c+7C6APbvB7tdkGOBwgOEAp3NvUHJ7wO3BnZREIBgkGpYiz9n3u8NRFbJce787HBiGo+o3StWXw4nlclHi8PCTI42Aw0WqYZLqCJFiWHgNk1KHhz142GN4KLLcYDjIdoXIdoXIcoZwOB1UWg42B7x8V/VVYjrJdgXJiXw5Q7gcELCM6FfkPWnhhhYeB0luV/gXlxUC0wLLjNa9ZUHAggrToNxyUGo6KLWclIYcVFgOnAa4DHA7LDwGeB2Q7DRIdhmkuA1SXA48DqMqY+79JRACtlXApnKDzeXwQ4VBXjnk+/e+HU7DokeKxfFpAY5L9pPhtiizXJThpMxy4rMcuJ0OPC4HXqeB1+UEh4HPMvCZBpWmgd8yME0T07QwTQvLNAmaJv4Q+E0LvwkBE1wO8DoMPE4Dr9PA5QQLI/oRtCLv8T7vo2EYeBxEv9yGhQn4TQc+C/wm4etbFiEzXLWmZQEWDgOcgNMAwwqXw29a+ELgM8PHOxzhaziMcP05HQ5cTgOXI/yFYRAImvhDJv6QhT9kEjQtAiEImOFfAn7ToiJgUR40qQxalAfM6B8ntZHiMshKctLC66QsYFLsNynxhaLnSHIZtE5x0zrFRcsUF4GQRbk/RLk/RFkg/Esp+k+j6nV4nA6S3QbJLgfJLgeGAbsrguyqCLG7Ikhl0MLlgHZpHtq3cHN0Cy9HpYXP7QuYVARD+IImTsMg3esk3eMgzesk2eWg3B+kpDJIiS9EsS9EacCkNAhlAYvSQPj1u6re4ySXQZIr/BkOmFb0F2jQDL+uFl4H6W4H6Z7w56s0YFHiNykJmJT4TIr9IfZUhstb7b8SIMXjINXtINnlJMltkOx2kpWWghHyk+wOv/YUtwO3M/w5s7Cqvod/sYdMCJoWIcvCFwxfs8QfosQXotQfIlD1mQ5Vfb7CYdUg1R0+b7LbQXnAoqA8yO6KYMz7nup2kJPqJifVRXbVe9cq1UN2ipvMZBeWZREImYRMk2DQojJkUh6C8oBJmd+kLBDCFwyXyxcy8QXD73NGkovMJCeZSS4ykpwETYvyquPL/CYVQZNgVUAJVn0ZgMsRDrkuI/yzx+XA4zTwOMPfiypDbC328WOxn+0lgeh6cfv7z/geJLvDQV2hpxFoyqEnoswfYkNBBV/nV7A+v4INBRX49vtf1mlAkstB+P9tA0fVBz3J5Yj+Z5DkMnBZIVyhIM5QEGcogBUMUBYww/95mQZlpoMUM0DbYDFHBwppV7mbnIpdYJoEQyYBE4IWOIIBvIFKkgIVeEN+PGaACqeXclcype5kylxJ+BweTMOBaTgIGQYmDoIOFwGHk6AR/m4aDpxWCJdp4rKCOC2TkOHA73Djd7jwO9wEHS4clokDC4dlYlS9L6bhwDIMTAx8Tjc7k1qyI7kV5a66jWlymUEy/KUUeltgGvVrDXGZQbwhPw4snJaJwwphWFDp9FDp9BKqZxejywySFignPVhOeqAcv8NFXmob/E5Pjcdn+EvwhgLsTG5Zr+vKwXlCAZJCPjxm+P8kCwPLAAsH5a4kfAd4f6Q6txkgOeij0unF73Qnujg1clgmSSFfnf/PaUycZogk04/bDOIxA+HvoSAzLj6RtPQ0wP7QozE9zVSqx8kJ7dI4oV34gxc0LTYXVrI+v4J1+RV8vbOcwsrwX4GHx131tQ8DcMJmZwZ4O0BaPF6B/bIMP0mYlFlOynES3GfyY5oVIBM/GfiwLMg3kthFEkGHi11JmQC0NCvoEiqii1lEy1AFBY4UdjpS+MmRQr4jBQsDt2XiJoTbMrGAUsNNicOL33ARdIS/DiXJDJBm+kg1faSZfpJDfkzDIGg48BsuAoYDn+GmwuGmwnBT4fBgGQZBh4sibwuKvC32O5+fjpUFdKrcSafKAtpXFtChchctguU4nU62eTNZm96ZL1Jz+TK5HX7DSarpJzXkIzXkwxvyEzQc+BwufIYLn8ONYVl4zQCekJ+kqoDrJPzXpAHhYIeJxwzisUJ4zQAuy4yex2+4ql6LEwcWWBZGOA5UNfeEt2GBiUHA6SLgcEeDrwMTTyiAJxSIBmyHZYbDZFUQBggZ4RAdcjgxDQNPKIjX9OMN+fGaAZxmCBOwDAMLR1U9OwkZToIOJ0HDgWU4wtcyA3jMIO6q//zdVgiXGaz6hRAkKeQjJVhJSshHUshHctBHkunHaR3436AFlDuTKPSmU+hpQYk7hZRgJRmBUlr4y0gPlmNhsMubwS5vBgXeTAq96bjNICnBSlKDlSSHKvGEAmAYhNu3DEzDgc/hptLlpcIZ/jINB1n+Ylr6imnl20Omv4RSdwo/puSwNSWHH1NyKPBm4DEDJFW9r17TT8hwUuJOodSVQok7mQpnEinByqpwXUZ6oJy0YDlpgQrSghWkBstJDVYSNFxUOj34nO7o9ff95ekyQ1S4vJS4UylxpVDsTsXndEfPlx4If2UESsnwl5IRKCMp5CPSjul3uChzJVHmSqHc6aXC5aXSuff1VlRti/wcdLjCn7GqX8xG1R8fLjOE0wrhtEy8ZiD8h0P0NZXjMYPRz5bTMjENo+qPuaTwlzOJlFAlrXx7aOXbQ5a/BKdlUuH0kO/NYmdSFvlJWdH3cJc3k13eDIo8aVXnDOEyQ7isEB4zQGqwIvrepgQro+9D5DNrYlDkSWePJ40iTzrF7tTo5yElFH5OcshXVcdB3FXntqDqMx3+fAccLgIOV/QPSb/TTVqggqPLd9KuIp/25fm0riwK//vcj2PCfw75/1hDUUtPDZpDS8+hWJbFroogvqCFaYWbc00r3NxZGTSpCISb4SsCZrRpN2hamGa4+TfV4yTN4yS1qu+82BdkW4mfrcV+thX7yS8PhrtcHHu7AUwr3O/uC5pUhsLNtsmu8PNTPQ5S3U68LgdOR7gJ3mGEv7sdBu6q7gSP06BFejpFxSXRZtmQaeGs2hdpinU5DCzC5TUJv7Zwz07kvOGyZae6aZvm4ag0d7VxE/6QSWXAJMXjDHdj7CfSp727IkhOqpus5Lr/jeELmhT7QvhD4boON5eHy50caXlzO/A6HYc9xsKyLCqC4ebwSJN8iS8EBnTOTKJNurvauAc4Mj/XNbGsqq7CyK9DY+9Yg1qfw6zqajRNwkkrHB/CXZCEu1Op+mBRNSAnEs7ChdjvhOx9vhn+RXtUTg4/5eeHd0W6d/cvolUV9iJl2LdM+253Oqu+XOBwhl+zZYaPjXyPOlA97NunuM/riJZtn+7lyLWtqp+dzvB1nVXHAoSCEAxCKAShAHvH8kXOY+x3XWvvdRz7nGf/1xF5D2r8Xv29NwyDnJwcdhYUVHWX7vNaou9T1Wsx2FvOSFVFD6l6zQ7n3tfrcMTWSfSrqqxmqOq7Ff6sOBxgVD0vct19u7Yd+3XHW1X1GAqFv5uh2Pdx325+Y5/PYrW31qr+5XDsfc8cznC9WJHymuFr1iTa3cze7y2yMByJ6d5SS4/UyDDCYwCONHb+Ig73Yx+4y8pZFZqyU+tfj16Xg+wGGixsGAYpbicpbmdcynqkMQwj/IulPueI/FJyNszAU8MwcGZkYpRX2D+Gzi6RSQ0JZhgGrjZtMSxH063rZkxTLkRERKRZUOgRERGRZkGhR0RERJoFhR4RERFpFhR6REREpFlQ6BEREZFmQaFHREREmgWFHhEREWkWFHpERESkWVDoERERkWahyd2G4o033mDRokUUFRXRvn17Jk6cSO/evRNdLBEREUmwJtXS88EHHzBv3jzOPfdcZs2aRe/evbnjjjsoKChIdNFEREQkwZpU6Hn11Vc5/fTTOeOMM6KtPK1bt2bp0qWJLpqIiIgkWJPp3goGg2zatIlf/epXMdv79evHhg0banxOIBAgEAhEHxuGQXJycvTneImcK57nlJqpru2juraP6to+qmt72V3fTSb0FBcXY5omGRkZMdszMjIoKiqq8TkLFy5kwYIF0cc9evRgxowZZGdnN0gZ27Rp0yDnlepU1/ZRXdtHdW0f1bW97KrvJhN6ImpKiwdKkGPHjmX06NHRxw5Hk+rtExERkX00md/yLVq0wOFwVGvV2bNnT7XWnwi3201KSkr0KykpqUHKVlFRwQ033EBFRUWDnF/2Ul3bR3VtH9W1fVTX9rK7vptM6HG5XHTp0oW1a9fGbF+7di09e/ZMUKnCLMti8+bNWJaV0HI0B6pr+6iu7aO6to/q2l5213eT6t4aPXo0Dz74IF26dKFHjx689dZbFBQUMGLEiEQXTURERBKsSYWen/3sZ5SUlPDf//6XwsJCOnTowF/+8pcGG5gsIiIiR44mFXoARo4cyciRIxNdjBhut5tx48bhdrsTXZQmT3VtH9W1fVTX9lFd28vu+jYsdVyKiIhIM9BkBjKLiIiIHIxCj4iIiDQLCj0iIiLSLCj0iIiISLPQ5GZvNUZvvPEGixYtoqioKHr39969eye6WEeshQsXsmbNGrZu3YrH46FHjx5ccskltGvXLnqMZVm88MILLFu2jNLSUrp3787ll19Ohw4dEljyI9/ChQv53//9X0aNGsXEiRMB1XW87d69m6effprPP/8cv99P27ZtmTx5Ml26dAFU3/ESCoV44YUXeP/99ykqKiIrK4vhw4dz7rnnRm9JpLqum3Xr1rFo0SI2b95MYWEh1157LSeeeGJ0f23qNRAIMH/+fFauXInf7+eYY47hiiuuoFWrVvUqm1p6GtgHH3zAvHnzOPfcc5k1axa9e/fmjjvuoKCgINFFO2KtW7eOkSNH8o9//IO//e1vmKbJjBkzqKysjB7z8ssvs3jxYiZNmsTMmTPJzMxkxowZWlq+HjZu3Mhbb71Fx44dY7arruOntLSUm266CZfLxV//+lfuvfdeLr30UlJSUqLHqL7j4+WXX+bNN9/k8ssvZ/bs2VxyySUsWrSI119/PeYY1fXh8/l8dOrUiUmTJtW4vzb1Om/ePNasWcPVV1/N7bffTmVlJXfeeSemadarbAo9DezVV1/l9NNP54wzzoi28rRu3ZqlS5cmumhHrOnTpzN8+HA6dOhAp06dmDJlCgUFBWzatAkI/xWxZMkSxo4dy+DBg8nNzWXq1Kn4fD5WrFiR4NIfmSorK3nwwQf53e9+R2pqanS76jq+Xn75ZVq1asWUKVPo1q0bOTk5HHvssdE7UKu+4+ebb75h4MCBnHDCCeTk5HDSSSfRr18/vvvuO0B1XR/9+/fnggsuYPDgwdX21aZey8vLefvtt7n00kvp168fnTt3Ztq0aeTl5VW71dThUuhpQMFgkE2bNnHcccfFbO/Xrx8bNmxIUKmanvLycgDS0tIA2LlzJ0VFRTH17na76dOnj+q9jh5//HH69+9Pv379YrarruPr448/pkuXLtx7771cccUVXH/99bz11lvR/arv+OnVqxdffvkl27ZtA2DLli1s2LCB/v37A6rrhlKbet20aROhUCjm/5uWLVuSm5vLN998U6/ra0xPAyouLsY0zWp3ec/IyKh2N3ipG8uyeOqpp+jVqxe5ubkA0bqtqd7VrXj4Vq5cyebNm5k5c2a1farr+Nq5cydvvvkm55xzDmPHjmXjxo08+eSTuN1uhg0bpvqOozFjxlBeXs4111yDw+HANE0uuOAChg4dCuiz3VBqU69FRUW4XK7oH7L7HlPf350KPTYwDKNW2+TwzZ07l7y8PG6//fZq+/avYy0+fvgKCgqYN28e06dPx+PxHPA41XV8mKZJ165dueiiiwDo3LkzP/zwA0uXLmXYsGHR41Tf9ffBBx/w/vvvc9VVV9GhQwe2bNnCvHnzogOaI1TXDaMu9RqPulfoaUAtWrTA4XBUS6Z79uyplnLl8D3xxBN88skn3HbbbTEj+jMzMwGiMzIiiouLVe+HadOmTezZs4cbb7wxus00Tb7++mtef/117rvvPkB1HS9ZWVm0b98+Zlv79u1ZvXo1oM92PD399NOMGTOGIUOGAJCbm0t+fj4vvfQSw4cPV103kNrUa2ZmJsFgkNLS0pjWnuLiYnr27Fmv62tMTwNyuVx06dKl2sCrtWvX1vuNa84sy2Lu3LmsXr2am2++mZycnJj9OTk5ZGZmxtR7MBhk3bp1qvfDdOyxx3LPPfdw1113Rb+6du3K0KFDueuuuzjqqKNU13HUs2fP6BiTiG3btpGdnQ3osx1PPp8vOjU9wuFwRFsTVNcNozb12qVLF5xOZ8wxhYWF5OXl0aNHj3pdXy09DWz06NE8+OCDdOnShR49evDWW29RUFDAiBEjEl20I9bcuXNZsWIF119/PcnJydGWtJSUFDweD4ZhMGrUKBYuXEjbtm1p06YNCxcuxOv1RvvrpXaSk5OjY6UivF4v6enp0e2q6/g555xzuOmmm3jxxRf52c9+xsaNG1m2bBm//e1vAfTZjqMBAwbw4osv0rp1a9q3b8+WLVt49dVXOe200wDVdX1UVlayY8eO6OOdO3eyZcsW0tLSaN269SHrNSUlhdNPP5358+eTnp5OWloa8+fPJzc3t9pkisOlu6zbILI4YWFhIR06dGDChAn06dMn0cU6Yo0fP77G7VOmTIn2xUcWv3rrrbcoKyujW7duXH755dV+gcvhu/XWW+nUqVO1xQlV1/HxySef8Oyzz7Jjxw5ycnI455xzOPPMM6P7Vd/xUVFRwXPPPceaNWvYs2cPLVu2ZMiQIYwbNw6XK9weoLqum6+++orbbrut2vZhw4YxderUWtWr3+/n6aefZsWKFTGLE7Zu3bpeZVPoERERkWZBY3pERESkWVDoERERkWZBoUdERESaBYUeERERaRYUekRERKRZUOgRERGRZkGhR0RERJoFhR4RERFpFnQbChFpFL7++mveeust1q9fT2FhIW63mzZt2jB48GDOPvtskpOTE11EETnCaUVmEUm48vJyLrvsMgYNGsTAgQPJyckhEAiwadMmXn/9dbxeL3/729+q3VxWRORwKPSISML5/X7y8vLo1q1btX179uzh2muvJSsrizvvvLPanbFFRGpLoUdEGr233nqLRx99lGuvvZYTTzyRqVOnkp+ff8Djn3/++ejPfr+fBQsWsHLlSnbv3k2LFi0YNGgQF154IampqQCsX7+e2267jbPPPptLL700+tx3332XOXPm8Pvf/57TTz8dgNdff51Vq1axdetWfD4fOTk5nHrqqZxzzjnRG1WKSOOkf6Ei0miYpklNf4cdd9xxAHz++eeceOKJAPTs2ZPf/OY3Mce9+uqrfPjhh9HHlmVx99138+WXX/KrX/2K3r178/333/P888/z7bffMmPGDNxuN7169eL888/n2WefpU+fPgwcOJAffviBuXPncsopp0QDD8BPP/3EkCFDyMnJweVy8f333/Piiy+ydetWpkyZ0hDVIiJxotAjIo3GggULWLBgwQH379q1K/pzamoqPXr0iNmfkZER8/iLL77giy++4JJLLuGXv/wlAP369aNVq1bcd999vPfee5x55pkAjBkzhq+//pp//etf3H777cyePZvWrVtz5ZVXxpxzwoQJ0Z9N06R3796kp6czZ84cLr30UtLS0ur24kWkwSn0iEijceaZZzJgwIBq2ysqKrj99tsP+3xffvklAMOHD4/ZfvLJJ/Pwww/z5ZdfRkOPYRj84Q9/4Prrr+fGG2/EMAzuuOMOkpKSYp67efNmnn/+eTZs2EBpaWnMvu3bt9O9e/fDLqeI2EOhR0QajZYtW9KyZctq27/66isAWrdufVjnKy0txel00qJFi5jthmGQmZlJSUlJzPb09HQGDhzIG2+8wYknnkhubm7M/oKCAm6++WbatWvHxIkTycnJwe12s3HjRubOnYvf7z+s8omIvTQNQkQavVWrVgF7x/bUVlpaGqFQiOLi4pjtlmVRVFREenp6zPa1a9eydOlSunXrxpo1a2LGBwGsWbMGn8/Htddey6mnnkqvXr3o2rWrBjCLHCEUekQk4SoqKnjjjTdq3LdlyxaWLVtGp06dGDhw4GGd99hjjwVg+fLlMdtXr16Nz+eL7gcoLCzkwQcfpE+fPsyYMYOBAwfyyCOPsHPnzugxhmEA4Ha7o9ssy2LZsmWHVS4RSQz9eSIiCWdZFnPnzuX9999n+PDhtGvXDr/fz9dff83rr79OdnY211577WGv0dOvXz+OO+44nnnmGSoqKujZsyd5eXk8//zzdO7cmVNPPRUID0i+//77Abj66qtxOBxMmTKF66+/ntmzZ/P3v/8dl8tFv379cLlc3H///fzyl78kEAiwdOlSysrK4l4nIhJ/Cj0iknApKSn8/e9/580332ThwoXs3r0bt9tN27ZtGTNmDD//+c9JSUk57PMahsF1113HCy+8wLvvvsuLL75IixYtOPXUU7nwwgujLTbPP/88X3/9NTfddBOZmZlAuGvsj3/8I7fccgtPP/00EydO5Oijj+bPf/4z//nPf7jnnntIT09n6NChjB49mjvuuCOeVSIiDUCLE4qIiEizoDE9IiIi0iwo9IiIiEizoNAjIiIizYJCj4iIiDQLCj0iIiLSLCj0iIiISLOg0CMiIiLNgkKPiIiINAsKPSIiItIsKPSIiIhIs6DQIyIiIs3C/wPdzJtqNbAOXwAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.plot(history.history['loss'], label='Train Loss')\n",
"plt.plot(history.history['val_loss'], label='Test Loss')\n",
"plt.title('Процесс обучения модели')\n",
"plt.xlabel('Эпоха')\n",
"plt.ylabel('Ошибка (MSE)')\n",
"plt.legend()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Прикрутите к сетке [регуляризатор.](https://keras.io/regularizers/) Посмотрите на качество модели."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Вариант с $l_2$-регуляризацией"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n",
"Mean Squared Error (MSE) нейросети с l_2 регуляризацией: 23.1516\n"
]
}
],
"source": [
"from tensorflow.keras.regularizers import l2\n",
"from tensorflow.keras.models import Sequential\n",
"from tensorflow.keras.layers import Dense, Input\n",
"from tensorflow.keras.optimizers import SGD\n",
"from sklearn.metrics import mean_squared_error\n",
"\n",
"# Значение коэффициента регуляризации\n",
"l2_reg = 0.01 # Можно подобрать оптимальное значение с помощью GridSearch\n",
"\n",
"# Построение модели нейросети с одним нейроном и l_2 регуляризацией\n",
"model = Sequential()\n",
"\n",
"# Входной слой\n",
"model.add(Input(shape=(X_train.shape[1],)))\n",
"\n",
"# Один нейрон с линейной активацией и l_2 регуляризацией\n",
"model.add(Dense(1, activation='linear', kernel_regularizer=l2(l2_reg)))\n",
"\n",
"# Компиляция модели\n",
"model.compile(optimizer=SGD(learning_rate=0.01), loss='mean_squared_error')\n",
"\n",
"# Обучение модели\n",
"history = model.fit(X_train, y_train, epochs=100, verbose=0, validation_data=(X_test, y_test))\n",
"\n",
"# Предсказание на тестовых данных\n",
"y_pred_nn_l2 = model.predict(X_test)\n",
"\n",
"# Оценка качества модели с использованием MSE\n",
"mse_nn_l2 = mean_squared_error(y_test, y_pred_nn_l2)\n",
"print(f\"Mean Squared Error (MSE) нейросети с l_2 регуляризацией: {mse_nn_l2:.4f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Визуализация процесса обучения (с $l_2$-регуляризацией)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAHJCAYAAACL5E3/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1H0lEQVR4nO3dd3hUVeLG8e+dkh6SUAKhhN4RRUBUEBALiuyyWLCuIrq7AmJvu6ioy6ooihWxo6CryIKioKKIIojY5acIiIAoRQgkhLSp5/fHZMaMSSAJycwQ3s/z5IHce+bOmTPtzbnnnGsZYwwiIiIihzlbtCsgIiIiEgsUikRERERQKBIREREBFIpEREREAIUiEREREUChSERERARQKBIREREBFIpEREREAIUiEREREQAc0a6ASFWVlJSwcuVK1q5dS25uLoWFhViWxeTJk6NdNRERqQcsXeZDDgWPPPIIkyZNIi8vL2x7amoqP//8MxkZGdGpmEiEWZbFoEGD+PDDD6NdFZGoe/PNN/nb3/7Gpk2bSExMBOCqq64iLi6OqVOnVvt4h+3pM8uyqvyzefPmaFf3sHbFFVdw9dVX07x5c+bNm0dubi7GGIwx5OfnKxCJVNGPP/7IlClTGDJkCK1atSIuLo6mTZvy5z//maVLl0a7eiLV1q9fPwoLC+nfvz+33HIL559/Po8//jgnnXRSjY532PYUWZYFwKRJkyot89BDD7F37142bdpEmzZtIlQzKWvBggWMGDGCwYMHs3DhQpKSkqJdJZGoOpieovPOO49XX32Vrl27csIJJ9CwYUPWrVvHggUL8Pl8PPTQQ1x99dW1X2mROrR48WJuueUW1q5dS7NmzZgwYQLXXnttjY512Iei/T38Nm3a8PPPPysURVH//v356quv2LhxI1lZWdGujkjUHUwoev755+nZsye9e/cO2/7RRx9xyimnAPDzzz/rvSaHrcP29NnBsCyLwYMHs23bNv7617+SmZlJYmIivXv35uWXX67wNn6/n+nTp9O3b19SUlJITk6mT58+TJ8+Hb/fX+l9VGTmzJlYlsXMmTMr3P/f//6XE088kYyMDBISEujatSuTJ0/G5XJVWH7t2rWMGTOGNm3aEB8fT2ZmJieccAJPPPHEQZWtzLZt2xg3bhxt2rQhLi6OJk2aMHLkSD7//POwcl6vl08//ZQ+ffqwYMEC+vTpQ3JyMsnJyfTt27dc2+Xm5pKUlET79u0rDbvDhw/Hsiy+/PJLAO644w4sy6rwC2bw4MGh8PxH7777LsOGDaNx48bEx8fTvn17brzxxnJjniAQrisL1R9++CGWZXHHHXdU6b7z8/PJysrCsixGjx5dbv/KlSsZPnw4TZo0wW63h50Grmqw37x5c+g25557boVlbrvttlCZitruvffeY+jQoTRs2JCEhAQ6duzIzTffXGH7/PExV/RT0WOFwOtx9OjRtGrVivj4eJo2bcoFF1zAunXrauV+Knvufv75Z5KSkip87g7k1Vdf5aSTTgq1TZs2bTj//PP54osvqnWcmrj00kvLBSKAQYMGMXjwYDweDytWrKjSscq+dleuXMnJJ59MWloaqampDB06tNLH4/V6mT59OsceeywNGjQgKSmJXr168dhjj5X7LCz7Wqzo55ZbbgECPWCWZbFs2bIK73Pu3LlYlsWECRPK7WvTpk2lx//jc+v3+5k2bRpHH300ycnJBywffP3s3buXK6+8khYtWpCQkEC3bt145JFHyn1OBR9vRa/3OXPmVPie27BhA2eeeSYdO3YkNTWVlJQUunTpwi233MKuXbvCjrFt2zbuuusu+vfvT7NmzYiLi6N58+acf/75fP/99+Xuc3/1gco/P/f3uXrGGWfs9/OoOt9flX1Prlq1CpvNtt/vycpo9lkN5ebm0r9/f9LS0rj00kvJy8tjzpw5XHjhhWzdupUbb7wxrPwFF1zAq6++SnZ2NpdffjmWZTF//nzGjx/PsmXLeOWVV2qlXpdddhnPPfccrVq14qyzziItLY1PP/2U2267jSVLlrB48WKcTmeo/MKFCznnnHNwuVycdtppnH/++eTm5vLtt99y3333MXbs2BqVrczGjRsZMGAA27dv56STTuL888/nl19+4bXXXmPhwoW89tprjBgxAoDdu3fj9/tZuXIly5cvp3Xr1vztb38DqLDtMjIyOO+883j++ed5//33Q3/5Bv3yyy+8/fbb9O7du8Ivhqq66667mDRpEo0aNeKMM84gMzOT1atXM3XqVBYtWsQnn3xCWlpajY+/P7fddhs7duyocN/q1asZPHgwXq+X008/nZ49exIXFwcETgVXl91uZ968eWzbto3mzZuHtrvdbp566insdjs+n6/c7aZPn86VV15JcnIyo0aNokmTJixdupT77ruPBQsW8Mknn+x3HFjZU9p5eXk8/PDDFZZ75513OPPMM/F6vQwfPpwOHTrw66+/Mm/ePBYuXMjSpUs5+uijD/p+KnLVVVdRXFxc5fIQ6JW+9NJLeeGFF2jcuDFnnnkmTZo04ZdffmHp0qV07tyZPn36VOuYtSn4Win7+VAVq1at4p577uHkk09m/PjxbNiwgXnz5rFs2TIWL17MCSecECrr8Xj405/+xLvvvkuXLl244IILSEhIYOnSpUyYMIFPP/2U2bNnl7uPI488kr/85S/ltg8YMACAcePG8eqrr/Lkk08ycODAcuWefPJJAP7+979X+BjS0tK45pprQr9v3ryZF154oVy5f/3rX0yZMoVGjRpx4YUXhv5Aqaw8BN4vJ598Mnl5eZx33nm43W7+97//cfXVV7Nu3Toef/zxCm9XVkFBAdddd12F+3bu3MmWLVsYMGAAmZmZ+Hw+Vq5cyZQpU3jjjTf4v//7PxyOwFf9smXLuPfeeznxxBM566yzSE5O5scff2Tu3LksWLCAFStWcNRRRx2wPjU1f/58Fi1aVOn+6n5/VcTn8zF27Nj9ngXaL3OYAsyBHn7r1q0NYDZt2lThbc855xzj8/lC2zdu3GgyMjKM0+k0P/30U2j7Sy+9ZADTp08fU1BQENpeUFBgjj76aAOY2bNnl7uPQYMGVViv559/3gDm+eefr3D72WefbYqLi8P2TZo0yQBm2rRpoW27du0yDRo0ME6n03z00Ufl7mfLli01Krs/p5xyigHMvffeG7b9448/NjabzWRkZJj8/HxjjDE7d+4MtfUf227fvn0Vtt0XX3xhAHPWWWeVu+/bbrvNAOapp54KbbvjjjsMYD744INy5QcNGlTuNfLBBx8YwPTv39/k5eWF7Qu2/9VXXx22vXXr1qZ169YVtsfSpUsNYCZNmnTA+/7mm2+M3W43ffv2NYC55JJLwvbfdNNNFR7rQHX4o02bNhnAnHHGGSY+Pt7cfvvtYftffPFFA5gzzzzTAGbp0qVht3U6naZBgwZm3bp1Ybf7xz/+YQBz+eWXV3i/AwYMKPeYg3X542Pds2ePSU9PN40bNzY//PBD2L7vvvvOJCcnm6OOOqrC++nfv3+V76eidnvzzTcNEHoeKmrvijz55JMGMMccc0y5147X6zXbtm2r0nH299lQU5s3bzbx8fEmKSnJ7Nmzp0q3Cb52AfPoo4+G7Xv99dcNYDp06BD2GRn8HLr66quN1+sNbfd6vWbMmDEGMPPnzw9tr+x5qUiPHj1MfHy8ycnJCdu+YcMGY1mWOf744yu8XYsWLUybNm0qfGx/fG4zMzONzWYL+3zfX/ngd0j//v1NSUlJaPvu3btNu3btDBD2eVrZ473++utDn4N/fM9V5oILLjCA+eyzz0Lbfvvtt9Dna1lffvmlSUpKMkOHDg3bfqD2Dz6ff6xPRdsLCwtNdna2yc7ONk2bNi33vqru95cxFb8XHn300bD35x+/Jw9Ep89qyG63M2XKFGy235uwbdu2XHXVVXg8HmbNmhXa/txzzwFwzz33kJycHNqenJzMvffeC8Czzz570HV6+OGHcTqdPP300yQkJITtu+2222jUqBEvvfRSaNsLL7xAfn4+Y8eOrfCvq1atWtWobGV+/fVX3nvvPVq3bs31118ftm/AgAGcd9555ObmMn/+fICwxzBlypSwtktJSamw7Xr37k3fvn1ZsGABv/32W2i7z+fj2WefJTU1lQsuuCC0vWnTpkDgdEhVPPLIIwA89dRT5XqDRo8ezVFHHVXpKdSDYYxh3LhxJCQk8MADD1RYprCwEIAePXrUyn02btyY8847j6eeegqPxxPa/uijjzJo0CCOOOKIcreZPXs2Ho+HCRMm0KlTp7B9d999NykpKcyePbvCrvDi4uJQb8WBvPjii+Tl5XHnnXfSpUuXsH3du3fnb3/7G998802FpwQ8Hg/x8fFVup+K6njVVVfRvHlzbrvttmrd9tFHHwVgxowZ5V47drs9auN4XC4XF154IS6Xi0mTJlV7NmeHDh0YN25c2LYRI0YwaNAgNmzYwMcffwwETj099thjZGVl8cADD2C320Pl7XY7DzzwAJZlhX1GVcfYsWNxuVzlemyeeuopjDFcccUVFd6uOq+HwsJCkpKSaNu2bbXqds8994TdR8OGDUOvn+eff36/t/3+++95+OGH+fOf/8wZZ5xxwPsqLi7m448/5tNPP8XpdNKyZcvQvszMTFJTU8vd5uijj2bIkCF8+OGHYe/12vTvf/+bLVu28NBDD5X7foLqf39V5LfffuPWW2+lV69e/OMf/6hRPXX6rIays7MrfGMMHjyYO++8k6+//jq07euvv8ZmszFo0KBy5U888UTsdjtfffXVQdWnqKiIb7/9lsaNG1d6qiQ+Pp61a9eGfv/0008BOP300w94/OqUrUywTU444YRQd25ZJ598Mi+//DJfffUVF198cehDxG63VxjEKmu7cePGcemll/Lcc8/xz3/+EwisZbFt2zbGjh0bFq769euHZVlMmTKF3r17071797Cg+0crV67E6XQyZ86cCve73W527drF7t27adSoUWh7Xl5ehWNPqrrcw3PPPccnn3zClClTKg2g/fr14/HHH+c///kPbdu25YgjjqhyyKjMhAkTeOGFF5g7dy7nn38+q1at4vPPP2fu3Ln83//9X7nywef4xBNPLLevYcOGHH300SxbtowffvihXDd9cExYVaxcuRKAb775psJ2Xb9+PRAYc9S9e/ewffn5+RV+KFfF3XffzaZNm3j11Vcr/HKpTGFhId999x1NmzalV69eNbrvuuD1ernwwgtZsWIFZ599drnT/lVxwgknVPieGTx4MB999BFff/01gwYNYv369ezevZuOHTvy73//u8JjJSYmhn1GVcdf//pXbr75Zp566qnQqSa3283MmTNp2LAh55xzToW3C47Tq4p+/frxwQcfcP3113PDDTeETp/tj8Ph4Pjjjy+3PTgWpux3RUXGjRuH0+nk4Ycf3u/4mMmTJ4cF9aysLF544YVyj23hwoXMmDGDL774gpycHLxeb9j+nJycWg/oa9eu5cEHH+T0009n5MiR5WaG1eT7qyI33HAD+fn5TJ8+vcavI4WiGgr2MPxRs2bNANi7d29o2969e2nYsGGF50IdDgeNGzdm586dB1Wf4No9u3bt4s4776zSbYKDXlu0aFGrZSsTbJNgG/1R8I0YLBcXFxdqn4pCVGVtd+6553L99dfzzDPPcMstt2BZVmhMwR//WuzVqxf/+te/uPvuu+nZs+cBH8Pu3bvxer0HbOOCgoKwULR3794qPy9/tGfPHm655Ra6du3Ktddey9atWyssd9FFF7FixQqeeuqpCsemtG7dutr33bt3b4477jgee+wxzj//fB599FFatmzJiBEjKgxF1X2Og4wxbNu2jXbt2lWpXrt37wbg6aef3m+5goKCcttycnLIzMys0v2U9eOPP3L//fdz8sknM2rUqGrN/qqN909t83q9XHDBBfzvf//jnHPO4eWXXz7gF3xFqvpZGHzOfvzxx/2+Fyp6zqoiNTWViy66iBkzZvDRRx8xaNAg5s+fz86dO7n22msrDMKFhYWUlJRU+fUwY8YMzjzzTKZNm8a0adOqdJvGjRuH9YoFVfRd8Ucvvvgiy5YtY/LkyQecKDFw4MDQArfLli0jJSWl3HPzyCOPcPXVV5ORkcEpp5xCdnZ2aMLA66+/zrffflvphJyDMX78eCzLCvWW/lFNvr/+aNmyZcyePZvLL7+cY489VqEo0sqemikrOAi2bPd4Wloae/bswePxlAtGXq+XnJwcGjRocFD1Cd5fr169qtzrlJ6eDsDWrVsrPBVS07IHqmNlA4W3b98eVg4CH7i//fYbPp+v3AdLZW2XmJjI6NGjefDBB3nvvffo1KkTixcv5thjj60w+EyePJmzzjqLjz/+mD179oS2z5w5s9xptbS0NPx+f1i5qmjdunWFvUIffvhhhb0qZf3zn/8kJyeHOXPm7HeQoWVZzJgxg3POOYeTTz6Zzp07c9555wE1G2gdNGHCBC644ALeeecdXnvtNW6//fYKQyqEP8d/7KGBip9jCPwlWVJSQufOnatUp+Dtv/322yqF2aC9e/eSk5Oz3wHYlZkwYQLGGB577LFq37bs+ycWeDwezj33XObPn88FF1zAiy++WOEXd1VU9bMw+O/IkSOZN29eje7rQMaNG8eMGTN48sknGTRo0AEHWG/YsAGgyqfDOnbsyLfffsull17Kiy++yLnnnkuXLl32O9A6Jyenws+vir4rysrLy+PGG2+kY8eO3HDDDQes28CBA8N61MeMGcPQoUP5+uuv6dGjB16vl0mTJtGsWTO++uqrcr1Bwd7X2vbf//6XDz74gEmTJtG+ffsKy9Tk+6ssr9fLuHHjaNiwYWhYRU1pTFENbdmypdIvOSCsi7xXr174/f4Kp4suW7YMn89Xow/pslJSUujevTvff/99lb+wjz32WCAwvbw2y1Ym2CbLly8v12ULhFbULdsW/fr1w+v1snz58nLl99d2Y8eODfUQPf300/j9/v2eY+7VqxdXXXUVd9xxR+inor/Mjj32WHJzcyscq1IXPvvsM5555hkuuOCCA4YnCHzZ/etf/yI+Pp45c+aEHkvwS7kmzj77bLKyskLTniv7goHfn+OKelHy8vL45ptvQtNsy3r//fcBwmYq7U/w9Rgcr1JVn3zyCUC1Z3nNnTuXd999lxtuuKHKwa2s5ORkevTowW+//cY333xT7dvXJrfbzVlnncX8+fO5+OKLmTVrVo0DEQTezxUtK/LHz8IuXbqQnp7Op59+WmfjVo444ggGDBjAvHnz+OSTT/jwww8ZNGhQuXFnQTV5PXz11Vf897//ZcCAAbz00kvccccdlU5Zh8AXdvB+yqrou6KsW2+9lZ07d/LYY4/VaAzciBEj8Hq9oc/snJwc8vLyOP7448sFooKCgoMewlGRffv2cf3119OuXbvQ8gkVqcn3V1kPPfQQ33//Pffee29YD32NVGtYdj1CLcw+GzVqVIWzzxwOh9mwYUNoe3D2Wd++fU1hYWFoe2FhYWiEfG3MPnv22WcNYEaMGGFyc3PL3W7Pnj3myy+/DP0enFEWFxdnli9fXq78L7/8UqOy+xOcfXb//feHbf/000+N3W4Pm31mjDFvvfWWAcyxxx5rioqKQtv313ZBp556qnE4HKZx48YmPT097PZVUdEMsPfff98A5rjjjjNbt24td5uCggKzcuXKsG0HM/usd+/epkGDBmEzk/Y3I+Tmm282gHnkkUeqXIc/quj4U6ZMMS1atDDjxo0Lbatohklw9llaWpr58ccfw4575ZVXVjj7rLi42HTp0sU4HI5ybVrZY83JyTHp6emmSZMmZtWqVeUeg8/nKzcjpqioyJxwwgkGMF999VWV7qd169YmMzPTtGzZ0rRu3Trs/VvZc1eZp556KvRa3rt3b9i+SM0+KykpMcOGDTOAueyyy8I+v6qrJrPPgjNAr7jiigrfj9u2bTPff/996PfqzD4Levnllw1gsrKyDGD++9//VlguJyfHdO7c2cTFxZkdO3ZU+Nj++Nzu27fPdOjQwaSnp5uff/75gOX3N/usffv2lc4+O+qoo4zNZjPnnHNO2PEqes/t3Lmz3GPzer2h2aEzZ840xgTeE0lJSSY7O9vs27cvVNbtdodm/v3x++5gZ5/17t3bAOatt94q1y5//Dyq7veXMYH3QqdOnUxKSoo55phjjN/vD+2r7HvyQHT6rIZ69uzJZ599Ru/evTn11FPZu3cvr776Knl5edx3331h3YQXXHABb7zxBnPmzKF79+785S9/CZ3D3bRpE6NGjeLCCy8sdx/btm1jxowZ5bYHuzmXLl2K0+kM3XbMmDF8+eWXTJ8+nfbt2zN06FCys7PZs2cPmzZtYtmyZVx66aWhYzZu3JiXX36Zs88+m4EDBzJs2DCOOOII9u7dy+rVq/n111/ZtGlTtcvuz4wZM+jfvz833ngjixcvpk+fPqF1imw2G88//3zYANYzzjiDSy+9lOeffz7UdsYYXn/9dTZv3lxp20Ggt2jx4sXk5ORw1VVXhS4WeDBOOukk7r33Xv75z3/SsWNHhg0bRtu2bSkoKODnn3/mo48+YsCAAbzzzjsHfV8AX375JQ899FCVBj4uXbqU+++/nzPOOKPCReoOxk033cRNN910wHJt2rThoYceYvz48Rx99NGhdYo++ugjVq5cSZcuXZgyZUqo/Ouvv86///1v1q5dS5s2bXjqqafCjhccixMcUH3NNdeQnp5Oo0aNmDt3LiNHjuTYY4/lpJNOCg2S37JlCytXrmT37t2UlJQAgb8kp02bxpYtW7jqqquqNdg5OGbt9ddfP6jLzFx++eUsX76cF198kQ4dOjBixAiaNGnC1q1bWbp0KWPGjKn2QpDVdcUVV7Bo0SIaN25MixYtuOuuu8qVGTx4cKULx1bktNNO4/rrr+ftt9/myCOPDK1TlJCQwLPPPhs2CPu2227j22+/ZcaMGbz55psMGTKEFi1asHPnTn788UdWrFjBf/7zH7p161bjx3jWWWeRmZnJ9u3badKkCWeeeWa5Mv/85z955plnyMnJ4cEHH6x0XNQfXXnllWzYsIE5c+aQnZ1dpdtkZWXhdrvp0aMHf/7zn/F4PMydO5ft27czbty4CieRfPPNN6SkpPDggw8e8Pg33ngjn3/+Of369aNp06bk5eXx7rvvsmnTJrp27crZZ58NgM1m46qrruLee+/liCOOYMSIEbjdbpYuXcqePXs48cQTK73+3bp16yr8Lgou0LlgwQLy8/P585//HLb/yy+/5C9/+UuVZs1V9/sraP369dhsNqZPn16jMXHlVCtC1SMcZE/RoEGDzNatW82FF15omjRpYuLj402vXr3MSy+9VOGxfD6fefzxx03v3r1NYmKiSUxMNEcffbR57LHHKvxrLVi/A/1U9Nf/m2++ac444wzTpEkT43Q6TdOmTU3fvn3NxIkTy63pYkxgXZe//vWvpnnz5sbpdJrMzEwzcOBA8+STTx5U2cr8+uuv5oorrjDZ2dnG6XSaRo0amREjRoStp1GW3+83M2bMMH369KlS2wV5vV7TuHFjA4T99VlVFfUUBX388cfmnHPOMVlZWcbpdJrGjRubI4880lx77bXm888/Dyt7MD1FPXv2DFvPxZiK/3rLyckxLVq0MM2aNavwL8eD7SmqSGV/JRpjzLvvvmtOOeUUk56ebuLi4kz79u3NjTfeWO4vwEsuuaTKr/WK3oubNm0y48ePNx06dDDx8fEmNTXVdO7c2Vx00UVh69386U9/MoMGDaq0V3F/PUWAGTZsWLnbVLenKGj27Nlm4MCBpkGDBiY+Pt60adPGXHDBBeX+Cq5M8POnJoKvq/39VPXxlH38n3zyiTnppJNMamqqSUlJMaeccsp+388vvviiGTJkSGhdt+bNm5v+/fub//znP2FrntWkp8gYY6699loDmJtuuqnC/b169TKnnXaaWbRo0QEfW9Arr7wS6mGrSnljfn/f5eXlmXHjxpnmzZubuLg406VLF/Pwww+H9WyUfbyAue+++8rdT0XvuTlz5pghQ4aYpk2bGofDYZKSkswRRxxh/vWvf5V7v3k8HvPAAw+Yrl27moSEBNO0aVNz0UUXmc2bN4feixX1FFXlp+xrMljPpKQks3nz5nKPY3+fR9X5/gred9ke7KCa9hQdttc+OxgHc+2h2nTHHXcwc+bMKk/rPtz89NNPdOzYkQEDBlS6/L9E1+jRo9m8efMB30vBAem6DmHsCD4nkyZNqvMeruoaOHAgy5cvZ/369XTo0CFq9Qi+Vuv7Z3RV38eHAg20lnrr/vvvxxjDlVdeGe2qiEiEfPrpp3z88cecdtppUQ1EcmjSmKJDWJ8+fepsFseh6ueff2bWrFn8+OOPzJo1i169eoXOqUvs+ctf/rLfi8QGtWnThkmTJh3ULDqp3x577DF+/fVXXnjhBex2e4XjpaRunHjiiaF1qA51CkWHsOHDhzN8+PBoVyOmbNq0idtuu43k5GSGDh3KE088sd8VqiW6KrrIZ0XatGkTc6doYsGHH35YpVMW6enpYRc8rY+mTp3Kr7/+SocOHXj44YejenHdw80ll1wS7SrUGo0pEhE5RN1xxx1VWgG4ssVDRSScQpGIiIgIGmgtIiIiAigUiYiIiAAaaF2h3NzcCq/NdTCaNGnCrl27avWYUjG1deSorSNHbR05auvIqo32djgcZGRkHHRdFIoq4PV6a3Wqe3Dpca/Xi4Zw1S21deSorSNHbR05auvIirX21ukzERERERSKRERERACFIhERERFAoUhEREQE0EBrERGph7xeL0VFRTW6bXFxMW63u5ZrJJWpansnJSXhcNRtbFEoEhGResXr9VJYWEhqamqNrn3odDp1se0Iqkp7+/1+9u3bR3Jycp0GI50+ExGReqWoqKjGgUhik81mIzU1tca9f1W+nzo9uoiISBQoENU/kXhO9aoRERERQaFIREREBFAoEhEREQEUikREROqts88+m9tvvz3a1ThkaEp+BJi83XjxYbwG7PZoV0dERGJMixYt9rv/nHPO4aGHHqr2cZ9++mmcTmcNaxVwzTXXkJ+fz3PPPXdQxzkUKBRFgO9f/2C724X9nqehcdNoV0dERGLM119/Hfr/ggULmDp1KsuWLQttS0hICCvv8XiqFHYyMjJqr5KHAZ0+i4S4uMC/bld06yEichgyxmBcJdH5MaZKdczMzAz9pKamYllW6HeXy0XXrl1ZsGABZ599Nu3atWPevHns2bOHcePG0bt3b9q3b89JJ53E66+/HnbcP54+69evH4888gjXXXcdnTp1om/fvsyePfug2nflypWcccYZtG3bll69enH33Xfj9XpD+9966y1OOukk2rdvT/fu3Tn33HND6w198sknDB06lA4dOtC1a1dGjBjBr7/+elD1ORjqKYoEZ2ko0gqpIiKR53bhv3JUlYvX5p+vtsfmQHzCgQtWwd13383tt9/Ogw8+SFxcHC6Xi549ezJu3DhSU1NZsmQJV111FdnZ2Rx99NGVHufJJ5/kxhtvZMKECSxcuJB//vOfHHvssXTo0KHaddq+fTt//etfGTVqFA8//DAbNmzgxhtvJD4+nuuvv57ffvuN8ePHM3HiRE4//XQKCgpYtWoVxhi8Xi+XXXYZF110EY899hgej4evv/4ay7IOppkOikJRJDiCoUjX0hERkZq5/PLLGTZsWNi2K664IvT/MWPGsHTpUt566639hqIhQ4YwevRoAMaPH8/TTz/NJ598UqNQ9MILL9C8eXP+85//YFkWHTp0YMeOHdx9991ce+217Ny5E6/Xy7Bhw2jZsiUAXbt2BSA3N5f8/HxOPfVU2rRpA0DHjh2rXYfapFAUCaWnz4zHTfTyr4jIYSouPtBjU0W1eu2zuPjaOQ5w5JFHhv3u8/l47LHHePPNN9m+fTtutxu3201SUtJ+j9OtW7fQ/y3LokmTJuzevbtGddqwYQO9e/cO693p27cvhYWFbN++nW7dujFgwABOOukkBg0axKBBgzjjjDNIT08nIyODUaNGce6553LCCSdwwgkn8Kc//YmmTaM39lZjiiIhOBhOPUUiIhFnWRZWfEJ0fmrxVFBiYmLY708++SRPP/00Y8eOZc6cOSxevJhBgwYdMND98YKqlmXh9/trVCdjTLnHWHYcld1u55VXXmH27Nl06tSJ559/noEDB7JlyxYApk2bxqJFi+jTpw8LFizghBNO4Msvv6xRXWqDQlEkOEv/UlAoEhGRWrJq1SqGDh3KWWedRffu3WndujWbNm2KaB06duzIF198ERaEvvjiC1JSUsjKygICoatv377ccMMNvPvuuzidTt5+++1Q+SOOOIIJEyawYMECOnfuXG6weCTp9FkEWE4nBhSKRESk1rRp04ZFixbx+eefk56ezlNPPcWuXbvqZFxOfn4+3333Xdi2jIwMLrnkEp555hluvfVWLr30Un766SceeOAB/v73v2Oz2fjqq69Yvnw5gwYNonHjxnz11Vfs2bOHjh07smXLFl566SVOP/10GjduzE8//cTGjRs5++yza73+VaVQFAnBc8puhSIREakd11xzDb/88gsXXnghiYmJXHjhhQwdOpR9+/bV+n2tXLmSoUOHhm0LLig5a9YsJk+ezCmnnEJ6ejrnn38+V199NQCpqamsWrWKZ555hoKCAlq0aMHtt9/OkCFD2LVrFxs2bGDMmDHk5uaSmZnJpZdeyl//+tdar39VWaaqiygcRnbt2lV7g+wA/5P3Yb5Yju28v2Gd9KdaO66UZ1kWWVlZbN++vcrrg0jNqK0jR21dPfn5+TRo0KDGt6/VgdZyQNVp78qeW6fTSZMmTQ66LhpTFAlap0hERCTmKRRFQpzWKRIREYl1CkWR4Px9nSIRERGJTQpFkeBUT5GIiEisUyiKAEuhSEREJOYpFEWCQpGIiEjMUyiKhOBlPrROkYiISMxSKIqEYE+RV1PyRUREYpVCUSQEp+S7XdGth4iIiFRKoSgSQlPy1VMkIiLltWjRYr8/11xzTY2P3a9fP55++ulaK1ef6dpnkaCB1iIish9ff/116P8LFixg6tSpLFu2LLQtISEhGtU67KinKBIUikREZD8yMzNDP6mpqViWFbbt008/5bTTTqNdu3Ycd9xxPPjgg3i93tDtH3jgAfr27Uvbtm05+uijue222wA4++yz+fXXX7njjjtCvU419cILL3D88cfTpk0bTjjhBObOnRu2v7I6AMycOZP+/fvTrl07jjzySP72t7/VuB51ST1FEWAFZ58pFImIRJwxBpev6hfS9eHH4/XXyn3H2y0syzqoY3z44YdcddVV3HXXXfTr14+ff/6Zm266CYDrrruOt956i6effprp06fTuXNndu7cyZo1awB4+umnOeWUU7jwwgu58MILa1yHt99+m0mTJnHHHXdwwgkn8P7773PdddeRlZVF//7991uHb7/9lttvv51HHnmEPn36kJeXx6pVqw6qTeqKQlEkOOMD/yoUiYhEnMtnOPfV9VG571fP7USC4+BC0SOPPML48eMZNWoUAK1bt+bGG2/kP//5D9dddx1bt26lSZMmnHDCCTidTlq0aEGvXr0AyMjIwG63k5KSQmZmZo3rMGPGDEaNGsXo0aMBaN++PV999RUzZsygf//++63D1q1bSUpK4uSTTyYlJYWWLVvSo0ePg2qTuqLTZ5GgniIREamh1atX89BDD9GxY8fQz0033cRvv/1GcXExw4cPp6SkhOOOO44bb7yRt99+O+zUWm3YsGEDffr0CdvWt29fNmzYALDfOgwcOJCWLVty3HHHMWHCBObNm0dxcXGt1q+2qKcoEuJKe4q0eKOISMTF2y1ePbdTlcs7HU48tbSuXLz94HqJIHD67/rrr+f0008vf/z4eFq0aMGyZcv4+OOP+fjjj/nXv/7FE088wf/+9z+cwT/Ka8EfTwMaY0Lb9leHlJQU3nnnHT755BOWLVvG1KlTeeCBB1i0aBFpaWm1Vr/aoFAUCaGeIk/Yi0hEROqeZVnVOoXldNqwx9CJlB49evDTTz/Rtm3bSsskJiZy6qmncuqpp3LJJZcwaNAg1q5dyxFHHIHT6cTn8x1UHTp06MDnn3/OOeecE9r2xRdf0KFDhyrVweFwMHDgQAYOHMh1111H165dWbFiBcOGDTuoetU2haJICI4pMn7w+cChZhcRkaq59tprueSSS2jevDnDhw/HZrOxZs0a1q5dy80338yrr76K3++nV69eJCYm8r///Y+EhITQTLNWrVqxatUqRowYQXx8PA0bNqz0vnbs2MF3330Xtq1FixaMHTuWK664gh49ejBgwADee+893n77bV555RWA/dbhvffeY8uWLfTr14/09HSWLFmC3++nffv2dddoNaRv50go233pcSsUiYhIlQ0ePJgXXniBadOmMX36dJxOJx06dOD8888HIC0tjccee4w777wTn89Hly5dmDlzZij83HDDDdx88830798fl8vF1q1bK72vGTNmMGPGjLBtDz74IOeeey533nknM2bM4Pbbb6dVq1Y8+OCDHH/88QesQ1paGm+//TYPPvggJSUltG3blscff5zOnTvXUYvVnGWMqfo8xcPErl278NTm6tPG4Pv7CABsD7yI1SC99o4tYSzLIisri+3bt6OXdt1SW0eO2rp68vPzadCgQY1v73Q6a/c7QParOu1d2XPrdDpp0qTJQdcldk6a1mOWzaYFHEVERGKcQlGEWHEKRSIiIrFMoShCrOC0fHXJioiIxCSFoggJhSK3K7oVERERkQopFEWIFRxTVEsLgomIiEjtUiiKECteq1qLiESK3187F3SV2BGJ51ShKEIsXRRWRCQikpKS2Ldvn4JRPeL3+9m3bx9JSUl1ej9aRTBCgj1FxuNGF/kQEak7DoeD5ORkCgoKanT7uLg43OrVj5iqtndycjKOOl78WKEoQiytUyQiEjEOh6NGCzhqoczIirX21umzCAmNKdKUfBERkZgUcz1F8+fP57///S/Dhg1j9OjRABhjeO2111iyZAkFBQV07NiRyy67jFatWoVu5/F4mDVrFitWrMDtdtOjRw8uv/xyGjVqFKVHEu73MUWaki8iIhKLYqqnaMOGDbz//vu0bt06bPsbb7zBwoULGTNmDPfccw/p6elMnjyZ4uLiUJmZM2fy2WefcfXVV3PXXXdRUlLCvffeGzMD7X5f0Vo9RSIiIrEoZkJRSUkJjz76KP/4xz9ITk4ObTfGsGjRIkaOHEm/fv3Izs5m/PjxuFwuli9fDkBRUREffPABF198MT179qRt27ZMmDCBLVu2sHr16mg9pDC/L96oMUUiIiKxKGZOnz3zzDP06tWLnj17Mm/evND2nTt3kpeXx5FHHhna5nQ66datG+vWreOUU05h48aN+Hw+evbsGSrTsGFDsrOzWb9+PUcddVSF9+nxeMKuzGtZFomJiaH/1xbLsn4PRV53rR5bwgXbVm1c99TWkaO2jhy1dWTFWnvHRChasWIFmzZt4p577im3Ly8vD4C0tLSw7WlpaeTk5ITKOBwOUlJSypUJ3r4i8+fPZ+7cuaHf27Zty5QpU2jSpEkNH0nl9paGouQ4JxlZWbV+fAnXrFmzaFfhsKG2jhy1deSorSMrVto76qEoJyeHmTNnMnHiROKC424q8McUWZWpewcqM3LkSIYPH17uPnbt2oXX6z3g8avKsiySSh9bYV4eJdu319qxJZxlWTRr1owdO3bExPTO+kxtHTlq68hRW0dWbbW3w+GolQ6NqIeijRs3snfvXm655ZbQNr/fzw8//MA777zDQw89BAR6gzIyMkJl8vPzQ71H6enpeL1eCgoKwnqL8vPz6dy5c6X37XQ6cTqdFe6r7TdD2TFFeqPVPWOM2jlC1NaRo7aOHLV1ZMVKe0c9FB1xxBFMnTo1bNsTTzxB8+bNGTFiBE2bNiU9PZ3Vq1fTtm1bALxeL2vWrOHCCy8EoF27dtjtdlavXs3xxx8PQG5uLlu2bAmVibZgKDKaki8iIhKToh6KEhMTyc7ODtsWHx9PampqaPuwYcOYP38+WVlZNGvWjPnz5xMfH8+AAQOAwHVuhgwZwqxZs0hNTSUlJYVZs2aRnZ0dNvg6qjQlX0REJKZFPRRVxYgRI3C73TzzzDMUFhbSoUMHJk6cGJopBnDJJZdgt9uZNm1aaPHGm2++GZstNlYdsMXpgrAiIiKxLCZD0R133BH2u2VZjBo1ilGjRlV6m7i4OMaMGcOYMWPquHY1pFAkIiIS02KjG+UwYCkUiYiIxDSFogj5/TIfCkUiIiKxSKEoQn6/IKwGWouIiMQihaIIseKD6xRpSr6IiEgsUiiKkNDpM696ikRERGKRQlGEaKC1iIhIbFMoipBQKPJ6MX5fdCsjIiIi5SgURUgoFAF4au9isyIiIlI7FIoiJDSmCEDXPxMREYk5CkURYtkdELzkiKbli4iIxByFokhyarC1iIhIrFIoiiSnM/CvQpGIiEjMUSiKJF3qQ0REJGYpFEWSszQUuRWKREREYo1CUSQFQ5FXoUhERCTWKBRFknqKREREYpZCUSSVDrQ2mpIvIiIScxSKIsjSlHwREZGYpVAUSZqSLyIiErMUiiIpTj1FIiIisUqhKJIc6ikSERGJVQpFkeTU4o0iIiKxSqEokkIrWmv2mYiISKxRKIok9RSJiIjELIWiCLIUikRERGKWQlEkaUVrERGRmKVQFElx6ikSERGJVQpFkVQ6Jd94NdBaREQk1igURVLo9JkruvUQERGRchSKIklT8kVERGKWQlEkafaZiIhIzFIoiiSFIhERkZilUBRBWqdIREQkdikURZJTF4QVERGJVQpFkeSMD/yrgdYiIiIxR6EokkI9RZqSLyIiEmsc0a7A4eCNH3Zj31jC4AZOEgA8HowxWJYV7aqJiIhIKYWiCPjv6hyKPDs5+tRmgVBkDHi9v/cciYiISNTp9FkEJDgCzVxMmRCkwdYiIiIxRaEoAuIdgdNkLlPmdJlXoUhERCSWKBRFQLCnyOUzZa5/plAkIiISSxSKIiB0+szrL7Oqtabli4iIxBKFoggI9RR5y/QUaVq+iIhITFEoioD40lBU4vVDnHqKREREYpFCUQQklg1FjtIZaG71FImIiMQShaIICM4+C/QUlV7qw6ueIhERkViiUBQBCWV7inRRWBERkZikUBQBFQ20NpqSLyIiElMUiiKg4in5CkUiIiKxRKEoAhKCK1rr9JmIiEjMUiiKgLJT8i1n6UBrTckXERGJKQpFEaCB1iIiIrFPoSgCEpylocijMUUiIiKxSqEoAiq+zIdCkYiISCxRKIqABHvp4o0+9RSJiIjEKoWiCAg7fRanUCQiIhKLFIoioMKB1lq8UUREJKYoFEVAcEq+z4DHEZiSbzQlX0REJKYoFEVAsKcIwGUvPX3mVU+RiIhILHHU5EYlJSWsWbOGtWvXsmfPHtxuNw0aNKBly5Z0796dVq1a1XY9D2kOm4XTbuHxGUrs8SSDTp+JiIjEmGqFou3bt/Pmm2+yYsUKSkpKAEhOTsbpdFJYWIin9JRQdnY2p59+OoMHD8ZmU2cUQKLTjsfn/b2nSAOtRUREYkqVQ9HMmTNZvHgxzZs356yzzqJbt260bdsWu90eKpObm8v69ev5/PPPmTlzJgsXLmTcuHG0b9++Tip/KElw2skv8VJi04rWIiIisajKoWjTpk3ceuutdOvWrdIyGRkZ9OvXj379+lFUVMSiRYtYt26dQhGBniIAVygUaaC1iIhILKlyKLrzzjurdeCkpCTOPvvsaleovkoqDUXFlnqKREREYpEG/ERIQrCnyCo93ahQJCIiElOqHIo++ugj9u3bF7Ztz549+P3+ctteffXV2qldPRI8fVaiUCQiIhKTqhyKpk+fzm+//Rb63e/3M3bsWDZv3hxWbvfu3cybN6/WKlhfJMWVhiKjUCQiIhKLarROUW1avHgxixcvZteuXQC0bNmSs88+m169egFgjOG1115jyZIlFBQU0LFjRy677LKwtZA8Hg+zZs1ixYoVuN1uevToweWXX06jRo2i8pgqErz+mSuYQ30+jM+HVWb2noiIiERP1McUNWzYkAsuuIB77rmHe+65hx49enDffffxyy+/APDGG2+wcOFCxowZwz333EN6ejqTJ0+muLg4dIyZM2fy2WefcfXVV3PXXXdRUlLCvffeW+7UXjSFTp+ZMk3u1Qw0ERGRWBH1nqI+ffqE/X7++eezePFifvzxR1q2bMmiRYsYOXIk/fr1A2D8+PH87W9/Y/ny5ZxyyikUFRXxwQcfMGHCBHr27AnAhAkTGDt2LKtXr+aoo46q9L49Hk9owUkAy7JITEwM/b+2WJb1+5T8MqHI8rixEhJr7X7k9+etNp8/qZjaOnLU1pGjto6sWGvvqIeisvx+PytXrsTlctGpUyd27txJXl4eRx55ZKiM0+mkW7durFu3jlNOOYWNGzfi8/lCgQgCvU/Z2dmsX79+v6Fo/vz5zJ07N/R727ZtmTJlCk2aNKn1x5a4cRMAtrhEcDjA6yWzYQaOxk1r/b4EmjVrFu0qHDbU1pGjto4ctXVkxUp7VysUff/99+zevRsIjPUJbguOB4LApUCqa8uWLUycOBGPx0NCQgI33HADLVu2ZN26dQCkpaWFlU9LSyMnJweAvLw8HA4HKSkp5crk5eXt935HjhzJ8OHDQ78Hk+quXbvwer3VfhyVKdtTtCe/ABxO8HrZ+euvWJ7YOcVXH1iWRbNmzdixY0foNSp1Q20dOWrryFFbR1ZttbfD4aiVDo1qhaKXX3653LbZs2cfdCWaN2/O/fffT2FhIatWreLxxx8PWyzyj91qVWm4qpRxOp04nc4a3746QmOKvH5wxkFJMcbtAr3p6oQxRh9oEaK2jhy1deSorSMrVtq7yqFo0qRJdVcJhyPUdda+fXt++uknFi1axIgRI4BAb1BGRkaofH5+fqj3KD09Ha/XS0FBQVhvUX5+Pp07d66zOldXwh9DEWhavoiISAypcija3zXPapsxBo/HQ2ZmJunp6axevZq2bdsC4PV6WbNmDRdeeCEA7dq1w263s3r1ao4//nggcGHaLVu2hMrEgtA6RV4DcQpFIiIisaZWBloXFRWxfft2MjIyaNiwYbVu+/LLL9OrVy8aNWpESUkJK1as4Pvvv2fixIlYlsWwYcOYP38+WVlZNGvWjPnz5xMfH8+AAQOAwDXWhgwZwqxZs0hNTSUlJYVZs2aRnZ0dNvg62kKzz7x+cARDkabki4iIxIoqh6I1a9awdu1azjzzzLDtb775Jq+88kpoYPKgQYMYO3ZslafX7d27l8cee4zc3FySkpJo3bo1EydODAWaESNG4Ha7eeaZZygsLKRDhw5MnDgxNHUe4JJLLsFutzNt2rTQ4o0333wzNlvUl2EKCTt9FuopckWxRiIiIlJWlUPRu+++G7ZgIsDatWuZPXs26enpHH/88WzdupWPPvqIDh06cOqpp1bpuGPHjt3vfsuyGDVqFKNGjaq0TFxcHGPGjGHMmDFVus9oSKpgTJHxeIiNlRlERESkyqFo48aNYdPXAZYsWYLNZuO2226jZcuWADzwwAMsW7asyqHocJFYepmPEq+B4Iw3t8YUiYiIxIoqn1/Kz88nKysrbNvq1atp165dKBABDBgwgF9//bX2alhPJJQZU2Q0+0xERCTm1HjQTV5eHnl5eXTs2DFse1paGm71gJSTWDr7zAAeZ0Jgo1ftJCIiEiuqHIoyMzPZsGFD6PfvvvsOgE6dOoWV27dvH6mpqbVUvfojwWEP/b/EWTpIXOFRREQkZlR5TFH//v15/fXXadSoEenp6cydO5eEhAR69eoVVm7dunUxcw2TWGK3WcTZLdw+gysYijQlX0REJGZUORSdfvrpfPnll0yfPh0Au93O3//+97Cp8V6vl+XLlzNkyJDar2k9kOCw4fb5KHFoSr6IiEisqXIoio+P58477+SHH35g3759tG/fvtzF10pKShg9enS5U2oSkOCwke/yUWJXT5GIiEisqdaK1jabje7du1e6PyUlhWOPPfagK1VfJThKp+U7NPtMREQk1sTOks+HgQRHYKlGl12hSEREJNZUuafoyiuvrPJBLcvi0UcfrVGF6rP4YE+RLbiitUKRiIhIrKhyKNq1axdJSUl07ty5LutTryWGQlHpitYuDbQWERGJFVUORd26dWPNmjVs2bKFQYMGceKJJ5KZmVmXdat3gj1FLkd8YENJ8X5Ki4iISCRVORRNmjSJnTt38sEHH/DRRx8xf/58unXrxpAhQ+jXrx/O4PW8pFLBMUUlwTFFxYVRrI2IiIiUVa3ZZ5mZmZx33nmce+65fPvtt3zwwQc88cQTPPvss/Tv359TTz2V7OzsuqrrIS/hj6fPiouiWBsREREpq1qhKMiyLI466iiOOuooCgoKeOutt3jjjTfIy8vjhhtuqO061hsJztLTZ1ZpKCpRKBIREYkVNQpFAMYYvvnmG5YuXcoXX3xBQkICXbt2rc261Tuh2WdW6XXQiosxxmBZVhRrJSIiIlCDULRjxw6WLl3KsmXL2LNnD927d2fcuHEcc8wxxMXF1UUd643Q6TNTGoqMH1zFkJAUxVqJiIgIVCMUffTRR3zwwQesXbuWRo0aceKJJzJ48GDNQKuGBHvpQGs/YLOB3w/FCkUiIiKxoMqhaPr06SQmJnLSSSfRs2dPLMti06ZNbNq0qcLy/fr1q7VK1hehMUU+A4nJULgvMAMto1GUayYiIiLVOn1WXFzMkiVLWLJkyQHLvvrqqzWuVH0VOn3m9UNCYmko0mBrERGRWFCtdYrk4MSXDUWJyYGNCkUiIiIxoVorWsvBCV7mw+X1Q1JgHJEpLkJzz0RERKLPFu0KHE5+P31mfh9crbWKREREYkKVQ9EzzzxDXl5etQ6+atUqPv744+rWqd6KD17mw+vHSiwNRbrUh4iISEyo8umzbdu2ceWVV3LMMccwcOBAunbtSnx8fLlyO3bs4PPPP+fDDz9kz549TJgwoVYrfCgL9hS5fQZfYnIgkWpMkYiISEyocii6/fbb+fzzz3n99de55557sNlsZGVlkZaWhtPppKCggN9++42CggISEhIYNGgQZ511FmlpaXVZ/0NKMBQBuBOSSQCFIhERkRhRrSn5ffv2pW/fvmzatIkvv/ySH3/8kdzcXNxuN6mpqfTt25du3brRt29fEhMT66rOh6w4u4UFGKAkIVWhSEREJIbU6Npnbdu2pW3btrVdl3rPsiziHTZKvH5K4oOzzzSmSEREJBZo9lmEJQQHWzuDs8+Ko1gbERERCVIoirDQYOu40tOLReopEhERiQUKRREWDEXFjoTABo0pEhERiQkKRREWvNSHy1G6nIEWbxQREYkJCkURlhgcU2SPC2xQT5GIiEhMUCiKsFBPka00FHncGK8nijUSERERUCiKuNCYIqvMagjFmoEmIiISbTVapwhg2bJlLFq0iK1bt+J2u8vtf/XVVw+qYvVVMBS5/EB8ArhKAtc/S20Q3YqJiIgc5mrUU/TFF1/wxBNP0KZNG9xuNyeeeCL9+/cnISGBrKwszj777NquZ70RXKfI5fVD6KKwGlckIiISbTUKRa+//jpnnHEGf//73wE49dRTueqqq3j44Yfx+/00atSoVitZnwTHFBV7/JAQXMBRoUhERCTaahSKtm3bRs+ePUO/+/1+ANLT0znzzDNZuHBh7dSuHgqdPvOV7SnSAo4iIiLRVqNQ5Pf7cTgc2Gw24uPjycvLC+1r3Lgxv/32W23Vr94JhqISrwmFIqOB1iIiIlFXo1CUmZnJnj17AGjdujXLly8P7fv000/JyMiondrVQxWPKVJPkYiISLTVaPZZjx49+L//+z8GDBjAsGHDeOihh/jpp59wOBxs27aNCy+8sLbrWW8klBlTZCUmY0ADrUVERGJAjULR+eefj8cTWHDwuOOOw2az8fHHH2NZFiNGjGDw4MG1Wcd6Jb7smKIEzT4TERGJFTUKRU6nE6fTGfq9X79+9OvXr9YqVZ8lVjCmSKFIREQk+mo80Hp/vvnmm5oc9rAQ7Ckq8fghSWOKREREYkWNQlFwPaI/8nq9zJw5k3vvvfegK1ZfBQdal5Q5fWZKNPtMREQk2moUilavXs0jjzwSFox+/fVX/vnPf7JkyRIuv/zyWqtgfRMaU+QNDLQG1FMkIiISA2oUiiZOnMi3334bCkbvvPMOt9xyCw6HgylTpnDyySfXdj3rjeCYIq8fPPEaUyQiIhIrajTQukOHDkycOJH//Oc/jB8/nry8PP785z8zatQo7HZ7bdexXgn2FAG44hNJAoUiERGRGFCjniL4PRiVlJTQpUsXzj33XAWiKnDaLeyBYUWUOBMD/1EoEhERiboahaKcnBxycnJIT0/nH//4B+vXr+eRRx4Jbc/JyantetYroeufBUNRSRHmADP6REREpG7V6PTZ+PHjy21buXIlK1euDP3+6quv1rxW9VyCw0ahx0+xPT6wwRhwl/y+mKOIiIhEXI1C0dixY2u7HoeV0Aw0yw52O/h8UFSkUCQiIhJFNQpFuozHwfn9orClq1oX7NO4IhERkSir8UDroD179rBlyxb27NlTG/U5LATHFJVdwJEShSIREZFoOmBPkc/n49NPP6Vfv344HL8X/+KLL5g9ezbbt28PbWvevDkXXXQRvXv3rpva1hMJZS/1kahLfYiIiMSCA/YUuVwuHnnkEX799dfQttWrVzN16lT8fj9nnXUWl19+OWeeeSY+n4+pU6eyevXqOq30oS4+7KKwgVWtjU6fiYiIRNUBe4oSExOxLCvskh7/+9//6Nq1K7feemvY2kTnnHMO//73v/nf//5Hz54966bG9cDvY4rK9hQpFImIiETTAXuKLMsiNTWVkpKS0LaNGzcybNiwcos12mw2Tj/9dDZu3Fj7Na1HgqfPir1+LIUiERGRmFClgdbNmzfnm2++Cf0eHx+PMabCssYYLMuqlcrVVwllLgqrgdYiIiKxoUqh6Nhjj2XhwoV89913ALRr144333wTr9cbVs7r9fLWW2/RsWPH2q9pPZIQNqZIPUUiIiKxoErrFJ166qmsWLGCe+65h5NOOok2bdrwxhtvMGHCBPr160dGRga5ubmsWrWK/Px8Jk2aVNf1PqTFh40pCgy0pkizz0RERKKpSqHIbrdz++2389JLL/HBBx/gdruBwBpFb7/9dqhM9+7dOffcc+nQoUPd1bgeKDumiMTA9c+MTp+JiIhEVZVXtI6Li+PSSy/l/PPPZ/v27bhcLuLi4nA4HCQkJNCwYcOwdYykcslxgQHqhR4/pJb2FOn0mYiISFRVO8UkJCTQtm3buqjLYSMlLtBTVODyYWUmYUChSEREJMpq1LXz0UcfHbDMoEGDanLow0JqfKCnaJ/L9/vsM4UiERGRqKpRKJo+ffoBy1Q1FM2fP5/PPvuMrVu3EhcXR6dOnbjoooto3rx5qIwxhtdee40lS5ZQUFBAx44dueyyy2jVqlWojMfjYdasWaxYsQK3202PHj24/PLLadSoUfUfYB1LLT19ts/tgyRd5kNERCQW1CgUNW/enB07djB06FBOP/10bLaaX1d2zZo1DB06lPbt2+Pz+XjllVeYPHkyDz74IAkJCQC88cYbLFy4kHHjxpGVlcW8efOYPHkyDz30EImlA5VnzpzJl19+ydVXX01qaiovvvgi9957L1OmTDmo+tWFYE+R22dwxSXhBPUUiYiIRFmN0sLUqVM577zzWLp0KVOnTmX37t00adIk7KeqJk6cyODBg2nVqhVt2rRh3Lhx5OTkhFbFNsawaNEiRo4cSb9+/cjOzmb8+PG4XC6WL18OQFFRER988AEXX3wxPXv2pG3btkyYMIEtW7bE5HXYkpw2bKXrWxbYAsEPrwfj8USvUiIiIoe5GvUU2e12RowYwQknnMALL7zAHXfcwYABA7joootIT08/qAoVFQV6TFJSUgDYuXMneXl5HHnkkaEyTqeTbt26sW7dOk455RQ2btyIz+cLu95aw4YNyc7OZv369Rx11FEV3pfH48FTJohYlhXqearNVbmDxyr7b2qcnb0uHwW2ODKC5VzFWHFxtXa/h6M/trXUHbV15KitI0dtHVmx1t4HNYe+YcOGXHvttXz33Xc899xzXHPNNYwaNYrTTjutRqesjDG88MILdOnShezsbADy8vIASEtLCyublpZGTk5OqIzD4QgFqbJlgrevyPz585k7d27o97Zt2zJlypRq9XRVR7NmzUL/z0j+mb2uIuIbNMRKTMIUF9EkJRlnVlad3PfhpmxbS91SW0eO2jpy1NaRFSvtXaNQFAwjQc2aNeOmm25i0aJFzJo1i6VLl3L//fdX+7jPPvssW7Zs4a677iq3748psrJrr1WnzMiRIxk+fHi5+9i1a1e5S5gcDMuyaNasGTt27AjVKcEe+Hfz9p1kxidAcRG7tmzGsrTW08GoqK2lbqitI0dtHTlq68iqrfZ2OBy10qFRo2/g8ePH73f/li1bqn3M5557ji+//JI777wzbMZY8HRcXl4eGRkZoe35+fmh3qP09HS8Xi8FBQVhvUX5+fl07ty50vt0Op04nc4K99XFm8EYEzpuaAaayxe41EfeHkxRIehNWCvKtrXULbV15KitI0dtHVmx0t41CkVjx46ttQoYY3juuef47LPPuOOOO8jMzAzbn5mZSXp6OqtXrw4tGun1elmzZg0XXnghELhArd1uZ/Xq1Rx//PEA5ObmsmXLllCZWJMaHzi9mO/y6aKwIiIiMaBGoWjw4MG1VoFnn32W5cuXc9NNN5GYmBgaA5SUlERcXByWZTFs2DDmz59PVlYWzZo1Y/78+cTHxzNgwIBQ2SFDhjBr1ixSU1NJSUlh1qxZZGdnhw2+jiVhPUWlCzia4iJiY6iZiIjI4SfqA1gWL14MwB133BG2fdy4caHwNWLECNxuN8888wyFhYV06NCBiRMnhmaKAVxyySXY7XamTZsWWrzx5ptvjrk1ioJSStcqKnD7AgOtQT1FIiIiUVSjUPTggw/ud79lWVx77bVVOtacOXMOWMayLEaNGsWoUaMqLRMXF8eYMWMYM2ZMle432sJ6ipKCF4XVqtYiIiLRUqNQ9MMPP1S6poDf72ffvn0HVanDQfj1z0p7vErUUyQiIhItNQpFTz/9dKX7tm7dynXXXVfjCh0uQqHIXTr7DHT6TEREJIpqfcBNrKxKGeuCp88KXD4Ijo1SKBIREYma2ByFfBgo21NkEgI9RUahSEREJGpqdPrso48+qnRfbm5ujStzOAmGIq8fXAlJxIMGWouIiERRjULR9OnTa7seh514u4XDZuH1G/Y5SkNRSXG0qyUiInLYqlEouueeeyrdt3PnTqZNm1bjCh0uLMsiNd5ObrGXAnsSjUE9RSIiIlFUo1DUrl27SvclJCTUuDKHm9Q4G7nFsM8eH9igMUUiIiJRo4HWURQabG3FBTaUFGP8/ijWSERE5PBVo56igoKCSvcVFuoUUFWlBFe1Dj4NxoCr5PcLxIqIiEjE1CgUXXbZZbVdj8NSqKfIa4HdAT5vYFyRQpGIiEjE1SgUnXXWWVqksRaEFnB0ly7gWLAPijUDTUREJBpqFIr2d2FWqbqw658lJpeGIp1+FBERiYYaD7Q2xpCfn8++ffswxtRmnQ4bwVBU4PZBcmpgY0F+FGskIiJy+Kp2T9H69et5/fXX+e6773C5XADEx8fTo0cPRo4cSceOHWu9kvVV8PRZvssPaRkAmL256MSkiIhI5FUrFL377rvMnDkTCKxV1KRJEwB27drF119/zddff83o0aMZOnRorVe0PirbU2SlZWAA9u6Jap1EREQOV1UORevXr+f555+nV69eXH755TRq1Chs/+7du3n66aeZOXMm7du3p0OHDrVe2fomJS5w9nKfyxfqKWKvrh0nIiISDVUeU/TWW2/RsWNHbrzxxnKBCKBRo0bcdNNNdOjQgQULFtRqJeursj1F/gYNgcDpMxEREYm8KoeitWvXMnToUGy2ym9is9k49dRTWbt2ba1Urr4LhiK/geJU9RSJiIhEU5VDUUFBAY0bNz5guSZNmux3xWv5XZzdRrw9MKy6ICk9sFGhSEREJCqqHIpSU1PZtWvXAcvl5OSQmpp6UJU6nKQE1yqKbxDYkJ+r65+JiIhEQZVDUefOnVm8eDH+/Xxh+/1+3nnnHbp06VIrlTscNAiOK3KWXtrD54PCfVGskYiIyOGpyqFo+PDh/Pjjj0ydOpXc3PKnePbs2cPUqVP56aef+NOf/lSrlazPQheF9QIppb1FmpYvIiIScVWekt+pUycuueQSXnjhBcaNG0f79u3JzMwEYOfOnfz0008YYxg9erSm41dD6FIf7tJp+QX5sDcPWka3XiIiIoebai3eePrpp9O2bVtef/11vv/+e3788UcA4uLiOPLIIxk5ciSdO3euk4rWV6GLwgZXtd76M2bvHq1qLSIiEmHVvsxHly5duOWWW/D7/ezbFxj7kpqaut+p+lK5YE9Rftiq1pqBJiIiEmnVDkVBNpuNtLS02qzLYSk1PhAmC1w+SAss4KhQJCIiEnnq3omy0EDrspf6yNNAaxERkUhTKIqy8IHWpZf6yFdPkYiISKQpFEVZapmeIksXhRUREYkahaIoK3tRWBSKREREokahKMqCPUWFbj++BumBja4STElR9ColIiJyGFIoirLgtc8MUGSLh/jEwI489RaJiIhEkkJRlDlsFomOwNMQNgNNp9BEREQiSqEoBoRmoLl8kB4IRZqBJiIiElkKRTGg7GBrK7SAo9YqEhERiSSFohiQGhd4GvJdPggOttaYIhERkYhSKIoB4dPydakPERGRaFAoigEVXerD6PSZiIhIRCkUxYCyA62tdM0+ExERiQaFohhQ0fXP0OwzERGRiFIoigHBVa0Lyq5TVLAP4/VEsVYiIiKHF4WiGBDWU5ScCnZHYMfevOhVSkRE5DCjUBQDfh9T5MeyLEhLD+zQYGsREZGIUSiKAWGzz0DT8kVERKJAoSgGBHuKir1+vH5TZlq+QpGIiEikKBTFgGSnDav0/wUuH5YuCisiIhJxCkUxwG6zSA5e6iNsVWuNKRIREYkUhaIYUXYBx+BAa50+ExERiRyFohjRKDEwDX9XoQdLA61FREQiTqEoRjRNiQNgZ4Hn9wUcdfpMREQkYhSKYkSzFCcAOwo8ZS71kYfx+6NYKxERkcOHQlGMaFoain4rcENqGlgW+P1QkB/lmomIiBweFIpiRPD02Y4CD5bDASkNAjs0rkhERCQiFIpiRPD02e4iLx6f0bgiERGRCFMoihFpCXbi7RaGwAw0rWotIiISWQpFMcKyLJqFTqG5f5+Wn6eeIhERkUhQKIohmaHB1mWm5efnRa9CIiIihxGFohjSLCwUBXqKjMYUiYiIRIRCUQxpWmatIqv0Uh+afSYiIhIZCkUxJDim6LcCNzRqGti4c3sUayQiInL4UCiKIU3Lnj7LahnYmJ+H0QKOIiIidU6hKIYEQ1Ghx0+hFQeNMgM7tv8axVqJiIgcHhSKYki8w0ZGgh0ovQZaVisAzLYt0ayWiIjIYUGhKMY0LTOuyGoeCEVs/yWKNRIRETk8KBTFmLIz0GieDainSEREJBIc0a4AwJo1a1iwYAGbNm0iNzeXG264gWOOOSa03xjDa6+9xpIlSygoKKBjx45cdtlltGrVKlTG4/Ewa9YsVqxYgdvtpkePHlx++eU0atQoGg+pxsoOtrayWmEAtqmnSEREpK7FRE+Ry+WiTZs2jBkzpsL9b7zxBgsXLmTMmDHcc889pKenM3nyZIqLi0NlZs6cyWeffcbVV1/NXXfdRUlJCffeey9+vz9SD6NW/L6Aozs0poi9ezCFBVGslYiISP0XE6GoV69enHfeefTr16/cPmMMixYtYuTIkfTr14/s7GzGjx+Py+Vi+fLlABQVFfHBBx9w8cUX07NnT9q2bcuECRPYsmULq1evjvTDOSi/X//Mg5WYBA0bB3Zs1yk0ERGRuhQTp8/2Z+fOneTl5XHkkUeGtjmdTrp168a6des45ZRT2LhxIz6fj549e4bKNGzYkOzsbNavX89RRx1V4bE9Hg8ejyf0u2VZJCYmhv5fW4LHqsoxm6UGQtGuQg9+A1ZWNmZPDmz/Fatj91qrU31VnbaWg6O2jhy1deSorSMr1to75kNRXl4eAGlpaWHb09LSyMnJCZVxOBykpKSUKxO8fUXmz5/P3LlzQ7+3bduWKVOm0KRJk9qp/B80a9bsgGWaGoPT/hMen8GWkkFixy4UfP8VSXt3k5GVVSf1qo+q0tZSO9TWkaO2jhy1dWTFSnvHfCgK+mOKNMYc8DYHKjNy5EiGDx9e7j527dqF1+utQS0rZlkWzZo1Y8eOHVWqd2aSk6373Pzfxq30SAsMFC/88QdKtuuSHwdS3baWmlNbR47aOnLU1pFVW+3tcDhqpUMj5kNReno6EOgNysjICG3Pz88P9R6lp6fj9XopKCgI6y3Kz8+nc+fOlR7b6XTidDor3FcXbwZjTJWO2zQlEIp27HPTI7SA4y96g1ZDVdtaDp7aOnLU1pGjto6sWGnvmBhovT+ZmZmkp6eHDZj2er2sWbMmFHjatWuH3W4PK5Obm8uWLVvo1KlTxOt8sMLWKgpeAy1vN6aoMIq1EhERqd9ioqeopKSEHTt2hH7fuXMnmzdvJiUlhcaNGzNs2DDmz59PVlYWzZo1Y/78+cTHxzNgwAAAkpKSGDJkCLNmzSI1NZWUlBRmzZpFdnZ22ODrQ0XTMtPyraQmkN4I8nYHVrZu3yXKtRMREamfYiIU/fTTT9x5552h31988UUABg0axPjx4xkxYgRut5tnnnmGwsJCOnTowMSJE0MzxQAuueQS7HY706ZNCy3eePPNN2OzxXxnWDnNQpf6KJ0Z17xVoKdo2xYshSIREZE6EROhqHv37syZM6fS/ZZlMWrUKEaNGlVpmbi4OMaMGVPpApCHkrKrWgOBla3XfKNroImIiNShQ68b5TAQDEV7XT6KPD5dA01ERCQCFIpiUHKcndS4wFOzs8CD1bz0ch/qKRIREakzCkUxqmnZcUVZgZ4i9uRgiouiWCsREZH6S6EoRpWdlm8lp0Baw8AO9RaJiIjUCYWiGNWszLR8IDADDTAKRSIiInVCoShGBU+f7SgzAw2AbQpFIiIidUGhKEZlpQZ6irbkuQIbNANNRESkTikUxahOjROxW7CryBuYgZalGWgiIiJ1SaEoRiU4bLRvmADAml1FoTFF7N6JKSmOYs1ERETqJ4WiGNY9MwmA73cWYaU0gAbpgR3bf41epUREROophaIY9nsoKu0ZCo4r+uWnaFVJRESk3lIoimFdmyRiAVvz3eQVe7E6dg/sWPNtVOslIiJSHykUxbCUeDttMuKB0lNo3XsBYH74FuP3RbNqIiIi9Y5CUYwrO66INh0hMRmKCmDzhijXTEREpH5RKIpx3TMTgcC4Istuh65HAmDWfB3NaomIiNQ7CkUxrltpT9HPeS72uXxY3Y8CwHz/TfQqJSIiUg8pFMW49AQHLRvEYYAfdhVhdQuMK2LjWkxRYVTrJiIiUp8oFB0Cyk7Ntxo3haYtwO+Hdf8X5ZqJiIjUHwpFh4BuoXFFRQBY3Y4CNK5IRESkNikUHQKCPUU/7Smh2OP/fWr+9wpFIiIitUWh6BDQJNlJZrITv4F1OcXQ+QiwO2DXDszO7dGunoiISL2gUHSI6F7mFJqVkAjtuwA6hSYiIlJbFIoOEWGLOFJmXJFOoYmIiNQKhaJDRDAUrc8pwe3zY/U4OrBj7WqM1xvFmomIiNQPCkWHiKxUJxkJdjx+w485JdCqHaSkQkkxbFof7eqJiIgc8hSKDhGWZdGzWTIAK37Zh2WzYXU9CtC4IhERkdqgUHQIGdy2AQDLNufj8RnoHjiFZr77KprVEhERqRcUig4hRzZLpmGig30uH19sKwisV2SzweYfMT9viHb1REREDmkKRYcQu80K9RYt3bgXK70h1jEDATDvzItm1URERA55CkWHmBPbpQHwxdYC9pZ4sYaeCYD58hMt5CgiInIQFIoOMdlp8XRslIDPBMYWWS3bQI/eYPyYxfOjXT0REZFDlkLRIejEtoHeog827gXAdtpZAJgVSzD5uVGrl4iIyKFMoegQdEKbBjhssDHXxebcEujUHdp2Aq8Hs2RhtKsnIiJySFIoOgQ1iLfTt0UqEOgtsizr996iDxdiSoqiWT0REZFDkkLRIWpIu8AstI825+P1GzjqGGjaAooKMcsWR7l2IiIihx6FokPU0c1TSIu3k1fi4+tthVg2O9bQkQCY997AeD1RrqGIiMihRaHoEOWwWQwqXbNoSemAa+vYEyGtIeTtxnz0TjSrJyIicshRKDqEnVS6ZtGqX/excU8JltOJdcY5AJi5z2M2/RjN6omIiBxSFIoOYW0yEhjQOhW/gRmf/4bfGKzBw+CoY8HrxT/jXkxBfrSrKSIickhQKDrEjTk6kwSHxbqc4t9nol16NWRmwZ5d+J95AOP3RbuaIiIiMU+h6BDXKMnJeUc0BuCFr3dR4PJhJSVjG3sLxMXB919j3poT5VqKiIjEPoWieuBPXRrSKi2OfJeP2d/uAsBq2RbrovEAmLdewXz3ZTSrKCIiEvMUiuoBh83iH32bAvDOj3ls2F0CgO24E7EGnQbG4J9xH/7PP45mNUVERGKaQlE9cUTTZAa2aYABnvx8B35jALDO/Rt06QmuYsxT9+OfPR3jcUe3siIiIjFIoageGd2rCYkOG+t3l/D0F7/h8RkspxPbNXdiDSudqv/RO/jvvhGzY2uUaysiIhJbFIrqkUZJTsb0zgRg0fo8bn1/C7uLPFh2O7aRf8V29R2Qmga/bsI/+Tr8C+dgCvdFt9IiIiIxQqGonjm1Qzr/GtiCZKeNtTnFXPv2ZlbvKATA6nE0ttsfgk49AqfTXp+N/6Yx+P/7FGbXjuhWXEREJMoUiuqhfq1SeeD0NrRJj2dviY9JH/zCK6tzcHn9WOmNsF33b6wx10LLtuB2YT54C//EK/A9Nhn/h28rIImIyGHJEe0KSN3ISo3jvqGteeKzHSzdlM9//y+Hd37M5ZwejTm1QxrO407EHDsYfvgW/+L58P3X8O1nmG8/wwA0aYbV7Sho3xUruz1ktcCy2aP7oEREROqQQlE9Fu+wcfVxWRyVlcxL3+aws9DDU1/8xrw1uzn3iMYMatOA+G5HYe92FGbrz5ivV2LWfAMb18GuHYGLyn70TiAkxcVBq3ZYzbMhLQMapGM1SIfUdGiQDg3SIDEZy7Ki+ZBFRERqTKGonrMsi8Ft0+if3YD3f8pjzne7ySny8viqHTz9xW/0ykrmmJYp9GnRgvTh58Hw8zAlRbDuO8wP32J+/gl+2QiuEvhpLeantaFjmz/emcMRCEmpDSAxGRISsRKTICEJ4uMhLuH3f+PiIS4Oy+kEZzw4neCMA4cz8ON0Bo5nAOMHY8DvL70fJ9jtYHcEytgdYLcrkElM8xtDvstHbrEXt8/g9Rm8xuDzG5x2i/YNE0hyHpq9sW6fn7xiH4UeHylxdhrE24l31N7oDBNcYiQG3uM+v2FnoYffCjzEOyzS4h00SLCT7LTFRP0OljEGvwG77dB/LDVhmeCrTUJ27dqFx+OpteNZlkVWVhbbt28n2s3t8vp5d0MeC37Yw64ib2i7BXRslEC3zCS6NE6kc5NEGiYGMrPP56Vg63ZyN/+Md/cuMgt3kbxvN+Tn/f5TUhwoa9lw2Zwk+lxE/C3lcIDdieWwY7w+8PsCQcrvA5u9NGwFygTK2sFmC+yzlf4/tK10exkGwGbDCu6zOwLlCAQ24/fjNRZ+LBx2sNvsWKXhzWNZ5FqJ7LElsIcECiwnfgx+v4XfCmQ+n2XDZ7PjtznwWTYsm0Wy8ZKCl1Q8JOPBaRnAwliBH5tlkWH3kW7zYQvWv5THWOT4HOQaJ4mWnxS7IcXuJ8ECy2aBzQLLBlbpv8FHWfY1atkoNjZyTBy7fQ7cxsJvDD7AGAtnYiJ7Cl0UGTtF2Cj220i0GRo7fIEfu49Uu588r43dXhu7vXZyfHb8QIrNT4rNkGwzJNn9xOPHYXw4jQ+H34+xoNjmpMRyUmw5KMFOod9Gkd+iyG+j0Bd4haXb/WQ4/KTbfaTb/diMH4+/NHT4DcV+i1yfjT0+O7k+O3t8DmyWoYHdTwObIdXhJ9VuSLZDst2QbLdIdhjsloXPgNeAz1iBfyEUZrwG9vlsbPfY2VH6k+O1YwcSbIZEuyHRBn4g12sj12Ph28+7woahTYKPbkk+uiR6SLYMBX6LAp9Fod/CxCXidrmwWVbgpWqz4bRBgg0S7BBvA6cFxT7Y54UCHxR4wWcg3maItwX+jbMAy8Jg4S/91+2HfR4T+PFCoS9wrCSbP9QuTotAu/stCkvrtNdrkeu1KPKVf1zxNkMDu6FxnCE7wdAqEVolQbN4KPAa9rhhj9uwx21R4Au8Xj3Gwl36b0HwcXgt9pU+jmCbJtsNiTZDkzhDVgJkJVhkJVmkO6HY5aXI5aXI7aXQ42efz8Y+42Cf30a+sVPit5FkMyTbDSk2P8k2P1g2SrAo8Qde71ZcAh63C7sFDsvCboN8D/xSDNtKwO2v4OPHgjQnpDsNGU7IcBrSHeCwDH5j4SfwWvD4ochvUeiFQp9FkQ/slgm8ZmyGRMvgtPwU+0qfe59FoQ8cNkhzQLozcD8pTvD6LVx+cJvAc2gBSfbgjyHRHgg5Hj94/YH3g8sPxf7A/Rb5rEBdfIG6FJY+934s7ARfMxBnh1Q7pMdBmtMiPQ5SHBY+Y/D4Asf2+A0lPij2B45V7Avcj9eA3wSePz+B/z8+oj2Jcc7AR0wtfT86nU6aNGlS49sHKRRVoD6HoiBjDJtyXXz2awGfbd3HT3tc5co0TnJgDOSVePH9odopcTaapcTRNMWJ22fYU+RmT5GHvS6DH3BgSLP7SLO8pBkX+P0U+y2KjY1i7HiMjXR/EU08BTRy59PElUeqpxC714PD68LhdWH3evHYnbhtzsC/dieWMaS4C0lx7yPVU0SKtxjLGPyWDb9lw2fZKHIksCOhETsSG/FbYkN+S2gIQLzfQ7zPTbzPg934KLHHUWKPp9geT4k9DmNZOP1eHH4fTuPFMoZiRwKFjgQKHYkUOhIwWMT5vcT5PcT5PDiNF7fNSYk9DpctDl+ZIGUzPpx+H3bjo8iRWJdPJw6/l4aufBq78vBZNnYlZJAbl4qxyv+17vB7SfEWk1zafineYpK9xfix4bY7cNsCbV7gSCQnIb3O6364aeAuINHnwm782I0Ph99HgTORXaWv00OVw+8lyVtCkSMBr61+n4Rw+j00Ld6Dx+ZgrzOFEkd8tKt0SHnpTy1JaZACKBQdEg6HUPRHuwo9fL+ziLW7ilmbU8zPeS78f6hqapwNm81ib4kvOpU8xDnw09DmpaHlIdXyYrcCnTR2gv+awBel34fN+DHGUIiDfcZBAYEfLxZW6fNiAV4s9uLEX0kPRJzxkYELN3b24cRbQUiqiiTjppGvmAS82DDYCfRsxNkg3usi0XhI9HtI9Lspspzk2JPYbUsix57MPiuOdH8JjfzFNPIX09AUYzd+iiwnBVYchZaTQpsTj+XAgw2PZQ/U0xA4bpljJ/o9JPndJBs3SX43GEOePYk8RxK5tkTy7ImlbW1w4MeBn3jjo6EpoaG/hAxTTIYJvLb3WU72EUe+FfgpspwUWk6KbHEUWnGlfy37cZjAcezGH/rdXnr8JOOhmXcfzXz7aOYtINO3D4NFMXaKcVBi2TF+Q0NvIQ29haR7CnD4vaW9c2V66oAcZwprE5qxNr4p6+Kb4rVspPjdJPtdgX8tPz6fFx9WqOfBbdlxWQ5KSnvUPJY90D5+F6l+F8l+Fw7jx2Vz4rYclFgOXDYHljHYjB8Lg90f6KFLMW5SjYtU4yHZePDa7KXPTRxFVhwebCQZD8m+EpL9bpK8JaT5ikn3FJDhKSDJV4LlNxibjWJHPPn2JPKdSWx3pvGrM4Nf4gI/u5wNSPGV0MhbSIavkEbeIlL9JTh9Hpx+b+mPhxRfCSm+ElK9xaT4SnAYH8WORIociRQ5EihwJLDLkcp2RwN2OBuwzZnOPkciiX43yaWvmyTjDTwmXwkNvMWkeotI8LkoscVRYE+g0BZPoT0ejCHB7ybR5ybB5ybB+PAaP14Cf2j5sJHgc9PKlUNL1x4y3XuxY0LPncvmJN+RyF57ErnOFPIcyeQ6k8lzJOPHwoYfmzFYGJzGR5LPFWhHn4sknwu/ZaPYkUCRI4Fiexwem7P0eQy81pP97sB73Ypnry2BvbZECuxxOPw+4v1e4oyXOL8XAxTb4ym0xVFsj6fY5sSGCb2GHRicfh9JfhdJfjdJfheJfg/JvsBrJdnvJtnnIs7vxW2z48Ieeu3k2+PJsyWy155Inj2JQnv878c1fpz4SPB7A8f0Bo6X4HPjMF5s/sB7x+b3Y8NPu5tuw5GUFPgcUyiKfYdjKPqjIo+PTbku4uwWGYkO0uIdOO2BD4ASr58d+9z8VuDht0IP8XYbDRMdNExy0DDRQZLTRr7LR16Jl70lPvaWeLEsi0SHjURn4Mdhs9hT5CWnyMOuQg+7irwUuX14TaAr1lfa1eu0WcQ5bMTbLZx2C7+BApePfW4f+1w+Ctx+IHCqw2aBzWaRHO+kSWKgJ6tZipOmKU7sNguX14/LZ3B5/Xj9hoRgfRw2Epy2QMgo7Qb2+gw+A0lOG8lxNpLjAmMGbJaF2xc4jttr8Pj8gfo5LBIcNhLsNmy2wCkWj9/gKT3V0iDOTmp83Yx78voNucVeckrb0W6DzGQnTZKdpJW5T2MMLp8pbbfSH5efAndgLIjdCrRxnD3Q3olOG42TnTROclQ41qWqr2tjTL0YaxFNh+JnyKFKbR1ZsRaK6ncfp9RYktNO98ykCvclOGy0yUigTUZCpbdv4rDRJNm53/toXwdnC2LmA23/D71WOWwWTUpDUNf9lLMsi4TS8Hag56Y2KRCJyKFCizeKiIiIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAD18Npn7777LgsWLCAvL4+WLVsyevRounbd3xWhREREROpZT9Enn3zCzJkzOfPMM5kyZQpdu3bl7rvvJicnJ9pVExERkRhXr3qK3nrrLYYMGcJJJ50EwOjRo/n2229ZvHgxF1xwQbnyHo8Hj8cT+t2yLBITE0P/ry3BY+lq4XVPbR05auvIUVtHjto6smKtvetNKPJ6vWzcuJG//OUvYdt79uzJunXrKrzN/PnzmTt3buj3Tp06MXnyZJo0aVIndWzWrFmdHFfKU1tHjto6ctTWkaO2jqxYae96E4ry8/Px+/2kpaWFbU9LSyMvL6/C24wcOZLhw4eHfrfZ6tXZRBEREamGepcCKuqCq6xbzul0kpSUFPpJSEiokzoVFxdz8803U1xcXCfHl9+prSNHbR05auvIUVtHVqy1d70JRQ0aNMBms5XrFdq7d2+53qNIM8awadMmjDFRrcfhQG0dOWrryFFbR47aOrJirb3rTShyOBy0a9eO1atXh21fvXo1nTt3jlKtRERE5FBRb8YUAQwfPpxHH32Udu3a0alTJ95//31ycnI45ZRTol01ERERiXH1KhQdf/zx7Nu3j//973/k5ubSqlUr/vnPf9bZbLKqcjqdnH322TidzqjW43Cgto4ctXXkqK0jR20dWbHW3paJlRN5IiIiIlFUb8YUiYiIiBwMhSIRERERFIpEREREAIUiEREREaCezT6LVe+++y4LFiwgLy+Pli1bMnr0aLp27Rrtah2y5s+fz2effcbWrVuJi4ujU6dOXHTRRTRv3jxUxhjDa6+9xpIlSygoKKBjx45cdtlltGrVKoo1P/TNnz+f//73vwwbNozRo0cDauvatmfPHmbPns0333yD2+0mKyuLsWPH0q5dO0DtXVt8Ph+vvfYaH3/8MXl5eWRkZDB48GDOPPPM0CWf1NY1s2bNGhYsWMCmTZvIzc3lhhtu4Jhjjgntr0q7ejweZs2axYoVK3C73fTo0YPLL7+cRo0a1Wnd1VNUxz755BNmzpzJmWeeyZQpU+jatSt33303OTk50a7aIWvNmjUMHTqU//znP9x66634/X4mT55MSUlJqMwbb7zBwoULGTNmDPfccw/p6elMnjw5ZpaSPxRt2LCB999/n9atW4dtV1vXnoKCAm677TYcDgf/+te/ePDBB7n44otJSkoKlVF714433niD9957j8suu4xp06Zx0UUXsWDBAt55552wMmrr6nO5XLRp04YxY8ZUuL8q7Tpz5kw+++wzrr76au666y5KSkq499578fv9dVp3haI69tZbbzFkyBBOOumkUC9R48aNWbx4cbSrdsiaOHEigwcPplWrVrRp04Zx48aRk5PDxo0bgcBfIYsWLWLkyJH069eP7Oxsxo8fj8vlYvny5VGu/aGppKSERx99lH/84x8kJyeHtquta9cbb7xBo0aNGDduHB06dCAzM5MjjjgidAVxtXftWb9+PX369OHoo48mMzOTY489lp49e/LTTz8BauuD0atXL8477zz69etXbl9V2rWoqIgPPviAiy++mJ49e9K2bVsmTJjAli1byl21orYpFNUhr9fLxo0bOfLII8O29+zZk3Xr1kWpVvVPUVERACkpKQDs3LmTvLy8sHZ3Op1069ZN7V5DzzzzDL169aJnz55h29XWteuLL76gXbt2PPjgg1x++eXcdNNNvP/++6H9au/a06VLF7777ju2bdsGwObNm1m3bh29evUC1NZ1pSrtunHjRnw+X9jnTcOGDcnOzmb9+vV1Wj+NKapD+fn5+P3+chekTUtLK3fhWqkZYwwvvPACXbp0ITs7GyDUthW1u05bVt+KFSvYtGkT99xzT7l9auvatXPnTt577z3OOOMMRo4cyYYNG3j++edxOp0MGjRI7V2LRowYQVFREddeey02mw2/3895553HgAEDAL2260pV2jUvLw+HwxH6Q7dsmbr+7lQoigDLsqq0Tarv2WefZcuWLdx1113l9v2xjbV4e/Xl5OQwc+ZMJk6cSFxcXKXl1Na1w+/30759ey644AIA2rZtyy+//MLixYsZNGhQqJza++B98sknfPzxx1x11VW0atWKzZs3M3PmzNCA6yC1dd2oSbtGou0ViupQgwYNsNls5ZLt3r17y6Vkqb7nnnuOL7/8kjvvvDNsRkJ6ejpAaEZJUH5+vtq9mjZu3MjevXu55ZZbQtv8fj8//PAD77zzDg899BCgtq4tGRkZtGzZMmxby5YtWbVqFaDXdm2aPXs2I0aMoH///gBkZ2eza9cuXn/9dQYPHqy2riNVadf09HS8Xi8FBQVhvUX5+fl07ty5TuunMUV1yOFw0K5du3IDw1avXl3nT2x9Zozh2WefZdWqVdx+++1kZmaG7c/MzCQ9PT2s3b1eL2vWrFG7V9MRRxzB1KlTue+++0I/7du3Z8CAAdx33300bdpUbV2LOnfuHBrjErRt27bQRa312q49LpcrNPU+yGazhXoj1NZ1oyrt2q5dO+x2e1iZ3NxctmzZQqdOneq0fuopqmPDhw/n0UcfpV27dnTq1In333+fnJwcTjnllGhX7ZD17LPPsnz5cm666SYSExNDPXFJSUnExcVhWRbDhg1j/vz5ZGVl0axZM+bPn098fHxovIBUTWJiYmisVlB8fDypqamh7Wrr2nPGGWdw2223MW/ePI4//ng2bNjAkiVL+Pvf/w6g13Yt6t27N/PmzaNx48a0bNmSzZs389Zbb3HiiScCauuDUVJSwo4dO0K/79y5k82bN5OSkkLjxo0P2K5JSUkMGTKEWbNmkZqaSkpKCrNmzSI7O7vcZI/aZhmdIK1zwcUbc3NzadWqFZdccgndunWLdrUOWaNGjapw+7hx40JjAYKLg73//vsUFhbSoUMHLrvssnJf8FJ9d9xxB23atCm3eKPaunZ8+eWXvPzyy+zYsYPMzEzOOOMMTj755NB+tXftKC4u5tVXX+Wzzz5j7969NGzYkP79+3P22WfjcAT6C9TWNfP9999z5513lts+aNAgxo8fX6V2dbvdzJ49m+XLl4ct3ti4ceM6rbtCkYiIiAgaUyQiIiICKBSJiIiIAApFIiIiIoBCkYiIiAigUCQiIiICKBSJiIiIAApFIiIiIoBCkYiIiAigy3yISIz44YcfeP/991m7di25ubk4nU6aNWtGv379OP3000lMTIx2FUWkntOK1iISdUVFRVx66aX07duXPn36kJmZicfjYePGjbzzzjvEx8dz6623lrv4r4hIbVIoEpGoc7vdbNmyhQ4dOpTbt3fvXm644QYyMjK49957y13ZXESktigUiUjMe//993nqqae44YYbOOaYYxg/fjy7du2qtPycOXNC/3e73cydO5cVK1awZ88eGjRoQN++fTn//PNJTk4GYO3atdx5552cfvrpXHzxxaHbfvjhh0yfPp0rrriCIUOGAPDOO++wcuVKtm7disvlIjMzk4EDB3LGGWeELiQqIocmvYNFJGb4/X4q+jvtyCOPBOCbb77hmGOOAaBz58789a9/DSv31ltv8emnn4Z+N8Zw//3389133/GXv/yFrl278vPPPzNnzhx+/PFHJk+ejNPppEuXLpx77rm8/PLLdOvWjT59+vDLL7/w7LPPcsIJJ4QCEcBvv/1G//79yczMxOFw8PPPPzNv3jy2bt3KuHHj6qJZRCRCFIpEJGbMnTuXuXPnVrp/9+7dof8nJyfTqVOnsP1paWlhv3/77bd8++23XHTRRfz5z38GoGfPnjRq1IiHHnqIjz76iJNPPhmAESNG8MMPP/D4449z1113MW3aNBo3bszf/va3sGNecsklof/7/X66du1Kamoq06dP5+KLLyYlJaVmD15Eok6hSERixsknn0zv3r3LbS8uLuauu+6q9vG+++47AAYPHhy2/bjjjuOJJ57gu+++C4Uiy7K48soruemmm7jllluwLIu7776bhISEsNtu2rSJOXPmsG7dOgoKCsL2bd++nY4dO1a7niISGxSKRCRmNGzYkIYNG5bb/v333wPQuHHjah2voKAAu91OgwYNwrZblkV6ejr79u0L256amkqfPn149913OeaYY8jOzg7bn5OTw+23307z5s0ZPXo0mZmZOJ1ONmzYwLPPPovb7a5W/UQktmgah4jEvJUrVwK/jy2qqpSUFHw+H/n5+WHbjTHk5eWRmpoatn316tUsXryYDh068Nlnn4WNTwL47LPPcLlc3HDDDQwcOJAuXbrQvn17DbAWqScUikQk6oqLi3n33Xcr3Ld582aWLFlCmzZt6NOnT7WOe8QRRwCwbNmysO2rVq3C5XKF9gPk5uby6KOP0q1bNyZPnkyfPn2YMWMGO3fuDJWxLAsAp9MZ2maMYcmSJdWql4jEJv15IyJRZ4zh2Wef5eOPP2bw4ME0b94ct9vNDz/8wDvvvEOTJk244YYbqr1GUc+ePTnyyCN56aWXKC4upnPnzmzZsoU5c+bQtm1bBg4cCAQGTD/88MMAXH311dhsNsaNG8dNN93EtGnT+Pe//43D4aBnz544HA4efvhh/vznP+PxeFi8eDGFhYW13iYiEnkKRSISdUlJSfz73//mvffeY/78+ezZswen00lWVhYjRozgtNNOIykpqdrHtSyLG2+8kddee40PP/yQefPm0aBBAwYOHMj5558f6vGZM2cOP/zwA7fddhvp6elA4NTbNddcw6RJk5g9ezajR4+mRYsWXH/99bzyyitMnTqV1NRUBgwYwPDhw7n77rtrs0lEJAq0eKOIiIgIGlMkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiKAQpGIiIgIoFAkIiIiAigUiYiIiAAKRSIiIiIA/D+ZL5OAmxWNgQAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.plot(history.history['loss'], label='Train Loss')\n",
"plt.plot(history.history['val_loss'], label='Test Loss')\n",
"plt.title('Процесс обучения модели с l_2 регуляризацией')\n",
"plt.xlabel('Эпоха')\n",
"plt.ylabel('Ошибка (MSE)')\n",
"plt.legend()\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4. Один слой и оптимальное число нейронов \n",
"\n",
"**Итак, небольшое задание для самостоятельной работы.**\n",
"\n",
"Постройте нейронную сеть с одним скрытым слоем. Постройте для неё картинку с зависимостью качества модели от числа используемых в сети нейронов на обучении и тесте. По оси $x$ отложите число нейронов, используемое в слое. По оси $y$ качество модели. Для борьбы с переобучением используйте early stopping. Число нейронов перебирайте от $1$ до $20$. Запаситесь терпением и не забудьте проинтерпретировать картинки."
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step \n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAHJCAYAAAC/nYzjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC0VklEQVR4nOzdd3hUZfrw8e+ZZFKnpJCQBAiEKkgVBKVIE1REEQuuoiJFdwGx7NpRERfX+q661v2JiqK4CoqoqKhUEQQFqREQQUJPQnqd9rx/TGbIkDaTzCQhuT/XlQsyc+bMczIzZ+7zlPvWlFIKIYQQQggRULqGboAQQgghRHMgQZcQQgghRD2QoEsIIYQQoh5I0CWEEEIIUQ8k6BJCCCGEqAcSdAkhhBBC1AMJuoQQQggh6oEEXUIIIYQQ9UCCLiGEEEKIeiBBlxBCNKAvvviChIQEiouL3bfdeeed3HvvvQ3YKiFEIDS6oOvXX3/l7rvv5oILLqBFixbo9Xri4uLo3bs3DzzwAPv372/oJopGas2aNWiahqZpdOrUiaoqXB07dozg4GD3tjabzeN+u93Om2++ydChQ4mJiUGv1xMfH0/Pnj2ZNm0an3/+eZXPW9VPVFRUoA5bnOUGDBhAYWEhgwYN4sEHH+SGG27g1VdfZeTIkQ3dNCGEnwU3dAPOtHz5cl577TUuuugiJk2aRGRkJKWlpezfv5+XX36ZF154gXfeeYeJEyc2dFNFIxUcHMz+/ftZu3Ytw4YNq3D/O++8g91uJzg4uNKAa+zYsXzzzTdERUVx+eWX07p1a7Kysti/fz8LFy5kz549XHnllRX227ZtW2699dZK2xQWFuaPQxNNUHx8PJ988gkPPvgg//nPf0hISOD555/nsssua+imCSH8TGtsBa8PHDhATExMpT0DO3fu5Pzzzyc0NJT09HRCQ0Prv4Gi0VqzZg3Dhw/n0ksvZdWqVVx33XW8//77HtsopejYsSNGo5GcnBwOHTqE1WolONh5/fH+++9z880306tXL9auXYvZbPZ4fHZ2Nlu2bOHiiy+u8LxDhw5lzZo1AT9OIYQQZ6dGN7zYvn37KodievToQdeuXcnLyyM7O9t9u8Vi4ZVXXmHMmDG0bduW0NBQoqOjGTlyJMuXL690X+3atfMY/gkJCaFt27bcdNNNpKamVthe07RKe002bdqETqdD0zQWLFhQ4f4jR45w55130qlTJ8LCwoiJiaF///7885//rNCedu3aVXj8oUOHiIiIQNM0Hn/8cY/7hg0bhqZpREREkJWVVeGx+/fvd7etsh6YY8eOMWPGDNq1a0dISAhxcXGMHz+en3/+ucK2Lh999BEjR44kJiaGsLAw2rVrxw033MAvv/wCwK233lrjUJumaR7H6nrMn3/+WeXz+iI2NparrrqKTz75hJycHI/7Vq1axYEDB5g2bVqlj/3xxx/dbToz4AKIjo72CLgCoaSkhKeeeooePXoQERGByWRiyJAh/O9///PYbsGCBV79rb3527r2Vdl7uLLX588//6zyffXxxx+7n7eyIHTPnj1MmTKFdu3aERoaSnx8PEOGDOH111+vsK3rear6Kb//2pwHqvL4449X2X6o+vMK8OGHHzJ8+HCio6MJCwuja9euzJs3j9LS0grb1ua84nru3Nxc7rjjDlq1akVYWBjdunXjP//5T5XD6h999BFDhgzBbDYTHh5O9+7d+de//kVJSYlPx+caTj/zfASwb98+br75ZpKSkggJCSEpKYmbb76Zffv2VdjW9Tcu/xMXF8egQYP44IMPKn3u6tpT/sdkMtG9e3eefPJJj7ly3vD2/VnZa2e327n++uvRNI2HH37Y4z5fX7fqPmNncn0XuNTmPAy+fSeUP/9U9tkFGDJkiHsbX3j7velS3TFWdk7z5bPgas8dd9xB+/btCQ0NJTY2liuvvLLa78qqNLrhxers27ePvXv3cs4555CQkOC+PSsri7vuuouBAwcyatQo4uLiOH78OMuWLWPs2LH897//5fbbb6+wP7PZzN133w1AaWkp27Zt44MPPmD58uXs3buX+Pj4attjt9uZPn16lSe5X375hUsuuYSsrCyGDh3K1VdfTWFhIampqTz++OM8+uijNR7znXfeWeNJw2Kx8NZbb3Hfffd53P7KK6+g0+mw2+0VHnPgwAEGDx7M8ePHGTlyJDfccAOHDx9m8eLFLF++nMWLFzNu3Dj39kopJk+ezLvvvkuLFi24+uqriYuL4/Dhw6xevZouXbrQr18/rrrqKo8P8p9//sm7777L0KFDPU5QgZ7jNG3aND7++GM++OADZs6c6b79zTffJCwsjIkTJ/L8889XeFxcXBxApV8S9cFisTB69Gh++OEHunXrxsyZMykqKmLx4sXccMMN/PrrrzzzzDMA9O7dmzlz5ng8fu7cuZUOc9bXnLKCggL+/ve/V3n/8uXLue666ygtLeXSSy/lhhtuIDs7m+3bt/Pss88yffr0Sh/Xq1cvrrrqKvfva9asYe3atR7b1PY84E9Tp07l7bffpk2bNlxzzTWYzWZ++uknHn30UVauXMm3336LXq+vdh81nVfA+T65+OKLycnJ4S9/+QsWi4VPPvmEu+66i7179/Lqq696bP/AAw/w7LPPEhcXx8SJE4mMjOSrr75i9uzZfPPNN3z//feEhITU6dg3bdrEqFGjKCgoYNy4cXTt2pXffvuNDz74gGXLlvHdd98xYMCACo+bNGkS7dq1QynF0aNH+fTTT7npppsoLCz06fUqf47Jycnhyy+/5JFHHmH37t0sWrTIq33U9v0J4HA4mDRpEh9//DH33Xcf//rXvyps4+vrVlu1OQ/7+p3gEhQUxKuvvlrhb7Nt2zbWr19PUFBQpd9BVant9+aZ571t27axbNmyCtv5+lnYunUro0ePJisri0suuYSrr76azMxMPvvsMwYPHszSpUsZM2aM18eHaqRyc3PVnDlz1Jw5c9S9996rrr32WhUREaF69+6tdu/e7bFtSUmJOnz4cIV9ZGVlqa5du6ro6GhVVFTkcV/btm1V27ZtKzzmH//4hwLURx995HE7oIYOHepx28svv6wAdf755ytAvfPOO+77SktLVbt27RSgFi1aVOF50tLSamzPF1984bH/OXPmeNw/dOhQBairr75apaSkKLvd7r4vPz9fmc1mdc011yhATZo0yeOxo0aNUoB6+umnPW7/4YcflE6nU9HR0SovL899+3//+18FqP79+6ucnByPx9hsNnXs2LEKx6iUUqtXr6607eVNmjRJAergwYNVbuMN13NNnDhRORwO1a5dO9WnTx/3/ZmZmSo0NFRNnDhRKeX8mwPKarW6t9m2bZvS6/VK0zQ1ceJE9fHHH6sDBw549bxt27Z1v2fP/Pnwww+9OoYnn3xSAWrs2LEe7Tpx4oRq06aNAtQPP/xQ5eMre596Y8GCBQpQb7/9doX7Knt9Dh48WOn7yvX56devnwLU6tWr3fdlZGQok8mk9Hq9Wrt2bYXnOfMzoZRSv//+uwLUrbfe6nH7nDlzKuy/NueBqlS2//Iq+7y+8847ClDXXnutKi4urnR/L7zwgsftvp5XXM8NqEGDBqmSkhL37adOnVLt27dXgMffd/369e7358mTJ923W61WNWbMGAWoefPm1Xh8LpV9pu12u+rSpYsC1P/+9z+P7RctWqQA1blzZ49zVFV/4507dypAXXbZZZU+vzftUUqpoqIi1aZNGxUeHu7Vfnx9f5Z/7ex2u/tzcvfdd1e6f19ft6o+Y5VxfRdUxZvzsK/fCa73+9VXX60AtWrVKo/HTZkyRSUkJKiBAwdW27byfP3eVMr5PgbUsGHDPG53ta/858fXz4LValUdOnRQYWFhFc67R48eVUlJSaply5YVPu/VabRB1+HDhxXg8RMbG6uee+45ZbFYvN7P888/X+HNrFTVJ5VZs2ZVuv2ZJ8cTJ04os9ms+vTpo+bPn1/hxV2yZIkC1JVXXulVO89sT1FRkUpJSVFJSUnq888/rzbocn2gPv/8c/d9r776qtLpdGrlypUVPriuv23btm09vthdbrzxRgWod999131b9+7dFaC2bt3q1fG4NFTQpZRSTzzxhALUli1blFJKvfDCCx4n+cqCLqWUWrx4sUpMTKzw3rv66qvV8uXLq3ze6n7GjRvn1TF06NBBaZqm9u7dW+G+//u//1OAmjx5cpWPr23Q9fXXX1f5OnkbdO3atUsFBwerK6+8stIvVNdn8c477/S6XampqQpQf/3rXz1urykoOlNV54Gq1Cbo6t27t9Lr9So7O7vC9jabTcXGxqp+/fp53O7recX13IBat25dhedxfdGUD1KnTp2qAPXmm29W2H7Pnj1Kp9OplJSUGo/PpbLP9A8//OAOKCrj+uIt//ev6m+8ZcuWGt/nNbVHKeeFZ1JSUoVjq4qv70/Xa+dwONS0adMUoO64444qt/f1davPoKs23wmuNr/11luqffv26uqrr3bfl5mZqcLDw9WcOXNqbFt5vn5vKuX8rgTUJZdc4nF7ZUGXr5+Fzz77TAHqvvvuq/S5X3zxRQWoL7/80uv2NtrhxdatW7u714uLi9m7dy8vv/wy9913H99++y0rVqzwGCfevXs3zz33HOvWreP48eMVxmaPHj1a4TlycnLc8xIsFgtbtmxh5cqV3HrrrVx00UXVtu/ee+8lLy+P1157jT179lS4/6effgKo9Qqkf/3rXxw8eJCPPvoIo9FY7bbDhg2jR48evPLKK1xxxRUA7rkt7du3r7D9r7/+CjjH210TyMu7+OKLWbRoEVu3buWWW26hsLCQXbt20bJlS/r06VOr4/HGiy++SFRUFJqm0aJFC1JSUhg1alSNwzFVmTx5MnPnzuWtt97ivPPOY/78+XTs2JGhQ4dW+7hrr72WcePGsXr1atavX8+vv/7K+vXr+fTTT/n000+ZMmUK8+fPrzBPoa4T6fPz8/njjz9o3bo1nTt3rnC/ay7Z1q1ba/0cVenduzdhYWG88cYbjB49mgEDBhAUFOTTPmbMmIFer+ell16qdB5FbT4TeXl5gPerP2tzHqjOggULKn1Nc3JyPIZmioqK2L59Oy1atODFF1+sdF+hoaGVnivKq+m84hIcHMzAgQMr3O4aOnJ9xsv/f/jw4RW279KlC61bt+bgwYMVjqn8+bG8yuYHVvcc4Hzvbtiwga1bt1Y4t7r+xkopjhw5wieffEKXLl146KGHKt1XVdasWeNub3Z2Nl988QXFxcVVzjc6U23P2TNnzmT+/PmEhoZWmMd1Jl9eN5dt27a5jyssLIykpCQGDhxIx44dfWpndXz9TihPp9MxY8YMHnjgAQ4fPkybNm2YP38+NpuNv/71rz6dEwN9jvD1s7Bx40bA+Z6v7LPw+++/A855gJdffrlX7W20QVd54eHh9O7dm7feeosTJ07w1Vdf8dVXX7kP8qeffmLEiBHYbDZGjhzJlVdeiclkQqfTucd1K5vEmpuby9y5cz1ua9euHX379q22PevWreP9999n2rRpXHDBBZWeHF0TuFu1auXz8f7+++8899xzXHzxxUyYMMGrN+0dd9zB3/72N/bt20daWhq//fYbL7zwQqXb5ubmAnjMiysvMTHRY7u6HIsvXnrppQq3JSUl8f7771d5Mq9O69atueSSS1i0aBHXXHMNu3fv5qmnnvJqUqder2f06NGMHj0acM6z+eSTT5gyZQpvv/02V155ZaXzG+rC19fFnxISEnjhhRe48847GTRokM+Pf++991i3bh3z5s2rcgJ2bd5HmZmZADXOr4Tanweq8+6771Z5X/kAJTs7G6UUGRkZFc4p3vLmvOLSokWLSoNi13un/HvEm/dVWloaubm5HsdU2fmxKnV57575Nw4JCWHQoEE+z0Ncu3ZthXl+o0eP9vr9Vpv35/r161m7di1Dhw5l7dq1TJ06la+++qrK7X153Vy2b9/O9u3bPW7TNI0bb7yRBQsWVBok+aqu556pU6fy2GOP8cYbb/DEE0/w+uuvc80117gf561AnyN8/SycOnUKgMWLF1e734KCAq/b2+hWL9bk0ksvBWDHjh3u2+bNm0dxcTHffvstX3/9NS+++CJPPPEEjz/+eKUTN13atm2Lcg6xYrVa+f3337nwwguZNWsWzz77bKWPsdlszJgxg5iYGJ5++ukq9+06Yfh6ZQ0wa9YslFK88sorXj/mpptuIioqildffZWXX36Zzp07uwOGM7lW5Z04caLS+48fP+6xXV2OxRcHDx5EKYXD4eDEiRP885//5NixY9x88804HI5a7XPq1Knk5OQwadIkgoODmTRpUq32ExQUxIQJE7jnnnsAWLlyZa32Ux1fXxd/+9vf/sauXbt47bXXmDNnjvunV69e1T4uJyeH++67j06dOlWbRb027yNXMuSUlJQat63teaA6q1evdp8jyv+0bdvWYzvXa9KnT59Kty//UxlvzysumZmZlU5Odr13yr9Havu+Kn9+LP+zevXqCvuoy3u3/N/41KlTvPbaa7z//vuMHDmyQh696syZM8e9n4KCAlauXMmePXu46KKLvFoZXZv3p91uZ+LEiaxatYrbb7+dr7/+mtdee63K7X153VwmTZrkPq7i4mI2btxI9+7d+eCDD3j77be9bmt16nruiYqK4qabbuLNN99k8eLFHDp0iDvuuMPndgT6HOHrcbr+XbZsWbWf6TMXNFXnrAu6XJFn+aug/fv3ExMTU+nS6zOvfKoSHBxMx44d3atHqlqy/OKLL7J7926efvppYmNjq9zfBRdcAMCKFSu8en6XJUuWsGLFCu699166dOni9eMiIiLcvTBffvklM2fOrLJHxzVEuH79+kpPaq6T6nnnnQdAZGQk3bt35+TJk2zbts2n46kNTdNo2bIljzzyCD169ODo0aMcO3asVvu64ooraNmyJUeOHGHMmDE+X3mdyTXUW9WXZ1333aFDB44ePeruti7vzNclEDp37sz06dN5/PHH3T+9e/eu9jGPPPII6enpvPLKK9XmzqvNZ2LDhg0A9OvXr8Zt/XEeqC2DwcC5557L7t27K03fUhNvzysuNpvN/bcpz9UrXn4agOv/lfWY79+/nyNHjpCSklKnFa7VPUf522t678bExDB16lQuvfRSdu7cyc6dO2vVnsjISEaMGMHdd99NUVERS5curfExtXl/9ujRg3fffRedTse///1vOnXqxH333cfevXsr3d6X160yYWFhXHDBBe6hrs2bN3vd1ur4+p1QmVmzZpGRkcHf/vY3+vTpU6se80CfI3z9LLja88MPP3jdnpo0uqBrwYIFFbpSXXbs2MFrr71GRESER0bwdu3akZWV5dH7BfDWW2/5HPS4nruygOX48ePMnTuX/v37V5nnyeWKK66gXbt2fPbZZ3z88ccV7q8ski8uLuaee+6hbdu2zJ4926d2g3NuQVRUFCkpKdXmdmndujWjRo3izz//rDD/ZNOmTSxatIjo6GjGjx/vvv3OO+8EYPr06e4xdBe73e6+QvCn/Px8Tpw4gU6nw2Qy1Wofer2eL774gqVLl1Y53Frehx9+yHfffVdpz9qJEyd48803AWqc81dbU6ZMQSnFfffd53FFnJmZ6c5RM2XKlIA8d21s376d119/neuuu67KnlWXSZMmYTKZeO2119z50Mo7cuSIx+9btmxh2bJl9OrVi06dOtXYFn+eB2rj73//OxaLhSlTplTIDwfOIcjK5uP5cl4p76GHHvIYLs3KymLevHmAcz6ji+v9Mm/ePDIyMty32+127r33XhwOB1OnTvX6eSszaNAgunTpwvr161myZInHfUuWLGHdunV07tyZwYMH17ivkpISd9Dia36nM1V3Pj+Tr+9PcAaJruHCyMhIFi5ciMVi4aabbqqyl87b1606rouy6Ohor7avSW2+E87UvXt3rrrqKgwGQ7VpY6rj6/fmn3/+ydtvv01cXFylF1tn8vWzMG7cODp06MCrr75a5bDxxo0bKSoq8ubwgEY4p2vNmjVMnjyZ/v37c/755xMdHU1OTg67d+9mzZo1REZGsmjRIo8x37vvvpsVK1YwePBgJkyYgNls5pdffmH9+vVce+21FU4CLuUnitrtdv78808+/fRTwDnUcqZ9+/ah0+l47bXXavwQh4SEsHjxYkaPHs3111/PG2+8Qf/+/SkuLua3335j1apVFT6U6enpAHz22WdERER4/TdzSUlJ4fDhw15t+8YbbzBo0CD3woR+/fq5c7LodDreeecdjwn806ZNY/369bz33nt07NiRcePGERcXx9GjR1m9ejVTpkypdKKhLz744AP3VX56ejoffvghGRkZ3HTTTbUOugDOP/98zj//fK+23bRpEy+99BIJCQkMHjzY3WV98OBBli9fTnFxMePGjePaa6+t8NiqJlu63H333TX2Jtx77718/fXX7mBjzJgx7jxd6enp3H///V59cdWXbdu2YTAY+Pe//13jti1atGDRokVce+21XHTRRYwZM4YePXqQm5vLjh07OHLkiHsS69/+9jeWLl1KcHCw17mLanse8JcpU6awZcsWXnvtNTp06MAll1xCcnIyWVlZHDx4kHXr1jF58mTeeOMNj8f5cl5xSUxMxGKx0L17d6688kqsVitLlizh+PHjzJgxw+OiYODAgdx///08++yzdO/enWuvvZbIyEi+/vprdu3axeDBgyvk+POVpmm8++67jBo1iuuvv55x48ZxzjnnsHfvXj777DOMRiPvvfceOl3F6/zyixWys7P5+uuv3VM9ahraLq/8RPrCwkI2b97MunXriImJYcKECTU+3tv3Z3UGDBjA7NmzmTt3LnPnzq2QzNOX181l79697vdMSUkJ27ZtY9GiRYSFhdV6ukRlfP1OqIw3PYrV8eV7c/LkySxZsoTi4mI+/PBDrxZc+fpZ0Ov1fPrpp1xyySVcfvnlDBw4kN69exMREcHhw4f5+eefOXDgAMePH/f+O9vrdY71ZNu2beof//iHGjhwoIqLi1PBwcEqMjJS9e7dWz388MNV5oP64osv1IABA5TBYFBms1mNGjVKrV27ttJlo0qdXr7r+tHpdCoxMVFdfPHFatmyZRX279puxowZFe6r6jmUUurQoUNq+vTpql27dkqv16uYmBjVv3//SvPiAGrMmDEV9lHVcl9vluJWt+z4yJEj6m9/+5tKTk5Wer1excbGqnHjxqnNmzdXub/3339fXXTRRcpkMqnQ0FDVrl07deONN7rTMnjb9vJcKQnK/8TExKi+ffuql156SZWWllZ7jGc+lytlRE0qSxmRlpamXnnlFXXVVVepzp07K6PRqPR6vUpISFCXXXaZWrhwoUeuofLPW9OPtykxiouL1ZNPPqnOPfdcFRYWpgwGgxo0aFCleWvORC1TRlSnupQRgHr22WcrPKa6lAu7du1SN998s0pKSlJ6vV7Fx8eriy66SP33v/9VSin1559/qtatW6tbbrmlQk6+mvbv63mgKrVJGVG+DZdffrmKi4tTer1etWzZUp1//vlq9uzZ6rfffvPYtjbnFddz5+TkqBkzZqikpCQVEhKizjnnHPXSSy8ph8NRabs+/PBDNWjQIGUwGFRoaKjq1q2bmjdvXqU5hnxNGeGyZ88eddNNN6mEhAQVHBysEhIS1MSJE9WePXsqbOv6G5f/MZlMqkePHuqf//ynys3NrfT5q2pP+Z+wsDDVoUMH9de//lX98ccfXu3Hpab3p0tVnzWr1ar69++vgoKC1IYNG9y3+/q6lf+MuX5CQkLc59xt27a5t/VHni6lfPtO8PYz5UvKCBdvvjdbtmyprrnmGo+/sbft8+WzoJRSJ0+eVA888IA699xzVXh4uIqMjFQdO3ZU11xzjVq4cGGlaTaq0uhqLwohhKiaa3Wov8pmifohr5uARjinSwghhBCiKZKgSwghhBCiHkjQJYQQQghRD2ROlxBCCCFEPZCeLiGEEEKIeiBBlxBCCCFEPZCgSwghhBCiHkjQJYQQQghRDxpdGaCGlp2d7VNl+7NRXFycR92ppqw5HSs0r+OVY226mtPxyrHWXXBwsN/qUAaaBF1nsNlsWK3Whm5GwLhqu9lsNpr6wtXmdKzQvI5XjrXpak7HK8fa/MjwohBCCCFEPZCgSwghhBCiHkjQJYQQQghRDyToEkIIIYSoBxJ0CSGEEELUAwm6hBBCCCHqgQRdQgghhBD1QIIuIYQQQoh6IEGXEEIIIUQ9kIz0QtSC3aFIzSgiu9hOdHgQ3eIiCNJpDd0sIYQQjZgEXUL4aGNaPm9uOcmpotM1OmMjgrmtb0suTDY2YMuEEKJ25EKyfkjQJYQPNqbl8/QPRyvcfqrIxtM/HOXBIa0k8BJCnFXkQrL+yJwuIbxkdyje3HKy2m3mbzmJ3dF8i7kKIc4urgvJ8gEXnL6Q3JiW30Ata5ok6BLCS6kZRRVOTGfKLLKRmlFUTy0SQojakwvJ+idBlxBeyi62+3U7IYRoSHIhWf8k6BLCC0opjuSWerWtMUQ+VkKIxs/bC8T3t2Wy5mAueSXVB2iiZjKRXoganCqy8t+fT7LpSIFX27/5y0nuuEBHt/iIALdMCCFqLzo8yKvt9mQWsyezGA3o3CKMvkkG+iYZaB8Tik6TFY6+kKBLiCoopfjuj1wWbE2n0OogWAcDWhv4Ma3q4CtSr+NovpWHvkvj0k5R3NI7jsgQ705sQghRn7rFRRAerKPY5qhyG3NoEBd3MLP1eCEHs0vZm1nC3swSFu3IJCosiPOSDPRLiqR3YmSV5zq7Q/FbRhE7ck6glRTSNS682aajkKBLiEocz7fw2qYT7DjpnMvQKTaMOwYk0C46rNLl1S0igpnWtyU9Wkaw4Nd0vvsjl29+z2HzkQL+dn5LBrSRZddCiMbl91MllFQTcAFM75/AhclGbukDmUVWth4rZMuxArYdLyKnxM6qA7msOpCLToNuceHOXrBWBpLNIWiaJukozqAppWRZQjkZGRlYrdaGbkbAaJpGYmIix48fp6m/9LU5VrtD8eXebN7fnoHFrggJ0ripVxxju0R7XJnVlEhw58lCXtt0gmP5zvfSwGQjt/VrSUx44K5zmstr67xqLkaFGdBKCpr8VXNzeV1dmtPxNuSxltgc3PPVQY7lWzk3PpwTBdZKLySrCoysdmfv1S9HC9hyrJAjeRaP+1tEBNPaFMK2E1VPwvdXXkO9Xk9cXFyd91MfpKdLiDKHckp5+afj/H6qBIAeLSOYOSCBRGNIhW2DdBo9WkZWua8eLSN5cUwKH+86xaepp9iQls/244Xcel48ozqY0WQeRK3IVbMQ/vHetgyO5VuJDQ/m4aGtCQ/W+ZSRXh+k0TMhkp4JkUzpCyfyLWwp6wXbebKIzCIbmTWsjJy/5ST9Wxua9EXTmSToEg2msZSdsNoVS3ZnsmT3KWwOiNDrmOyH4Cg0WMfNveMY3NbIKz+dYH9WCa9uOsHaP/OY2T+BJFPFYE5UTaoBCOEf208UsnxvNgCzLkzEUDYXq7oLyZokGEO4vEsIl3eJptTm4Ms9Wby3PbPax7jSUdTlec82EnSJBtFYeiz2Zhbzyk/HSct1do33b23gb+e3JDZC77fnSIkO49lL2vLl3mw+2J7BrpNF3Ln8IH/p0YKrusUQ3Iyu8mrL2ySOze2qWQhfFVrs/GfjcQAu6xRFn0T/BzyhwTriDN5dVDa3vIaSUEjUu8ZQdqLE5uCtLSd5YMUh0nItmEODuG9wEg9f1MqvAZdLkE5jXNcYXh6bQu/ESKwOxcLtGfzj6z/5/VSx35+vqZEkjkL4x/wt6WQW2Ugw6Ln1vPiAPY+36Si83a6pkKBL1Kv6Kjthdyh2nihkxW8n2Hmi0GN/O04Uctfyg3y+JxsFDEsx8coV7Rnc1hTwuVYtDSE8Prw19wxMxBgaxJ85pdy/4hBvbTnpsYrI7lDsPFnIuj/z2HmysNmX4fD2anjT4XyKrdWvxhKiudp0JJ9VB3LRgLsvTCQsOHAhQLe4CGIjqh9MaxERTLe45pXPUIYXRb3ytsfi1+MF9GtVu2HGqoYub+4Vx+70Ir77IxdwfuBn9E+gbytDrZ6ntjRNY1iKmT6Jkby1JZ21f+bx+Z5sfjpcwPT+LSm1qUYx9NpYnCqysvpgrlfbfrE3h29+z6VXQgQD2hjp38pAVABXjApxtsgrsfHqphMAXNU1hq4BTt4cpNO4rW/LSudhukzr27LZTQeQlBFnkJQRgbXuzzz+34/HvNrWGKIj3hBCS4OelpF6578GPS0NIcRHBqMPqniVVtVk6zNd1imKW/rEEaFv+K7tLUcLeOPnE6QX1lxio7rJ4g392vpbsdXB0t9O8VlqFqX2mo8nPFjDFBrEyXJ/R2cG7XAuaG2gfxsDrU2hNe6nsSzwcGlqr2tNmtPx1texKqV4dv0xNqTlk2wO4f9d1o6QSs6fgVBdXkN/XURKygghquDL+H2+xUF+Vgl/ZJVUuE8DYsKDaWnQE2/Qk2DQExep591fM6rdp06DJ0a2aVSrZfq2MvCf+Pa8vz2dL/fmVLttc5gsbncovv8jl0U7MsgpcQ4rntMinPNbGVi4verX964Lk7igjYHDuRZ+OpLP5iMF/H6qhL2ZxezNLObdbRm0NoXQv7WBC9oY6RQbVqGESWNZ4CGEP637M48NafkEaXDPwKR6C7gALkw20r+1oVnl1quOBF2iXrnG+asbYmwREcxLY9qRWWTjZKGVkwWnf9ILrJwstFBiU5wqtnGq2EZqhvcT0f01NUo57PB7KionCy0qBjp1Q9PVvtcsXK/jgjbGGoOuprzEWinFlmOFLPg1ncNlq0kTjXpu6R3HhW2MaJpGK1NIjVfNyVGhJEeFMqF7C04VWdl8pICfjhSw66QzgeOR1Cw+Tc0iOiyI/q2dXwg9EyLYcrRQUlKIJudUkZX//uKcR3t9jxa0jwmrdDt/n9PKC9Jp9EiIJDExoVn0YFZHgi5Rr7wd5zeEBmMIDaZddMUThFKKvFI7JwusnCgXiO3JKHanfqhOXZcoq60bcPzvTcg+5fwdIDoW3V9uQztvYK336227muIS6z+ySliwNd1ddskYouP6Hi24tFM0+qDTV8S+XjXHRui5rHM0l3WOptBiZ8uxQjYfyWfLsUKyS+ys2J/Div05hAZp1PQ10Bx6GUXTopTilZ9OUGhx0DEmjGvOja18uwCd00RFEnSJendhspEHh7Ti//14DGu5ridvx/k1TcMcFow5LJjOLcLdt+88Wcgj3x+u8fnrskRZbd2A4/WnK96RfQrH60+jm/5grU9SzXGJdUahlfe3Z7DmYB4Aep3GFedEc825se6EjWeq7VVzZEgQF7UzcVE7E1a7Yld6EZsOO4chTxXXPJ+uKfcyiqbp2/25bD1eiF6ncffAxEpzAgbynCYqkqBLNIgLk40k7wrhj+xSruoaQ79WkXWesOzt0GVtlygrh915NVgNx//mo+s9oFbd8t60Pza8aSyxLrTY+WT3KT7fk+0OvIe2M3FTrzjiDf7Pk3YmfZBGn8RI+iRGcvv5iiW7TvHBjuqzZ0PT7GUUTdOJfAtvb3UOK97cO4425oqLSAJ9ThMVSZ4u0WAKyvIpXdjGSI+WkXUetnENXVanTkuUf091d79XKTvTuV0teNN+Q6gOWyPP2VVdjjGbQ7F8bzZ/+/wAn6RmYXUouseH8/ylbfn7oKR6CbjOpNM0usaH17whTauXUTRddofipY3HKbE5P19XnBNd+YYBPqe5KIcdx56dFK75Bseenc75Y82U9HSJBpNf6vzgGUP990XmGroMxBJlddK7VBcqJ4vaho9Vtd8cGkSR1cGhHAtPrDnCo8NaBzSxYW1VtfpvWt94NE3jvV/TOZbvTMnS2hTCpD5xnN/K0OAFwAPdSypEffpibxapGcWEBeu488LECqt0XVROllf7cyx+B61bL2jZGi2hFSS0Rov0Lr9h+fli7mdrxvPFJOgSDcLmUBSV9XT5M+gC/y9RVkWFqO+XoVYs9W77dd+gWrdDa9W2Vs/nav+ZuaL2nSpm7qoj7DpZxNxVh3l0eOtGkWfMpbqC1M/8cDpgNYcFcUOPFozuGFWr10Q57Kjff6Nw73YcSgedutZ56EMSOYqmIi2nlPe3OYfKp/aNp2U1NRC1qJgaF5AAcGg/6tB+gNPbG83QstXpICyhFbRsBXEJaEHOz6PMF6tIgi7RIArKerk0IFLv/x4bfyxRVqUlqFVfor75FIoKynYcBPYausb37cYx9060voPQxv4FrVVy7dp/xoTtrnERzB3ZhsdXHSY1o5gnVh/hsUYSeHlT3gng2nNjuObc2Fq3OZBXzVX1MgL8pUespIsQjZ7NoXhx43GsDkXfpEhGdTBX/4BO3cAUBXk5VW9jMMGY69DSj6NOHoXjRyDnFOTnQn4uar9z6NF9hg0KgrhEaJkEe3ZW+/TNcb6YBF2iQeRZnIGLIUTX6HoPlKUUtfYb1NdLnCcWgITW6MbdiEJD/feZKh+rTZiK+uM32LIB9ct61JYf0foNRht7PVqS78HXmbq0COeJkW2Ys+owv2UU8/iqI8wZ3prIKlb61RdvyjsB9E6MrFvAFeCr5jN7GX88lMtPRwrZdKSACd1bNLr3qhDlLdl1ij+ySjCE6Jg5IKHmYXu7HYKrn0epu3lGhc+VKimGk8dQJ47AiaNw8qjz/yePgaUUThxx/tTENV+sS4+at20iJOgSDSIQ87nqStmsqPXfoZZ/DK65DnEJaFfegNb/IjRdEBqgdA965LQBILoFur9Mc56cRo1DHTmI44v/wdaNqJ9/QP2yHu38Ic6er8TWdWpnp9hw/jkymcdWprE3s5g5qw7z+Ig2GEMb7uMc6Bxj9bnKqnwvY++ECHaePMDB7FJWH8zl4g5Rddr32a6xlUgSp+0/VcLHu5zDin89P4HYiJoXpajF70BWBoRFQGgo5GafvrP8Oe0MWlg4tO2A1raD5/4cDud58eQRHD+thY2ram5DHebAno0k6BINojEFXcpuR21chfryIziV7rwxpoUzQLpwBFqw58dEO28gut4Dqs3erLVOIWj6Q6i0Azi+/B/8+hNq8zrUz+vR+g9x9nwl1D746hAT5gy8Vh3m91MlPLbyME+MTCax1nusm/Bg706btV7958sqKz9eNZvCgpnQI5Z3tmbw/vZMBiWbCA/AcPjZQEokNV4Wu4MXNx7DrmBQspEhbWt+PdT2zajVywHQ3X4fnNu7zhnpNZ0OYuMgNg5dUDAOL4IuLSrGp+c420nQJRqEO+iyFuHYtNbvZSe8oRx21M/rUZ9/COllE73N0WiXT0AbPBpNX/WVoqYLgi49arxC05LbEzTjYVTaH86er22bUJvWojb/gDbgIrTLr3dOQK2F9jFhzBvZhkdXHuaPrBIe/f4Q/51YfcqJQNh0JJ83Np2ocbs65UjzcpWVysr0+1Xz5Z2j+XpfDicKrCz97RQ39jw7Cuv6U3WLJKREUsP7YHsmh3MtRIUF8bfzW9Y4rKhyTuFY8BIA2sVXovXo67zDi3Oa1zp1g+jY6i+Wols4t2tGGkXQlZWVxfvvv8+2bduwWCwkJiYyffp02rdvDzhLGSxevJiVK1dSUFBAp06dmDp1Km3atHHvw2q1snDhQn788UcsFgvdu3dn2rRpxMZWXvZANKy8gweACAx7t6KWfez3shPVrXBTSsGvG3EsWwTH0pwPMJjQLrsGbegYtNCKSQTrSkvuQNDM2ahDf+D44kPYvhn10xrUpnVoFwx1Bl8tkzza781VZ7voMOZdnMyjK9M4kF3KjI9+Zc7QxHrpQcwptvF/v5zkx7R8AKLCgtwFqitTp9V/XqaUUIvewLF3J1q/QXBOT7Qa5qt4Qx+k49Y+8Tz9w1GWpmYxumMULbwYumkqvFkkISWSGs7u9CKW/ea8KLljQCKmsOq/1pXDgePtF6EgH9qkoF09KSDt0nRB6P5yW+XzMMvo/jKtWU2iB9BUA1eeLCgo4IEHHuDcc89l9OjRmEwmTp48SVxcHAkJCQB89tlnLF26lBkzZpCYmMinn37Kb7/9xosvvkh4uDOp4ZtvvsmWLVuYMWMGRqOR9957j4KCAp555hl0Ou+HAzIyMrBarQE51sZA0zQSExMbtOio2rqBBSu281nycK44vI7Jf3zpcX9dJ0SfWUcMgOhYtOtvQ9PrcSz7ANIOOG+PiEQbPR5t5Fi0sPrLwaQO7cfx+Yew42fnDTod2oBhaGOvhyMHK21/dQHp4dxSHv0+jewSO22jQnliZBuiajj51rrtSrH6YB5vbTlJgcWBToOrusbwlx4t2Hqs0K850pTN5kzX8fmHYK2hrqamQfn3dIQBrfcAZwDWtVedAjClFA9/l0ZqRjHDUkzcMzCp5gf5SUN/Zr0trzXv4jZ+KZHU0Mdbn+p6rMVWB3d/dZATBVYu7mBm1gU1TzBwfP0J6tN3ISQU3SMv1HmOaU0qPx9XPV+sNvR6PXFxZ0cPdIP3dC1btozY2FhmzJjhvi0+Pt79f6UUX331FePHj2fAgAEAzJw5k9tuu43169czatQoioqKWLVqFbNmzaJnz54AzJo1i+nTp7Njxw569+5dr8dUX87GSa2uCdH58cMB5/DimeoyIbq6FW7qjadPL2sODUcbdSXaqHFoEd4l+fMnrW1HgmY9ijr4u7Pna+cvznllP632DBxcalih18YcypOj2vLYqiMcyinlke/TmDcymahw/37ETxZYeG3zSbYdLwQgJTqUWRck0iHGWZi8qhxjtcrH9Xsqjg9eh6OHnDcktoHjVX/5a7ffh2Ywobb8iNq6EfJyUBtWojasdAbXvQag9R0E3XpXO3RcVS/jlL7x3PvNIdYczGNsl2g6xXqXxf5sd6LAu4tQKZFU/97Zms6JAitxEcFM7Rtf4/bq4D7UsvcB0P5yW8ADLig/B/Y3ojQHOX7KrXe2avCg65dffqFXr178+9//JjU1lZiYGEaPHs3FF18MQHp6Ojk5OfTq1cv9GL1eT7du3di7dy+jRo3iwIED2O12d8AFEBMTQ3JyMvv27as06LJarR49WpqmuXvNGjo7tjc2pOXx5i+VTGrt15KByaYqH+c6toY6RvX7b5B9ivwkZ6+S0VYx6CI7E8dr/0KLS3QuZ9aHOL8k9SFlP3r37ehd94eggoJwfPBGzY245GqCLr0azVhDDpt6oLXvjO6uOagD+7Av+wB2b612e8f/5hPU54JKT1htosL47w3ncfuiXzica2H292nMuziZGD8Mhdkdii/3ZvP+tnRK7YqQII0berZgXNfYCkV0g4M0eibUPpBVBXk4lixArf/OeYPBiO66qWgDR6C2bsTxv/+r5Kr5NnR9y4LRrr1QN/4VtS8VtWU9assGZwC2cRVq4yoIj0Tr3R+t72C0c/t4BGCOLRs89n962Pt2OvcdyPD2ZlYfyOXtrek8NaptvXyOGuozm19q54s9WXz2Ww0LGMrEhAf7pY0NfY6qT3U51i3HClixPweAuwYmERlSw7BiSRGON/8f2O1ofQehGzK63v7GWlAwWteeRCYkkH/iRJPvwaxOgwdd6enpfPfdd1x++eWMHz+e/fv3884776DX6xk6dCg5OTkAmM2eX5Bms5nMTOfy2JycHIKDgzEYDBW2cT3+TEuXLmXJkiXu31NSUnjmmWfOii7KVfvSeXpdFZNa1x3lmXHRjOhc/VWPa+i2vhXu3U4WUKAvC7qshZVvuP1nj0zJ/vyIxg0bTVjnc/y4Rz9ITKTEGEnGQ3+rfrvsTGJOnSCsZ78qN5l/Yz/+9tGvHMkr5bHVx3j9+j7EG2s/T21/RgFPrtjDruN5AJzXJorZl5xDcrR/h2OVUhStXE7OWy+iypI1Ro4eh3nyLIJMUc6Nkq5BXXYVpbt/xZ6VSVBMC0LP7ePOgO2hVWsYPhplt1P623aKf/ieog2rcGRlojauRm1cjRYRSfiAi4gYNBJlKeXU609V3E/2KRyvP0X0w8/yj9ED2TD/J1LTi9mTH8yILjX3LvhLfX1mswotfPBLGkt+PUqR1dl7FaTTPGponinOEMrIXh382tPeUOeo2rI7FNuO5JBZWEqLyFB6t/a+4oI3x1p+/+H6IF4tW7xy/XmtuaRPxxoff+r/PUZRxnGC4hJIuO+f6IxVX5wH0tn2uvpbgwddDoeDDh06cOONNwLO4Ofw4cN8++23DB061L3dmRG5N5FydduMHz+esWPHVth/RkYGNlvNSR4bit2hePa7/dVu89x3e+gcaav0A69pGgkJCZxooKsNh3LOr8t3B12V9HQB2qCRYI5xzuOxWsBqBZv19P+tFlTZv9jKbisqgMKCGttw6sB+dHG1WzEYSI4D1b+uLlW13/XaBpfm8c+RrXnkuzTSsouY9sFmnry4LS0ifevxstodLN51iiW7M7E5IEKv49bz4hndMQpdSS7Hj+f6tL/qqGOHsb//Guzb5bwhKZmgm2dQ2ulc0guLobDYY3stvjUJPfs538fp6TU/QWwiXHUz2pUTCdr/G45f1qO2bkDlZFG0+muKVn9d4y5Ovf4sQc/MZ3zXGP63M5MXVu2lY6QVfVBgU0jU12f2VJGVpalZfPN7Nha783lSokOZ0L0FAM9UUyJJU3b+SDvqlwUcDX2Oqo26jDx4c6yV7R8gJiyYaztHcvz48Wrb5/hpDY5VX4Gmgyl3c7KgEAqquOANkEC+rsHBwWdFhwk0gqArOjqa1q09x5Vbt27Npk2bAIiKigKcvVnR0acrpefl5bl7v6KiorDZbBQUFHj0duXl5dGlS5dKn1ev16OvYl5HY/6g704vrDHzd2aRjd3phdVOalVKNcxxduoK0bHk651tM1QWdEW3QLvlDp/H/NXenTien13zhuboxvkam6Nr3qZsu+rar5SiZaSeeRe34ZHvD3M838rD3x1i3sXJxHkZeO3JKObln45zJM85eX1AawN/Pb+lO+Giv/5+ylKKWr4YteJTsNsgJATtihvQLh4HwcE1Po/P72NNg07d0HXqhrp+GhzYg/rlR9RPa6Ewr/rHZmei9u3mqq7nsmK/M4XEl3uzuKpr/ayQDtRnNr3Ayqepp/juj1xsZb1ZnWLDuL57C/q1inRfkFZWIikqLAiLXZFeaOOxlWk8MbINBj9VR2iwc5SPqk2nse4oDw6hxkUk1R1rVfsHyCqxseVoQbX7VxkncLz/GgDa2AnQsVuD/l3Pltc1UBo86OrSpQvHjh3zuO3YsWPuqDU+Pp6oqCh27NhBSkoKADabjdTUVCZOnAhA+/btCQoKYseOHQwc6JzXkZ2dTVpamnubpiLQmb8DTdMFoV1/G/mpVc/pqvUy4rM9L4xX7Y/1uv0tDSH8a1Qyj3yfxokCKw9/l8a8i9vQ0hBS5SKMIqud97dn8tXebBTO4tR/7deSgclGv8//ULu24Fj0X8goy/HV83x0N9yO1qJ+co1pOh107IbWsRuOdp1Qb/27xseonCzC9Tpu7tWC//x0go93nmJ4ihlzgFaKBtKxPAtLdp9izcFcyjq26BYXzvU9WtArIaLC613VIokjeRYe+T6NP7JKeHzVYeaOaNPgZanqS6DTadR1/8pmw/Hm81BSDB27ol1+vc9tEP7V4GeKyy+/nEcffZRPP/2UgQMHsn//flauXMntt98OOLskx4wZw9KlS0lMTCQhIYGlS5cSGhrK4MGDAYiIiGDEiBEsXLgQo9GIwWBg4cKFJCcne0yubwq8zehd68zf9aCk5wDse34HzpjTVcdlxGd7Xhhv2k9cAviQvjAuUs+TZYHX8Xwrs79L4+pusSxJPVVhKGREipk1B3PJKLt9RHszU86L93vOL5VzCvXRW6hf1jtvKJsIT58LGmzytBYd69W8QVf27OHtzXy5N5sD2aX8b2cmfz3/7JmnkpZTyuLdp1h/KA/XNK1eCRFc370F57asfp5eZYXY20aF8s+RbXhkpbM6wtzVzrJUjaEQe6B5U3M0s8jGncsPYAwNRqeBTtPQaRCkaeh0GhHhGVhKS8tuO32/TtPILbF5tf/UjKJKRzbU54vg4D4Ij0Q37R+Vz30U9arBg66OHTty7733smjRIj755BPi4+OZNGkSQ4YMcW8zbtw4LBYL8+fPp7CwkI4dOzJ79mz3akOASZMmERQUxAsvvOBOjvrAAw/4lKPrbBCh16HToJo5rXXK/F0fXNnoQxxWQh02tEuvRuve1y8Z6bXzBqKbXkNtxEasyvYbTFCYD/t2oz59F+3ayV7vs0WEnicvTuaR7w9zLN/Cf3+peOV8qsjG4t3O54uP1DNzQAK9E2uXc6mqlAvKYUet/hr12ULnlbdOhzbyCmdty3rMkVYpH3tJdZrGlL7xPPL9Yb75PYcxnaNpY/Z/Ul1fVZdG5kBWCR/vOsXGw/nu7c9vFcl13VvQpUXd0l+0iw7jiRFteHRlGnszS3hi9REeG966yQde3o4oHMmzAlWl3qh5Hmpt2qF+24765hMAdLfMRIutv0UfomoNHnQB9O3bl759+1Z5v6ZpTJgwgQkTJlS5TUhICFOmTGHKlCmBaGKj8PORAp7/8Vi1ARfUMfN3PchzlQCyOSdHa30HobXr5Lf9n+15Yaqq7ah+WoN65yXUiqU4zDHoRo3zep+xEXr+eXEbbv/sD/dQUmXCgjVeGtOOiFoOD52ZCNGVckEbeQXq5/VwqGyxQEpndDfNQEtuX6vn8bfa9JL2aBnJgNYGNh0pYMHWdB4d3qbKx9aHqmojjukczZ6MIn4+erpX+cI2RiZ0j6V9WX41f2gfE8YTI53VEX7LKOafq48wZ0QbwoKb1oWvS5HVztZj3gVME3u1oI0pFIdS2BU4lMKhnBfPRpOJ7Jxc7A7lvt1e9u/xvFK+P1DDXEMqjmyo/Dwcb78ASqENHoXWb3CtjlH4X6MIukT1lFJ8sTebd7am41DQMyGCESlmFm7P8Fvm7/rkrrtoKfsSMPh/6bKmC0I7pweRiYnknYWZrSur7agNHIkjNwf16buoj9/CYYpCN2Bolfs40/F8S7UBF0CJTfFHdkmtMotXm5h2yQLn/8Mj0a6+Be2i0Y0uCK6ylxFgyOhKe0lv7RPPL0cL+OVYIduOF9a6d7CuqpvMvXBbBgA6DQa3NXHdubEkRwWmV65DTBhzR7ThsZWHSc0o5p9rjvDYsNaENqHAy2p38M3vOSzedYrc0pp7ulpEBHNNt9gqV5M7M9LrKj1H2R2KX09UP4R55siGUgrHu/+BnCxIaIX2l9u8PDJRH5rOJ6GJsjkUr28+yVtbnAHXJR2jmDO8DcPbm3lzXAcu6ehcwdmrZQT/N65Dow+4oHyx67KrxAAEXU2VdunVaCOvAHD2eqX+6vVjA7kIw1VpoFohoWhPvIJu2GWNLuBy0c4biO7p+ejufRJt2j+g7G/NrxtRRRV7NZJMIYzp4lx1+vaW9GpzWQWKN5OtQ4M0Xr48hX8MSgpYwOXSKTacx0e0ITxYx66TRcxbe4RSmyOgz1kf7A7F6gO5zPjiIPO3pJNbaifJqOeqc6pfdVyXkYcgncZtfatfWHLm/tWar2H7ZggORnfbvWih/uvNFHUnQVcjVmCx88Tqw6zYn4MGTDkvnun9W7ozgAfpNPdcDJ1Oa9RDiuXlW1xBV5Ezs7ycFLymaRrahKnO4QK7DcdrT6MO/eHVYwO6COP31OrnQwFYStFOHqt+m0ZA0wWhdemBbsBQdNdNcZYfKshHfflRpdv/pXsLjCE6DuWWsvKA/3KXecubydyldkV2Sf3lH+zSIpw5I1oTFqxjx4ki/rXuKBb72Rl4KaX4+UgB93z9Jy9uPE56oZWY8GBm9E/g5bHtmdy3JQ8OaUVshOfAUYuIYB4c0qrOF8IXJhu93r86egi1+G0AtKsnoSV3qNNzC/+T4cVG6ni+hXlrjnAkz0JYsMY/BiXRv3XFD68p1PkS5nnRzd1YnO7pKgKD/1MRNHWaTgdT7kHl58LenTheehzdg8+itay+CHO3uAhiI4J9GqrwlsrJ8nq7s+nV1oKC0E2YiuOlx1GrvkRddClagmdiWkNoENf3aMH8Lem8vz2DwW2N9TqBvLGmkekaF8Gc4a2Zu/ow244X8tTaozw8tFXAk8n602/pRby3LYPUDOf808gQHdd0i2Vsl2iPIVN/1hytjDf7V5ZSHP/3nDNhdPfz3D3ionE5e979zcju9CLuW3GII3kWYiOCeXp020oDLgBTmPPknlePV7F15Q66bEUytFhLml6PbsbD0DoF8nOdQUFZ6Zyq1GaowmtelhRxpVw4m2jdz4Me/cBux7HknUq3uaxzNEnGEHJL7Hyy27sA1F8iQ7w7jfsjjYxy2J1JiDetRe3d6VypWo1u8RE8OqwNIUEaW48X8vS6o1jPgh6vQzmlzFtzhAe/SyM1o5iQII2ru8Xwf1d24JpzYyudo+ZKp3FROxM9Wkb6feShpv2rxe/AsTQwRaGbfJfz4kw0OvKqNDKrDuTy2Mo08kvtdIwJ4/lL25ESXfXwm6ksh9LZ1dPlPOk6e7ok6KotLSIS3V1zIDYe0o9jf2kujuLKyyq5+DJU4S118hjqk/dq3rAxJ6atge66KaDTwfbNqNRtFe4P1mncep4zofOy37JIL6gqPYB/nSqy8v62mssg+SONjNq6AceD03A8Pxs1///heH42jgenobZuqPZx3VtG8Oiw1oQEafxyrJDn1h/DWtOKjgaSXmDlpY3HuGv5QX4+WoBOg9EdzbxxZXsm9YnH4Oecdf6itv2EWvMVALrJd6OZvKxuIeqdBF2NhEMpFm7L4KWNx7E5YGCykX+NSiYmvPoRYFfQVWpXZ81k1byyOV0GayGaBF11okXFoLt7rjN4PbSfU/+6H2Wr/gv/wmQjb47rwLyL2/CPQUnMu7hNrRZhKKVw/LgSxz/vhrQ/apyb15gT09ZES2yNNvxyABwfv4WyV7zI6d/KQM+WEVgdyr1iMJD2nyrh3m8OcSDbQkQNqwPrmkbGvTL1zHl72adwvP50jYFXz4RIZg91Bl6bjhTw/I9H3SWH6ovdodh5spB1f+ax82Shx6KHvBIb87ecZPoXB1h1IA+F8xz88tgUZg5IdJe/aoxU9ikcC14GQBs1ztkzKxotmdPVCJTaHLy48Tgb0pxJC687N5Ybe7VA58Vcpwi9jmAd2BzO3q64s2BptuecrrMnk3djpSW0QnfnYzien03J1p/Q3vkP2pS7qx1eqCyzuC9UUQHq/ddRP//gvKFLD3RT/w4H9561iWlrol3xF9TG1XD0EGr9d2hDL/W8X9OYfF48f//6T9YdymPsOdF1TjpalY1p+byw4RildkUbcwiPDmvNgazSCnm6/JFGxpuVqY7/zUfXe0C1QXXvxEgeuqgVT649yk+HC/h/Px7j3kFJ9bIAqKocZpN6x3GiwFnou7jsorVnywhu6RNHp9jAvHb+pBx2HG/925k4Obk92vhbGrpJogYSdDWwrGIbT645wv6sEoJ1MHNAIiPam71+vKZpGEODyS62OYMuLwsaNySZ0+V/WkpnZ46pV+ahNq0BczTadd5nrfeF+j0Vx/z/B1kZEBSENm4i2iXjnV+40ZUndj1be7jK0yKNaFfeiPrf/6GWfYA6fwhahGfg2j4mjJEdzHz/Ry5vbTnJM6Pb+nWhiFKKT1Kz3D1p5yVGcu/gJCJDgmhpCAnMZG5vVqZmZzq369Kj2s3OSzLw0EWteGrdETak5fOCdox7BgY28Kouh9m/Nxx3/94hJpRbesdXWnfSG1VVYggk9c2nsHcnhIQ600PoG//5v7mToKsBHcgqYd7aI5wqsmEMDeKhi1pxbrz38y5cH3KTHbLRk1tsARp/+gXPni4JuvxF16MfUXc9Sta/H0d9uxSHORrd6Kv8tn9lt6OWf4T68mNQDohLcJ7oUzp7bFdZYtemQht6qXPuzIkjqK8+rrQc08Recaw/lMfezBLWH8pnSDv/vMetdgevbjrOqrIM5Zd3iWbqefEeAUtdezDPpKxWHJvWebetlytT+7Uy8MCQVjzzw1F+OJSPTjvOXRcmBiTw8iaHmU6DewYmMrityavRhcpUVYlB95fbAtbDqw7sRS37AADthtvREloH5HmEfzX+sagmavORfB767hCnimy0NoXw3CVtfQu4yk1qNZ38E4Ccd/9b49yKhma1K3c3vtFaCIbGn8z1bBI5ciy6ayYBoBa/jWPTWr/sV2WexPHcQ6gv/gfKgXbhcHSPvVgh4GrqtOBgdBOmAqC+/wKVXjHvWEy4MwM5wHvb0v2SnyqnyMKjK9NYdSAPnQZ/Pb8lt/cLXLkvVVSI45tPcDx0G/ywwqvH+LIytX9rI/cNbkWQBmv/zOPln45jdyjnvKsThaz47QQ7TxTWOtmsQymO51tYvPtUjTnMHAqiw4PrFnDVYb6b189TbuWoY8fPzvQQDgdav8Fogy72y3OIwJOergCqrPisToPP9zhL+iigV0IE9w9phcGHWndnllsxWp0r1vItDhyvP41u+oONdv5MQdkkep1yEGkrkYn0AaBdeg1aThZq5RfOrPVGE1q3PrXen2PzOtT7r0FxEYRHoE2c7lP5oaZG69EXup8Hu7biWLKAoBkPV9hmXNcYvtmfQ3qhjc/3ZHPtubG1fr7DuaX864tfOJpbQoRex32DkzgvyVCXQ6iSysp0vm/WfeMsSg5gjgFLifP1r4pej2rT3qfezQvaGLl3cBLPrT/G6oN5ZBbZOJZvqTDv6rYa5qTlldo5lFPCoZxS/swu5VBOKWm5pZTYvA/YapvDzF/z3Wp8njN60twMJrSbZ0iuw7OIBF0BUunEzfBg2phD2HbCefK6pGMUt59/OsO8Nyr7kJuszhqGeXrnsII/PuSB4hpajLSXoEPJ8GIAuLLWk5uN+mU9jteeRnffk2htO/q0H1VShPrwTdSGlc4bOpyDburf0eJk8YPuuik4UrfBrz+h9uxAO6enx/2hwTpu6R3HCxuOs2TXKS5ubyaqhpXIldl2vJBnfzhKodVBS4OeR4a1Jtns/zI+6ugh1IqlqM3rwF52zkpKds7V638R7Pi52mLgWK2o/zcbNetRtCjvA8yBySb+MQieX3+MnScrBnWnimw8/cNRHhzSin6tDBzNK+XPcsHVnzmlZBVX3pOl12nERQZzLL/m9B21zmHm5Xw3x9y70VolO9OmxLRAi451/1/Fx1f78CprmgIU5MGeHdBIL7JFRRJ0BUCVEzeLbZwqO0FM7RvPFV2ifb9CqeRD7g66Qsqufr2c1NoQ6qPYtSiXtb7spOx4aa4za318olePVwd/xzH/eUg/DpoO7fIJaGOvRwtqfIF8Q9CSktGGXoZavRzHR2+he/TfFS5yLmpn4su92fx+qoRFOzKZMcC3YPXrfdn83y8ncSjo3crMPy6Md6eI8QelFOzbjWPFp7Dzl9N3dO6O7tKroXvf0+enqoqBR7dAG3456rvPIO0AjqfuQ3fnHLRWbb1ux4VtjESG6CiwVD0M+9z6oygFVW3R0qCnbVQo7aJC3f8mGkMAuG3ZHwGpwgDOdA1eOXYIdezQ6ceVu+tIUJCzNzE6Fq0sEHP9X5miUYv+W+2uG/NFtqhIgi4/82bipik0iMs71yLgovJyK6d7uiI8tmuMHc557rqLEnQFmitrvePZh+DIQRwvzkH34DPVJk5UDgfq26Woz94Hux1iWqCb+g+0zufWY8vPDtqVNzhXih45iPpxJdqQ0R736zSNKefF89B3aXz3Rw5jOkfRrppExy52h+Ktreks35sNwPD2ZuaN68OpjJPOQKmOlMMOv/6E45tP4c/fyw5Gg/MuRHfJ1VXO09POq3plquo3CMd/5sKJozieeQDd3x5E69bbq/akZhRVG3ABuHKpRup1tHUFVtGhtIsKIzkqpNqyS7f1bVnpRbBLbXOYqQN7Ucs/9m7jsX9BC49wBqzZmajsTOf/c7Kcn7OsDMjK8AjGvH6lG/FFtqhIgi4/86b4bF6pndSMotqtMgquuCTYFXTl60/vr7GWW/FYuRgSghbq/6EScZoWHoHurjk4nr4fMk7g+M8/0d07D0JCK3x5kpuD4+0XnMMVAH0Horv5DrTIwMwfOttpBhPaFTegPpqPWroQ1W+w84u1nG7xEQxMNrIhLZ93tqbz+Ig21V5sFVntPL/+GFuOOT/TN/eK49rusYR4mX+vurQFylKK2rAS9e1nkHHC+QB9CNqgkc6kmvHV1+6EqlemanEJ6B58Fsdr/3L2nv1nLtrNd6AbNLLGfXo7n+q2fvG1ulh1VWHwVw4zlZOF+vQ91MZV3j0gugW6K66vvCfK4SA+LIT0PbtR5YOxrLL/nzjqzMHlRZsa40W2qEiCLj8LZPFZtXcXatEbFW43WTzndDXmciuSo6v+ubLWO555AA7tx/HMg1CQDznllrdHGsFuhZISCAl1LkEfdLFM0K2BNmwMau3XcOIo6qvFaGUrR8ub1DuOzUcK2HaiiK3HCunbqvIg9mSBs8h9Wq6FkCCNewYmMjDZ5PVrUFXaAu2qm5y9KKuWQ36uc+NII9rwMWjDL0czRfl+4JXQIo3o7n4CteA/qM1rUQtewpF5Eu3KG6o9Bm/nU7WNCq31+9EfBamVzepcZPDFR1DqXGSgXTgCOnVDvfdKlY+rrhKDFhREcIt4tA52UKpC4KT27sTx/Owa29ZYL7JFRRJ0+Zm3JxBfJm4qpVArPkUtXQgOhzOoys503288YyJ9Yy634gq6DJKjq165s9Y/+yAc+bPiBq6r6RYt0d01R3L+eEkLDnZOqn/5n6jvl6EuuqTCQoMEYwhXdIlm6W9ZvL01nV6JkRUWz/yWUcRTa4+SW2onOjyYR4a2pmOs9zn3qpxsnX0K9c5Lp3+PjUcbdRXa4IvRaijbVBuaXg9T74EW8aivFqO+/B9knoRJd6BV0ksP0C0ugtiI4IDNu3KpSw4zteNnHB+9Ba4UISmdnTm42ndx3h9pCEwlhk7dIDq2+sn6jfgiW1QkQZef+fsEoooKcLz9ImzfDIB2wTC0m2bA7q3uD7m5/PDi3xpvugiA/PJzuiToql9tO0BYhHPFU1XsNvBysr0o06MfdOsDqb86U0hMf7DCJtd2j2XlgVyO5Fn45vds2kaFuntcMgqtvLrpJDaHon10KLOHtaaFD7X+vElbQFAQ3HoXuvOHBHwxhKbToY2/GUeLlqj3X0P9tBqVnYluxkNoERV7+YJ0WsDmXdWVOnHEGWzt2uK8wRSFds0ktAuGe5TZqm6+W11ouiB0f7mt2pWjjfkiW1QkQZef+fMEotL+wPHGM875F8HBaH+5He2iS5xd7GUfcscn72L87gsAHJqOou4DaMzpRsvP6dIiG3NLm6DfU6sPuMB5RS2Tcn2iaRq6CVNxzL0Ttm5A7d2F1qW7xzaGkCBu6NmC//58kvm/pFc6SXpAawN/H5REmK/1U71JW2C3o4uOrdfVp7oho1HRLZznsL07cTz9gLMXNbZiigR/z7uqK1VchPryI9TKL5wXIkHBaBdfgXb59RXm7bkEqhKDVs3K0aZQ07S5kaArAOp6AlFKodZ/51wqbLNCbLwz4ekZeZY0XRC6Tuei//Yzwh0WinUh5JXaMfpxWbm/ec7patHArWleKlv5WtV2MpPLN1qrZHeJIMfH89HN/n8Veh/MZZ/LqlalDU0x+R5w0bhfV637eegeeBrHf56A44edKSXueAStXacK27rmXf2WUYwKM6CVFNA1Lrxee7iUw4HauBr16buQl+O8sUc/dBOmoiW0qrd2nClQPWmi/knQFSC1nbipSktRH7x+emVMj37opt5Tda+Q0Vkc22Qtojg0hLxSG60I8eeh+FWe1F1sMFpUjFfL0GVSbu1oV96I2rQW0g6gNqxCGzzKfZ8rDUR13t6SzgWtjQELMhrqddXapKB76DkcLz8BR/7E8dzD6G6/H63X+RW2DdJp9EiIJDExgePHj/slRYa31IG9zt6kg/ucN8QnOXuSevSrtzZUpynXNG1OpPZiALkmbl7UzkSPlpE1B1wnjuJ46l5nwKU550Xo7nik+mE4V9BlKQAgr6R25Szqi8ecLqMEXfXKNSm3OjIpt9Y0owntir8AOFNIlJzOsO5NKpnMIhupGdWU2qmE2r4Z9cHrNW/YwK+rFtMC3f1PO+e+WUpxvPokjtVf1WsbytcuVHt3OtNr4OwBdLz9Ao6n7nMGXGHhaNdORjf35UYTcImmQ3q6Ggm1ZQOOBS85650Zzehuv69CaZFKlQVdRotz9ZmrJ6kxUkpRID1dDUYm5QaeNnwMas3XkH4M9dUStKtvAfyfSkbZ7ahl76O+/sR5Q8skOFmx+LZLY3hdtfAIdLMedfbkr/8OtegNHJkn0K651WNSeiBUmk4jKhbO6QG/bjqdAmLgSLSrb0EzV51AWIi68DnoSk9PZ+vWrezdu5esrCwsFgsmk4lWrVrRvXt3evbsSXCwxHLeUjYb6pN3Ud8vc97QsRu6v97nff2ysHAIDnavYGzMQVeR1eHOLG20FUmx6wYgk3IDSwvWo5swBccr81DfLUMNGY0Wl+DXVDIqNxvHm8/D3p3O5xx5Bdq1tzrrIzby11ULDoZb7oAWLVGfvY/69jPUqXR0U+5BCwl19kb9/huFe7fjUDro1LXOwWKV6TRyTsFPa5z/PyMFhBCB4nV0tHv3bj777DN27tyJUoqYmBhMJhMhISGkp6eTmprK8uXLMZlMXHzxxVxxxRVERNQtr0pTp7JP4fjvM/DHHgC00ePRxt/sPDF5SdM0MEadztXViIMu1yT6ULuFEIdNeroaiEzKDbCe50PXXvDbdtQn76L97QG/pZJR+3bh+L/nIDcbQsPRJs1Cd/5g551nyeuqaRra5ROcKSUWvARbNuDIyUIbMhq17APIPoV7aUB0rDMYqmXQqBx2HB/+X/UbRRrQ7n+qyjxiQviTV9/uzz33HFu3bqV3797cddddnHvuuZhMnl+YDoeDQ4cOsXnzZn744Qe+//57Zs2aRc+eXgyRNUPqt+3Oq9X8XAiPQHfrXWjnXVi7nRlNp+svllY/b6QhnZ7PVTZvRYKuBiOTcgPHnULiibtRW35E7dtNUOdz65RKRimF4+tPcCx9z5kgOSnZuaL5jCS2Z9PrqhswFBUVi+O1J+GPPaiyi08P2adwvP6081grCbyUw+FcZZiVgTqVcbqG4al05/8zTjinbFSnsADtjz2SJkXUC6+CrvDwcF588UVatmxZ5TY6nY6UlBRSUlK47rrrWLduHVlZ3i1lbqoqq4MGmjNT8+eLQClonYJu+gNe1T2rksGMKass6GrEE+lP5+hyFbuWPF2iadJat0O7aDRq7Tc4PnKmkKhtKhlVVMCpeffi+Gmtc99lCZIDkVG+vmlduqPd/zTqibucwWQVHAtfg/w8tJwsz6AqOxNsdb/QlDQpor54FXTdcccdPu1Up9MxbNiw2rSnyah04qY5BkxRcPgAgLO23Y1/RQupW9FnzWjCdDIDgNxGPLyYVz5HV2gYmr7xprYQoq60cRNRm9dB2h+ojavRBo30OZWMK0FycWUJkpsIrSDP2WNVnYI8eP+1ylOeaDqIjoGYOLSYeIht4fx/bDwqNwf17n9qboOkSRH1RGa8B0CVEzdzs5w/QcFoN01HVy6PT50YozBa/wRO9yY1RlJ3UTQnmtGMdvn1qCXvoJa+h+o7EC0s3KsagGcmSA5qmQS33ecs5dTEeJvcldYpzonuMS2cNSRj4iA2DqKqybTvsKM+/0BqF4pGw6t1ukuWLKkwVLh3715KS0s9bjt58iSvvFJ1tfXmwKs6aJEGtIEj/PekRtNZsXpR6i6K5kYbMRbiEiA3+3R6hxqo0lLUgv+g3nsFbFa0nv1o+dJCtHYda37wWcjbXibdX6ahu3kGussnoLtgGFrnc9Fi46stbeRKk1LTfhvbYgPRdHkVdC1evNgj6HI4HDz22GMcPeo5KTQvL48ffvjBvy0823hTBy0vx7mdvxjN7nlSRVYHVnsNXfUNJN8jR5fM5xJNn6bXo7tuCgDq26XOuUjVUCeP4Xj6PtSGleUSJD9KUFk+viYpwEl7XWlSKjxHdIsqJ+gLESgyvOhnDVEHTTOaibSVoFMOHJqOvFI7sRGNr9hA+bqLkqNLNBu9BzhXxu3d6Uwhcft9lW5WVYLkpjR/qzL1kbRX0qSIxkKCLj9rkPp2RjM6FEZbMbn6yLKgq/HlnPHs6Wq44rFC1CdN09BdPw3HP+9G/fwDjmGXoSnl/vJXKZ1h6fu1T5DcBNRH0t6zKZ2GaLok6PI3V1d5fU7cLKthaLIWuoOuxsgjT5f0dIlmRGuTgjZ4FOqHb1H/fhRlL6v7BxAUDHZn2gPtkvFoV/mWILmpON0b9RtRmoMcP2WkF6IxaXxjUGe5Bpm4aYxy/tPIi1575OmSoEs0N64SM/YzPp/ugOtqdNdObpYBl4umC0J3Tg8ih12K7pweEnCJJsfrT/f69evZs8eZMdhRllNl/fr1pKaenhCemZnp5+adneq9vl1Z/UWTtSzoaqQ9XXmlzveNc06XTKQXzYdy2J0JkavbZvM61NU3S6AhRBPmddD19ddfV7ht+fLlfm1MU1KfEzc1TXNmpS8rr9MYSwFZ7YoSW1nQJcOLornxZlVzdqZzOylHI0ST5VXQ1dxzb9VWvU7c9Ki/2Ph6ulzzuXTKQYStRIIu0aw0xKpmIUTj41XQFRcXF+h2iLoyRmHKdQ4v5jbCOV3ls9HrUBJ0iWalQVY1CyEanTpPpD9y5Ag//fQTe/fu9Ud7RC1pRpNz2I7GWQqofI4uQJKjiuYlwAlAhRBnB696ujZv3syOHTuYNm2ax+1vv/02K1ascP/evXt3HnzwQfT6xpcjqskzmjFZjwONdHixfN3F8Ai0YHmPiOajPhKACiEaP696utasWUNeXp7HbVu2bGHFihW0bt2aSZMmMXLkSHbt2iWT6xuK0eye05XbGIMuydElmjkpRyOE8Kqn69ChQ1xzzTUet61bt47g4GAefvhhYmNPn0Q2btzIVVdd5ddGCi+UC7ryS20opRpV+ZA8ydElhJSjEaKZ8yroysvLIz4+3uO2Xbt20blzZ4+A67zzzuPHH3/0bwuFV7RyqxdtDii2OYjQN54TucecrkiZzyWaLylHI0Tz5VXQpdfrsdlO537KyMigoKCADh06eGxnMBg8tvPGxx9/zJIlSzxuM5vNvPnmmwAopVi8eDErV66koKCATp06MXXqVNq0aePe3mq1snDhQn788UcsFgvdu3dn2rRpHgFhk2eMItRhJdRhpVSnJ7fE3jiDLmsRWpz0dAkhhGh+vAq6WrZsSWpqKr179wZg+/btAJxzzjke22VnZ2My+f6F2qZNGx599FH37zrd6almy5YtY/ny5cyYMYPExEQ+/fRT5s2bx4svvkh4eDgACxYsYMuWLdx1110YjUbee+89nn76aZ555hmPfTVpZfUXjdZCSkOjyCu1k9iIOpTyPIpdJzRwa4QQQoj651VEMmLECJYvX86SJUv4/vvvWbx4MSaTiV69enlsl5qaSlJSku+N0OmIiopy/7gCN6UUX331FePHj2fAgAEkJyczc+ZMSktLWb9+PQBFRUWsWrWKW265hZ49e5KSksKsWbNIS0tjx44dPrflrGUwA2Auq7/Y2NJGeNZdbETRoBBCCFFPvOrpGjFiBLt372bx4sUAREREcNddd3mkhigpKWHDhg2MHTvW50acOHGCv/71rwQHB9OpUyduuOEGWrZsSXp6Ojk5OR7BnV6vp1u3buzdu5dRo0Zx4MAB7HY7PXv2dG8TExNDcnIy+/btc/fOnclqtWK1Wt2/a5rm7jlrTBPQvRYRCcHBzqAGZ89SZcfhuq2+j9G9etFWhGY018vzN9SxNpTmdLxyrE1XczpeOdbmx6ugKygoiLvvvpsbb7yRgoICWrVqRWhoaIXtZs+eTUKCb0NHnTp1YubMmSQlJZGTk8Onn37KI488wr///W9ycnIA5xyv8sxms7u4dk5ODsHBwRgMhgrbuB5fmaVLl3rMJUtJSeGZZ545q7PvHzPHuCfTq5BIEhMTq9zW19eprgqt+wHn8GJ0m7ZEVNM2f6vvY21ozel45VibruZ0vHKszYfXBa8B4uPjK6xidAkLC6N9+/Y+N6BPnz7u/ycnJ9O5c2dmzZrF2rVr6dSpE1AxMlaq5oIaNW0zfvx4j14513NkZGT4vBigsbBHGDBZnEHX0cxsjh+vmIBU0zQSEhI4ceKEV39Hf3AoRV6Js1fRaC0ix2Yn9/jxgD9vQxxrQ2pOxyvH2nQ1p+OVY/WP4ODgs6bDxKegqz6EhYWRnJzM8ePHOf/88wFnb1Z0dLR7m7y8PHfvV1RUFDabjYKCAo/erry8PLp06VLl8+j1+ioz55+1b36jCVNBWYLUElu1x6GUqrfjLCy14yh7KqO1EBVphHr8G9fnsTYGzel45VibruZ0vHKszYdXQdf111/v9Q41TeN///tfrRtktVo5evQoXbt2JT4+nqioKHbs2EFKSgoANpuN1NRUJk6cCED79u0JCgpix44dDBzozOicnZ1NWlqae5vmQjOaMWafntPVWLjmc4XZS9Eru0ykF0II0Sx53dMVERFB3759iYiI8GsD3nvvPfr160eLFi3Izc3lk08+obi4mKFDh6JpGmPGjGHp0qUkJiaSkJDA0qVLCQ0NZfDgwe52jRgxgoULF2I0GjEYDCxcuJDk5GSPyfXNgtGM2XoKgLySxhN05ZWvuwgQIUGXEEKI5seroGvo0KFs2rSJTZs2MWDAAEaMGEG3bt380oCsrCxeeukl8vLyMJlMdOrUiSeffNI9Pjtu3DgsFgvz58+nsLCQjh07Mnv2bPdKQ4BJkyYRFBTECy+84E6O+sADDzSfHF0uBlO51YuNZ15a+cSoRESiBTe6UW0hhBAi4Lz69psxYwZTpkxhw4YNrF69mrlz5xIfH8/w4cMZNmwYMTExtW7A3XffXe39mqYxYcIEJkyYUOU2ISEhTJkyhSlTptS6HU2CKcq9erFRDS9K3UUhhBDC++HFsLAwRowYwYgRIzh27BirVq3im2++YfHixfTs2ZOxY8fSo0ePQLZV1KB8/cUCiwO7QxGka/icKOVzdEnQJYQQormq1fhbUlISN910E2+88QbXXHMN27dvZ8WKFf5um/CVwYzBVoxWtjKksWSl9xhelKBLCCFEM1WryTVFRUWsX7+e1atXc+DAAZKSkrjgggv83TbhK5OZIOUg0lZMgT6CvFI7UeENP39Kil0LIYQQPgZdO3fuZPXq1fz888/odDouuOACbr311mrzYYl65Kq/aC1wB12NQZ7HnK7Kk+sKIYQQTZ1XQdeSJUtYs2YNGRkZdOnShSlTpnDhhRcSFhYW6PYJX4RHQNDp+ou5jWQFo+ecLkkXIYQQonnyKuhavHgx4eHhjBw5kqSkJAoLC/n++++r3L42Ra9F3Wma5sxK71rB2EhydcmcLiGEEMKH4cXi4mJWrlzp1bYSdDUgo9ldf7ExTqTXJOgSQgjRTHkVdL3yyiuBbofwF6MZU7FreLGxBV2Sp0sIIUTz5VXQdbZU7xagGcwY85zldhrDRHqL3UGp3ZnCQvJ0CSGEaM6aWZ2cZsBkxmQtACCvpOEn0rt6uXTKToStRIIuIYQQzZZXQddTTz3FwYMHvd6p1Wrlyy+/5Jtvvql1w0QtGUyYrI2npyvfXey62DnRPzKygVskhBBCNAyvhhfNZjMPPfQQnTp14qKLLuLcc88lKSnJY5vi4mJ+//13fvnlF3788UciIiK44447AtJoUQ2juVHVX/TI0RVpQNMFNXCLhBBCiIbhdcHryy67jM8++4x33nkHu91OSEgIJpOJkJAQCgoKyM/PRylFXFwc48eP55JLLkGv1we6/eIMWvnhxVI7SilnD1MDkbqLQgghhJPXKSNSUlK45557yM3NZfv27ezbt4/s7GwsFgspKSm0atWKc889ly5dujTol3yzZzC7hxctdkWpXREW3IBBV/kcXZGSGFUIIUTz5XNhPrPZzEUXXcRFF10UiPaIujKaCbOXEuywYdMFk1diJ8zQcOslJDGqEEII4SSrF5saowkN3EOMDV0KSBKjCiGEEE4SdDU14ZEQFOweYmzorPSn53RJYlQhhBDNmwRdTUyF+osNHXSVH140StAlhBCi+ZKgqykynK6/mNvARa/zSh2AzOkSQgghJOhqikxmZ14sGldPl8zpEkII0Zz5FHRZLBZeeukl9uzZE6j2CD/QDGbMZUFXY5nTZZA5XUIIIZo5n4KukJAQfvnlFxwOR6DaI/zBaHL3dDXk6kWHUhRaJE+XEEIIAbUYXmzXrh2HDx8ORFuEv5QvBdSAc7oKLQ4cqqxJMpFeCCFEM+dz0HXjjTfy+eefk5qaGoj2CH9oJPUXXUObYbZS9ChnOgshhBCimfI5I/38+fMpKSlh7ty5GAwGoqKiPMr+aJrGc88959dGCt9ojSXo8sjRZUTTyboNIYQQzZfPQZfRaMRkkmGiRs14evVigcWO3aEI0tV//UUpASSEEEKc5nPQ9fjjjwegGcKvyvV0ORQUWh2YQoPqvRl5HkGXTKIXQgjRvMl4T1NkNBGsHETYigHIK2mYFYzS0yWEEEKc5nNPF0BBQQFffvklu3btIj8/H5PJRI8ePRgzZgwGg8HfbRS+ctdfLKQoOLzB5nW5gy5boSRGFUII0ez53NOVlZXFAw88wNKlSykqKqJFixYUFhbyySef8MADD5CVlRWIdgofuOsvWhp2Mn2+RYYXhRBCCBefe7oWLVqExWLhySefpGPHju7b9+/fzzPPPMOHH37IzJkz/dpIUQuGhl/B6Dm82LpB2iCEEEI0Fj73dG3fvp3rr7/eI+AC6NixI9dffz3btm3zV9tEXZTLSt9QCVJdQZdB5nQJIYQQvgddRUVFxMfHV3pffHw8RUVFdW6UqDvNGOWuv5jXQKWAyufpkjldQgghmjufg674+Hi2bt1a6X2//vprlQGZqGce9RcbpqcrT1YvCiGEEG4+z+kaNmwYixYtwuFwMGzYMKKiosjJyWHdunV888033HjjjYFop/CV0YzJehw4PcxX3yRlhBBCCHGaz0HXlVdeycmTJ1mxYgUrVqzwuG/kyJFceeWVfmucqIMGLgVUanNgsTurXUvQJYQQQtQi6LLb7UybNo2xY8eya9cuCgoKMBgMdO/enaSkpEC0UdRC+fqLuQ0wkd41nyvIYScCK4RH1HsbhBBCiMbEp6DLYrFw8803849//IP+/ftLkNWYGU3OHiYapqfLvXLRVoQWafQoii6EEEI0Rz5NpA8JCcFoNBIaGhqo9gh/MZgxWwsAKLE5sNgd9fr0Mp9LCCGE8OTz6sW+ffuyefPmQLRF+JPJTIStBJ1yBj/13dslQZcQQgjhyec5XYMGDeL111/ntddeY8CAAURHR1fYpn379n5pnKiD8Ei0oGBM1iJyQozkldhpEaGvt6fPK1d3UYIuIYQQohZB15NPPgnA2rVrWbt2baXbfPTRR3VrlagzTdPAYMJkKXAGXfXd01Wu7qIWI0GXEEII4XPQNX369EC0QwSC0YypgSbTy/CiEEII4cnn1Ys2m41zzjmH1q2lgHGjV77+Yj2XAvKou2hMrNfnFkIIIRojn4KukJAQ3nnnHWbPnh2QxixdupQPP/yQMWPGcOuttwKglGLx4sWsXLmSgoICOnXqxNSpU2nTpo37cVarlYULF/Ljjz9isVjo3r0706ZNIzY2NiDtPFtoRjOmbOcKxvrO1eXu6bJJT5cQQggBtay9mJOT4/eG7N+/n++//562bdt63L5s2TKWL1/OlClTeOqpp4iKimLevHkUFxe7t1mwYAGbN2/mrrvu4oknnqCkpISnn34ah6N+0yQ0OuWGF+u7FNDpOV2FaJESdAkhhBA+B11jxozhs88+o6ioyG+NKCkp4eWXX+avf/0rkZGR7tuVUnz11VeMHz+eAQMGkJyczMyZMyktLWX9+vUAFBUVsWrVKm655RZ69uxJSkoKs2bNIi0tjR07dvitjWelBiwFJHO6hBBCCE8+T6Q/fPgw+fn5zJw5k+7du1dIGaFpGpMnT/Zpn/Pnz6dPnz707NmTTz/91H17eno6OTk59OrVy32bXq+nW7du7N27l1GjRnHgwAHsdjs9e/Z0bxMTE0NycjL79u2jd+/evh5i02E0nS4F1KBBl7Fen1sIIYRojHwOusoXua4qSaovQdePP/7IwYMHeeqppyrc5xrGNJvNHrebzWYyMzPd2wQHB2MwGCpsU90wqNVqxWq1un/XNI3w8HD3/5sCzRjlnkifX2pH0zT3sQXyGO0ORYHFObRrtBWimcwN8jetj2NtTJrT8cqxNl3N6XjlWJsfn4Muf+bgyszMZMGCBcyePZuQkJAqtzvzRVJK1bjvmrZZunQpS5Yscf+ekpLCM888Q1xcXI37PluUprR3lwIqsCoSE0+vIkxISAjY8+YUW1HsAcCgbCS2a9+gH7RAHmtj1JyOV4616WpOxyvH2nz4HHT504EDB8jNzeXBBx903+ZwOPjtt9/45ptvePHFFwFnb1b5Ycy8vDx371dUVBQ2m42CggKP3q68vDy6dOlS5XOPHz+esWPHun93BQUZGRnYbPWbXiFQVKnNXfQ6p8jCsWPH0Ol0JCQkcOLECa+C19o4mlcKQLitBH1kBCdOnAjI89RE07SAH2tj0pyOV4616WpOxyvH6h/BwcFnTYeJV0FXamoq7du3JywsrNrt8vLy+OWXXxgxYoRXT96jRw+ef/55j9tef/11kpKSGDduHC1btiQqKoodO3aQkpICgM1mIzU1lYkTJwLOkkNBQUHs2LGDgQMHApCdnU1aWpp7m8ro9Xr0+srL4jSVN78ynJ7TZVdQYLFjDHUGl0qpgB1nXonnJPqG/nsG8lgbo+Z0vHKsTVdzOl451ubDq9WLc+fO5ciRI+7fHQ4HN9xwAwcPHvTY7uTJk/z3v//1+snDw8NJTk72+AkNDcVoNJKcnIymaYwZM4alS5eyefNm0tLSePXVVwkNDWXw4MEAREREMGLECBYuXMjOnTs5ePAgL7/8MsnJyR6T65uliEhCNEWYzdnzVF9pIyRHlxBCCFFRrYcXHQ5HvUSr48aNw2KxMH/+fAoLC+nYsSOzZ892T3oHmDRpEkFBQbzwwgvu5KgPPPAAOp3PGTGaFGf9RWfaiJLgUHJL7CTVQwzkkaNLgi4hhBACaOA5XZV5/PHHPX7XNI0JEyYwYcKEKh8TEhLClClTmDJlSoBbdxYqKwWUHh5Tb6WAPNJFxEi6CCGEEAJqkRxVnGWMZsz1nCA1r3zdRenpEkIIIQAJupo8zWg+XfS6nuovypwuIYQQoiKvhxdd6QYAd03DY8eOeWxz9OhRPzZN+IXRjOlU/fZ0lZ/TJUGXEEII4eR10PXqq69WuO3ll1/2a2NEABjNmKzOYLjegq5yc7pkIr0QQgjh5FXQNX369EC3QwSK0YTJug+gYSbSS9AlhBBCAF4GXcOGDQtwM0SgaIZyc7okT5cQQgjRYGQifVPXAKsXT/d0yZwuIYQQwkWCrqaunlcvltocWBzOpLlGbGihoQF/TiGEEOJsIEFXU2c0u+svFlod2ByBrSLg6k0LctgJD5eASwghhHCRoKupi4gk0mFBp5xpPgJdf7H8fC7NINnohRBCCBcJupo4TdMIMpic2eGB3JLArmCUHF1CCCFE5SToag7K6i9C4CfTS44uIYQQonJepYxITU31aafdunWrVWNEgJStYDxK/QVdBmsRREvQJYQQQrh4FXTNnTvXp51+9NFHtWqMCAzNaMZY6FrBGODhRcnRJYQQQlTKq6Brzpw57v8XFxfz9ttvk5SUxKBBg4iKiiInJ4f169dz7Ngxpk6dGrDGiloymjHlOOd0BbqnK6/8nC5jckCfSwghhDibeBV0lR8unD9/Pl27duWOO+7w2GbYsGG8/PLLbNmyhb59+/q3laJuDCZM1kygfud0ESmrF4UQQggXnyfSb9y4kcGDB1d635AhQ9i0aVOdGyX8zGjG5F69KBPphRBCiIbgc9BlsVjIy8ur9L6cnBwsFkudGyX8SzPWX/1FmdMlhBBCVM7noOucc87hww8/JC0tzeP2tLQ0PvroI8455xy/NU74idGMyVoAQF5pPU2klzxdQgghhAev5nSVN3nyZObMmcP9999PmzZt3BPpDx8+jNFoZPLkyYFop6gLo8k9vFivc7okI70QQgjh5nPQlZSUxPPPP8+XX35JamoqJ0+exGg0cuWVVzJmzBiioqIC0ExRJ8Yod/3FvBI7SgWm/qLdoSi0OssNGXV2tBCpvSiEEEK4+Bx0AZjNZiZOnOjvtohAiYjEZC8GwOpQFFkD09tVaLHjCucMofqAPIcQQghxtqpV0AVQVFTEvn37yM/Pp0+fPhgMBn+2S/iRpmmERoQTYrdiCdKTU2QNSP0nV46uCFsxwfJ+EEIIITzUKuhasmQJy5Ytc69UfOqppzAYDDzxxBP07NmTq666yp9tFH6glU2mzwyKJqfYSkwAnkNydAkhhBBV87nDY8WKFSxZsoThw4fz4IMPetx33nnnsXXrVr81TviR0ewMhoCc4sCk9Shfd1FydAkhhBCefO7p+uabbxg7diw33XQTDofD477ExESOHz/ut8YJ/9EMJkylzsn0OUVWCPf/c3jk6JJi10IIIYQHn3u60tPT6dWrV6X3hYeHU1RUVOdGiQAwmt0rGHOKrQF5inyLpIsQQgghquJz0BUREUFubm6l96Wnp2MySQ9Ho1Qu6MoOVNBVWpYuQhKjCiGEEBX4HHR1796dZcuWUVJS4r5N0zTsdjvfffddlb1gooGVKwUU6DldUndRCCGEqMjnOV0TJkzg4Ycf5u9//zv9+/cHnPO8/vzzTzIzM7nnnnv83khRd5rRhLks6MotCkxPV57UXRRCCCGq5HNPV2JiIv/85z9p1aoVK1asAGDdunUYjUbmzp1LixYt/N5I4QfGKHdPV8CGFz3mdEnQJYQQQpTnU0+XxWJh3bp1nHPOOcyePRur1Up+fj4Gg4GQkJBAtVH4g9EU+In0Jc5i2s45XTKRXgghhCjPp56ukJAQ3nnnHfLy8gDQ6/XExMRIwHU2MJoxWVwpIwI1p8sVdBVBpPR0CSGEEOX5PLwYHx9PTk5OAJoiAio8EpPDufghr8SG3eHfotdKKfItZasXgxxoeqm9KIQQQpTnc9A1ZswYPvvsM8nHdZbRdDoMoc7RZAUUWPxb9LrUrrCW5co1hgb5dd9CCCFEU+Dz6sXDhw+Tn5/PzJkz6d69O9HR0R73a5rG5MmT/dZA4T/BBgMGaxEF+gjySu2Y/BgcudJFBDtshEUEIN29EEIIcZbzOehyrVgE2Lx5c6XbSNDVSJmcKxgL9BHklthp7cdpV1J3UQghhKiez0HXRx99FIh2iHqgGZwrGI8TR17ZpHd/KZ+jS4IuIYQQoiKf53SJs1i5UkCuIMlfymejlxxdQgghREUSdDUn5XJ15ZX4OehyJ0aVHF1CCCFEZXweXgRnBvqvvvqKo0ePYrFUzPkkQ5CNlDEKo/UgEOierpZ+3bcQQgjRFPjc0/XLL7/w+uuv065dOywWC8OHD2fQoEGEhYWRmJjItddeG4h2Cj/Qyvd0+XlOV77M6RJCCCGq5XPQ9dlnn3H55Zdz++23AzB69GjuvPNOXnrpJRwOB7GxsX5vpPATw+k5Xbn+Hl6UOV1CCCFEtXwOuo4dO0bPnj3dvzsczoyYUVFRXH311Sxfvtx/rRP+ZTJjsjqT2ub7e3jRY06XBF1CCCHEmXwOuhwOB8HBweh0OkJDQz1KArVo0YKTJ0/6s33Cn4xmTJYCwFkKyJ/yytddNMpEeiGEEOJMPk+kj4+PJysrC4C2bduyfv16+vXrB8BPP/1UIUN9Tb799lu+/fZbMjIyAGjdujXXXnstffr0AZw1/RYvXszKlSspKCigU6dOTJ06lTZt2rj3YbVaWbhwIT/++CMWi4Xu3bszbdo0Geo8U3gkJnsxALn+ntNVXBZ02YogQoIuIYQQ4kw+93R1796dnTt3As46jBs3bmTWrFncc889fPfdd4waNcqn/cXExHDjjTfy1FNP8dRTT9G9e3eeffZZDh8+DMCyZctYvnw5U6ZM4amnniIqKop58+ZRXFzs3seCBQvYvHkzd911F0888QQlJSU8/fTT7qFP4aTpdBjL6i+W2qHU5r+/j3t4MUihBddqUawQQgjRpPn87XjDDTdgtVoBuPDCC9HpdPzwww9omsa4ceMYNmyYT/tz9ZKV3/+3337L77//TuvWrfnqq68YP348AwYMAGDmzJncdtttrF+/nlGjRlFUVMSqVauYNWuWe67ZrFmzmD59Ojt27KB3796+HmKTFhERRrDDhk0XTF6pnbjguqdqszsUhWUdZwYpdi2EEEJUyuegS6/Xo9fr3b8PGDDAHRDVlcPhYOPGjZSWltK5c2fS09PJycmhV69eHs/frVs39u7dy6hRozhw4AB2u91jcn9MTAzJycns27dPgq4z6IwmjNYiskNNzqArUl/zg2pQYDk9Kd8YVvf9CSGEEE1RoxgHSktLY/bs2VitVsLCwrj33ntp3bo1e/fuBcBsNntsbzabyczMBCAnJ4fg4GAMBkOFbcpP8j+T1Wp199gBaJpGeHi4+/9NVlkpoOxQE/mldr8ca4HFOUwZYSsm2GhsNH8/VzsaS3sCrTkdrxxr09WcjleOtfnxOeiaO3dutfdrmsZjjz3m0z6TkpJ47rnnKCwsZNOmTbz66qsez3Pmi6SUqnGfNW2zdOlSlixZ4v49JSWFZ555hri4OJ/afrbJTkjClOZcwaiFG0lMTKjzPtPtOQCYrIWExyUQm5hY5336U0JC3Y/xbNKcjleOtelqTscrx9p8+Bx0KaUqBEF5eXkcO3YMs9lMYi2+cIODg90vRIcOHfjjjz/46quvGDduHODszSq/KjIvL8/d+xUVFYXNZqOgoMCjtysvL48uXbpU+Zzjx49n7Nix7t9dx5SRkYHN5t+VfY2JIyjYmdYBSDt5iuPRNQewNTl4LB9wposoDgrm+PHjdd6nP2iaRkJCAidOnPAqUD/bNafjlWNtuprT8cqx+kdwcPBZ02Hic9D1+OOPV3r7sWPHeO6557juuuvq2iaUUlitVuLj44mKimLHjh2kpKQAYLPZSE1NZeLEiQC0b9+eoKAgduzYwcCBAwHIzs4mLS3NvU1lzpybdubzN1kGM2brUcCZq8sfx+qRo8tganR/P6VUo2tTIDWn45Vjbbqa0/HKsTYfdV+6ViYpKYkrrriC999/36fHLVq0iN9++4309HTS0tL48MMP2b17N0OGDEHTNMaMGcPSpUvZvHkzaWlpvPrqq4SGhjJ48GAAIiIiGDFiBAsXLmTnzp0cPHiQl19+meTkZI/J9aKM0ezu6fJXKaDTJYAkG70QQghRFb9OpI+Pj3fn1/JWbm4ur7zyCtnZ2URERNC2bVtmz57tDpjGjRuHxWJh/vz5FBYW0rFjR2bPnu2e9A4wadIkgoKCeOGFF9zJUR944AF0Or/FlE2GZjSXK3rt36DLIMWuhRBCiCr5NeiqTUb66dOnV3u/pmlMmDCBCRMmVLlNSEgIU6ZMYcqUKT49d7NkNGGyOIOufD9lpT9dd1GKXQshhBBV8Tnoeu211yrcZrPZOHToEEeOHOGmm27yS8NEgBij3D1duX6qv3h6eLEIDFICSAghhKiMz0HX7t27K9wWEhJCXFwc48ePd8+1Eo1URCTGsvqL/ip6nVciPV1CCCFETXwOul599dVAtEPUE02nI7qs/mK+ReFQCl0dk9XllziTzDqLXRtq2FoIIYRonmSmeTMUZQgFwAEUWupe9No9vBgMWpDUXhRCCCEq43NPV2pqqk/bd+vWzdenEAEWajYTbiuhODiMvFI7xjoUqVZKkW91ABrGEAm4hBBCiKr4vQzQmT766CNfn0IEmM4cham0sCzostGKkFrvq8SmsCnn8KQxvFGU8hRCCCEaJZ+/Je+//37efvttkpKSGDRoEFFRUeTk5LB+/XqOHz/O5MmTiYiICERbhZ8EmaIxHSvkZHisexJ8bbmGFvUOK6GR8roLIYQQVfE56Pr111/p2rUrd9xxh8ftw4YN4+WXX2br1q3cfvvtfmug8D9dVAzGQ/5JkFo+R5dOVi4KIYQQVfJ5Iv3GjRurTAsxZMgQNm3aVOdGicAKMkdh9lNWesnRJYQQQnjH56DLYrGQl5dX6X05OTlYLJY6N0oEls4c7ayTSN2DrrxSydElhBBCeMPnoOucc87hww8/JC0tzeP2tLQ0PvroI8455xy/NU4ERpA5plz9xbolSD1dd1GKXQshhBDV8XlO1+TJk5kzZw73338/bdq0cU+kP3z4MEajkcmTJweincKPdOZod/3FOk+kLzenSzO0rXPbhBBCiKbK56ArKSmJ559/ni+//JLU1FROnjyJ0WjkyiuvZMyYMURFRQWgmcKfdGb/1V/Ml+FFIYQQwiu1SqxkNpuZOHGiv9si6onOYCpXf9Fap31J0CWEEEJ4p87ZLI8cOcKRI0eIjo6mS5cu/miTCDBNp8OsdyY0zS+tWxmg03UXC8EoQZcQQghRFa+Crs2bN7Njxw6mTZvmcfvbb7/NihUr3L93796dBx98EL1e799WCr8zhjlf+iI7WO0O9EG1K8OZX+wKukogPNJv7RNCCCGaGq++adesWVMhTcSWLVtYsWIFrVu3ZtKkSYwcOZJdu3axfPnygDRU+JchMgydcg4N1iVthDtlRJBC00n9dCGEEKIqXvV0HTp0iGuuucbjtnXr1hEcHMzDDz9MbGys+/aNGzdy1VVX+bWRwv90RjNGaxG5IUbyS+3ERtSud9Jd7DpUAi4hhBCiOl59U+bl5REfH+9x265du+jcubNHwHXeeedx4sQJ/7ZQBIbRfHoFYy17uuwORZG9rNh1mAwpCyGEENXxKujS6/XYbKdTC2RkZFBQUECHDh08tjMYDB7bicZLM5qcKw6pfa4uV44uTTmIjAj1W9uEEEKIpsiroKtly5akpqa6f9++fTtAhezz2dnZmEyygu2sYIzCZC0Aaj+ny5UuItJWQrCsXBRCCCGq5dWcrhEjRrBgwQJCQkKIiopi8eLFmEwmevXq5bFdamoqSUlJAWmo8DOjCZPVORRc21JAHjm6YqXYtRBCCFEdr4Ou3bt3s3jxYgAiIiK46667PFJDlJSUsGHDBsaOHRuYlgq/0srN6aprT5fUXRRCCCFq5lXQFRQUxN13382NN95IQUEBrVq1IjS04hye2bNnk5CQ4PdGigAwmjFZ6ji8aJFs9EIIIYS3fMpIHx8fX2EVo0tYWBjt27f3S6NEPShLGQGQW1y74cW8csOLWmRrvzVNCCGEaIokuVJzFWHAbHcGXfnFllrtwrPuoszpEkIIIaojQVczpel0GIOc/69tni530CV1F4UQQogaSdDVjJnCnaPL+VaFUsrnx7uLXcucLiGEEKJGEnQ1Y6ayLPI2pVFsc/j8+NPFroul2LUQQghRAwm6mrEwo4FQu3M+V24tstLnlzgn4Bv1Gpqm+bVtQgghRFMjQVdzZjRjrEOurnyLs3fMGCJvIyGEEKImPqWMALDZbCxbtoz169eTmZmJxeK58k3TNP73v//5rYEigIxmzHmFZIZFuyfFe0spRX5ZpgljqM9vIyGEEKLZ8fnbctGiRSxfvpw+ffpw/vnne2SlF2cZo8nd05Vb4luurmKbAxvOIUWjFLsWQgghauRz0LVx40auvfZarrvuukC0R9QjzRiFyfon4PvwoqtnLMRuJcwQ4e+mCSGEEE2Oz5NxCgsL6dq1ayDaIuqb0YTJUrs5XfmlzvlcUndRCCGE8I7PQVfXrl35888/A9AUUe/qUPRa6i4KIYQQvvE56Jo8eTKrV69m06ZN2Gy1q9knGonyqxd9rL/oWQJIgi4hhBCiJj7P6br//vux2+38+9//RtM0QkMrTqJ+9913/dI4EWARBsw2Z/3FPB/rL5YPujRDot+bJoQQQjQ1PgddAwYMkESYTYSm02EMdpb/yfNx9eLpuovS0yWEEEJ4w+ega+bMmYFoh2ggplBn1es8i29lgPLcc7oKwWD0e7uEEEKIpkZSiTdzpnBnnrUCu4bd4X3R6/wi53Ck0VoERunpEkIIIWpS61TiaWlpHD16tEJGeoChQ4fWqVGi/hgjw9GUA6XpyC+1ExXu3Vsiv2wOmNFeAqHhgWyiEEII0ST4HHSVlpby7LPPsmvXriq3kaDr7BFkNBJpKaZAH0meL0GXq9h1MDLHTwghhPCCz8OLn3zyCenp6Tz++OMA/OMf/+CRRx5hwIABJCYm8swzz/i7jSKQjFGYa5Gry52nK0QCLiGEEMIbPgddP//8M+PGjaNLly4AtGjRgh49evD3v/+dlJQUvv32W783UgRQ+fqLpd6vYJRi10IIIYRvfP7GzMjIoFWrVuh0znit/JyuIUOG8Prrr3P77bd7vb+lS5eyefNmjh49SkhICJ07d+amm24iKSnJvY1SisWLF7Ny5UoKCgro1KkTU6dOpU2bNu5trFYrCxcu5Mcff8RisdC9e3emTZtGbGysr4fYrGhGMybrcQDySrzr6bI5FEUO5+tvDA8JWNuEEEKIpsTnnq7IyEhKS0sBMJvNHD9+3H2fzWZz3+et1NRULrnkEp588kkeeeQRHA4H8+bNo6SkxL3NsmXLWL58OVOmTOGpp54iKiqKefPmUVxc7N5mwYIFbN68mbvuuosnnniCkpISnn76aRwO31IhNDtGs7v+Yr6Xw4sFZdtpykGkUSbRCyGEEN7wOehKTk7m2LFjAJx77rksXbqUPXv2sH//fj755BPatm3r0/5mz57NsGHDaNOmDe3atWPGjBlkZmZy4MABwNnL9dVXXzF+/HgGDBhAcnIyM2fOpLS0lPXr1wNQVFTEqlWruOWWW+jZsycpKSnMmjWLtLQ0duzY4eshNi/l6i/mehl0uXJ0RdqKCZLEqEIIIYRXfB5eHD58OCdOnADghhtu4NFHH2XOnDmAsxfsoYceqlODioqcZWkMBgMA6enp5OTk0KtXL/c2er2ebt26sXfvXkaNGsWBAwew2+307NnTvU1MTAzJycns27eP3r17V3geq9WK1Wp1/65pGuHh4e7/N1WuY3Mfo9HszLWFMyu9N8deUJZI1VkCyNRo/14VjrWJa07HK8fadDWn45VjbX58DroGDhzo/n98fDwvvfQSu3btQtM0unTp4g6WakMpxbvvvss555xDcnIyADk5OYBzKLM8s9lMZmame5vg4OAKz202m92PP9PSpUtZsmSJ+/eUlBSeeeYZ4uLiat3+s0lCQgIAqmVLTGX1F0ttisTEmuso7i3IAJxBV1TrZCK9eExDch1rc9GcjleOtelqTscrx9p81HnpWVhYGP369fNHW3jrrbdIS0vjiSeeqHDfmdGxUjVnT69um/HjxzN27NgK+8/IyMBm860O4dlE0zQSEhI4ceKE++9jCnL+m5Fb6DFHryqHTuQAzrqLOTYHeV48piFUdqxNWXM6XjnWpqs5Ha8cq38EBwefNR0mtQq6rFYra9asYffu3eTn5zNt2jQSExP5+eefSU5OpmXLlj7v8+2332bLli3MnTvXY8VhVFQU4OzNio6Odt+el5fn7v2KiorCZrNRUFDg0duVl5fnTm1xJr1ej16vr/S+pv7mB+cxuoOuUGfAmVfq8OrY3YlRy+ouNva/V/ljbQ6a0/HKsTZdzel45VibD58n0ufl5fHggw8yf/58fvvtN3bt2uVeRfjzzz/zxRdf+LQ/pRRvvfUWmzZt4rHHHiM+Pt7j/vj4eKKiojwmxNtsNlJTU90BVfv27QkKCvLYJjs7m7S0NDp37uzrITY7pjBn8JnnZQefK4mq0VoEMpFeCCGE8IrPPV3vv/8+RUVFPPXUU7Rt25Ybb7zRfd+5557LsmXLfNrfW2+9xfr167n//vsJDw93z8GKiIggJCQETdMYM2YMS5cuJTExkYSEBJYuXUpoaCiDBw92bztixAgWLlyI0WjEYDCwcOFCkpOTPSbXi8qZI5y5tixKo8TmICy4+ljcXXdRgi4hhBDCaz4HXVu3bmXixIm0b9++Qg6s2NhYTp065dP+XBnsXWWFXGbMmMGwYcMAGDduHBaLhfnz51NYWEjHjh2ZPXu2e7UhwKRJkwgKCuKFF15wJ0d94IEH3ElcRdXCDJHoHVasOj15JXbCDDUEXUXOXGxGVQohofXRRCGEEOKs53PQVVxcXOWENZvN5nMy0o8//rjGbTRNY8KECUyYMKHKbUJCQpgyZQpTpkzx6fmFMyu9MbOQrNAo8krtxBsqn+vmkl/iTLVhDJLlv0IIIYS3fO4Gio+PZ9++fZXet3//fo/yPeIsYTJjcuXq8qL+Yn5pWZ4uKXYthBBCeM3noGvw4MEsW7aMn3/+2b0CQdM09u/fz9dff82QIUP83kgRWJrRjMlSAJyeJF+dfJvzdTeEBgW0XUIIIURT4vPw4rhx49i7dy/PP/88kZGRADz55JPk5+fTu3dvxowZ4/dGigAzmDFZDwOQW0PRa6UU+XZnrG6SYtdCCCGE13wOuoKDg3nooYfYsGEDW7duJTc3F6PRSN++fRk4cKBMXD8bGU3OnFvU3NNVbHNgxzmsaIyQSfRCCCGEt2qVHFXTNAYNGsSgQYP83R7REIxRmF1BV7G12k3zy4KyELuF0Kjal3wSQgghmhvplhIQacBYVn8xr7C02k0lMaoQQghRO171dM2dO9frHWqaxmOPPVbrBon6p+l0mIKcKxLzSizVbuvq6TLaJOgSQgghfOFV0JWamkp4eLhHTUTRtJj0rvqL1c/pcgdd1kI0Q5uAt0sIIYRoKrwKuuLj40lPTyciIoLhw4czcOBAwsLCAt02UY9MYc63Ql71U7rIt8jwohBCCFEbXgVdL7/8MqmpqaxatYp33nmHd999lwsvvJDhw4e7i06Ls5sp3JmFvsCuYXcognSVJz7NKykfdBnrrX1CCCHE2c7r1YvdunWjW7duTJkyhfXr17NmzRoee+wxkpKSGD58OBdddBFRUVEBbKoIJJPBWcfSgUah1YGpisSn7rqLtiKIlJ4uIYQQwls+p4yIiIhg9OjRjB49mrS0NL777js+/PBD9u3bx7333huINop6EGw0EZFdTFFwOHkltpqDLkcpWqjk6RJCCCG8VeuUEUeOHGHt2rX89NNPKKWk5uLZzmjG5EWCVFexa4NUABJCCCF84lNPV0lJCevXr2f16tXs37+fli1bctlllzFs2DBiYmIC1UZRDzSTs/7iifAW1QddpXYgCKNeil0LIYQQvvA6ZcSqVavYtGkTAAMGDGDixIl069YtoI0T9chgxmQ9CdTQ02V1Frs2SrFrIYQQwideJ0cNDw9nyJAhDBo0iPBw56TrAwcOVLp9+/bt/ddCUT/K11+spuh1vt3Zw+Va7SiEEEII73g9vFhcXMzKlStZuXJljdt+9NFHdWqUaABGs7v+Ym4V9RetdkWxcvZwGSMlT5sQQgjhC6+CrunTpwe6HaKhedRfLKl0k4KyxKg65SCyLMWEEEIIIbzjVdA1bNiwADdDNDRNF4RJV1Z/sbjy+ouuEkCRtmJ0ko1eCCGE8EmtU0aIpscU7Jwkn19iq/T+03UXpQSQEEII4SsJuoSbq/5irkVVen+epXyxaykBJIQQQvhCgi7hZgpzrkjMs1eeg8ujp8soPV1CCCGELyToEm5mg3NFYonSYbE7KtzvGnY02mR4UQghhPCVBF3CLcIQiU45e7MqS5DqWtVosEqxayGEEMJXEnQJN81kxmQtSxtRSYJUd7FrZUHTS3JUIYQQwhcSdAk3zWjCZCkAKu/pyi9LmmoMqnyivRBCCCGqJkGXOM1YrqersqCrtGxOl09l0oUQQggBEnSJ8oxmTFZXT1fFXF3uYtdhUuxaCCGE8JUEXeI0o/l00eviSoIuW1mx6zCZzyWEEEL4SoIucVqkAVNZ/cXcgmKPu5RSFCjn28UYEVrvTRNCCCHOdhJ0CTdNF4RJK0sZUbZS0aXI6sBe9nYxSrFrIYQQwmcSdAkP7vqLZwwvurLRh9othBilBJAQQgjhKwm6hAdjqHOSfK7FMyN9vkfdRUmMKoQQQvhKgi7hIaqs6HX+GfPoPeouStAlhBBC+EyCLuHBGOmsv5jnCEKp00lQXXm7nHUXZXhRCCGE8JUEXcKDqazotR2NQuvpIUZXsWuD9HQJIYQQtSJBl/AQYjITZnOuXMwvl5U+v9CZQsJoLYRI6ekSQgghfCVBl/CgGU2YyhKk5paUD7rKil1jQwuWOkBCCCGEryToEp7KZ6UvVwoov9jivFtXsSajEEIIIWomQZfwZDBjdgddpwOsvLI5XUa91iDNEkIIIc52Mk4kPJlO93TlFlvdN+dbyopdh0icLoRo/Gw2G0VFRQ3djBoVFxdjsVgauhn1oi7HGhERQXATmNpy9h+B8K9y9RfzytVfzC/r9JJi10KIxs5ms1FYWIjRaESna9wXinq9HqvVWvOGTUBtj9XhcJCfn09kZORZH3g17nejqHeaLggTzg+Fa/I8QL7DmaneGBHSIO0SQghvFRUVnRUBl/COTqfDaDSeFT2XNZF3pKjAVHYhkVvk7Aa22hUllAVdZclThRCiMZOAq2lpKq9n0zgK4VfGEOdk+byy+ouuuos65SDCaGiwdgkhhBBnswYfHE1NTeXzzz/n4MGDZGdnc++999K/f3/3/UopFi9ezMqVKykoKKBTp05MnTqVNm3auLexWq0sXLiQH3/8EYvFQvfu3Zk2bRqxsbENcUhnPXOYs1cr3+qcPO9KkmqwFhFklGz0Qghxtrj22mvp1q0bTzzxREM3RdAIerpKS0tp164dU6ZMqfT+ZcuWsXz5cqZMmcJTTz1FVFQU8+bNo7j49CTvBQsWsHnzZu666y6eeOIJSkpKePrpp3E4HJXuU1TPFOEcQsy1O98e+R51FyXoEkI0D8phR+3diWPTWtTenShH4PIUtmrVqtqfu+++u1b7ffPNN7n//vvr1La7776bVq1a8cADD1S476GHHqrQvszMTO6//37OP/98UlJS6N27NzfeeCM///yze5sBAwZUepyvvPJKndra2DV4T1efPn3o06dPpfcppfjqq68YP348AwYMAGDmzJncdtttrF+/nlGjRlFUVMSqVauYNWsWPXv2BGDWrFlMnz6dHTt20Lt37/o6lCbDFBnK/2/vzqOiuvIEjn+roNi3QhZFRUHBfQG72zVxO2o6cWmNLRLNpJNoEjEuyThROxqXxHaJwWVUHJeZUbttcYnExHiyjBo1aZcoUSOJpN13QCnZhaJq/qCp+KCqAIGCKn6fczzy3rvvvfurS1X9uO+++8iFPJzRG4yKni68w+q4dkIIUfuMZ77DsGMjZN4vWQbQNkI9diKq6F41fr7k5GTTz/v27WP58uUcOXLEtM7NTTmetqioCI2m4rvJtVptjdQvJCSEffv2MX/+fNzd3QEoKCjgk08+oWnTpoqyEydOpKioiJUrV9KiRQvS09M5duwYOp1OUW7GjBmMGzdOsc7Ly7GHsNR50mVNWloaOp2OLl26mNZpNBrat2/PxYsXGTRoEJcvX6a4uNiUcAH4+/sTGhpKamqqxaSrqKhIceuqSqUy/SKpVI47AWhpbNZi9PLxRp1jwKBSk1NoILug5HXyLspD5e1rN69PZWJ1JA0pXonVcdWHeI1nvsOQsKT8hsz7GBKWoJ40q8YTr6CgINPP3t7eqFQq07obN24QFRVFQkICW7du5cyZMyxevJhBgwYxZ84cTpw4gU6no2XLlkyZMoU//OEPpmOVvbzYvXt3xo0bx9WrV/nss8/w9fVl2rRpjB8/3mr9OnXqxPXr1zlw4ACjRo0C4MCBA4SEhBAaGmoq9/DhQ06ePMnu3bvp2bMnAM2aNSMqKqrclBFeXl6KuCvD3t8H9TrpKs2KfX19Fet9fX3JyMgwlXF2di6XHfv6+pbLqh+3d+9edu/ebVoOCwtj6dKlBAYG1kzl67nGjRtb3JbXogVe1/LIcvHCxVuLkRyg5PJik1atUTnV61+bcqzF6ogaUrwSq+OqTrz5+fmKXiCj0QiFj6zs8SujoZjCHRutljHs2IRL59+gUjtVfEAX1woThbI9VqVzUZWuL11evHgx8+fPp1OnTri6umIwGOjatStTp07F29ubr7/+mqlTpxIeHk63bt2AkiTFycnJdCyVSsWGDRuYOXMmb731Fp999hmzZ8+mT58+REREmK2fWq1GpVIRGxvLzp07iYmJASAxMZEXXniBb7/9FrVajUajwc/PD09PT7766iu6d++Oq6ur2VjL1qsyXFxcaNKkSaXL10d28e1Z9hfWaDRWuE9FZUaOHMnQoUPLnSM9PR29Xm9pN7unUqlo3Lgxd+/etfgaGfRGvItyyXLx4tLNu9y+V5LgehuLuJuWbsvqVktlYnUkDSleidVx1US8hYWFih4V46MCDG+OqakqQmYGhZNGV6qoes1OVK6Wp9oxN2Fo6XdQ6frS5VdffZUhQ4Yoyr722mumn1966SW+/vprkpKSTFd/jEYjxcXFpmMZjUb69+/Piy++CMAbb7zB+vXrOXLkCC1btjRbR4PBgNFoZOTIkSxatIjLly+jUqk4deoU69at49ixYxgMBtM5VqxYwTvvvMOWLVvo2LEjPXr0YMSIEXTp0kVRj/fff5/FixcrzrVlyxZ69TLfi1hYWMidO3fKrXd2drabDpN6nXT5+fkBJb1Zj1+XzsrKMvV++fn5odfrycnJUfR2ZWVl0aZNG4vH1mg0FjPshvDBZjQaLcfp5YNv0XVuUfLMxey8R4Aab7XBLl8bq7E6oIYUr8TquBpavJXx+FAbgOLiYtasWcOnn37KnTt3KCwspLCwEA8PD6vHad++velnlUpFYGAg9+/fr/D8/v7+DBw4kF27dmE0GhkwYAD+/v7lyj333HMMHDiQkydPcvr0aQ4dOkRCQgIrVqzg+eefN5V74403GDNGmQxX1MNp778T9TrpCgoKws/Pj3PnzhEWVjKAW6/Xk5KSYhp8Fx4ejpOTE+fOnTNlx5mZmVy/fr3cAD1RSd4+pucv6vKLyC7QAy54yxOAhBD2yMUV9ZqdlSpqTL2AcfWCCsupps5DFdmhUueuKaXjjkv913/9Fxs3bmTBggW0bdsWDw8P5s2bV+Gjdso+SkelUlX6bv+YmBjmzJkDwKJFiyyWc3Nz4+mnn+bpp5/mrbfeYsaMGSxbtkyRdPn7+5u+2xuKOk+6CgoKuHv3rmk5LS2Nq1ev4uXlRUBAAM8++yx79+6lSZMmNG7cmL179+Lq6kqfPn2AkodgDhgwgG3btuHt7Y2Xlxfbtm0jNDRUMbheVIGXNz5FJY9byM7JM02SKg+7FkLYI5VKBVYu8Sl06IpR28h016JZ2gBUHbpWbkxXLTpx4gRDhgwxJTIGg4ErV65YHJtVE/r3729K6vr161fp/SIiIvjiiy9qqVb2o86TrkuXLrFgwa9/VWzduhWAvn37MnnyZEaMGEFhYSGbNm0iNzeX1q1b8+677yoy/pdeegknJydWrFhhmhx15syZDvPYAFtTqZ3wUZW8qbJyCsj+1xA3H7e6/YARQojaplI7oR470fzdi/+iHjuhzhMugJYtW/L5559z6tQp/Pz82LBhA+np6bWadDk5OXH48GHTz2U9ePCA119/nbFjx9KuXTu8vLw4e/YsCQkJPPPMM4qyOTk5pKWlKda5u7vj7e1da/Wva3WedHXo0IGdOy13+6pUKsaMGVPuuu/jXFxceOWVVyxOsCqqzsep5Lp5Vl4h2YaS5NXbvea6yYUQor5SRfdCPWmWYp4uALQBJQlXLczT9SSmT5/OjRs3GDduHO7u7owbN44hQ4aQnZ1dq+e1lhR5enoSHR3Nxo0buXbtGkVFRYSEhPDCCy/w9ttvK8ouX76c5cuXK9aNHz+epUuX1kq96wOV0d5HpdWw9PT0Cq+H2zOVSkWTJk24c+eO1QGJB9dsZJX2KTp7FPJjrjMGlZrN2osEPDvChrWtnsrG6igaUrwSq+OqiXizsrLw8an+0zOMhmL4JQWj7gEqP3+IaF/jPVzm7l50VNWN1VK7ajQauXtR2Ddv15IPlruPVBhU/+rp8rZ+R4wQQjgSldoJ2nTCvqfjFPWJDHoSZvl6uACQXlySl7sVP8LFga+zCyGEELVNki5hVulDr43/+hvPq0gedi2EEEJUhyRdwiwfH+WlRG9JuoQQQohqkaRLmOXq7YNL8a8DHr2LciXpEkIIIapBki5hltrHB5+iHNOytz4fPDzrsEZCCCGEfZOkS5jn7VdySbF0kaJ6MRmgEEIIYa8k6RLmefvg86/nLwJ4q4vrsDJCCCGE/ZOkS5jn5a1MumRGNyGEEKJaJOkSZqnUTvjw2EB6jfyqCCGEENUh36TCIk8ng+nn+26+FBsc/xEkQghRqthg5Py9XI5czeL8vdxa/Qxs2rSp1X/Tp09/4mN3796djRs3Vqpc06ZN+eSTT8pt69+/P02bNiUxMdG07scff+Tf/u3f6Ny5M+Hh4XTv3p033niDBw8eAHDjxg1FDEFBQaafT58+/cTx2DO5aCTM+sf1bPb7R5mW/+oUyYFPLjGxWzA9Q2VmeiGEY/vH9Ww2nr7H/Ty9aV0jD+da+wxMTk42/bxv3z6WL1/OkSNHTOvc3Nxq/JzmhISEkJiYyIgRvz5n9/Tp06SlpeHh8ev8jRkZGcTExDBo0CC2b9+Oj48P169f58svvyQ/P19xzB07dtCmTRucnZ3R60teT61Wa5N46hvp6RLl/ON6NkuO3iJX5aJYfz9Pz5Kjt/jH9dp9gr0QQtSl0s/AxxMuqN3PwKCgINM/b29vVCqVYt3x48d55plnCA8Pp2fPnsTHx5sSGICPPvqI3/72t4SFhREdHc3cuXMBGD16NDdv3mT+/PmmXiZrRo0axfHjx7l165ZpXWJiIqNGjcLZ+dd+mu+//56cnByWL19Ox44dCQ0NpU+fPixcuLDcObRaLUFBQQQHB5vi0Wg0NfGy2R1JuoRCscHIxtP3ShZU5h/zuun0PbnUKISwG0ajkQK9oVL/8gqL2fD9PavH2/j9PfIKiyt1PKOx+p+Vhw8fZurUqbzyyiscOnSIpUuXsnPnTlavXg3AZ599xsaNG1m6dCnHjh1j8+bNtG3btqSuGzfSpEkTZsyYQXJysqJHzZyAgAD69u3Lrl27AMjPz2ffvn3ExMQoygUGBqLX6zlw4ECNxNhQyOVFoZCSnlfur7uyMvL0pKTn0SlYJksVQtR/j4qNxCSm1tjx7ufrid31S6XKJsZE4uZs/g/Yylq9ejWTJ09mzJgxALRo0YL/+I//YNGiRbz99tvcunWLwMBAnnrqKTQaDU2bNiUqqmR4iFarxcnJCS8vL4KCgip1vrFjx7Jw4UKmTZvGZ599RosWLejYsaOiTLdu3ZgyZQpvvvkms2bNIioqit69ezN69GgCAwMVZUeMGIFarezj+fnnn3FyanhzP0rSJRQy8ys3H1dlywkhhKiec+fOcfbsWVPPFoDBYKCgoID8/HyGDh3Kpk2b6NmzJ/3792fAgAEMGjRIcTmwKgYOHMjMmTM5fvw4iYmJjB071my5WbNm8dprr/Htt99y5swZtm3bxn/+53+yZ88e2rVrZyqXkJBARESEYkxXQ0y4QJIuUYbWvXJvhMqWE0KIuubqpCIxJrJSZS+k5bHw0M0Ky73XvxkdgjwqLOfqVL1eLii5PPrv//7v/P73vy9/fFdXmjZtypEjRzh69ChHjx7lz3/+MwkJCezZs+eJxk45Ozvz/PPP89FHH5GcnMymTZsslvX392fYsGEMGzaM2bNnM2TIENavX8+qVatMZUJCQggLC0Oj0VBUVGTxWA2BJF1CoV0jVxoVZnFf421+TJfRSKOibNo1crV95YQQ4gmoVKpKX+Lr2tiTRh7OVodZBHg407WxJ07q6idUldGxY0cuXbpEWFiYxTLu7u4MHjyYwYMH89JLL9G3b19+/vlnOnXqhEajobi4alcnxo4dy/r16xk+fDh+fn6V2sfFxYUWLVqQl5dXceEGSpIuoeB06SdeTU1iWYcXwWhUJl7/Giz5amoSTpfcoU2nOqqlEELUDie1iondglly9JbFMhO6Bdss4QJ46623eOmllwgJCWHo0KGo1WpSUlL4+eefmTlzJomJiRgMBqKionB3d2fPnj24ubmZ7iJs3rw5J06cYMSIEbi6uuLv71/hOSMiIjh//jzu7u5mt3/11Vfs27eP4cOHEx4ejtFo5Ouvv+bgwYPEx8crymZmZpKWlqa4vOjj42OzaTDqE0m6hIJR94AeGT/yzoVtbG49nPtufqZtjR7pePWfn9Ij40eMugfY7iNHCCFsp2eoN7Oealpunq4AD2cm1MFchf369WPLli2sWLGCdevWodFoaN26NbGxsQD4+vqyZs0aFixYQHFxMW3btuV///d/TcnVjBkzmDlzJr179+bRo0eK6SCssZacRUZG4u7uzsKFC7l9+zaurq6EhYXx4YcfMnr0aEVZc2PC1q1bp5gLrKFQGeVeT4X09HSHvuasUqlo0qQJd+7cMXubr/HieQzL3wWgGBU/+YWR6eKDtjCLdrorOFGyj3rGIlT1vKerolgdTUOKV2J1XDURb1ZWFj4+PtWuS7HBSEp6Hpn5xWjdnWgf6FHjPVwNaZxTdWO11K4ajabcHZP1lfR0CaWI9qBtBJn3ccJIR93l8mW0ASXlhBDCgTmpVTI1jqhRMjmqUFCpnVCPnWi1jHrsBFRquXtRCCGEqApJukQ5quheqCfNKunxepw2APWkWaiie9VNxYQQQgg7JpcXhVmq6F6ou3aHX1JKBs37+UNEe+nhEkIIIZ6QJF3CIpXaCdp0krsUhRBCiBoglxeFEEIIIWxAki4hhBAOx2Aw1HUVRA1ylPaUpEsIIYRD8fDwIDs722G+qBs6g8FAdnY2Hh4VP+uyvpMxXUIIIRyKs7Mznp6e5OTk1HVVKuTi4kJhYWFdV8MmqhOrp6cnzs72n7LYfwRCCCFEGc7OzjUyK31takhPG2hIsVojlxeFEEIIIWxAki4hhBBCCBuQpEsIIYQQwgYk6RJCCCGEsAEZSF+GI9wdURkNJU5oWLFCw4pXYnVcDSleibX+HbO2qIwN+TYCIYQQQggbkcuLDUx+fj4zZ84kPz+/rqtS6xpSrNCw4pVYHVdDildibXgk6WpgjEYjV65caRDzpDSkWKFhxSuxOq6GFK/E2vBI0iWEEEIIYQOSdAkhhBBC2IAkXQ2MRqNh9OjRaDSauq5KrWtIsULDildidVwNKV6JteGRuxeFEEIIIWxAerqEEEIIIWxAki4hhBBCCBuQpEsIIYQQwgYk6RJCCCGEsAH7eWCRqNDevXs5efIkt27dwsXFhcjISMaPH09ISIjFfS5cuMCCBQvKrV+xYgVNmzatzepWy86dO9m9e7dina+vLxs3brS4T0pKClu2bOHmzZtotVqGDx/O4MGDa7uqNWLy5Mmkp6eXWz948GAmTJhQbr09tWtKSgr79u3jypUrZGZmMmPGDH73u9+ZthuNRnbt2sX//d//kZOTQ0REBK+++irNmze3etzjx4+TmJjIvXv3CA4OJjY2VnHcumAtVr1ez44dO0hOTiYtLQ0PDw86derECy+8gL+/v8VjHj58mHXr1pVb/9e//hUXF5dai6UyKmrbtWvX8s033yj2iYiIYNGiRVaPa29tCzBmzBiz+40fP57hw4eb3VZf27Yy3zWO9L6tSZJ0OZCUlBSGDBlCq1atKC4uZseOHXzwwQfEx8fj5uZmdd+VK1fi4eFhWvbx8ant6lZb8+bNmTt3rmlZrbbccZuWlsbixYsZOHAgU6ZM4eLFi2zatAkfHx969Ohhi+pWy+LFizEYDKbl69ev88EHH9CzZ0+r+9lDuz569IiWLVvSv39/Pvroo3LbP/nkE/bv309cXBxNmjTh448/5oMPPmDlypW4u7ubPWZqaiorV64kJiaG3/3ud5w8eZIVK1awcOFCIiIiajski6zFWlhYyJUrV3j++edp2bIlOTk5bNmyhWXLlrFkyRKrx3V3d2fVqlWKdXWdcEHFbQvQtWtX4uLiTMsVPbzYHtsWYMOGDYrl5ORk1q9fT/fu3a0etz62bWW+axzpfVuTJOlyIO+++65iOS4ujgkTJnD58mXat29vdV9fX188PT1rs3o1Tq1W4+fnV6myX375JQEBAfzpT38CoFmzZly6dIlPP/3ULpKusslSUlISwcHBDtGuUVFRREVFmd1mNBr5/PPPGTlypOnLafLkyUycOJFjx44xaNAgs/vt37+fzp07M3LkSABGjhxJSkoK+/fvZ/r06bUSR2VYi9XDw0PxRwTAyy+/zJ///GcyMjIICAiweFyVSlXp94ItWYu3lLOzc5Xqbo9tC5SL8dSpU3To0IHg4GCrx62PbVvRd42jvW9rkiRdDiwvLw8ALy+vCsu+8847FBUV0axZM0aNGkXHjh1ru3rVdvfuXV5//XWcnZ2JiIggNjbW4gfYL7/8QufOnRXrunbtyqFDh9Dr9RX+dV2f6PV6jh49ynPPPYdKpbJa1h7b9XFpaWnodDq6dOliWqfRaGjfvj0XL160+OGdmprKc889p1jXpUsXPv/881qtb03Ly8tDpVIpeivNKSgoIC4uDoPBQMuWLYmJiSEsLMxGtayelJQUJkyYgKenJ+3atSM2NhZfX1+L5R2hbXU6HcnJyUyePLnCsvbQtmW/axr6+9Ya+/mmEVViNBrZsmULbdu2JTQ01GI5rVbLa6+9Rnh4OHq9niNHjvD+++8zb968CntR6lJERASTJ08mJCQEnU7Hxx9/zJw5c4iPj8fb27tceZ1OV+6D3NfXl+LiYrKzs9FqtbaqerWdPHmS3Nxc+vXrZ7GMvbZrWTqdDsBs22VkZFjdr2zvgJ+fn+l49qCwsJDt27fTu3dvq0lXSEgIcXFxhIaGkp+fz+eff87cuXP58MMPadKkiQ1rXHVRUVH07NmTgIAA0tLSSExMZOHChSxZssTizOWO0LbffPMNbm5uFY5Vsoe2Nfdd05DftxWRpMtBbd68mevXr7Nw4UKr5UJCQhSDHyMjI8nIyODTTz+t11/Oj3fjh4aGEhkZyZQpU/jmm28YOnSo2X3K9gqVPoyhot6i+ubQoUN07drV6uBqe21XSyy1XVUYjUa7aWu9Xs/KlSsxGo1mb5R4XGRkJJGRkablNm3aMHPmTA4cOMArr7xS21Wtll69epl+Dg0NpVWrVsTFxXHmzJkKxzo9zp7aFkrew0899VSFY7PsoW2tfdc0tPdtZciUEQ7ov//7vzl9+jTz5s2jUaNGVd4/MjKSu3fv1kLNao+bmxuhoaHcuXPH7HZzfy1lZWXh5ORUqcuv9UV6ejrnzp1j4MCBVd7XHtu19K9ec21n7RKUufZ++PCh1X3qC71ez4oVK0hPT2fOnDkVXlosS61W06pVK7trayjpoQ0MDLT4Pgb7bluAn376idu3bzNgwIAq71vf2tbSd01DfN9WliRdDsRoNLJ582ZOnDjBe++9R1BQ0BMd58qVK/Vu4GZFioqKuHXrlsXLhBEREZw7d06x7uzZs4SHh9vVeK5Dhw7h6+tLdHR0lfe1x3YNCgrCz89P0XZ6vZ6UlBTatGljcb/IyEjOnz+vWHfu3DlFr0F9VJpw3b17l7lz55q9VF4Ro9HItWvX7K6tAbKzs7l//77Vy/322ralDh48SHh4OC1btqzyvvWlbSv6rmlo79uqkKTLgWzevJmjR48ybdo03N3d0el06HQ6CgsLTWW2b9/OmjVrTMv79+/n5MmT3Llzhxs3brB9+3ZOnDjBM888UxchVNrWrVtJSUkhLS2NX375hY8++oj8/Hz69u0LlI9z8ODBZGRkmObpOnjwIAcPHmTYsGF1FUKVGQwGDh8+TN++fXFyclJss+d2LSgo4OrVq1y9ehUoGYR79epVMjIyUKlUPPvss6Z5ga5fv87atWtxdXWlT58+pmOsWbOG7du3m5afffZZzp49S1JSErdu3SIpKYnz58+XG6Rra9ZiLS4uJj4+nsuXLzNlyhQMBoPpPazX603HKBvrrl27+OGHH7h37x5Xr14lISGBq1ev1os56KzFW1BQwNatW0lNTSUtLY0LFy6wdOlSvL29FWOdHKFtS+Xl5XH8+HGLvVz20rYVfdc42vu2JtnPn/iiQl9++SUA8+fPV6yPi4szDbrOzMxUfAjo9Xq2bdvGgwcPcHFxoXnz5syaNeuJelJs6cGDB6xatYqsrCx8fHxMEyoGBgYC5eMMCgpi9uzZbNmyhS+++AKtVsvLL79sF9NFlDp//jwZGRn079+/3DZ7btdLly4pJnLdunUrAH379mXy5MmMGDGCwsJCNm3aRG5uLq1bt+bdd99VzPVTmqCVatOmDdOnT2fHjh0kJibSuHFjpk+fXudz/ViL9Y9//CPff/89UHLX6ePmzZtHhw4dgPKx5ubmsmHDBnQ6HR4eHoSFhbFgwQJat25d2+FUyFq8EydO5MaNGxw5coTc3Fy0Wi0dOnRg+vTpDte2pXcpfvfddxiNRkXi8Th7advKfNc40vu2JqmMTzKyTQghhBBCVIlcXhRCCCGEsAFJuoQQQgghbECSLiGEEEIIG5CkSwghhBDCBiTpEkIIIYSwAUm6hBBCCCFsQJIuIYQQQggbkKRLCAe0du1aXnzxRbPbJk+ezJIlS2xcI/sSHx9PYmIiBQUF3L59m0mTJnHz5s26rpYQws7JjPRCCFHGsGHDWLp0KXv27AHg6aefplmzZnVcKyGEvZOkSwghyoiIiCAhIYF79+7h6elp9QHMQghRWZJ0CeGANBoNxcXFlSqblpbGm2++qXhuGkBCQgKHDh1SPDsOSp57WfogXp1Oh4+PD5GRkbz66qv4+fmZyq1du5Zvvvmm3PlGjx7NmDFjTMvff/89e/fu5dq1a6jVaiIiIoiJiSEyMtJqvS9cuMCCBQt4++23yz1D88UXX6RHjx6Keut0Onbu3MmZM2d4+PAh/v7+9OvXj1GjRpkeIF72tSjt3TL3Whw+fJh169YxZ84cjh07xqlTp9Dr9XTo0IGXX36Z4OBgRZ0OHjzIgQMHuH37Ni4uLrRv357Y2FhFD9ratWs5fvw427ZtU+x7/Phx4uPjFc9grMoxH28Hd3d3QkNDGT16NF26dLH6GgshapYkXUI4oMDAQPR6Pffu3Sv35V8Zv/zyC4cPH0atVg77fPDgAbNnz0av1zNy5EhatGhBdnY2Z8+eJTc3V5F0Afj5+TFjxgzT8pw5cxTbjx07xurVq+nSpQvTpk2jqKiIffv2MX/+fN577z3atm1b5bqbo9PpmD17Nmq1mtGjRxMcHExqaioff/wx6enpxMXFWdzX0mtRKiEhgc6dOzNt2jQyMjJITExk/vz5LF++HE9PTwD27t3L3//+d3r37k1sbCw5OTns2rWLOXPmsHjxYpo0aVLlmKpyzMfbITMzk927d7Ns2TJWrVpFQEBAlc8thHgyknQJ4YB++9vfsnPnTv7nf/6HCRMmVOnymMFgYPPmzXTr1o1r164ptiUmJpKVlcWHH36o6E3p1atXuePo9XpcXV0t9lgZDAa2bdtGaGioKSECiI6OZsqUKfztb3/j/fffr3S9rdm5cye5ubnEx8ebkoxOnTrh4uLCtm3bGD58uNkxW9Zei1KtWrVi0qRJpuXmzZszd+5cvvjiC0aNGkVubi579uwhKiqKadOmmcq1b9+eadOmsWvXLqZOnVqleKp6TI1Go2gHtVrNhx9+yI0bNyTpEsKG5O5FIRxQs2bNeP311/npp5+Ii4sjNjbW9C89Pd3qvl9//TU3b97kT3/6U7ltP/zwAx07dqzUoPLCwkJcXFwsbr99+zaZmZk8/fTTil4kNzc3unfvTmpqKo8eParwPAaDgeLiYsW/ss6cOUOHDh3QarWKclFRUQCkpKSYPba116JUnz59FMtt2rQhMDCQCxcuAJCamkphYaHi0i1AQEAAHTt25Pz58+WOWTYeg8Gg2F6dY2ZkZHDo0CE8PDwIDw+3GJcQouZJT5cQDqpfv3489dRT3L17l4KCAtP6ZcuWWdwnKyuLHTt28Ic//IGgoCCz2/39/St1/uzsbLy9vS1uz8nJASh3SRJAq9ViNBrJzc3F1dXV6nlWrlxZYV0ePnzI6dOniY2NNbs9KyvL7Dprr0Upc/X38/MjOzsbwPS/ud5GrVZreh1KPXr0yGI9S1X1mOnp6Ypjenp6EhcXh6+vr9XzCCFqliRdQjgwJycnmjZtqljn7Gz5bb99+3Y8PT0ZPny42e0+Pj48ePCgUue+c+cO3bp1s7jdy8sLKBlvVVZmZiYqlco0JsqacePG0bFjR8W6efPmKZa9vb1p0aIFY8eONXsMc8lLRa9FKXP11+l0NG7c2HRuKImprMzMzHKJqYuLCwsWLFCs+/HHH/nb3/6miKcqx9RqtbzzzjtASVJ36tQp4uPjmTFjBr/5zW+sxieEqDmSdAkhAPjnP//JoUOHmDlzpsXLgl27duXIkSPcvn2bkJAQi8dKTU3l4cOHtGvXzmKZkJAQ/P39OXbsGMOGDUOlUgFQUFDAiRMniIyMrLCXCyA4OJhWrVop1pUeq1R0dDTJyckEBwebkj1rKvNalDp27Jji7smLFy+Snp7OgAEDAIiMjMTFxYWjR4/Ss2dPU7n79+/z448/0r1793J1LxtP2UvCVT2ms7Oz4pjt27fn8OHDfPvtt5J0CWFDknQJIYCS8UvdunUjOjraYpmYmBh++OEH5s2bx8iRIwkNDSU3N5cffviBoUOHEhwczFdffUVSUhKNGzcuN5XD49RqNePHj2f16tUsWbKEQYMGme5ezM3NZdy4cTUWW0xMDOfPn2fu3Ln8/ve/JyQkhMLCQtLT00lOTmbixIk0atSoSq9FqUuXLrF+/Xp69OjB/fv32bFjB/7+/gwZMgQouZT3/PPP8/e//501a9bQu3dvsrOz2b17NxqNhj/+8Y9VjqeqxywqKiI1NRX4tacrNzeXsLCwKp9bCPHkJOkSQgAllyKtDRgH8Pf35y9/+Qs7d+4kKSmJ7OxsfHx8aNu2LV5eXmRlZZGUlER0dDQxMTEV9lT16dMHV1dXkpKSWLFiBWq1msjISObNm0ebNm1qLDatVsvixYvZs2cP+/bt4/79+7i7uxMUFETXrl3LXcaszGtRatKkSRw5coRVq1ZRVFRkmqfr8R61kSNH4uvry4EDB/juu+9Mc2q98MILTzRdRFWPqdPpTNN1uLq6EhAQwNixYxk6dOgTnVsI8WRURqPRWNeVEEIIe1M6OerixYvLXQ4UQghzZMoIIYQQQggbkKRLCCGEEMIG5PKiEEIIIYQNSE+XEEIIIYQNSNIlhBBCCGEDknQJIYQQQtiAJF1CCCGEEDYgSZcQQgghhA1I0iWEEEIIYQOSdAkhhBBC2IAkXUIIIYQQNiBJlxBCCCGEDfw/Fn861C4pyM0AAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from tensorflow.keras.models import Sequential\n",
"from tensorflow.keras.layers import Dense, Input\n",
"from tensorflow.keras.callbacks import EarlyStopping\n",
"from sklearn.metrics import mean_squared_error\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# Списки для хранения ошибок\n",
"train_mse = []\n",
"test_mse = []\n",
"\n",
"# Настройка ранней остановки\n",
"early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)\n",
"\n",
"# Перебор количества нейронов от 1 до 20\n",
"for neurons in range(1, 21):\n",
" # Построение модели\n",
" model = Sequential()\n",
" model.add(Input(shape=(X_train.shape[1],))) # Входной слой\n",
" model.add(Dense(neurons, activation='relu')) # Скрытый слой с переменным количеством нейронов\n",
" model.add(Dense(1, activation='linear')) # Выходной слой\n",
" \n",
" # Компиляция модели\n",
" model.compile(optimizer='adam', loss='mean_squared_error')\n",
" \n",
" # Обучение модели с ранней остановкой\n",
" history = model.fit(X_train, y_train, epochs=100, validation_data=(X_test, y_test),\n",
" callbacks=[early_stopping], verbose=0)\n",
" \n",
" # Предсказания на обучающих и тестовых данных\n",
" y_train_pred = model.predict(X_train)\n",
" y_test_pred = model.predict(X_test)\n",
" \n",
" # Оценка ошибки на обучающих и тестовых данных\n",
" train_mse.append(mean_squared_error(y_train, y_train_pred))\n",
" test_mse.append(mean_squared_error(y_test, y_test_pred))\n",
"\n",
"# Построение графика\n",
"plt.plot(range(1, 21), train_mse, label='Train MSE', marker='o')\n",
"plt.plot(range(1, 21), test_mse, label='Test MSE', marker='o')\n",
"plt.title('Зависимость MSE от числа нейронов в скрытом слое')\n",
"plt.xlabel('Число нейронов')\n",
"plt.ylabel('Mean Squared Error (MSE)')\n",
"plt.legend()\n",
"plt.grid(True)\n",
"plt.show()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Интерпретация графика:\n",
"1. Если тестовая ошибка сначала уменьшается, а затем снова начинает увеличиваться, это указывает на переобучение модели при большом количестве нейронов.\n",
"2. Если ошибка стабильно уменьшается с увеличением количества нейронов, это может означать, что модель ещё не переобучилась.\n",
"3. График должен показать, какое количество нейронов оптимально для минимальной ошибки на тестовых данных."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5. Больше слоёв\n",
"\n",
"Попробуйте построит двух и трёх-слойные сетки с разным числом нейронов. Попробуйте добиться максимально возможного качества. Обратите внимание, что данных у нас очень мало, нейронка будем маленькой и быстро оцениваимой. Это позволяет делать перебор гиперпараметров. Когда данных очень много, перебор - довольно сложная штука. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Двухслойная НС"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Обучение модели с 1 нейронами в первом слое и 1 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 34ms/step - loss: 594.8284 - val_loss: 615.2888\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 604.2688 - val_loss: 614.6894\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 577.7208 - val_loss: 614.0943\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 636.7625 - val_loss: 613.4912\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 612.4836 - val_loss: 612.8925\n",
"Epoch 6/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 591.4733 - val_loss: 612.2979\n",
"Epoch 7/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 578.9967 - val_loss: 611.7020\n",
"Epoch 8/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 605.4388 - val_loss: 611.1028\n",
"Epoch 9/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 624.8367 - val_loss: 610.5071\n",
"Epoch 10/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 575.3578 - val_loss: 609.9136\n",
"Epoch 11/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 569.6533 - val_loss: 609.3223\n",
"Epoch 12/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 568.2065 - val_loss: 608.7271\n",
"Epoch 13/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 559.6710 - val_loss: 608.1351\n",
"Epoch 14/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 570.3596 - val_loss: 607.5379\n",
"Epoch 15/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 604.3251 - val_loss: 606.9424\n",
"Epoch 16/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 589.9653 - val_loss: 606.3557\n",
"Epoch 17/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 598.0557 - val_loss: 605.7645\n",
"Epoch 18/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 537.0148 - val_loss: 605.1729\n",
"Epoch 19/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 566.5666 - val_loss: 604.5804\n",
"Epoch 20/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 599.1506 - val_loss: 603.9866\n",
"Epoch 21/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 559.8958 - val_loss: 603.4025\n",
"Epoch 22/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 551.0034 - val_loss: 602.8141\n",
"Epoch 23/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 571.8950 - val_loss: 602.2205\n",
"Epoch 24/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 551.3690 - val_loss: 601.6340\n",
"Epoch 25/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 571.0909 - val_loss: 601.0477\n",
"Epoch 26/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 554.5450 - val_loss: 600.4617\n",
"Epoch 27/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 581.4973 - val_loss: 599.8755\n",
"Epoch 28/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 556.8471 - val_loss: 599.2905\n",
"Epoch 29/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 631.0750 - val_loss: 598.6991\n",
"Epoch 30/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 566.1082 - val_loss: 598.1176\n",
"Epoch 31/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 559.6698 - val_loss: 597.5364\n",
"Epoch 32/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 576.8597 - val_loss: 596.9515\n",
"Epoch 33/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 592.3550 - val_loss: 596.3653\n",
"Epoch 34/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 538.2260 - val_loss: 595.7849\n",
"Epoch 35/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 549.9503 - val_loss: 595.2033\n",
"Epoch 36/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 540.7742 - val_loss: 594.6222\n",
"Epoch 37/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 548.4261 - val_loss: 594.0411\n",
"Epoch 38/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step - loss: 534.3171 - val_loss: 593.4615\n",
"Epoch 39/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 585.9232 - val_loss: 592.8719\n",
"Epoch 40/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 546.7418 - val_loss: 592.2963\n",
"Epoch 41/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 574.6216 - val_loss: 591.7175\n",
"Epoch 42/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 574.1163 - val_loss: 591.1378\n",
"Epoch 43/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 537.9279 - val_loss: 590.5627\n",
"Epoch 44/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 508.6544 - val_loss: 589.9868\n",
"Epoch 45/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 575.6862 - val_loss: 589.4038\n",
"Epoch 46/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 555.2388 - val_loss: 588.8293\n",
"Epoch 47/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 548.2723 - val_loss: 588.2541\n",
"Epoch 48/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 577.6461 - val_loss: 587.6709\n",
"Epoch 49/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 538.2027 - val_loss: 587.1015\n",
"Epoch 50/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 550.5826 - val_loss: 586.5303\n",
"Restoring model weights from the end of the best epoch: 50.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 1 нейронами в первом слое и 2 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 30ms/step - loss: 516.5020 - val_loss: 590.4786\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.1259 - val_loss: 586.6960\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 535.8315 - val_loss: 582.8123\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 540.3478 - val_loss: 578.5421\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 539.7230 - val_loss: 573.8988\n",
"Epoch 6/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 529.8616 - val_loss: 569.0788\n",
"Epoch 7/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 505.0622 - val_loss: 563.8726\n",
"Epoch 8/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 536.3245 - val_loss: 558.3839\n",
"Epoch 9/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 553.2491 - val_loss: 552.6229\n",
"Epoch 10/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 515.7147 - val_loss: 546.4735\n",
"Epoch 11/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 509.8358 - val_loss: 540.1302\n",
"Epoch 12/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 511.8419 - val_loss: 533.3689\n",
"Epoch 13/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 508.3506 - val_loss: 526.3333\n",
"Epoch 14/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 477.4981 - val_loss: 518.9852\n",
"Epoch 15/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 466.5649 - val_loss: 511.2609\n",
"Epoch 16/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 478.4644 - val_loss: 503.2905\n",
"Epoch 17/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 466.1077 - val_loss: 494.9959\n",
"Epoch 18/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 459.9725 - val_loss: 486.3315\n",
"Epoch 19/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 479.4908 - val_loss: 477.6026\n",
"Epoch 20/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 456.9845 - val_loss: 468.5932\n",
"Epoch 21/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 444.0036 - val_loss: 459.2037\n",
"Epoch 22/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 445.8970 - val_loss: 449.5361\n",
"Epoch 23/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 426.7676 - val_loss: 439.9401\n",
"Epoch 24/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 421.3244 - val_loss: 430.0559\n",
"Epoch 25/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 434.1756 - val_loss: 420.1041\n",
"Epoch 26/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 402.9838 - val_loss: 409.8616\n",
"Epoch 27/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 385.7955 - val_loss: 399.7081\n",
"Epoch 28/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 378.0702 - val_loss: 389.3509\n",
"Epoch 29/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 378.3088 - val_loss: 378.8957\n",
"Epoch 30/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 351.3718 - val_loss: 368.5758\n",
"Epoch 31/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 334.2892 - val_loss: 358.0833\n",
"Epoch 32/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 347.2042 - val_loss: 347.5211\n",
"Epoch 33/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 338.0863 - val_loss: 337.2605\n",
"Epoch 34/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 321.4725 - val_loss: 327.1056\n",
"Epoch 35/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 311.3157 - val_loss: 316.9255\n",
"Epoch 36/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 316.2242 - val_loss: 307.4906\n",
"Epoch 37/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 301.1166 - val_loss: 297.8612\n",
"Epoch 38/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 263.5883 - val_loss: 288.7132\n",
"Epoch 39/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 270.7709 - val_loss: 279.5585\n",
"Epoch 40/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 263.1872 - val_loss: 270.9271\n",
"Epoch 41/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 251.3864 - val_loss: 262.5341\n",
"Epoch 42/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 266.7841 - val_loss: 254.2849\n",
"Epoch 43/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 235.4781 - val_loss: 246.8118\n",
"Epoch 44/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 256.9828 - val_loss: 239.4125\n",
"Epoch 45/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 244.3609 - val_loss: 232.3541\n",
"Epoch 46/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 220.2235 - val_loss: 225.8443\n",
"Epoch 47/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 219.9398 - val_loss: 219.5044\n",
"Epoch 48/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 216.1632 - val_loss: 213.5446\n",
"Epoch 49/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 203.3321 - val_loss: 208.1424\n",
"Epoch 50/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 224.5592 - val_loss: 202.9180\n",
"Restoring model weights from the end of the best epoch: 50.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 1 нейронами в первом слое и 3 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 31ms/step - loss: 622.9316 - val_loss: 605.6501\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 584.4902 - val_loss: 602.4712\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 571.6575 - val_loss: 599.1376\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 578.6068 - val_loss: 595.5671\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 536.1320 - val_loss: 591.8151\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое и 4 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 52ms/step - loss: 588.9169 - val_loss: 609.1955\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 536.5541 - val_loss: 607.0880\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 560.8708 - val_loss: 604.8878\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 569.4702 - val_loss: 602.5749\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 539.9302 - val_loss: 600.1527\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое и 5 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 31ms/step - loss: 590.7964 - val_loss: 640.6949\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 614.6205 - val_loss: 636.1685\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 632.2120 - val_loss: 632.5244\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 610.3879 - val_loss: 629.3519\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 616.7618 - val_loss: 626.4810\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 1 нейронами в первом слое и 6 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 34ms/step - loss: 558.8661 - val_loss: 615.3028\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 601.4055 - val_loss: 614.7006\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 577.1996 - val_loss: 614.0195\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 568.0790 - val_loss: 613.1213\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 637.5649 - val_loss: 612.0903\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое и 7 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 29ms/step - loss: 570.2494 - val_loss: 625.4155\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 624.1990 - val_loss: 622.5329\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 587.8732 - val_loss: 619.9103\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 612.3240 - val_loss: 617.4973\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 591.5472 - val_loss: 615.2789\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое и 8 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 35ms/step - loss: 569.8043 - val_loss: 611.1119\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 608.1779 - val_loss: 608.1783\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 606.6709 - val_loss: 605.0256\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 578.8112 - val_loss: 601.6870\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 532.6357 - val_loss: 598.0399\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое и 9 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 29ms/step - loss: 595.4856 - val_loss: 608.8226\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 589.8344 - val_loss: 606.4250\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 527.2492 - val_loss: 604.0327\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 555.8152 - val_loss: 601.5436\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 572.7974 - val_loss: 598.7744\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое и 10 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 34ms/step - loss: 610.3564 - val_loss: 596.6866\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 572.2582 - val_loss: 591.2773\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 526.6937 - val_loss: 585.4630\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 526.1959 - val_loss: 579.2227\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 559.6282 - val_loss: 572.5809\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 2 нейронами в первом слое и 1 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 30ms/step - loss: 461.7437 - val_loss: 492.8978\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 469.5692 - val_loss: 483.8582\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 448.3713 - val_loss: 474.5420\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 454.5105 - val_loss: 464.9841\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 472.7283 - val_loss: 455.1710\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое и 2 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 30ms/step - loss: 579.6558 - val_loss: 615.3041\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 567.3977 - val_loss: 614.7012\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 573.6882 - val_loss: 614.1008\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 610.9327 - val_loss: 613.5011\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 553.0199 - val_loss: 612.9066\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое и 3 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 32ms/step - loss: 583.3076 - val_loss: 603.1104\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 595.0976 - val_loss: 600.0875\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 544.3939 - val_loss: 597.0717\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 579.6782 - val_loss: 593.9748\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 608.7087 - val_loss: 590.6736\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое и 4 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 31ms/step - loss: 571.0908 - val_loss: 604.5087\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 556.3482 - val_loss: 600.6374\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 582.8436 - val_loss: 596.2145\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 567.0687 - val_loss: 591.4301\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 588.2186 - val_loss: 585.8268\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 2 нейронами в первом слое и 5 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 33ms/step - loss: 564.8055 - val_loss: 610.2825\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 545.4462 - val_loss: 604.9419\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 544.5652 - val_loss: 598.7495\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 580.1686 - val_loss: 591.7764\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 575.9169 - val_loss: 583.9086\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое и 6 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 30ms/step - loss: 601.8505 - val_loss: 610.0378\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 586.0482 - val_loss: 606.0629\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 580.7374 - val_loss: 602.0466\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 581.9049 - val_loss: 598.0300\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 615.3841 - val_loss: 594.0781\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step\n",
"Обучение модели с 2 нейронами в первом слое и 7 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 33ms/step - loss: 600.1586 - val_loss: 626.6841\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 576.6051 - val_loss: 623.7359\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 608.1830 - val_loss: 621.0515\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 590.8799 - val_loss: 618.5227\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 624.0095 - val_loss: 616.0101\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 2 нейронами в первом слое и 8 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 29ms/step - loss: 573.2130 - val_loss: 606.3643\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 549.1644 - val_loss: 602.3960\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 571.3774 - val_loss: 598.2113\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 548.5133 - val_loss: 593.7316\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 562.6141 - val_loss: 588.7179\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое и 9 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 36ms/step - loss: 640.4678 - val_loss: 662.9261\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 676.0768 - val_loss: 655.8405\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 633.6531 - val_loss: 649.4805\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 621.8044 - val_loss: 643.8004\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 590.2387 - val_loss: 638.5587\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое и 10 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 29ms/step - loss: 582.7501 - val_loss: 614.8293\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 583.1278 - val_loss: 611.2119\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 557.0351 - val_loss: 607.3823\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 607.2175 - val_loss: 603.2238\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 565.6017 - val_loss: 598.7627\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое и 1 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 29ms/step - loss: 602.8697 - val_loss: 623.0131\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 584.0964 - val_loss: 620.8463\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 561.7491 - val_loss: 618.9205\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 599.8997 - val_loss: 617.2698\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 553.0753 - val_loss: 615.9221\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое и 2 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 30ms/step - loss: 550.0168 - val_loss: 581.0942\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 515.8499 - val_loss: 577.3038\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 514.5190 - val_loss: 573.3083\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 560.4879 - val_loss: 569.0458\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 519.0560 - val_loss: 564.4233\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое и 3 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 36ms/step - loss: 593.1120 - val_loss: 619.0476\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 567.2493 - val_loss: 614.9248\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 621.0266 - val_loss: 610.6770\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 600.6960 - val_loss: 606.6815\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 593.9957 - val_loss: 602.5683\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое и 4 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 31ms/step - loss: 547.2943 - val_loss: 578.7722\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 577.6993 - val_loss: 572.0513\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 523.4123 - val_loss: 564.7849\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 520.5159 - val_loss: 556.4689\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 515.0621 - val_loss: 547.4443\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое и 5 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 29ms/step - loss: 579.6855 - val_loss: 596.5962\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.1110 - val_loss: 592.5142\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 558.8397 - val_loss: 587.9092\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 592.9567 - val_loss: 582.7427\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 548.4090 - val_loss: 576.8736\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое и 6 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 35ms/step - loss: 563.6165 - val_loss: 602.8479\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 580.6298 - val_loss: 599.8882\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 540.7935 - val_loss: 596.8093\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 591.6849 - val_loss: 593.4721\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 569.7072 - val_loss: 589.6826\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое и 7 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 31ms/step - loss: 583.2884 - val_loss: 629.3929\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 625.0156 - val_loss: 625.5697\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 633.0823 - val_loss: 622.0161\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 603.9838 - val_loss: 618.7570\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 560.5907 - val_loss: 615.5620\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое и 8 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 29ms/step - loss: 607.9188 - val_loss: 618.0639\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 596.5691 - val_loss: 613.4299\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 563.5527 - val_loss: 608.4952\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 593.7222 - val_loss: 602.7597\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 559.8555 - val_loss: 595.9949\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое и 9 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 41ms/step - loss: 602.8984 - val_loss: 627.4432\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 609.5397 - val_loss: 621.3077\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 568.1786 - val_loss: 615.5709\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 562.8136 - val_loss: 610.1306\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 570.3145 - val_loss: 604.8502\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое и 10 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 31ms/step - loss: 579.3010 - val_loss: 606.6069\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 584.5877 - val_loss: 602.2982\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 548.0944 - val_loss: 597.7136\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 569.2656 - val_loss: 592.6628\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 588.9969 - val_loss: 587.1970\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое и 1 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 28ms/step - loss: 515.2248 - val_loss: 617.1179\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.0692 - val_loss: 616.1108\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 579.6221 - val_loss: 615.3214\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 583.2796 - val_loss: 614.6019\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 593.8797 - val_loss: 613.8773\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое и 2 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 28ms/step - loss: 589.0183 - val_loss: 623.0902\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 551.3749 - val_loss: 619.7198\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 615.5758 - val_loss: 616.3749\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 598.8871 - val_loss: 613.2136\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 579.5844 - val_loss: 610.1420\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое и 3 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 33ms/step - loss: 618.1442 - val_loss: 618.4129\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 615.8212 - val_loss: 616.8718\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 570.7634 - val_loss: 615.2680\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 573.4001 - val_loss: 613.5195\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 553.2451 - val_loss: 611.7071\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 4 нейронами в первом слое и 4 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 38ms/step - loss: 583.9510 - val_loss: 624.0854\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 580.7219 - val_loss: 621.1865\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 575.8068 - val_loss: 618.6230\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 602.0482 - val_loss: 616.4506\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 600.8232 - val_loss: 614.5510\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое и 5 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 32ms/step - loss: 577.9945 - val_loss: 591.9802\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 569.2949 - val_loss: 586.5415\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 550.0867 - val_loss: 580.6904\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 546.4755 - val_loss: 574.4029\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 529.5096 - val_loss: 567.6707\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое и 6 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 31ms/step - loss: 594.5170 - val_loss: 621.9085\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 579.9010 - val_loss: 619.7268\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 626.9196 - val_loss: 617.8030\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 528.6116 - val_loss: 616.0538\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 568.1005 - val_loss: 614.3235\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое и 7 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 31ms/step - loss: 538.0184 - val_loss: 582.6064\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 575.5726 - val_loss: 576.1459\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 523.5609 - val_loss: 569.0350\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 550.1282 - val_loss: 560.9294\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 524.5358 - val_loss: 551.7509\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое и 8 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 29ms/step - loss: 537.1835 - val_loss: 575.2449\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 542.1226 - val_loss: 566.2552\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 540.1306 - val_loss: 556.3228\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 503.0593 - val_loss: 545.1590\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 522.7859 - val_loss: 532.5265\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое и 9 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 31ms/step - loss: 565.2283 - val_loss: 587.0522\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 551.3771 - val_loss: 580.8819\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 591.2954 - val_loss: 573.9431\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 529.0671 - val_loss: 566.1063\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 517.7089 - val_loss: 556.9363\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое и 10 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 30ms/step - loss: 579.7844 - val_loss: 595.8753\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 565.1208 - val_loss: 589.3515\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 560.3309 - val_loss: 581.7582\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 535.8058 - val_loss: 572.6170\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 551.2809 - val_loss: 561.4471\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 5 нейронами в первом слое и 1 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 31ms/step - loss: 523.5029 - val_loss: 578.1830\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 542.9452 - val_loss: 571.7814\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 532.8922 - val_loss: 564.7821\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 503.5056 - val_loss: 557.0396\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 476.7296 - val_loss: 548.4447\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 5 нейронами в первом слое и 2 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 32ms/step - loss: 586.0436 - val_loss: 596.4905\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 572.2811 - val_loss: 592.7136\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 578.3561 - val_loss: 588.6143\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 559.1141 - val_loss: 583.9240\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 545.6758 - val_loss: 578.7295\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step \n",
"Обучение модели с 5 нейронами в первом слое и 3 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 35ms/step - loss: 592.2541 - val_loss: 610.9879\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 592.7153 - val_loss: 609.2021\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 589.4032 - val_loss: 607.2361\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 551.9778 - val_loss: 605.1069\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 569.0997 - val_loss: 602.7543\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 5 нейронами в первом слое и 4 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 35ms/step - loss: 600.5032 - val_loss: 602.3480\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 607.3961 - val_loss: 598.2175\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 570.1825 - val_loss: 593.5084\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 577.2731 - val_loss: 587.8683\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 573.5128 - val_loss: 581.2930\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 5 нейронами в первом слое и 5 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 32ms/step - loss: 670.1490 - val_loss: 639.6931\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 596.5269 - val_loss: 634.7945\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 606.1815 - val_loss: 630.3156\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 595.6288 - val_loss: 626.0242\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 581.8814 - val_loss: 621.9776\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 5 нейронами в первом слое и 6 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 40ms/step - loss: 576.8806 - val_loss: 619.4368\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 594.9288 - val_loss: 615.9714\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 598.8262 - val_loss: 612.5516\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 611.5481 - val_loss: 609.1560\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 590.9758 - val_loss: 605.6180\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 5 нейронами в первом слое и 7 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 32ms/step - loss: 594.6577 - val_loss: 624.7473\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 584.8727 - val_loss: 619.3491\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 599.6240 - val_loss: 613.9471\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 587.0777 - val_loss: 608.4868\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 574.8427 - val_loss: 602.6593\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 5 нейронами в первом слое и 8 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 31ms/step - loss: 575.8439 - val_loss: 621.9813\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 578.1897 - val_loss: 618.7745\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 595.6269 - val_loss: 615.8053\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 582.1109 - val_loss: 613.1457\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 582.2114 - val_loss: 610.6591\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 5 нейронами в первом слое и 9 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 32ms/step - loss: 554.1996 - val_loss: 602.5991\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 553.2186 - val_loss: 596.9709\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 566.7166 - val_loss: 590.9038\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 582.9615 - val_loss: 584.3839\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 535.2946 - val_loss: 577.1244\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 5 нейронами в первом слое и 10 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 41ms/step - loss: 578.3274 - val_loss: 612.2495\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 615.7601 - val_loss: 601.6235\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 591.8595 - val_loss: 589.8837\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 563.0259 - val_loss: 577.6724\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 520.0425 - val_loss: 564.2719\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 6 нейронами в первом слое и 1 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 31ms/step - loss: 599.9031 - val_loss: 591.4293\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 555.5981 - val_loss: 585.6165\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 595.0529 - val_loss: 578.6463\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 572.5590 - val_loss: 569.9149\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 544.4881 - val_loss: 559.7628\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 6 нейронами в первом слое и 2 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 36ms/step - loss: 476.5405 - val_loss: 517.6108\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 475.5098 - val_loss: 502.0083\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 459.9688 - val_loss: 485.5467\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 436.0992 - val_loss: 467.5345\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 426.5684 - val_loss: 448.3988\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 6 нейронами в первом слое и 3 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 33ms/step - loss: 583.0551 - val_loss: 609.7869\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 603.3840 - val_loss: 605.4054\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 565.0321 - val_loss: 600.9732\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 589.8351 - val_loss: 596.6928\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 549.8065 - val_loss: 592.3680\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 6 нейронами в первом слое и 4 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 34ms/step - loss: 587.6076 - val_loss: 652.7358\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 608.7031 - val_loss: 643.2781\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 543.5533 - val_loss: 634.4347\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 611.7944 - val_loss: 625.8322\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 617.5204 - val_loss: 617.6797\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 6 нейронами в первом слое и 5 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 40ms/step - loss: 582.9586 - val_loss: 607.3437\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 546.3414 - val_loss: 601.3097\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 561.8426 - val_loss: 594.3276\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 566.2864 - val_loss: 586.4460\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 572.1177 - val_loss: 576.7857\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 6 нейронами в первом слое и 6 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 38ms/step - loss: 618.1810 - val_loss: 655.5748\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 588.2676 - val_loss: 647.9053\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 611.9107 - val_loss: 641.2399\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 654.8555 - val_loss: 635.5479\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 604.2861 - val_loss: 630.6497\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 6 нейронами в первом слое и 7 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 38ms/step - loss: 590.9914 - val_loss: 630.6291\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 598.7480 - val_loss: 626.0728\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 575.0412 - val_loss: 622.0376\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 584.3652 - val_loss: 618.2249\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 594.5880 - val_loss: 614.4958\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 6 нейронами в первом слое и 8 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 32ms/step - loss: 601.5216 - val_loss: 573.9191\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 537.9266 - val_loss: 555.8904\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 526.8831 - val_loss: 536.3960\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 525.7700 - val_loss: 515.3815\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 468.0092 - val_loss: 493.4290\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 6 нейронами в первом слое и 9 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 34ms/step - loss: 580.9728 - val_loss: 615.3369\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 604.0200 - val_loss: 609.2521\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 530.8115 - val_loss: 603.2906\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 568.0211 - val_loss: 596.9435\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 548.7961 - val_loss: 590.3160\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 6 нейронами в первом слое и 10 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 31ms/step - loss: 576.6275 - val_loss: 593.6656\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 575.8011 - val_loss: 585.9172\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 547.8196 - val_loss: 577.1187\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 506.1410 - val_loss: 567.0144\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 524.1725 - val_loss: 554.9957\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 7 нейронами в первом слое и 1 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 32ms/step - loss: 606.2400 - val_loss: 621.4700\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 586.3364 - val_loss: 618.9544\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 598.0969 - val_loss: 616.8886\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 591.6638 - val_loss: 615.3147\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 563.9920 - val_loss: 614.0874\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 7 нейронами в первом слое и 2 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 39ms/step - loss: 619.8559 - val_loss: 623.8292\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 620.2093 - val_loss: 619.7659\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 583.8223 - val_loss: 615.4783\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 588.4185 - val_loss: 610.6566\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 561.6117 - val_loss: 606.0087\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 7 нейронами в первом слое и 3 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 41ms/step - loss: 562.6211 - val_loss: 631.9494\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 583.7672 - val_loss: 625.0329\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 588.0090 - val_loss: 618.2775\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 585.6385 - val_loss: 611.2769\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 556.4862 - val_loss: 603.5895\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 7 нейронами в первом слое и 4 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 32ms/step - loss: 628.8040 - val_loss: 633.8001\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 626.3612 - val_loss: 623.5421\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 640.8199 - val_loss: 613.3748\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 563.5296 - val_loss: 602.9077\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 531.3638 - val_loss: 591.6773\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 7 нейронами в первом слое и 5 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 34ms/step - loss: 612.5370 - val_loss: 628.5933\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 605.2007 - val_loss: 625.0869\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 561.5132 - val_loss: 622.4149\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 581.3582 - val_loss: 619.9600\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 607.4998 - val_loss: 617.4389\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 7 нейронами в первом слое и 6 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 34ms/step - loss: 536.7173 - val_loss: 582.3060\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 540.2845 - val_loss: 575.0890\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 558.0162 - val_loss: 567.0690\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 531.1176 - val_loss: 558.1725\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 543.9506 - val_loss: 548.1323\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 7 нейронами в первом слое и 7 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 39ms/step - loss: 576.7033 - val_loss: 595.5291\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 597.3861 - val_loss: 587.5444\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 537.4175 - val_loss: 578.7978\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 517.3777 - val_loss: 569.2094\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 559.5309 - val_loss: 558.2859\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 7 нейронами в первом слое и 8 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 31ms/step - loss: 579.7369 - val_loss: 606.9619\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 596.2546 - val_loss: 602.6902\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 588.3660 - val_loss: 598.0778\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 576.7991 - val_loss: 592.8308\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 544.1433 - val_loss: 586.5603\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 7 нейронами в первом слое и 9 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 32ms/step - loss: 563.9193 - val_loss: 614.6376\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 585.9163 - val_loss: 607.9890\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 598.5141 - val_loss: 601.1089\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 569.6595 - val_loss: 593.7574\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 571.6951 - val_loss: 585.5472\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 7 нейронами в первом слое и 10 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 30ms/step - loss: 578.1979 - val_loss: 603.8231\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 552.0350 - val_loss: 597.7154\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 596.0023 - val_loss: 591.4907\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 574.7096 - val_loss: 584.8165\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 532.7372 - val_loss: 577.0710\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое и 1 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 30ms/step - loss: 627.3988 - val_loss: 620.8288\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 604.3365 - val_loss: 618.3309\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 565.2815 - val_loss: 616.6204\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 619.1318 - val_loss: 615.2545\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 587.9426 - val_loss: 614.1232\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое и 2 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 30ms/step - loss: 602.5925 - val_loss: 640.1545\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 621.1412 - val_loss: 632.4945\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 595.7298 - val_loss: 626.4301\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 604.1709 - val_loss: 621.8842\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 611.9595 - val_loss: 618.3884\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое и 3 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 31ms/step - loss: 627.2207 - val_loss: 605.7962\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 574.3882 - val_loss: 597.9981\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 529.8683 - val_loss: 588.2076\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 548.4468 - val_loss: 576.9651\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 536.0665 - val_loss: 564.1818\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 8 нейронами в первом слое и 4 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 35ms/step - loss: 601.1530 - val_loss: 601.6575\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 571.1697 - val_loss: 594.2524\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 561.1201 - val_loss: 585.8596\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 537.7252 - val_loss: 577.0192\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 546.3015 - val_loss: 567.4952\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое и 5 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 42ms/step - loss: 600.5435 - val_loss: 610.7006\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 570.0378 - val_loss: 606.2488\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 555.0510 - val_loss: 601.4216\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 567.4771 - val_loss: 596.0004\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 557.1727 - val_loss: 589.6874\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 8 нейронами в первом слое и 6 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 30ms/step - loss: 561.3968 - val_loss: 608.6110\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 609.2964 - val_loss: 599.9182\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 543.6436 - val_loss: 589.5515\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 555.9184 - val_loss: 576.5413\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 554.6714 - val_loss: 560.8173\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое и 7 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 29ms/step - loss: 644.6721 - val_loss: 618.8069\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 582.0417 - val_loss: 610.8050\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 599.1434 - val_loss: 602.5811\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 572.9831 - val_loss: 594.0753\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 577.3750 - val_loss: 584.8399\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 8 нейронами в первом слое и 8 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 31ms/step - loss: 599.0184 - val_loss: 616.2642\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 574.7219 - val_loss: 606.8623\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 606.8887 - val_loss: 597.5866\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 604.8052 - val_loss: 588.0581\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 552.8924 - val_loss: 577.8442\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое и 9 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 101ms/step - loss: 637.7616 - val_loss: 633.7675\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 618.7040 - val_loss: 623.5850\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 576.0236 - val_loss: 614.5034\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 559.4905 - val_loss: 605.4080\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 573.7714 - val_loss: 595.9836\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 8 нейронами в первом слое и 10 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 37ms/step - loss: 594.6495 - val_loss: 623.5696\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 588.0269 - val_loss: 614.7348\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 585.6603 - val_loss: 606.0600\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 570.9219 - val_loss: 597.0265\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 557.1666 - val_loss: 587.0880\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 9 нейронами в первом слое и 1 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 30ms/step - loss: 618.6196 - val_loss: 630.0117\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 607.8523 - val_loss: 625.1371\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 575.4236 - val_loss: 621.7505\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 609.9738 - val_loss: 619.0193\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 617.5685 - val_loss: 616.8636\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 9 нейронами в первом слое и 2 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 35ms/step - loss: 540.8084 - val_loss: 579.8937\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 557.0388 - val_loss: 567.7028\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 532.8351 - val_loss: 555.2817\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 529.5488 - val_loss: 542.2021\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 513.5518 - val_loss: 528.2042\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 9 нейронами в первом слое и 3 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 32ms/step - loss: 591.7531 - val_loss: 611.9855\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 566.2982 - val_loss: 605.4995\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 554.0182 - val_loss: 597.9090\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 562.9473 - val_loss: 588.9754\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 550.3683 - val_loss: 579.3312\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 9 нейронами в первом слое и 4 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 37ms/step - loss: 594.2656 - val_loss: 636.9950\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 591.0172 - val_loss: 626.6792\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 600.3558 - val_loss: 616.6078\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 548.0532 - val_loss: 606.8375\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 560.7267 - val_loss: 596.8590\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 9 нейронами в первом слое и 5 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 39ms/step - loss: 598.8795 - val_loss: 654.5004\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 614.8216 - val_loss: 645.6858\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 597.3883 - val_loss: 638.1981\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 578.2708 - val_loss: 632.0938\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 600.1381 - val_loss: 626.8204\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 9 нейронами в первом слое и 6 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 34ms/step - loss: 582.1005 - val_loss: 596.5296\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 623.9262 - val_loss: 589.9080\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 547.3190 - val_loss: 583.2610\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 542.1284 - val_loss: 575.3672\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 523.0326 - val_loss: 565.8736\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 9 нейронами в первом слое и 7 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 30ms/step - loss: 585.7817 - val_loss: 601.9611\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 579.3141 - val_loss: 594.1973\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 544.1824 - val_loss: 585.9538\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 530.6426 - val_loss: 576.5349\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 567.5436 - val_loss: 565.1689\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 9 нейронами в первом слое и 8 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 31ms/step - loss: 592.5486 - val_loss: 613.7354\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 598.1199 - val_loss: 603.8524\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 583.7953 - val_loss: 593.8862\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 550.5972 - val_loss: 583.3717\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 571.2720 - val_loss: 571.3840\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 9 нейронами в первом слое и 9 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 37ms/step - loss: 573.3637 - val_loss: 610.9028\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 582.7871 - val_loss: 605.0874\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 551.3226 - val_loss: 598.8310\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 551.4410 - val_loss: 591.4763\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 539.1579 - val_loss: 582.8036\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 9 нейронами в первом слое и 10 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 31ms/step - loss: 571.2488 - val_loss: 602.9021\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 590.2686 - val_loss: 589.3830\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 540.3865 - val_loss: 574.9564\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 528.7855 - val_loss: 559.0171\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 557.2150 - val_loss: 541.3020\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 10 нейронами в первом слое и 1 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 37ms/step - loss: 584.9585 - val_loss: 622.6669\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 570.3096 - val_loss: 619.0210\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 595.3079 - val_loss: 616.1829\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 593.8012 - val_loss: 614.5269\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 588.6907 - val_loss: 613.5912\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 10 нейронами в первом слое и 2 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 37ms/step - loss: 589.8712 - val_loss: 600.3366\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 603.7735 - val_loss: 594.8025\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 554.1919 - val_loss: 588.9673\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 598.8467 - val_loss: 582.5753\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 538.6935 - val_loss: 574.6631\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 10 нейронами в первом слое и 3 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 103ms/step - loss: 565.3586 - val_loss: 618.4410\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 599.9274 - val_loss: 615.0411\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 571.1531 - val_loss: 612.1383\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 577.4829 - val_loss: 609.1865\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 602.1315 - val_loss: 605.9353\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 10 нейронами в первом слое и 4 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 31ms/step - loss: 598.2665 - val_loss: 615.3145\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 608.1592 - val_loss: 609.3199\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 572.4841 - val_loss: 602.3611\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 565.7931 - val_loss: 594.0617\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 560.6693 - val_loss: 584.6934\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 10 нейронами в первом слое и 5 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 35ms/step - loss: 641.4966 - val_loss: 657.1346\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 593.7307 - val_loss: 642.9397\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 611.3333 - val_loss: 631.9179\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step - loss: 633.9370 - val_loss: 623.5574\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 574.6965 - val_loss: 616.7145\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 10 нейронами в первом слое и 6 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 32ms/step - loss: 589.3862 - val_loss: 607.4757\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 547.6435 - val_loss: 592.4826\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 555.6951 - val_loss: 576.3925\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 568.0493 - val_loss: 558.8112\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 483.9928 - val_loss: 540.3891\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 10 нейронами в первом слое и 7 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 40ms/step - loss: 577.9514 - val_loss: 636.2212\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 604.3817 - val_loss: 629.1431\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 583.5259 - val_loss: 622.9924\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 603.2629 - val_loss: 617.2119\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 584.3523 - val_loss: 611.9683\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 10 нейронами в первом слое и 8 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 40ms/step - loss: 540.3940 - val_loss: 577.1672\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 549.9081 - val_loss: 562.3110\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 560.3314 - val_loss: 546.4541\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 558.1786 - val_loss: 529.2504\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 478.4283 - val_loss: 510.8456\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 10 нейронами в первом слое и 9 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 31ms/step - loss: 545.2528 - val_loss: 582.8340\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 567.7673 - val_loss: 569.2607\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 521.5126 - val_loss: 554.6281\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 528.2424 - val_loss: 538.5261\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 498.1688 - val_loss: 520.8127\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 10 нейронами в первом слое и 10 во втором слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 31ms/step - loss: 564.4071 - val_loss: 601.0599\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 561.3045 - val_loss: 591.6016\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 536.7447 - val_loss: 582.8748\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 550.7823 - val_loss: 573.8533\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 533.1219 - val_loss: 563.7555\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Лучшая конфигурация двухслойной сети: 1 нейронов в первом слое, 2 нейронов во втором слое с MSE = 202.8143\n"
]
}
],
"source": [
"from tensorflow.keras.models import Sequential\n",
"from tensorflow.keras.layers import Dense, Input\n",
"from tensorflow.keras.callbacks import EarlyStopping\n",
"from sklearn.metrics import mean_squared_error\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# Списки для хранения ошибок\n",
"train_mse_2layers = []\n",
"test_mse_2layers = []\n",
"\n",
"# Настройка ранней остановки\n",
"early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True, verbose=1)\n",
"\n",
"# Количество нейронов до 1-10 для двухслойной модели\n",
"for neurons_layer1 in range(1, 11):\n",
" for neurons_layer2 in range(1, 11):\n",
" print(f\"Обучение модели с {neurons_layer1} нейронами в первом слое и {neurons_layer2} во втором слое\")\n",
" \n",
" # Построение модели с двумя скрытыми слоями\n",
" model = Sequential()\n",
" model.add(Input(shape=(X_train.shape[1],))) # Входной слой\n",
" model.add(Dense(neurons_layer1, activation='relu', kernel_regularizer='l2')) # Первый скрытый слой\n",
" model.add(Dense(neurons_layer2, activation='relu', kernel_regularizer='l2')) # Второй скрытый слой\n",
" model.add(Dense(1, activation='linear')) # Выходной слой\n",
" \n",
" # Компиляция модели\n",
" model.compile(optimizer='adam', loss='mean_squared_error')\n",
" \n",
" # Обучение модели с ранней остановкой\n",
" history = model.fit(X_train, y_train, epochs=50, validation_data=(X_test, y_test),\n",
" callbacks=[early_stopping], verbose=1)\n",
" \n",
" # Предсказания на обучающих и тестовых данных\n",
" y_train_pred = model.predict(X_train)\n",
" y_test_pred = model.predict(X_test)\n",
" \n",
" # Оценка ошибки на обучающих и тестовых данных\n",
" train_mse_2layers.append((neurons_layer1, neurons_layer2, mean_squared_error(y_train, y_train_pred)))\n",
" test_mse_2layers.append((neurons_layer1, neurons_layer2, mean_squared_error(y_test, y_test_pred)))\n",
"\n",
"# Нахождение модели с минимальной ошибкой на тестовой выборке\n",
"best_config_2layers = min(test_mse_2layers, key=lambda x: x[2])\n",
"print(f\"Лучшая конфигурация двухслойной сети: {best_config_2layers[0]} нейронов в первом слое, \"\n",
" f\"{best_config_2layers[1]} нейронов во втором слое с MSE = {best_config_2layers[2]:.4f}\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Трехслойная НС"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Обучение модели с 1 нейронами в первом слое, 1 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 36ms/step - loss: 599.4312 - val_loss: 615.2802\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 548.2065 - val_loss: 614.6820\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 585.0402 - val_loss: 614.0811\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 585.7325 - val_loss: 613.4836\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 584.0207 - val_loss: 612.8834\n",
"Epoch 6/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 575.1229 - val_loss: 612.2878\n",
"Epoch 7/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 553.6812 - val_loss: 611.6909\n",
"Epoch 8/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 586.2609 - val_loss: 611.0930\n",
"Epoch 9/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 609.0889 - val_loss: 610.4947\n",
"Epoch 10/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 588.1570 - val_loss: 609.9022\n",
"Epoch 11/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 594.0185 - val_loss: 609.3097\n",
"Epoch 12/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 603.9521 - val_loss: 608.7126\n",
"Epoch 13/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 576.9867 - val_loss: 608.1219\n",
"Epoch 14/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 558.0770 - val_loss: 607.5297\n",
"Epoch 15/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 587.8099 - val_loss: 606.9343\n",
"Epoch 16/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 581.4517 - val_loss: 606.3422\n",
"Epoch 17/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 533.6692 - val_loss: 605.7529\n",
"Epoch 18/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 529.2860 - val_loss: 605.1653\n",
"Epoch 19/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 569.2709 - val_loss: 604.5733\n",
"Epoch 20/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 560.7807 - val_loss: 603.9849\n",
"Epoch 21/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 563.2032 - val_loss: 603.3969\n",
"Epoch 22/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 553.2599 - val_loss: 602.8081\n",
"Epoch 23/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 598.3669 - val_loss: 602.2177\n",
"Epoch 24/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 555.2273 - val_loss: 601.6299\n",
"Epoch 25/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 538.1574 - val_loss: 601.0477\n",
"Epoch 26/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 560.2997 - val_loss: 600.4585\n",
"Epoch 27/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 552.1185 - val_loss: 599.8739\n",
"Epoch 28/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 607.0613 - val_loss: 599.2853\n",
"Epoch 29/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 540.8392 - val_loss: 598.7029\n",
"Epoch 30/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 564.3107 - val_loss: 598.1174\n",
"Epoch 31/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 591.5322 - val_loss: 597.5323\n",
"Epoch 32/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 548.9748 - val_loss: 596.9498\n",
"Epoch 33/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 551.4630 - val_loss: 596.3682\n",
"Epoch 34/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 529.1895 - val_loss: 595.7872\n",
"Epoch 35/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 566.1337 - val_loss: 595.2020\n",
"Epoch 36/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 597.5756 - val_loss: 594.6173\n",
"Epoch 37/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 579.5350 - val_loss: 594.0400\n",
"Epoch 38/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 591.8081 - val_loss: 593.4568\n",
"Epoch 39/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.6222 - val_loss: 592.8802\n",
"Epoch 40/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 558.5436 - val_loss: 592.3052\n",
"Epoch 41/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 552.5886 - val_loss: 591.7277\n",
"Epoch 42/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 608.6938 - val_loss: 591.1454\n",
"Epoch 43/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 532.7960 - val_loss: 590.5750\n",
"Epoch 44/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 560.4653 - val_loss: 589.9958\n",
"Epoch 45/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 539.4291 - val_loss: 589.4194\n",
"Epoch 46/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 576.7198 - val_loss: 588.8370\n",
"Epoch 47/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 531.9226 - val_loss: 588.2625\n",
"Epoch 48/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 560.7547 - val_loss: 587.6885\n",
"Epoch 49/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 497.9337 - val_loss: 587.1169\n",
"Epoch 50/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 532.7061 - val_loss: 586.5414\n",
"Restoring model weights from the end of the best epoch: 50.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 1 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 35ms/step - loss: 637.7856 - val_loss: 657.1496\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 635.5981 - val_loss: 651.7541\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 605.5698 - val_loss: 646.9044\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 630.3705 - val_loss: 642.5358\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 588.4480 - val_loss: 638.8839\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 1 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 585.8986 - val_loss: 615.2974\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 596.2974 - val_loss: 614.6991\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 575.1195 - val_loss: 614.1013\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 592.2595 - val_loss: 613.5004\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 585.5679 - val_loss: 612.9026\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 1 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 33ms/step - loss: 616.4219 - val_loss: 615.3176\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 614.6700 - val_loss: 614.6872\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 570.4517 - val_loss: 614.0897\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 551.7113 - val_loss: 613.4946\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 582.1078 - val_loss: 612.8940\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 1 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 40ms/step - loss: 592.1609 - val_loss: 615.2876\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 578.9695 - val_loss: 614.6893\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 562.4158 - val_loss: 614.0926\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 590.9880 - val_loss: 613.4912\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 571.1354 - val_loss: 612.8918\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step\n",
"Обучение модели с 1 нейронами в первом слое, 1 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 36ms/step - loss: 574.8428 - val_loss: 606.8074\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 610.9281 - val_loss: 604.2184\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 554.3966 - val_loss: 601.2699\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 570.2092 - val_loss: 597.8051\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 600.1136 - val_loss: 593.9375\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 1 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 35ms/step - loss: 592.2248 - val_loss: 615.3035\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 615.6896 - val_loss: 614.7014\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 567.2931 - val_loss: 614.1038\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 605.1085 - val_loss: 613.5039\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 558.6070 - val_loss: 612.9083\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 1 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 37ms/step - loss: 603.7304 - val_loss: 615.2980\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 603.6087 - val_loss: 614.6987\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - loss: 566.3033 - val_loss: 614.0981\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 577.7813 - val_loss: 613.4998\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 584.9149 - val_loss: 612.9001\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step\n",
"Обучение модели с 1 нейронами в первом слое, 1 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 32ms/step - loss: 587.0059 - val_loss: 615.3184\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 566.1827 - val_loss: 614.7198\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 577.6082 - val_loss: 614.1200\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 573.1660 - val_loss: 613.5229\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 597.1829 - val_loss: 612.9211\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 1 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 60ms/step - loss: 559.3159 - val_loss: 615.3004\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 576.1331 - val_loss: 614.6984\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 610.5123 - val_loss: 614.0978\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 587.8647 - val_loss: 613.4978\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 597.0306 - val_loss: 612.9006\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 2 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 33ms/step - loss: 599.1074 - val_loss: 615.3336\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 563.5886 - val_loss: 614.7343\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 593.3015 - val_loss: 614.1300\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 602.2321 - val_loss: 613.5333\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 572.5640 - val_loss: 612.9354\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 2 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 34ms/step - loss: 588.6113 - val_loss: 615.3256\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 596.4879 - val_loss: 614.7065\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 579.3198 - val_loss: 614.1077\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 569.3735 - val_loss: 613.5096\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 561.4835 - val_loss: 612.9062\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 2 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 651.4684 - val_loss: 615.2982\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 604.3629 - val_loss: 614.7040\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 564.7697 - val_loss: 614.1081\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 603.8245 - val_loss: 613.5085\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 552.0588 - val_loss: 612.9130\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 2 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 39ms/step - loss: 590.0646 - val_loss: 626.4420\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 622.7743 - val_loss: 624.1435\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 589.9031 - val_loss: 621.4572\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 606.4978 - val_loss: 618.5082\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 582.4598 - val_loss: 615.8041\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 2 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 33ms/step - loss: 577.5243 - val_loss: 615.3229\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 575.2702 - val_loss: 614.7226\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 575.8795 - val_loss: 614.1237\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 531.6945 - val_loss: 613.5280\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 590.1955 - val_loss: 612.9252\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 2 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 582.8409 - val_loss: 615.6973\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 599.8480 - val_loss: 614.0806\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 596.6347 - val_loss: 611.8275\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 580.2905 - val_loss: 608.9907\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 586.3234 - val_loss: 606.0411\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 2 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 580.9186 - val_loss: 625.5623\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 579.5588 - val_loss: 620.6044\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 597.0767 - val_loss: 616.7037\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 564.9260 - val_loss: 613.4955\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 596.5385 - val_loss: 610.6212\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 2 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 37ms/step - loss: 599.6620 - val_loss: 615.3286\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 575.7575 - val_loss: 614.7286\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 588.3603 - val_loss: 614.1252\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 581.9452 - val_loss: 613.5285\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 594.8474 - val_loss: 612.9288\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 2 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 40ms/step - loss: 565.2772 - val_loss: 603.0632\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 565.9039 - val_loss: 597.2855\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 605.4560 - val_loss: 591.1426\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 561.0786 - val_loss: 584.8314\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 566.7753 - val_loss: 577.7901\n",
"Epoch 6/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 567.2346 - val_loss: 570.2762\n",
"Epoch 7/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 525.8469 - val_loss: 562.2595\n",
"Epoch 8/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 540.6042 - val_loss: 553.3916\n",
"Epoch 9/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 541.4808 - val_loss: 543.7894\n",
"Epoch 10/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 524.2122 - val_loss: 533.5605\n",
"Epoch 11/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 529.6752 - val_loss: 522.9118\n",
"Epoch 12/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 494.5334 - val_loss: 511.4578\n",
"Epoch 13/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 521.5722 - val_loss: 500.0273\n",
"Epoch 14/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 447.8814 - val_loss: 488.3380\n",
"Epoch 15/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 485.9253 - val_loss: 476.6330\n",
"Epoch 16/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 437.1959 - val_loss: 465.3489\n",
"Epoch 17/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 453.7814 - val_loss: 453.6621\n",
"Epoch 18/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 422.5827 - val_loss: 442.7603\n",
"Epoch 19/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 445.3117 - val_loss: 430.7304\n",
"Epoch 20/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 407.3616 - val_loss: 419.3137\n",
"Epoch 21/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 405.7384 - val_loss: 407.5056\n",
"Epoch 22/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 400.9281 - val_loss: 396.0481\n",
"Epoch 23/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 399.4594 - val_loss: 384.3988\n",
"Epoch 24/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 380.9244 - val_loss: 372.9174\n",
"Epoch 25/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 340.4900 - val_loss: 361.5088\n",
"Epoch 26/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 333.0316 - val_loss: 350.0278\n",
"Epoch 27/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 361.4619 - val_loss: 337.6804\n",
"Epoch 28/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 303.5032 - val_loss: 326.0356\n",
"Epoch 29/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 308.5326 - val_loss: 313.4218\n",
"Epoch 30/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 286.2262 - val_loss: 299.9160\n",
"Epoch 31/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 274.2978 - val_loss: 286.9541\n",
"Epoch 32/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 258.5680 - val_loss: 272.7871\n",
"Epoch 33/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 249.7020 - val_loss: 258.5763\n",
"Epoch 34/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 244.0664 - val_loss: 245.0251\n",
"Epoch 35/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 224.4356 - val_loss: 232.5784\n",
"Epoch 36/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 203.3394 - val_loss: 221.1853\n",
"Epoch 37/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 181.3371 - val_loss: 210.7947\n",
"Epoch 38/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 183.7854 - val_loss: 200.5314\n",
"Epoch 39/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 167.3571 - val_loss: 191.2195\n",
"Epoch 40/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 162.5559 - val_loss: 182.5596\n",
"Epoch 41/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 152.4063 - val_loss: 174.9716\n",
"Epoch 42/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 158.0497 - val_loss: 168.0014\n",
"Epoch 43/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 149.6694 - val_loss: 160.9094\n",
"Epoch 44/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 146.0132 - val_loss: 155.0076\n",
"Epoch 45/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 142.2314 - val_loss: 149.2919\n",
"Epoch 46/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 134.3176 - val_loss: 143.7338\n",
"Epoch 47/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 107.4883 - val_loss: 137.9270\n",
"Epoch 48/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 106.0392 - val_loss: 132.7408\n",
"Epoch 49/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 114.7289 - val_loss: 127.5627\n",
"Epoch 50/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 110.4265 - val_loss: 122.7566\n",
"Restoring model weights from the end of the best epoch: 50.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0s/step \n",
"Обучение модели с 1 нейронами в первом слое, 2 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 34ms/step - loss: 538.8064 - val_loss: 610.2289\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 595.1107 - val_loss: 606.7910\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 579.6578 - val_loss: 602.9631\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 554.9249 - val_loss: 598.6328\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 574.7551 - val_loss: 593.6536\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 3 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 35ms/step - loss: 607.7983 - val_loss: 627.7037\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 615.6426 - val_loss: 625.2411\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 595.5639 - val_loss: 623.0246\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 601.7086 - val_loss: 621.0676\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 614.5473 - val_loss: 619.3096\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0s/stepe\n",
"Обучение модели с 1 нейронами в первом слое, 3 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 610.5664 - val_loss: 613.4162\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 602.6295 - val_loss: 611.8408\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 593.2455 - val_loss: 610.1844\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 592.3473 - val_loss: 608.3942\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 623.9874 - val_loss: 606.4531\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 513us/step\n",
"Обучение модели с 1 нейронами в первом слое, 3 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 32ms/step - loss: 590.6041 - val_loss: 613.3274\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 592.2814 - val_loss: 612.1014\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 559.0024 - val_loss: 610.7291\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 560.3470 - val_loss: 609.1682\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 574.0643 - val_loss: 607.4062\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 3 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 34ms/step - loss: 577.5670 - val_loss: 615.3491\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 547.0424 - val_loss: 614.7126\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 571.2236 - val_loss: 614.0248\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 613.3670 - val_loss: 613.1729\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 540.0938 - val_loss: 612.2579\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0s/step \n",
"Обучение модели с 1 нейронами в первом слое, 3 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 32ms/step - loss: 577.5636 - val_loss: 621.0101\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 565.8600 - val_loss: 619.2568\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 600.4103 - val_loss: 617.6051\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 618.8960 - val_loss: 616.0234\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 585.9482 - val_loss: 614.5261\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 3 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 32ms/step - loss: 574.2111 - val_loss: 611.6863\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 562.6009 - val_loss: 610.1296\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 541.4276 - val_loss: 608.4721\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 563.0398 - val_loss: 606.6811\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 545.0397 - val_loss: 604.7661\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 3 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 32ms/step - loss: 570.4504 - val_loss: 618.6668\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 604.5253 - val_loss: 616.5524\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 549.3647 - val_loss: 614.6327\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 578.6406 - val_loss: 612.8913\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 617.8416 - val_loss: 611.2988\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 3 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 68ms/step - loss: 596.3947 - val_loss: 619.1022\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 561.6879 - val_loss: 617.3380\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 577.2103 - val_loss: 616.0056\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 587.1279 - val_loss: 614.9177\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 590.0640 - val_loss: 614.0031\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"Обучение модели с 1 нейронами в первом слое, 3 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 35ms/step - loss: 571.0095 - val_loss: 613.7745\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 589.8491 - val_loss: 611.7409\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 566.8519 - val_loss: 609.6942\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 607.8316 - val_loss: 607.5006\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 579.0125 - val_loss: 604.6565\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 3 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 34ms/step - loss: 525.3612 - val_loss: 584.8022\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 525.1701 - val_loss: 577.3402\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 519.8818 - val_loss: 568.7420\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 539.9597 - val_loss: 559.0280\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 547.8045 - val_loss: 547.9973\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 4 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 31ms/step - loss: 555.8586 - val_loss: 615.3264\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 603.2872 - val_loss: 614.7227\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 563.3223 - val_loss: 614.1259\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 568.6428 - val_loss: 613.5236\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 607.7445 - val_loss: 612.9225\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 4 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 32ms/step - loss: 572.4462 - val_loss: 615.3004\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 577.6561 - val_loss: 614.6995\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 604.3127 - val_loss: 614.0972\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 593.2516 - val_loss: 613.5009\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 570.6713 - val_loss: 612.9047\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 4 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 31ms/step - loss: 572.3638 - val_loss: 614.7881\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 581.8839 - val_loss: 613.5787\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 633.7269 - val_loss: 612.2310\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 575.3335 - val_loss: 610.5048\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 588.8382 - val_loss: 607.7709\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 4 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 32ms/step - loss: 579.1301 - val_loss: 612.4802\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 587.0059 - val_loss: 609.5280\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 573.0948 - val_loss: 606.3515\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 578.7026 - val_loss: 602.9141\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 581.4711 - val_loss: 599.1569\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 4 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 33ms/step - loss: 593.2070 - val_loss: 606.6633\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 618.3942 - val_loss: 603.3630\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 561.1608 - val_loss: 599.7818\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 563.9130 - val_loss: 595.7698\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 558.3792 - val_loss: 591.3843\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 56ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 4 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 38ms/step - loss: 574.3688 - val_loss: 615.7686\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 564.3815 - val_loss: 614.5071\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 600.2755 - val_loss: 613.2137\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 614.4237 - val_loss: 611.8452\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 593.5664 - val_loss: 610.3424\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 4 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 34ms/step - loss: 546.7065 - val_loss: 601.5787\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 587.9118 - val_loss: 597.3091\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 560.6741 - val_loss: 592.6060\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 559.5923 - val_loss: 587.3159\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 529.3022 - val_loss: 581.4183\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 4 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 32ms/step - loss: 569.7762 - val_loss: 584.5544\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 583.2378 - val_loss: 576.3055\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 526.5328 - val_loss: 567.0344\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 539.5130 - val_loss: 556.5752\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 503.6530 - val_loss: 544.7397\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 4 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 569.9245 - val_loss: 615.8762\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 573.8098 - val_loss: 613.3071\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 618.1188 - val_loss: 610.6863\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 612.6232 - val_loss: 607.9503\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 623.3323 - val_loss: 604.9163\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 4 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 30ms/step - loss: 587.6301 - val_loss: 611.1255\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 584.6855 - val_loss: 606.9353\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 604.4113 - val_loss: 602.0596\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 571.1045 - val_loss: 596.4680\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 576.4695 - val_loss: 590.0611\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 5 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 35ms/step - loss: 564.6749 - val_loss: 608.5728\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 572.1625 - val_loss: 606.4725\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 602.7052 - val_loss: 604.2078\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 603.8969 - val_loss: 601.8174\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 596.3693 - val_loss: 599.3695\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 5 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 31ms/step - loss: 579.3655 - val_loss: 609.1395\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 584.4879 - val_loss: 604.5427\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 566.6082 - val_loss: 599.5439\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 584.5709 - val_loss: 593.9714\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 534.9517 - val_loss: 587.8527\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 5 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 32ms/step - loss: 613.2046 - val_loss: 609.9980\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 576.1072 - val_loss: 608.1868\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 553.6133 - val_loss: 606.2458\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 598.6213 - val_loss: 604.1292\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 557.4871 - val_loss: 601.8250\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 5 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 40ms/step - loss: 593.5131 - val_loss: 620.3250\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 565.6859 - val_loss: 618.5703\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 617.0222 - val_loss: 616.8745\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 599.5117 - val_loss: 615.1284\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 606.3336 - val_loss: 613.2131\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 5 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 33ms/step - loss: 569.9484 - val_loss: 607.2361\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 602.9519 - val_loss: 605.1683\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 632.1003 - val_loss: 602.9806\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 588.7103 - val_loss: 600.6362\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 578.9829 - val_loss: 598.1189\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 5 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 37ms/step - loss: 612.2549 - val_loss: 615.1725\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 593.7244 - val_loss: 614.3321\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 576.0907 - val_loss: 613.3140\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 598.6660 - val_loss: 611.9986\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 614.4006 - val_loss: 610.0783\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 5 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 33ms/step - loss: 557.2050 - val_loss: 604.0654\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 567.3791 - val_loss: 596.8834\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 583.2648 - val_loss: 588.6289\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 577.5058 - val_loss: 578.6933\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 560.7485 - val_loss: 566.7773\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 5 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 34ms/step - loss: 573.9967 - val_loss: 615.3644\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 627.0775 - val_loss: 614.7622\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 558.0550 - val_loss: 614.1627\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 547.7598 - val_loss: 613.5586\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 583.2274 - val_loss: 612.9536\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 5 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 36ms/step - loss: 588.5575 - val_loss: 610.6813\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 564.4225 - val_loss: 608.7023\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 550.2604 - val_loss: 606.5734\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 585.0799 - val_loss: 604.2150\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 542.2628 - val_loss: 601.6714\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 5 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 31ms/step - loss: 621.0466 - val_loss: 626.1774\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 585.9089 - val_loss: 622.3433\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 600.2403 - val_loss: 618.9163\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 562.5385 - val_loss: 615.9114\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 568.9840 - val_loss: 613.2117\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step\n",
"Обучение модели с 1 нейронами в первом слое, 6 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 39ms/step - loss: 558.3312 - val_loss: 612.2573\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 564.3823 - val_loss: 610.4080\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 573.9564 - val_loss: 608.4031\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 537.0060 - val_loss: 606.2584\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 569.0247 - val_loss: 603.8308\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 6 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 32ms/step - loss: 614.3536 - val_loss: 613.8649\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 574.3538 - val_loss: 612.0334\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 576.1293 - val_loss: 610.0122\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 607.6017 - val_loss: 607.8026\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 552.8878 - val_loss: 605.3177\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 6 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 33ms/step - loss: 603.1254 - val_loss: 624.7242\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 603.2772 - val_loss: 622.4930\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 599.1089 - val_loss: 620.3647\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 576.0212 - val_loss: 618.3958\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 608.4993 - val_loss: 616.6162\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 6 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 32ms/step - loss: 570.8555 - val_loss: 618.9716\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 602.4755 - val_loss: 617.4521\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 571.6385 - val_loss: 616.1667\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 600.6297 - val_loss: 615.0538\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 559.3133 - val_loss: 614.0573\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 6 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 32ms/step - loss: 611.4872 - val_loss: 631.8602\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 600.5910 - val_loss: 628.2045\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 584.3683 - val_loss: 625.1019\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 570.2889 - val_loss: 622.3489\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 581.6100 - val_loss: 619.9950\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 6 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 39ms/step - loss: 594.3929 - val_loss: 607.3098\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 558.5295 - val_loss: 602.2650\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 558.1313 - val_loss: 595.6329\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 574.9265 - val_loss: 587.5284\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 549.0402 - val_loss: 578.4810\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 6 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 42ms/step - loss: 586.1777 - val_loss: 617.5582\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 596.9564 - val_loss: 613.8432\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 574.7198 - val_loss: 610.2770\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 617.1955 - val_loss: 606.6528\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 603.7544 - val_loss: 602.8614\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 6 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 36ms/step - loss: 595.1990 - val_loss: 600.6641\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 565.5915 - val_loss: 596.4670\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 611.1948 - val_loss: 591.4755\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 534.0938 - val_loss: 585.5818\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 537.5454 - val_loss: 578.9310\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 6 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 34ms/step - loss: 601.7268 - val_loss: 615.4450\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 573.6008 - val_loss: 612.1901\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 590.8713 - val_loss: 608.6153\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 551.9606 - val_loss: 604.5321\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 597.0724 - val_loss: 600.0168\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 6 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 36ms/step - loss: 578.1824 - val_loss: 613.3208\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 595.8596 - val_loss: 609.2180\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 588.9969 - val_loss: 604.4935\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 549.2053 - val_loss: 598.8151\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 566.8086 - val_loss: 592.1329\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 7 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 32ms/step - loss: 586.7553 - val_loss: 625.3914\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 587.3198 - val_loss: 621.8411\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 580.5944 - val_loss: 618.7117\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 636.7191 - val_loss: 615.9928\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 607.9388 - val_loss: 613.8467\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 7 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 33ms/step - loss: 580.7894 - val_loss: 615.6093\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 558.1612 - val_loss: 614.8705\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 550.2687 - val_loss: 614.1742\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 580.3486 - val_loss: 613.5287\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 611.8623 - val_loss: 612.9150\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 7 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 31ms/step - loss: 569.9092 - val_loss: 615.3727\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 566.5331 - val_loss: 613.8521\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 577.2259 - val_loss: 612.2732\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 599.4024 - val_loss: 610.5810\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 614.0658 - val_loss: 608.6942\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 7 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 35ms/step - loss: 595.4167 - val_loss: 615.3610\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 588.1100 - val_loss: 614.7599\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 577.7488 - val_loss: 614.1645\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 598.3663 - val_loss: 613.5639\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 567.7438 - val_loss: 612.9657\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 7 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 34ms/step - loss: 595.4822 - val_loss: 613.8896\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 615.0517 - val_loss: 611.4330\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 569.2980 - val_loss: 609.0161\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 576.9765 - val_loss: 606.4804\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 604.0372 - val_loss: 603.4196\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 7 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 31ms/step - loss: 587.0757 - val_loss: 618.7067\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 607.4346 - val_loss: 616.9457\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 584.5986 - val_loss: 615.5128\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 616.4516 - val_loss: 614.3146\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 613.9615 - val_loss: 613.2529\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 7 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 591.8509 - val_loss: 610.8469\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 588.0020 - val_loss: 608.1709\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 571.7070 - val_loss: 605.0764\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 584.7617 - val_loss: 601.3011\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 569.7576 - val_loss: 596.2092\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step\n",
"Обучение модели с 1 нейронами в первом слое, 7 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 46ms/step - loss: 581.3447 - val_loss: 609.7651\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 585.2088 - val_loss: 605.9648\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 574.8271 - val_loss: 601.7836\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 599.6798 - val_loss: 596.9474\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 561.6266 - val_loss: 591.3068\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 7 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 34ms/step - loss: 525.8964 - val_loss: 586.6132\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 570.3576 - val_loss: 577.2776\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 538.5143 - val_loss: 567.2624\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 509.4680 - val_loss: 556.2917\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 511.3942 - val_loss: 544.2842\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 7 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 33ms/step - loss: 603.0969 - val_loss: 611.3757\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 602.7335 - val_loss: 607.6844\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 601.1190 - val_loss: 603.2993\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 588.0833 - val_loss: 598.0877\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 570.1859 - val_loss: 591.5002\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 8 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 42ms/step - loss: 534.9858 - val_loss: 615.3041\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 584.6479 - val_loss: 614.7003\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 584.5744 - val_loss: 614.0974\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 569.3089 - val_loss: 613.4998\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 586.4707 - val_loss: 612.8984\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 8 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 102ms/step - loss: 588.1149 - val_loss: 613.1695\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 591.8245 - val_loss: 610.6826\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 611.5898 - val_loss: 607.2645\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 573.3290 - val_loss: 602.6239\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 577.8134 - val_loss: 597.5483\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 8 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 35ms/step - loss: 588.9258 - val_loss: 604.9238\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 583.6113 - val_loss: 601.5062\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 585.7529 - val_loss: 597.5659\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 591.2629 - val_loss: 592.9738\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 567.6241 - val_loss: 587.7682\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 8 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 35ms/step - loss: 565.2377 - val_loss: 594.9526\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 549.3633 - val_loss: 588.7299\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 550.8486 - val_loss: 581.7194\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 556.3844 - val_loss: 573.5577\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 528.2617 - val_loss: 564.2383\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 8 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 42ms/step - loss: 581.7507 - val_loss: 614.8833\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 554.4428 - val_loss: 613.7830\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 577.5980 - val_loss: 612.5134\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 554.3231 - val_loss: 610.9550\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 554.9146 - val_loss: 608.9627\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 8 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 40ms/step - loss: 569.4452 - val_loss: 602.1398\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 603.0309 - val_loss: 598.2238\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 544.9234 - val_loss: 594.1864\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 570.0693 - val_loss: 589.6279\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 572.0333 - val_loss: 584.6334\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 8 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 35ms/step - loss: 581.2264 - val_loss: 612.8682\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 573.8531 - val_loss: 611.1070\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 597.5838 - val_loss: 609.2148\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 581.2224 - val_loss: 607.1373\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 594.1619 - val_loss: 604.8315\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 8 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 31ms/step - loss: 573.7249 - val_loss: 623.6496\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 603.0558 - val_loss: 619.4313\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 576.9384 - val_loss: 615.9666\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 586.8960 - val_loss: 612.7545\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 560.3649 - val_loss: 609.6611\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0s/step \n",
"Обучение модели с 1 нейронами в первом слое, 8 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 32ms/step - loss: 598.7777 - val_loss: 618.4054\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 626.9877 - val_loss: 616.8143\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 578.8027 - val_loss: 615.5305\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 604.0405 - val_loss: 614.4684\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 573.8964 - val_loss: 613.5746\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 8 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 34ms/step - loss: 604.8859 - val_loss: 638.5045\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 634.8127 - val_loss: 632.2039\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 589.2893 - val_loss: 626.7926\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 590.0969 - val_loss: 622.1525\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.1986 - val_loss: 618.0580\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 9 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 33ms/step - loss: 581.9110 - val_loss: 602.6177\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 557.8821 - val_loss: 597.6243\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 600.6352 - val_loss: 591.9685\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 560.6846 - val_loss: 585.7682\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 563.0642 - val_loss: 578.9827\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 9 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 31ms/step - loss: 552.1190 - val_loss: 614.3790\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 566.4842 - val_loss: 613.3484\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 559.4136 - val_loss: 612.2451\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 561.3465 - val_loss: 611.0387\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 581.4360 - val_loss: 609.7031\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 9 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 36ms/step - loss: 605.3347 - val_loss: 619.5457\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 565.5645 - val_loss: 617.0363\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 579.5836 - val_loss: 614.6138\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 569.1011 - val_loss: 612.1582\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 585.5732 - val_loss: 609.6605\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 9 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 38ms/step - loss: 598.6490 - val_loss: 616.8169\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 610.0230 - val_loss: 615.7768\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 571.5494 - val_loss: 614.8577\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 597.4617 - val_loss: 614.0278\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 601.6479 - val_loss: 613.2603\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step\n",
"Обучение модели с 1 нейронами в первом слое, 9 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 548.9863 - val_loss: 593.4352\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 583.0473 - val_loss: 586.6590\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 525.9391 - val_loss: 578.8276\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 551.6431 - val_loss: 569.5300\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 513.6041 - val_loss: 559.0103\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 9 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 33ms/step - loss: 561.4778 - val_loss: 611.4490\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 615.9729 - val_loss: 607.9340\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 602.6977 - val_loss: 604.1215\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 565.7021 - val_loss: 600.0382\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 570.4281 - val_loss: 595.5741\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step\n",
"Обучение модели с 1 нейронами в первом слое, 9 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 31ms/step - loss: 578.5371 - val_loss: 620.8654\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 557.8444 - val_loss: 618.3506\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 564.7453 - val_loss: 616.0727\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 597.6843 - val_loss: 613.9571\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 589.1842 - val_loss: 611.8649\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step\n",
"Обучение модели с 1 нейронами в первом слое, 9 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 36ms/step - loss: 593.9227 - val_loss: 611.6988\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 587.4828 - val_loss: 609.3154\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 593.0856 - val_loss: 606.6141\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 620.0717 - val_loss: 603.4987\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 549.8922 - val_loss: 599.9398\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step\n",
"Обучение модели с 1 нейронами в первом слое, 9 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 35ms/step - loss: 637.6115 - val_loss: 620.6395\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 536.4326 - val_loss: 617.4416\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 592.3948 - val_loss: 614.3837\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 593.4152 - val_loss: 611.1743\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 607.7770 - val_loss: 607.8710\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 9 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 33ms/step - loss: 578.8576 - val_loss: 615.0306\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 560.1316 - val_loss: 613.1714\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 580.4927 - val_loss: 611.2235\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 571.1354 - val_loss: 608.9545\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 585.7652 - val_loss: 606.0467\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 10 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 35ms/step - loss: 552.5616 - val_loss: 615.3164\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 548.1840 - val_loss: 614.7135\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 571.0978 - val_loss: 614.1102\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 589.6815 - val_loss: 613.5067\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 574.3170 - val_loss: 612.9074\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 10 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 34ms/step - loss: 546.3224 - val_loss: 612.7534\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 567.9211 - val_loss: 611.0970\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 555.7443 - val_loss: 609.2758\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 584.0233 - val_loss: 607.2795\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 581.8012 - val_loss: 605.1213\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step\n",
"Обучение модели с 1 нейронами в первом слое, 10 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 597.3478 - val_loss: 615.8537\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 570.1092 - val_loss: 615.0795\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 574.4739 - val_loss: 614.3689\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 547.1780 - val_loss: 613.7050\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 610.9669 - val_loss: 613.0574\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 10 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 42ms/step - loss: 631.1007 - val_loss: 606.2503\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 570.2347 - val_loss: 603.4025\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 563.7170 - val_loss: 600.2607\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 596.1182 - val_loss: 596.7361\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 595.9681 - val_loss: 592.9161\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 10 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 42ms/step - loss: 589.2197 - val_loss: 605.2678\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 562.5629 - val_loss: 600.5302\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 518.7348 - val_loss: 595.2241\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 562.9111 - val_loss: 589.1985\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 535.5115 - val_loss: 582.4730\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 10 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 586.5822 - val_loss: 615.5363\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 621.7043 - val_loss: 614.3242\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 599.4050 - val_loss: 613.1205\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 608.8453 - val_loss: 611.7121\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 587.1053 - val_loss: 609.9561\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 10 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 39ms/step - loss: 600.5549 - val_loss: 595.0894\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.9692 - val_loss: 588.7370\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 563.8923 - val_loss: 581.4777\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 543.9911 - val_loss: 573.2354\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 602.3289 - val_loss: 563.6835\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 10 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 45ms/step - loss: 581.9595 - val_loss: 616.4393\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 619.5957 - val_loss: 614.4447\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 564.2773 - val_loss: 612.3018\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 601.5613 - val_loss: 609.9171\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 583.0844 - val_loss: 607.1151\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 10 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 590.9326 - val_loss: 612.1727\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 570.7017 - val_loss: 608.0118\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 576.2090 - val_loss: 603.1125\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 554.8195 - val_loss: 596.9471\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 535.3254 - val_loss: 589.3306\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 1 нейронами в первом слое, 10 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 559.7034 - val_loss: 614.2526\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 608.0688 - val_loss: 610.9624\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 578.5759 - val_loss: 607.1929\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 565.7433 - val_loss: 602.7489\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 567.9714 - val_loss: 597.4565\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 1 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 589.7354 - val_loss: 615.3192\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 577.7305 - val_loss: 614.7175\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 594.1133 - val_loss: 614.1163\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 595.0735 - val_loss: 613.5145\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 583.5908 - val_loss: 612.9173\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 1 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 52ms/step - loss: 563.2015 - val_loss: 611.6802\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 580.8204 - val_loss: 610.2484\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 580.8039 - val_loss: 608.6606\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 596.2269 - val_loss: 606.9773\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 567.1710 - val_loss: 605.0629\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 1 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 585.4365 - val_loss: 615.3241\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 611.9353 - val_loss: 614.7220\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 589.9124 - val_loss: 614.1221\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 596.9641 - val_loss: 613.5228\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 554.2148 - val_loss: 612.9266\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 1 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 596.3715 - val_loss: 614.5392\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 524.3414 - val_loss: 613.1100\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 547.6064 - val_loss: 611.5854\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 613.5726 - val_loss: 609.9370\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 614.4135 - val_loss: 608.1180\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 1 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 44ms/step - loss: 581.0197 - val_loss: 616.1147\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 576.7925 - val_loss: 615.0158\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 602.9893 - val_loss: 614.2397\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 588.0993 - val_loss: 613.5749\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 567.2886 - val_loss: 612.9554\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 1 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 43ms/step - loss: 586.9193 - val_loss: 615.3354\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 588.4556 - val_loss: 614.7355\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 546.6098 - val_loss: 614.1337\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 573.1412 - val_loss: 613.5303\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 552.6937 - val_loss: 612.9341\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 1 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 34ms/step - loss: 591.7986 - val_loss: 615.3265\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 601.2065 - val_loss: 614.7260\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 558.4352 - val_loss: 614.1281\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 556.8353 - val_loss: 613.5280\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 593.4020 - val_loss: 612.9266\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step\n",
"Обучение модели с 2 нейронами в первом слое, 1 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 58ms/step - loss: 580.6741 - val_loss: 615.3405\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 564.2889 - val_loss: 614.7399\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 567.2557 - val_loss: 614.1374\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 565.3521 - val_loss: 613.5343\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 547.1741 - val_loss: 612.9339\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 1 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 558.1837 - val_loss: 617.3206\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 590.8146 - val_loss: 615.9479\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 588.3965 - val_loss: 614.7140\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 594.4034 - val_loss: 613.5414\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 585.5994 - val_loss: 612.2902\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 1 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 581.8449 - val_loss: 622.0423\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 557.7646 - val_loss: 618.3611\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 607.2590 - val_loss: 615.0601\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 602.9932 - val_loss: 612.1605\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 569.3450 - val_loss: 609.4816\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 2 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 69ms/step - loss: 604.2549 - val_loss: 615.3147\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 8ms/step - loss: 605.8018 - val_loss: 614.7150\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 589.6895 - val_loss: 614.1138\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 580.9188 - val_loss: 613.5151\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 591.0113 - val_loss: 612.9153\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 2 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 574.9792 - val_loss: 612.9482\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 579.9359 - val_loss: 611.1190\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 589.4819 - val_loss: 609.1478\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 549.9006 - val_loss: 607.0841\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 598.6206 - val_loss: 604.7923\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 2 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 44ms/step - loss: 548.0956 - val_loss: 611.4490\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 579.7177 - val_loss: 609.6678\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 577.9783 - val_loss: 607.7741\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 596.1431 - val_loss: 605.5522\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 598.8419 - val_loss: 603.1929\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 2 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 571.5034 - val_loss: 596.3860\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 598.1450 - val_loss: 591.6305\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 592.8229 - val_loss: 586.2907\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 573.4760 - val_loss: 580.5367\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 553.6479 - val_loss: 574.4095\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 2 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 542.6825 - val_loss: 626.6516\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 593.2383 - val_loss: 624.1187\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 562.1620 - val_loss: 621.9117\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 589.5983 - val_loss: 619.9033\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 592.5540 - val_loss: 618.1243\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 2 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 541.3336 - val_loss: 612.5837\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 581.6423 - val_loss: 610.2846\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 570.7338 - val_loss: 607.7666\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 567.2518 - val_loss: 604.8622\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 559.8314 - val_loss: 601.5233\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 2 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 571.6575 - val_loss: 597.7495\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 556.8539 - val_loss: 591.2419\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 554.9882 - val_loss: 584.0773\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 581.9731 - val_loss: 576.0646\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 538.2130 - val_loss: 567.1942\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 2 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 40ms/step - loss: 601.5761 - val_loss: 615.3506\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 563.0302 - val_loss: 614.7522\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 589.5970 - val_loss: 614.1472\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 564.6450 - val_loss: 613.5477\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 580.1090 - val_loss: 612.9463\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 2 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 143ms/step - loss: 548.1212 - val_loss: 613.4366\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 541.9286 - val_loss: 611.8745\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 554.9821 - val_loss: 610.1153\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 585.6714 - val_loss: 608.0486\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 584.2114 - val_loss: 605.4984\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 2 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 620.3945 - val_loss: 615.7964\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 552.4215 - val_loss: 611.9706\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 551.3071 - val_loss: 608.1845\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 549.0906 - val_loss: 604.1667\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 573.5970 - val_loss: 599.7165\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 3 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 45ms/step - loss: 620.3792 - val_loss: 619.3513\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 595.2696 - val_loss: 617.8594\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 573.9429 - val_loss: 616.5580\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 568.2255 - val_loss: 615.4122\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 594.0432 - val_loss: 614.3910\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 3 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 40ms/step - loss: 594.6320 - val_loss: 615.3538\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 583.8453 - val_loss: 614.7525\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 594.6768 - val_loss: 614.1503\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 574.7875 - val_loss: 613.5535\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 565.6936 - val_loss: 612.9554\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 3 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 36ms/step - loss: 553.5650 - val_loss: 612.1933\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 563.8298 - val_loss: 610.4584\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 558.1495 - val_loss: 608.5842\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 583.9386 - val_loss: 606.5002\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 574.7164 - val_loss: 604.1969\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 3 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 42ms/step - loss: 622.7848 - val_loss: 615.3616\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 590.7549 - val_loss: 612.8399\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 573.8275 - val_loss: 610.3929\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 566.9214 - val_loss: 608.0760\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 588.2532 - val_loss: 605.6320\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 3 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 40ms/step - loss: 554.3909 - val_loss: 606.1769\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 551.0710 - val_loss: 602.6818\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 560.1410 - val_loss: 598.7175\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 535.9535 - val_loss: 594.1604\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 547.9069 - val_loss: 588.9516\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 3 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 603.2928 - val_loss: 614.0172\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 552.3887 - val_loss: 611.9705\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 607.0897 - val_loss: 609.0838\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 564.9092 - val_loss: 605.4931\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 572.1569 - val_loss: 601.3011\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 3 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 39ms/step - loss: 621.1767 - val_loss: 608.6685\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 587.8085 - val_loss: 604.7941\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 557.5849 - val_loss: 600.4045\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 566.4336 - val_loss: 595.4897\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 568.8219 - val_loss: 589.7963\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 3 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 40ms/step - loss: 595.1384 - val_loss: 611.7260\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 582.0645 - val_loss: 607.9074\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 578.3568 - val_loss: 603.0316\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 572.8828 - val_loss: 596.9816\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 515.3592 - val_loss: 589.5950\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step\n",
"Обучение модели с 2 нейронами в первом слое, 3 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 554.0532 - val_loss: 609.4827\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.6214 - val_loss: 605.6738\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 579.7535 - val_loss: 601.4255\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 556.5220 - val_loss: 596.5381\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 593.5160 - val_loss: 590.7455\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 3 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 531.1662 - val_loss: 620.5120\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 606.5299 - val_loss: 617.1661\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 584.6691 - val_loss: 614.1740\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 557.0381 - val_loss: 611.2560\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 613.4205 - val_loss: 608.0358\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 4 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 556.3030 - val_loss: 601.1074\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 545.8751 - val_loss: 597.1698\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 573.9969 - val_loss: 592.7552\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 566.5534 - val_loss: 587.7989\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 574.8223 - val_loss: 582.0616\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 4 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 40ms/step - loss: 576.7092 - val_loss: 609.4739\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 587.5565 - val_loss: 607.4637\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 560.7421 - val_loss: 605.2676\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 589.9666 - val_loss: 602.9414\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 602.5930 - val_loss: 600.4050\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 4 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 544.9487 - val_loss: 609.5028\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 591.4653 - val_loss: 604.8702\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 574.6583 - val_loss: 600.6100\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 546.9099 - val_loss: 596.2525\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 556.9156 - val_loss: 591.5590\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 4 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 593.5645 - val_loss: 613.4603\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 592.9883 - val_loss: 611.6470\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 579.8963 - val_loss: 609.5626\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 552.8455 - val_loss: 607.0620\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.5081 - val_loss: 603.9866\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 4 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 558.3041 - val_loss: 593.7162\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 571.1393 - val_loss: 588.0696\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 543.7287 - val_loss: 581.7815\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 535.7413 - val_loss: 574.3720\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 543.9025 - val_loss: 565.2662\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 4 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 42ms/step - loss: 584.8543 - val_loss: 606.4965\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.1635 - val_loss: 602.1609\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.1630 - val_loss: 597.4627\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 535.9441 - val_loss: 592.5755\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 543.6490 - val_loss: 587.1506\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 4 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 548.3576 - val_loss: 613.6135\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 598.0140 - val_loss: 610.1888\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.2128 - val_loss: 606.4283\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 596.8918 - val_loss: 602.1722\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 562.1682 - val_loss: 597.3219\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 4 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 600.4705 - val_loss: 611.2265\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 590.8527 - val_loss: 607.0683\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 605.8035 - val_loss: 602.5971\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 556.2055 - val_loss: 597.5905\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 540.4453 - val_loss: 591.5931\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 4 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 594.4250 - val_loss: 622.6631\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 578.5049 - val_loss: 620.2504\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 593.0848 - val_loss: 618.0881\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 572.4761 - val_loss: 616.0869\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 594.3058 - val_loss: 614.0702\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 4 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 592.8143 - val_loss: 613.9497\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 588.5351 - val_loss: 612.4036\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 552.2800 - val_loss: 610.5808\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 579.4351 - val_loss: 608.4507\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 565.1987 - val_loss: 606.0662\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 5 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 46ms/step - loss: 573.3543 - val_loss: 615.8309\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 558.6969 - val_loss: 615.0217\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 583.2391 - val_loss: 614.3124\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 589.9979 - val_loss: 613.6624\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 580.4960 - val_loss: 613.0270\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 5 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 572.1999 - val_loss: 610.8960\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 568.6794 - val_loss: 608.7868\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 588.0742 - val_loss: 606.2706\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 534.5037 - val_loss: 603.2551\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 622.8450 - val_loss: 599.5827\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 5 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 569.1586 - val_loss: 609.9455\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 607.9469 - val_loss: 606.0926\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 534.4378 - val_loss: 601.8605\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 549.5058 - val_loss: 597.0139\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 551.1223 - val_loss: 591.5472\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 5 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 623.4047 - val_loss: 633.8093\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 573.3286 - val_loss: 630.0466\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 607.8419 - val_loss: 626.3265\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 577.9747 - val_loss: 622.8453\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 567.1147 - val_loss: 619.6274\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 5 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 40ms/step - loss: 583.4700 - val_loss: 602.0941\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 551.0062 - val_loss: 597.6838\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 562.1511 - val_loss: 592.7033\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 548.2394 - val_loss: 587.1169\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 549.6139 - val_loss: 580.9148\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 5 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 601.1992 - val_loss: 587.5189\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 573.2982 - val_loss: 581.4636\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 524.4763 - val_loss: 574.7283\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 543.0521 - val_loss: 567.0236\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 548.6606 - val_loss: 558.1318\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 5 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 42ms/step - loss: 575.7217 - val_loss: 616.1005\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 563.7483 - val_loss: 608.2917\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 567.5809 - val_loss: 599.2582\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 569.6552 - val_loss: 588.4896\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 502.7990 - val_loss: 576.0807\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 5 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 571.9819 - val_loss: 609.8586\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 560.8360 - val_loss: 606.8318\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 585.6149 - val_loss: 603.2280\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 586.4727 - val_loss: 599.1492\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 583.7183 - val_loss: 594.4384\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 5 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 557.8644 - val_loss: 612.2972\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 598.3561 - val_loss: 609.7356\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 575.8191 - val_loss: 606.8872\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 549.2408 - val_loss: 603.6832\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 558.6814 - val_loss: 599.9442\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 5 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 40ms/step - loss: 563.6530 - val_loss: 592.1291\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 560.8939 - val_loss: 586.0008\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 569.8262 - val_loss: 579.4879\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 520.3815 - val_loss: 572.2953\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 530.3594 - val_loss: 564.2437\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 6 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 564.7426 - val_loss: 615.3542\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 607.8940 - val_loss: 614.7504\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 547.7658 - val_loss: 614.1505\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 603.6891 - val_loss: 613.5448\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 554.9576 - val_loss: 612.9461\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 6 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 609.2686 - val_loss: 606.6447\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 590.5461 - val_loss: 602.6572\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 568.2142 - val_loss: 598.3782\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 564.4746 - val_loss: 593.5667\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 561.1998 - val_loss: 588.3615\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 6 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 568.6454 - val_loss: 611.7374\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 613.3915 - val_loss: 608.3294\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 588.7137 - val_loss: 604.2114\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 547.0214 - val_loss: 599.1962\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 545.9631 - val_loss: 593.7290\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 6 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 185ms/step - loss: 635.0696 - val_loss: 619.4272\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 606.0308 - val_loss: 614.9650\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 614.0049 - val_loss: 610.7350\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 609.0016 - val_loss: 606.5845\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 561.1581 - val_loss: 601.7563\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 6 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 40ms/step - loss: 615.8982 - val_loss: 615.5666\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 609.6320 - val_loss: 613.3632\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 598.0454 - val_loss: 611.0899\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 588.6656 - val_loss: 608.4015\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 580.2712 - val_loss: 605.2338\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 6 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 588.6150 - val_loss: 606.6408\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 562.5709 - val_loss: 601.4521\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 557.3063 - val_loss: 595.7715\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 523.9774 - val_loss: 589.4790\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 528.0440 - val_loss: 582.5005\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 6 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 625.9227 - val_loss: 639.8613\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 594.7535 - val_loss: 631.4213\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 636.7288 - val_loss: 624.0259\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 568.0189 - val_loss: 617.7849\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 563.9308 - val_loss: 612.4626\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 6 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 40ms/step - loss: 568.1303 - val_loss: 605.5339\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 575.5594 - val_loss: 600.1797\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 562.5869 - val_loss: 594.0275\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 553.5734 - val_loss: 586.8657\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 585.4786 - val_loss: 578.8149\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 6 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 568.7794 - val_loss: 613.1018\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 598.9505 - val_loss: 607.3351\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 566.4192 - val_loss: 601.0749\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 543.8870 - val_loss: 593.9341\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 563.7718 - val_loss: 585.1920\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 6 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 40ms/step - loss: 570.7277 - val_loss: 592.0120\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 558.9589 - val_loss: 583.6472\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 582.2888 - val_loss: 572.0666\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 539.7687 - val_loss: 557.7687\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 551.8550 - val_loss: 540.6106\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 7 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 35ms/step - loss: 641.8640 - val_loss: 625.5600\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 604.9824 - val_loss: 622.3749\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 611.0334 - val_loss: 619.6163\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 643.9670 - val_loss: 617.3752\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 582.5214 - val_loss: 615.5707\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 7 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 563.0444 - val_loss: 595.6257\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 555.1445 - val_loss: 589.9523\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 557.8097 - val_loss: 583.5375\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 558.7336 - val_loss: 576.2269\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 517.8667 - val_loss: 567.8337\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step\n",
"Обучение модели с 2 нейронами в первом слое, 7 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 36ms/step - loss: 576.9696 - val_loss: 614.5543\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 590.3334 - val_loss: 613.1273\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 574.6890 - val_loss: 611.6130\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 549.4014 - val_loss: 609.6680\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 549.6898 - val_loss: 607.2966\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 7 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 37ms/step - loss: 552.7030 - val_loss: 587.3351\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 585.9016 - val_loss: 580.1832\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 556.9509 - val_loss: 572.1553\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 547.1695 - val_loss: 562.6174\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 526.9354 - val_loss: 550.9296\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 7 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 34ms/step - loss: 595.8890 - val_loss: 611.1276\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 591.7258 - val_loss: 608.7333\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 599.8795 - val_loss: 606.2178\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 571.8024 - val_loss: 603.3266\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 570.2602 - val_loss: 599.8466\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 7 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 540.4354 - val_loss: 617.2603\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 582.3204 - val_loss: 611.1242\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 578.0692 - val_loss: 605.1831\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 543.0798 - val_loss: 599.1803\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 563.0967 - val_loss: 592.1158\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 7 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 589.7891 - val_loss: 623.3375\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 609.5318 - val_loss: 619.9290\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 616.8492 - val_loss: 616.9152\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 650.3108 - val_loss: 614.1373\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 629.1477 - val_loss: 611.3753\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 7 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 565.2256 - val_loss: 606.8657\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.5455 - val_loss: 600.6439\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 562.6273 - val_loss: 593.8327\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 584.0215 - val_loss: 586.4080\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 592.4778 - val_loss: 577.9835\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step\n",
"Обучение модели с 2 нейронами в первом слое, 7 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 35ms/step - loss: 549.2388 - val_loss: 609.8875\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 556.6823 - val_loss: 605.7089\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 569.6734 - val_loss: 600.7913\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 582.8515 - val_loss: 594.7472\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 547.9120 - val_loss: 587.0955\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 7 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 583.5330 - val_loss: 602.4524\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 558.7158 - val_loss: 595.0878\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 569.2982 - val_loss: 587.2556\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 563.7745 - val_loss: 578.6366\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 550.5027 - val_loss: 569.1031\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 8 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 48ms/step - loss: 584.4896 - val_loss: 614.7419\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 602.4608 - val_loss: 613.5623\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 585.3033 - val_loss: 612.0579\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 602.7537 - val_loss: 610.0740\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 607.6539 - val_loss: 607.4492\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 8 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 604.1646 - val_loss: 619.6240\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 575.1136 - val_loss: 618.1153\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 580.9644 - val_loss: 616.8293\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 557.1520 - val_loss: 615.6592\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 567.6388 - val_loss: 614.5527\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 8 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 33ms/step - loss: 603.6083 - val_loss: 617.6268\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 594.4135 - val_loss: 614.0695\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 582.0634 - val_loss: 610.3704\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 617.4625 - val_loss: 606.2875\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 608.9670 - val_loss: 601.8650\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step\n",
"Обучение модели с 2 нейронами в первом слое, 8 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 34ms/step - loss: 568.5225 - val_loss: 615.7903\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 554.0084 - val_loss: 613.5223\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 569.8237 - val_loss: 611.1745\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 596.0083 - val_loss: 608.6003\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 590.3853 - val_loss: 605.7442\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 8 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 599.0166 - val_loss: 605.7124\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 627.8475 - val_loss: 601.9089\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 581.7419 - val_loss: 597.3674\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 572.4418 - val_loss: 592.1381\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 545.3441 - val_loss: 586.2515\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 8 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 614.2464 - val_loss: 610.4758\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 618.8645 - val_loss: 608.4089\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 551.8884 - val_loss: 606.0757\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 575.9595 - val_loss: 603.3345\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 547.0587 - val_loss: 600.0588\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 8 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 595.5477 - val_loss: 611.7678\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 578.5278 - val_loss: 608.1501\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 594.5479 - val_loss: 603.5903\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 581.1297 - val_loss: 597.9854\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 540.5912 - val_loss: 590.9109\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 8 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 563.5513 - val_loss: 598.2925\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 573.9361 - val_loss: 591.5938\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 554.1636 - val_loss: 584.1604\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 547.3614 - val_loss: 575.3314\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 556.8329 - val_loss: 564.5822\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 8 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 34ms/step - loss: 601.4703 - val_loss: 613.7682\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 556.1782 - val_loss: 608.9113\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 567.5948 - val_loss: 604.2277\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 565.2003 - val_loss: 599.3093\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 542.7544 - val_loss: 593.7433\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 8 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 564.5471 - val_loss: 606.3845\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 577.2411 - val_loss: 599.0309\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 567.7620 - val_loss: 591.1783\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 553.6196 - val_loss: 582.2300\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 535.9476 - val_loss: 571.4421\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 9 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 608.3661 - val_loss: 614.6479\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 561.5846 - val_loss: 612.7881\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 566.8115 - val_loss: 610.2095\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 595.8243 - val_loss: 607.0499\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 599.7175 - val_loss: 603.2847\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 9 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 581.2749 - val_loss: 615.3625\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 601.9742 - val_loss: 614.7587\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 615.0758 - val_loss: 614.1543\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 578.9182 - val_loss: 613.5568\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 582.2601 - val_loss: 612.9562\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 9 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 610.0820 - val_loss: 616.4317\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 580.9116 - val_loss: 614.1223\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 570.1589 - val_loss: 611.9091\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 593.5159 - val_loss: 609.7039\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 568.4451 - val_loss: 607.3760\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 9 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 36ms/step - loss: 557.0909 - val_loss: 615.2772\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 590.7441 - val_loss: 613.9808\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 554.5314 - val_loss: 612.3828\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 591.4420 - val_loss: 610.3726\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 579.6501 - val_loss: 607.8683\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 9 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 34ms/step - loss: 628.0702 - val_loss: 617.0403\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 601.1060 - val_loss: 614.3297\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 599.0797 - val_loss: 611.3316\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 556.7725 - val_loss: 607.8427\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 601.5537 - val_loss: 603.8256\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step\n",
"Обучение модели с 2 нейронами в первом слое, 9 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 563.4668 - val_loss: 599.8699\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 594.3347 - val_loss: 593.7519\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 580.3282 - val_loss: 586.2945\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 559.4120 - val_loss: 576.9992\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 549.6993 - val_loss: 565.2656\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 9 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 648.6255 - val_loss: 616.4704\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 598.1986 - val_loss: 614.2608\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 595.2717 - val_loss: 612.1966\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 593.9398 - val_loss: 610.2640\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 612.4108 - val_loss: 608.3589\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 9 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 646.0096 - val_loss: 630.0827\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 599.8043 - val_loss: 623.6820\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 588.3359 - val_loss: 617.1619\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 575.0542 - val_loss: 611.0555\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 596.0426 - val_loss: 605.2576\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 9 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 36ms/step - loss: 590.1461 - val_loss: 595.5871\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 603.7929 - val_loss: 587.4113\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 515.6588 - val_loss: 577.8562\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 529.9178 - val_loss: 566.4418\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 495.7629 - val_loss: 552.7347\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 9 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 581.3125 - val_loss: 598.9222\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 560.5390 - val_loss: 589.7459\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 548.4788 - val_loss: 579.5746\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 522.3553 - val_loss: 568.4086\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 529.6439 - val_loss: 555.1989\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 10 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 36ms/step - loss: 613.1125 - val_loss: 615.3566\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 602.3198 - val_loss: 614.7560\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 576.7585 - val_loss: 614.1540\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 573.7330 - val_loss: 613.5514\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 592.8214 - val_loss: 612.9500\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 10 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 34ms/step - loss: 602.8577 - val_loss: 618.9978\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 609.2358 - val_loss: 616.9242\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 567.4509 - val_loss: 615.3344\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 623.1249 - val_loss: 614.1852\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 530.0406 - val_loss: 613.2956\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 10 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 34ms/step - loss: 586.8544 - val_loss: 614.9316\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 582.6161 - val_loss: 608.5535\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 574.5303 - val_loss: 602.4194\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 618.8498 - val_loss: 596.4328\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 523.4271 - val_loss: 589.8478\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step\n",
"Обучение модели с 2 нейронами в первом слое, 10 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 605.2540 - val_loss: 628.7255\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 577.8647 - val_loss: 622.8169\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 602.8574 - val_loss: 617.9512\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 584.5414 - val_loss: 613.9309\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 584.3478 - val_loss: 610.6338\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 10 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 607.5060 - val_loss: 606.4279\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 581.5441 - val_loss: 601.9963\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 580.1586 - val_loss: 596.9821\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 559.2469 - val_loss: 591.1805\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 564.4561 - val_loss: 584.4055\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 10 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 592.4254 - val_loss: 613.5729\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 566.0548 - val_loss: 609.0659\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 602.4569 - val_loss: 603.5332\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 564.2686 - val_loss: 596.4274\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 589.3649 - val_loss: 588.1419\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 10 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 45ms/step - loss: 585.3282 - val_loss: 611.6075\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 566.5768 - val_loss: 606.2938\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 555.2052 - val_loss: 600.3623\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 583.7058 - val_loss: 593.7026\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.8246 - val_loss: 586.2469\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step\n",
"Обучение модели с 2 нейронами в первом слое, 10 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 615.4045 - val_loss: 610.5275\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 605.5471 - val_loss: 605.9019\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 556.0458 - val_loss: 601.0100\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 585.9064 - val_loss: 595.3901\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 588.5275 - val_loss: 589.5056\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 10 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 40ms/step - loss: 556.3005 - val_loss: 605.5916\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 571.3495 - val_loss: 601.3231\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 533.2841 - val_loss: 596.4249\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 544.9885 - val_loss: 590.2839\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 541.6516 - val_loss: 582.4516\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 2 нейронами в первом слое, 10 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 586.9500 - val_loss: 614.8626\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 568.7515 - val_loss: 612.8280\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 592.0345 - val_loss: 610.5140\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 553.7361 - val_loss: 607.6910\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 581.5071 - val_loss: 604.3077\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 1 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 40ms/step - loss: 596.1105 - val_loss: 624.5440\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 609.2031 - val_loss: 620.8639\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 601.9583 - val_loss: 618.4959\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 579.8707 - val_loss: 616.8983\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 564.6543 - val_loss: 615.5844\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 1 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 36ms/step - loss: 596.5901 - val_loss: 615.3373\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 560.5503 - val_loss: 614.7365\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 578.6785 - val_loss: 614.1354\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 579.9384 - val_loss: 613.5348\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 546.9398 - val_loss: 612.9371\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 1 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 36ms/step - loss: 573.7222 - val_loss: 612.6031\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 547.0676 - val_loss: 610.1771\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 577.8312 - val_loss: 607.4061\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 608.4651 - val_loss: 604.3130\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 562.0609 - val_loss: 600.7212\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 1 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 36ms/step - loss: 634.8726 - val_loss: 638.8863\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 618.0400 - val_loss: 633.0373\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 560.9293 - val_loss: 628.4361\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 578.7623 - val_loss: 624.8194\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 612.9127 - val_loss: 621.9023\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 1 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 39ms/step - loss: 607.3425 - val_loss: 640.9982\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 594.4166 - val_loss: 636.3092\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 629.3014 - val_loss: 632.1359\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 627.0451 - val_loss: 628.6055\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 595.8425 - val_loss: 625.5274\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 1 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 582.0948 - val_loss: 615.5680\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 569.4029 - val_loss: 614.8492\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 559.8311 - val_loss: 614.0706\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 618.2375 - val_loss: 612.7645\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 601.3119 - val_loss: 611.4026\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 1 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 581.9018 - val_loss: 615.3463\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 610.2684 - val_loss: 614.7419\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 593.3518 - val_loss: 614.1437\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 551.6294 - val_loss: 613.5452\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 624.4633 - val_loss: 612.9418\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 1 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 213ms/step - loss: 576.5830 - val_loss: 614.9095\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 552.4724 - val_loss: 613.3950\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 584.0035 - val_loss: 611.8644\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 556.1331 - val_loss: 610.2983\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 597.2055 - val_loss: 608.6517\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 1 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 33ms/step - loss: 597.8350 - val_loss: 608.8359\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 576.8342 - val_loss: 603.4176\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 574.8015 - val_loss: 597.2189\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 560.0774 - val_loss: 590.3425\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 558.4703 - val_loss: 582.9243\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 1 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 35ms/step - loss: 595.7195 - val_loss: 613.4245\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 571.4124 - val_loss: 608.5194\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 572.8124 - val_loss: 602.7817\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 537.8423 - val_loss: 595.8805\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 577.2247 - val_loss: 587.3156\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 2 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 38ms/step - loss: 601.8433 - val_loss: 615.3528\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 598.9604 - val_loss: 614.7492\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 613.2584 - val_loss: 614.1484\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 598.6044 - val_loss: 613.5479\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 525.7344 - val_loss: 612.9535\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 2 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 596.8973 - val_loss: 615.3428\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 595.4860 - val_loss: 614.7414\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 573.7633 - val_loss: 614.1412\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 549.6028 - val_loss: 613.5418\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 580.5887 - val_loss: 612.9396\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 2 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 585.3544 - val_loss: 614.8564\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 569.4896 - val_loss: 613.9088\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 575.3471 - val_loss: 612.8528\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 570.7604 - val_loss: 611.6219\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 537.1440 - val_loss: 610.1498\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 2 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 35ms/step - loss: 616.9412 - val_loss: 615.1572\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 585.6867 - val_loss: 613.5660\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 580.5573 - val_loss: 611.8643\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 556.8615 - val_loss: 609.9377\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 595.0212 - val_loss: 607.7867\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 2 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 36ms/step - loss: 550.5490 - val_loss: 607.0316\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 566.8550 - val_loss: 603.2404\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 582.4449 - val_loss: 598.8091\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 562.0190 - val_loss: 593.4390\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 570.0012 - val_loss: 587.1807\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 2 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 538.4438 - val_loss: 592.0809\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 577.3608 - val_loss: 586.3333\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 537.6308 - val_loss: 580.0089\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 542.6819 - val_loss: 572.7823\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 547.4972 - val_loss: 564.5372\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 2 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 550.4438 - val_loss: 596.8987\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 568.3224 - val_loss: 590.3016\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 549.6987 - val_loss: 583.1066\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 582.5937 - val_loss: 574.9178\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 523.9001 - val_loss: 565.8885\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 2 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 43ms/step - loss: 594.1305 - val_loss: 616.5066\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 556.0768 - val_loss: 614.8904\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 596.3565 - val_loss: 613.4575\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 593.3693 - val_loss: 612.0623\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 598.8292 - val_loss: 610.5982\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 2 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 35ms/step - loss: 596.9756 - val_loss: 612.1110\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 608.2517 - val_loss: 609.3564\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 584.6237 - val_loss: 605.9657\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 605.5974 - val_loss: 601.7720\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 638.7518 - val_loss: 596.8047\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 2 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 616.0138 - val_loss: 614.4379\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 601.8499 - val_loss: 612.7461\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 590.8544 - val_loss: 610.7505\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 583.6375 - val_loss: 608.2078\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 581.2526 - val_loss: 604.8405\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 3 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 49ms/step - loss: 648.0153 - val_loss: 646.4174\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 614.5683 - val_loss: 640.9409\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 687.5693 - val_loss: 636.2650\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 626.1529 - val_loss: 632.3456\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 642.5803 - val_loss: 628.8605\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 3 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 582.4437 - val_loss: 618.0800\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 591.6149 - val_loss: 616.3824\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 597.5590 - val_loss: 615.2062\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 593.5367 - val_loss: 614.2218\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 593.2190 - val_loss: 613.3468\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step\n",
"Обучение модели с 3 нейронами в первом слое, 3 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 581.6520 - val_loss: 620.6486\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.6484 - val_loss: 618.4337\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 592.9436 - val_loss: 616.6375\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 593.8771 - val_loss: 615.2717\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 594.4604 - val_loss: 614.1878\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 3 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 595.8583 - val_loss: 622.6042\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 625.6334 - val_loss: 618.7877\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 549.6061 - val_loss: 615.6581\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 575.6732 - val_loss: 612.9148\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 570.3773 - val_loss: 610.3010\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 3 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 36ms/step - loss: 559.4149 - val_loss: 604.5480\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 592.8428 - val_loss: 597.8705\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 582.8481 - val_loss: 590.1443\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 566.7861 - val_loss: 581.5732\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 529.5788 - val_loss: 571.7959\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 3 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 554.4314 - val_loss: 606.6730\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 575.3085 - val_loss: 603.1815\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 581.1244 - val_loss: 599.1793\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 553.0233 - val_loss: 594.5839\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 553.7734 - val_loss: 589.1271\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 3 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 37ms/step - loss: 582.7208 - val_loss: 616.0789\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 637.9463 - val_loss: 613.6137\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 583.9688 - val_loss: 611.3484\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 542.2452 - val_loss: 609.0577\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 566.6997 - val_loss: 606.6196\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 3 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 34ms/step - loss: 603.5540 - val_loss: 601.0276\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 546.8260 - val_loss: 596.0856\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 561.0203 - val_loss: 590.3229\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 552.2933 - val_loss: 583.5536\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 504.1148 - val_loss: 575.4716\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 3 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 35ms/step - loss: 582.3714 - val_loss: 616.1685\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 614.7271 - val_loss: 613.9063\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 566.4916 - val_loss: 612.1218\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 600.3642 - val_loss: 610.4315\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 579.4700 - val_loss: 608.6874\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 3 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 46ms/step - loss: 588.6204 - val_loss: 595.7469\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 579.3651 - val_loss: 589.8795\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 530.3625 - val_loss: 583.2857\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 541.5517 - val_loss: 575.5643\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 527.2064 - val_loss: 566.6636\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 4 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 529.2794 - val_loss: 573.8874\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 510.2825 - val_loss: 565.3140\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 562.8807 - val_loss: 555.9203\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 514.3448 - val_loss: 545.6818\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 515.7296 - val_loss: 534.4632\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 4 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 537.1280 - val_loss: 582.2515\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 572.7659 - val_loss: 575.4384\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 564.1660 - val_loss: 567.3830\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 545.0820 - val_loss: 557.5473\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 531.4980 - val_loss: 545.6976\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 4 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 37ms/step - loss: 595.2903 - val_loss: 633.2244\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 593.0563 - val_loss: 629.4084\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 606.1816 - val_loss: 625.9802\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 589.0243 - val_loss: 622.9792\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 574.2598 - val_loss: 620.5161\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 4 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 36ms/step - loss: 543.1483 - val_loss: 594.8502\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 579.8751 - val_loss: 587.3694\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 539.1186 - val_loss: 579.0737\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 556.3715 - val_loss: 569.6865\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 561.8356 - val_loss: 558.4738\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 4 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 589.6159 - val_loss: 601.3578\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 550.0972 - val_loss: 596.5625\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 572.8561 - val_loss: 591.0538\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 556.2680 - val_loss: 584.6880\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 566.7394 - val_loss: 577.2453\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 4 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 596.3278 - val_loss: 612.5562\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 564.0253 - val_loss: 608.7288\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 564.9626 - val_loss: 605.2938\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 580.1884 - val_loss: 602.0037\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 554.1020 - val_loss: 598.4381\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 4 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 586.4695 - val_loss: 615.0103\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 618.2515 - val_loss: 612.5648\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 596.8539 - val_loss: 610.1030\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 582.6561 - val_loss: 607.4756\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 591.0896 - val_loss: 604.5120\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 4 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 573.4873 - val_loss: 618.3372\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 576.4335 - val_loss: 611.1785\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 585.1516 - val_loss: 604.3759\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 593.4689 - val_loss: 597.0701\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 557.6754 - val_loss: 588.9488\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 4 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 36ms/step - loss: 558.3953 - val_loss: 607.0612\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 575.4258 - val_loss: 603.1483\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 613.8456 - val_loss: 598.7859\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 542.4094 - val_loss: 593.4694\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 588.7252 - val_loss: 586.9149\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 4 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 602.2378 - val_loss: 631.2338\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 621.1491 - val_loss: 625.1754\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 570.9510 - val_loss: 620.1706\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 587.6461 - val_loss: 616.3779\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 595.6967 - val_loss: 613.3607\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 5 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 40ms/step - loss: 561.7431 - val_loss: 621.3605\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 613.9092 - val_loss: 617.5457\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 573.6045 - val_loss: 614.9886\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 584.4285 - val_loss: 613.7802\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 619.0803 - val_loss: 613.0532\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 5 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 40ms/step - loss: 600.5294 - val_loss: 615.3890\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 585.7490 - val_loss: 614.7861\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 596.3881 - val_loss: 614.1849\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 578.4855 - val_loss: 613.5817\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 564.2354 - val_loss: 612.9810\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 5 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 38ms/step - loss: 624.2912 - val_loss: 634.4009\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 597.1528 - val_loss: 629.5621\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 637.5223 - val_loss: 624.8435\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 582.1331 - val_loss: 620.4273\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 568.2814 - val_loss: 616.0038\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 5 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 598.7827 - val_loss: 611.7344\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 561.9601 - val_loss: 609.7444\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 587.6912 - val_loss: 607.4534\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 568.2221 - val_loss: 604.7678\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 557.1043 - val_loss: 601.6149\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 5 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 36ms/step - loss: 589.4260 - val_loss: 600.2053\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 549.6494 - val_loss: 594.2631\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 558.0891 - val_loss: 587.7227\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 564.0455 - val_loss: 580.2137\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 541.9084 - val_loss: 571.4225\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 5 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 597.5966 - val_loss: 616.0101\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 531.2861 - val_loss: 613.7612\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 595.0327 - val_loss: 611.4299\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 524.4659 - val_loss: 608.7039\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 581.3684 - val_loss: 605.6292\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 5 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 37ms/step - loss: 604.8421 - val_loss: 609.5384\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 585.9368 - val_loss: 604.0308\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 582.9562 - val_loss: 597.4717\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 553.9938 - val_loss: 589.5039\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 553.3921 - val_loss: 579.6873\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 5 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 39ms/step - loss: 610.1569 - val_loss: 608.0823\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 546.5934 - val_loss: 602.4493\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 590.4683 - val_loss: 596.0554\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 601.4139 - val_loss: 588.8543\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 558.3145 - val_loss: 580.3075\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 5 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 36ms/step - loss: 575.3647 - val_loss: 625.3715\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 594.5126 - val_loss: 621.2693\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 611.3731 - val_loss: 617.5348\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 591.1619 - val_loss: 614.0814\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 595.7808 - val_loss: 610.9609\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 5 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 637.5522 - val_loss: 609.1144\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 603.8008 - val_loss: 604.9047\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 614.4999 - val_loss: 600.2328\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 592.6790 - val_loss: 594.9350\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 575.0145 - val_loss: 588.7917\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 6 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 591.7385 - val_loss: 623.3078\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 572.8487 - val_loss: 618.6136\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 575.0134 - val_loss: 615.9634\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 619.8920 - val_loss: 614.4548\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 600.6219 - val_loss: 613.4387\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 6 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 36ms/step - loss: 586.1699 - val_loss: 617.9949\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 601.2912 - val_loss: 616.2974\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 578.2191 - val_loss: 614.4586\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 598.3646 - val_loss: 611.9676\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 584.9258 - val_loss: 608.4975\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 6 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 592.0503 - val_loss: 615.3355\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 605.7289 - val_loss: 613.0923\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 591.6644 - val_loss: 610.9294\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 575.2814 - val_loss: 608.5722\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 590.9277 - val_loss: 605.7582\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 6 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 45ms/step - loss: 575.9122 - val_loss: 619.7741\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 602.1541 - val_loss: 617.4806\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 585.8685 - val_loss: 615.2972\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 597.1088 - val_loss: 613.0900\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 558.9921 - val_loss: 610.8107\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 6 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 37ms/step - loss: 576.7153 - val_loss: 617.6780\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 612.4412 - val_loss: 616.0087\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 603.2213 - val_loss: 614.5245\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 582.2696 - val_loss: 613.1440\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 540.5109 - val_loss: 611.6895\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 6 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 611.4230 - val_loss: 612.9673\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 607.5204 - val_loss: 610.4369\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 648.0889 - val_loss: 607.5657\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 558.0373 - val_loss: 604.2291\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 589.2020 - val_loss: 600.2929\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 6 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 45ms/step - loss: 584.2346 - val_loss: 588.8638\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 592.3766 - val_loss: 572.9156\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 584.5803 - val_loss: 555.4334\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 533.6129 - val_loss: 536.5914\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 567.7268 - val_loss: 514.7864\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 6 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 39ms/step - loss: 611.2199 - val_loss: 620.4205\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 566.4915 - val_loss: 616.2617\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 561.3594 - val_loss: 612.4877\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 545.5309 - val_loss: 608.9062\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 559.7340 - val_loss: 605.1384\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 6 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 36ms/step - loss: 624.4880 - val_loss: 620.7063\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 596.2686 - val_loss: 615.1097\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 602.9454 - val_loss: 608.4155\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 571.2538 - val_loss: 599.3112\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 563.2260 - val_loss: 587.1814\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 6 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 48ms/step - loss: 539.8256 - val_loss: 603.5133\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 558.9635 - val_loss: 599.1598\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 589.7307 - val_loss: 593.9327\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 538.3275 - val_loss: 587.4750\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 542.9151 - val_loss: 579.8725\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 7 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 34ms/step - loss: 590.0943 - val_loss: 615.3871\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 538.3959 - val_loss: 614.7840\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 612.3774 - val_loss: 614.1762\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 582.8586 - val_loss: 613.5756\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 579.3175 - val_loss: 612.9744\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 7 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 591.3207 - val_loss: 614.9105\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 577.2224 - val_loss: 613.6810\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 590.7045 - val_loss: 612.1095\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 563.3890 - val_loss: 610.2094\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 585.7119 - val_loss: 607.4868\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step\n",
"Обучение модели с 3 нейронами в первом слое, 7 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 36ms/step - loss: 562.1001 - val_loss: 580.0726\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 561.0297 - val_loss: 570.8228\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 562.5889 - val_loss: 560.5151\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 523.4398 - val_loss: 548.9733\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 510.2746 - val_loss: 534.6152\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 7 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 38ms/step - loss: 616.4574 - val_loss: 619.9547\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 594.4426 - val_loss: 608.8364\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 588.4893 - val_loss: 597.5668\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 582.6019 - val_loss: 585.8569\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 558.0189 - val_loss: 573.1927\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 7 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 515.7319 - val_loss: 556.5612\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 526.8585 - val_loss: 539.2236\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 482.5093 - val_loss: 519.4403\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 483.8867 - val_loss: 497.4121\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 483.6313 - val_loss: 472.6109\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 7 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 47ms/step - loss: 616.9087 - val_loss: 619.4557\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 572.4166 - val_loss: 617.5187\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 588.3639 - val_loss: 615.7604\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 589.8634 - val_loss: 614.1277\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 594.7849 - val_loss: 612.4719\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 7 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 36ms/step - loss: 583.6177 - val_loss: 611.7591\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 591.7090 - val_loss: 606.0919\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 557.7117 - val_loss: 599.8987\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 598.0742 - val_loss: 592.3570\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 571.6880 - val_loss: 583.6147\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 7 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 35ms/step - loss: 600.0677 - val_loss: 634.3314\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 569.1475 - val_loss: 628.5839\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 592.5760 - val_loss: 623.8178\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 605.4774 - val_loss: 619.9580\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 558.4621 - val_loss: 616.7791\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 7 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 35ms/step - loss: 567.1065 - val_loss: 609.9720\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 583.2560 - val_loss: 601.1912\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 569.9252 - val_loss: 592.1130\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 570.0173 - val_loss: 581.3503\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 598.0988 - val_loss: 567.7257\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 7 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 36ms/step - loss: 567.3124 - val_loss: 608.9068\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 577.8801 - val_loss: 605.2978\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 571.6416 - val_loss: 601.3934\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 583.1175 - val_loss: 597.0508\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 559.6869 - val_loss: 592.0624\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 8 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 37ms/step - loss: 597.7984 - val_loss: 581.3207\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 541.2707 - val_loss: 573.2878\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 526.0326 - val_loss: 564.2426\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 534.7079 - val_loss: 553.9286\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 528.9258 - val_loss: 542.4926\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 8 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 37ms/step - loss: 576.7898 - val_loss: 609.2615\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 583.9963 - val_loss: 605.5313\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 567.0601 - val_loss: 601.3589\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 535.4326 - val_loss: 596.5235\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 551.2623 - val_loss: 590.8475\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 8 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 39ms/step - loss: 574.8870 - val_loss: 620.1428\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 562.0463 - val_loss: 615.4108\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 593.1089 - val_loss: 611.3450\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 600.8601 - val_loss: 607.6805\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 559.3599 - val_loss: 603.8478\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 8 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 51ms/step - loss: 593.6179 - val_loss: 617.9893\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 9ms/step - loss: 590.2955 - val_loss: 615.8813\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 582.3186 - val_loss: 614.1598\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 576.4612 - val_loss: 612.5195\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 563.5322 - val_loss: 610.8776\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 8 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 34ms/step - loss: 625.5516 - val_loss: 614.4674\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 600.8573 - val_loss: 610.7238\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 614.9819 - val_loss: 606.3104\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 565.9814 - val_loss: 601.2899\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 576.5117 - val_loss: 595.5262\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 8 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 572.2947 - val_loss: 600.8965\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 552.5522 - val_loss: 593.2200\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 551.3049 - val_loss: 583.4022\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 536.2319 - val_loss: 571.2313\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 569.5081 - val_loss: 556.6802\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 8 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 36ms/step - loss: 544.2606 - val_loss: 608.1952\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 596.9839 - val_loss: 602.6727\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 625.1096 - val_loss: 595.2632\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 563.8709 - val_loss: 586.1055\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 522.6324 - val_loss: 574.8816\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 8 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 38ms/step - loss: 625.7890 - val_loss: 631.9308\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 567.1326 - val_loss: 624.1710\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 555.4254 - val_loss: 617.0872\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 559.8953 - val_loss: 610.4612\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 569.5087 - val_loss: 604.0971\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 8 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 579.4009 - val_loss: 598.1919\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 553.9882 - val_loss: 590.9684\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 578.7360 - val_loss: 581.9700\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 546.6066 - val_loss: 570.7480\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 528.5728 - val_loss: 556.6746\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 8 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 45ms/step - loss: 549.4199 - val_loss: 606.4541\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 567.3156 - val_loss: 597.3583\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 548.0158 - val_loss: 586.9421\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 548.0802 - val_loss: 574.8264\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 538.8494 - val_loss: 560.3710\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 9 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 607.6259 - val_loss: 615.3654\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 581.9478 - val_loss: 614.7640\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 526.1063 - val_loss: 614.1634\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 569.9637 - val_loss: 613.5562\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 575.6183 - val_loss: 612.9537\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 9 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 609.6615 - val_loss: 615.3767\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 624.4267 - val_loss: 614.7740\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 590.7328 - val_loss: 614.1729\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 579.5273 - val_loss: 613.5726\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 585.3966 - val_loss: 612.9729\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 9 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 43ms/step - loss: 565.8999 - val_loss: 611.9363\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 556.0635 - val_loss: 609.5603\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 567.7884 - val_loss: 606.5588\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 596.6093 - val_loss: 602.6210\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 635.6899 - val_loss: 597.4250\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step\n",
"Обучение модели с 3 нейронами в первом слое, 9 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 34ms/step - loss: 534.4733 - val_loss: 587.6722\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 512.2592 - val_loss: 580.4575\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 553.7457 - val_loss: 572.7595\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 577.9451 - val_loss: 564.4494\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 528.3492 - val_loss: 555.0688\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 9 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 552.8494 - val_loss: 574.4385\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 563.0085 - val_loss: 563.4542\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 529.4274 - val_loss: 551.6269\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 522.2893 - val_loss: 538.2563\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 501.9125 - val_loss: 523.7244\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 9 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 583.8533 - val_loss: 609.5331\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 566.2481 - val_loss: 605.4612\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 604.3881 - val_loss: 600.9648\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 606.0059 - val_loss: 595.8396\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 537.3613 - val_loss: 589.9322\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 9 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 600.4920 - val_loss: 604.2106\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 564.2261 - val_loss: 598.1017\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 570.3275 - val_loss: 590.7250\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 527.0725 - val_loss: 582.1547\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 549.2427 - val_loss: 571.8556\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 9 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 604.9245 - val_loss: 618.5950\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 596.3441 - val_loss: 615.1685\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 585.6454 - val_loss: 611.8719\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 603.1827 - val_loss: 608.6208\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 635.8423 - val_loss: 605.1307\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 9 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 572.5732 - val_loss: 596.2328\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 562.5314 - val_loss: 589.5727\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 563.6993 - val_loss: 581.9799\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 534.7181 - val_loss: 573.3925\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 513.3815 - val_loss: 562.5468\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 9 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 583.9297 - val_loss: 616.2905\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 565.6693 - val_loss: 611.5336\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 594.4114 - val_loss: 606.7337\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.6602 - val_loss: 601.4978\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 589.7269 - val_loss: 595.2439\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 10 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 35ms/step - loss: 579.6995 - val_loss: 621.9835\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 588.5363 - val_loss: 618.2205\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 597.6852 - val_loss: 615.7053\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 596.8165 - val_loss: 614.3002\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 597.2737 - val_loss: 613.3690\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 10 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 56ms/step - loss: 567.7943 - val_loss: 615.3652\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 571.0649 - val_loss: 614.7563\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 580.6383 - val_loss: 614.1536\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 599.0416 - val_loss: 613.5502\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 585.7225 - val_loss: 612.9485\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 10 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 40ms/step - loss: 594.1580 - val_loss: 587.5003\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 566.4310 - val_loss: 574.3665\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 578.2573 - val_loss: 558.7774\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 563.3544 - val_loss: 540.4789\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 528.8757 - val_loss: 518.8548\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 10 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 47ms/step - loss: 644.5256 - val_loss: 645.9523\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 594.1940 - val_loss: 635.1253\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 617.6151 - val_loss: 626.8994\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 601.1703 - val_loss: 620.7783\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 582.1160 - val_loss: 616.9568\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 10 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 586.8005 - val_loss: 615.7373\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 593.1490 - val_loss: 612.8456\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 571.1257 - val_loss: 609.3276\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 577.0266 - val_loss: 604.7954\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 579.7778 - val_loss: 599.0638\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 10 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 37ms/step - loss: 583.7131 - val_loss: 623.3127\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 566.5646 - val_loss: 618.3707\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 604.4688 - val_loss: 613.7512\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 573.5213 - val_loss: 609.1829\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 583.0416 - val_loss: 604.0463\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 10 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 54ms/step - loss: 623.3729 - val_loss: 605.0111\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 542.6508 - val_loss: 597.3924\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 577.7820 - val_loss: 588.1830\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 535.4059 - val_loss: 576.9658\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 537.4214 - val_loss: 563.0053\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 10 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 609.6293 - val_loss: 616.7089\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 567.5018 - val_loss: 609.7113\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 597.2283 - val_loss: 601.1679\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 563.8132 - val_loss: 591.4417\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 538.4902 - val_loss: 580.3145\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 10 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 36ms/step - loss: 629.1315 - val_loss: 608.7869\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 585.9207 - val_loss: 605.2494\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 604.0345 - val_loss: 600.9298\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 615.6947 - val_loss: 595.6349\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.2335 - val_loss: 588.8177\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 3 нейронами в первом слое, 10 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 44ms/step - loss: 579.8952 - val_loss: 608.2170\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 588.9404 - val_loss: 603.1338\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 571.9681 - val_loss: 597.7073\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 586.3201 - val_loss: 591.5085\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 552.6716 - val_loss: 584.3059\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 1 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 40ms/step - loss: 564.4651 - val_loss: 615.3290\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 570.8729 - val_loss: 614.7262\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 625.2231 - val_loss: 614.1215\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 558.4226 - val_loss: 613.5259\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.9813 - val_loss: 612.9247\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 1 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 36ms/step - loss: 602.3939 - val_loss: 614.7183\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 556.5714 - val_loss: 613.7572\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 605.9124 - val_loss: 612.6545\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 566.2871 - val_loss: 611.3879\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 539.6663 - val_loss: 609.9059\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 1 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 43ms/step - loss: 568.1993 - val_loss: 601.9024\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 568.3081 - val_loss: 597.7324\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 564.0104 - val_loss: 593.1515\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 550.8301 - val_loss: 587.6490\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - loss: 562.9312 - val_loss: 581.1857\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 1 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 621.9140 - val_loss: 629.1126\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 594.3198 - val_loss: 625.0171\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 553.1517 - val_loss: 621.3775\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 574.1010 - val_loss: 618.0849\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 548.2371 - val_loss: 615.1464\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 1 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 606.5737 - val_loss: 615.3571\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 594.1501 - val_loss: 614.7551\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 568.0592 - val_loss: 614.1546\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 582.1901 - val_loss: 613.5501\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 597.5328 - val_loss: 612.9512\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 1 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 49ms/step - loss: 577.6097 - val_loss: 608.0632\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 585.6260 - val_loss: 603.5563\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 547.1097 - val_loss: 598.0997\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 552.7389 - val_loss: 591.5555\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 540.6877 - val_loss: 583.9174\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 1 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 37ms/step - loss: 569.1853 - val_loss: 615.6906\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 612.0552 - val_loss: 614.5439\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 580.4534 - val_loss: 613.4525\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 563.2649 - val_loss: 612.3743\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.0889 - val_loss: 611.2377\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 1 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 559.0615 - val_loss: 610.8702\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 564.1741 - val_loss: 608.1011\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 563.8780 - val_loss: 604.7689\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 565.1765 - val_loss: 600.4171\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 556.4861 - val_loss: 594.9172\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 1 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 48ms/step - loss: 552.7249 - val_loss: 616.8368\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 553.6758 - val_loss: 614.6964\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 556.1638 - val_loss: 612.7157\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 573.3099 - val_loss: 610.8256\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 563.3422 - val_loss: 608.8745\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 1 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 554.5257 - val_loss: 601.8534\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 602.2397 - val_loss: 597.7100\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 595.3085 - val_loss: 593.1896\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 550.1204 - val_loss: 588.0079\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 538.8441 - val_loss: 582.1389\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 2 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 36ms/step - loss: 579.0070 - val_loss: 615.3769\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 570.8079 - val_loss: 614.7752\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 571.0725 - val_loss: 614.1727\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 533.4036 - val_loss: 613.5709\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 612.0543 - val_loss: 612.9637\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 2 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 517.8501 - val_loss: 557.0673\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 543.5315 - val_loss: 549.4534\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 553.0859 - val_loss: 541.2518\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 478.7101 - val_loss: 532.1841\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 494.8995 - val_loss: 522.4973\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 2 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 39ms/step - loss: 552.6987 - val_loss: 614.5091\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 590.0131 - val_loss: 613.4407\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 568.0570 - val_loss: 612.1699\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 556.9770 - val_loss: 610.4990\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 564.4861 - val_loss: 607.8453\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 2 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 576.2107 - val_loss: 628.4733\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 615.3100 - val_loss: 623.7589\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 653.0424 - val_loss: 619.8852\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 601.8715 - val_loss: 616.7271\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 590.8219 - val_loss: 614.1728\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 2 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 589.1094 - val_loss: 586.6239\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 561.7993 - val_loss: 577.1992\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 548.3682 - val_loss: 566.2569\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 528.1731 - val_loss: 553.9086\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 531.7689 - val_loss: 539.9180\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 2 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 35ms/step - loss: 594.5818 - val_loss: 614.9543\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 585.8087 - val_loss: 613.0276\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 597.0981 - val_loss: 610.6713\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 557.3225 - val_loss: 607.9846\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 548.7324 - val_loss: 604.5679\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 2 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 579.3635 - val_loss: 598.8390\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 601.8162 - val_loss: 591.9501\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 578.0062 - val_loss: 584.3278\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 589.9407 - val_loss: 575.7813\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 525.1593 - val_loss: 566.7219\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 2 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 634.7996 - val_loss: 635.5511\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 601.6027 - val_loss: 630.7550\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 619.6003 - val_loss: 626.7343\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 574.7342 - val_loss: 623.2147\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 626.2296 - val_loss: 620.0908\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 2 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 45ms/step - loss: 558.7309 - val_loss: 604.3416\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 558.5430 - val_loss: 599.4323\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 547.9139 - val_loss: 593.3032\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 580.3331 - val_loss: 585.7020\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 574.0671 - val_loss: 575.9523\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 2 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 583.3453 - val_loss: 613.1036\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 577.2751 - val_loss: 610.2453\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 570.0485 - val_loss: 606.6977\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 561.1801 - val_loss: 602.3093\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 583.1470 - val_loss: 597.0908\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 3 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 641.5862 - val_loss: 615.3672\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 594.3361 - val_loss: 614.7661\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 572.6855 - val_loss: 614.1678\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 566.1625 - val_loss: 613.5663\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 552.2725 - val_loss: 612.9654\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 3 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 40ms/step - loss: 596.9341 - val_loss: 615.5888\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 593.1108 - val_loss: 614.8389\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 599.3062 - val_loss: 614.1927\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 553.2860 - val_loss: 613.5862\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 604.1805 - val_loss: 612.9789\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 3 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 36ms/step - loss: 584.0595 - val_loss: 615.3627\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 539.5492 - val_loss: 614.7594\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 588.2004 - val_loss: 614.1526\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 566.0262 - val_loss: 613.5483\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 570.1818 - val_loss: 612.9481\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 3 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 547.2921 - val_loss: 619.6498\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 585.8953 - val_loss: 616.9977\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 604.5463 - val_loss: 615.0883\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 581.5234 - val_loss: 613.6000\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 581.3029 - val_loss: 612.3318\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 3 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 595.6823 - val_loss: 630.6137\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 585.6422 - val_loss: 624.9304\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 584.1038 - val_loss: 620.0328\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 551.6953 - val_loss: 616.0361\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 619.5288 - val_loss: 612.6425\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 3 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 589.6255 - val_loss: 601.4205\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 582.6691 - val_loss: 596.0887\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 573.6926 - val_loss: 589.6443\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 535.8912 - val_loss: 581.9416\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 584.4529 - val_loss: 572.5812\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 3 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 36ms/step - loss: 603.7803 - val_loss: 628.5692\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 609.3162 - val_loss: 622.5255\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 603.9289 - val_loss: 617.4469\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 587.6342 - val_loss: 612.7420\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 600.8558 - val_loss: 607.8492\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 3 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 36ms/step - loss: 593.4733 - val_loss: 602.5857\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 561.6904 - val_loss: 597.3500\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 600.9009 - val_loss: 591.3360\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 562.1443 - val_loss: 584.4117\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 553.0569 - val_loss: 576.4008\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 3 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 37ms/step - loss: 564.4465 - val_loss: 609.2910\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 590.6362 - val_loss: 603.8679\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 528.9770 - val_loss: 597.0742\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 547.3020 - val_loss: 588.8181\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 533.9397 - val_loss: 578.9857\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 3 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 638.0627 - val_loss: 619.0126\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 615.5134 - val_loss: 615.8039\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 576.6440 - val_loss: 612.6612\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 616.1906 - val_loss: 609.3779\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 617.1113 - val_loss: 605.9255\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 4 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 573.5585 - val_loss: 613.1536\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 606.5011 - val_loss: 611.6024\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 575.1921 - val_loss: 609.8192\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 551.3583 - val_loss: 607.2528\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 565.6545 - val_loss: 603.9585\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 4 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 578.9521 - val_loss: 615.3667\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 623.2802 - val_loss: 614.7646\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 576.0330 - val_loss: 614.1655\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 598.4750 - val_loss: 613.5614\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 610.0021 - val_loss: 612.9572\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 4 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 535.8705 - val_loss: 557.7194\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 530.6344 - val_loss: 546.2220\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 521.1501 - val_loss: 533.2142\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 541.2950 - val_loss: 518.4080\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 481.8031 - val_loss: 501.6917\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 4 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 37ms/step - loss: 611.4611 - val_loss: 634.9283\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 587.8644 - val_loss: 630.2302\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 597.9882 - val_loss: 625.9648\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 597.2074 - val_loss: 622.1296\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 598.1151 - val_loss: 618.5099\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 4 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 613.2205 - val_loss: 624.5327\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 589.0570 - val_loss: 619.2969\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 552.1281 - val_loss: 614.2214\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 627.2468 - val_loss: 609.2310\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 603.5601 - val_loss: 604.3744\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 4 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 565.1764 - val_loss: 598.8923\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 561.1935 - val_loss: 593.3712\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 575.4390 - val_loss: 587.1892\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 556.1571 - val_loss: 579.9933\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 558.5793 - val_loss: 571.6412\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 4 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 597.3367 - val_loss: 639.2484\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 591.5431 - val_loss: 633.7213\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 613.1509 - val_loss: 628.9608\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 574.5150 - val_loss: 624.9714\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 579.6205 - val_loss: 621.3320\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 4 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 36ms/step - loss: 572.3726 - val_loss: 606.6604\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 567.9320 - val_loss: 602.5127\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 560.0705 - val_loss: 597.8086\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 568.0963 - val_loss: 592.2545\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 585.4106 - val_loss: 585.7299\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 4 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 554.9803 - val_loss: 608.4278\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 568.2793 - val_loss: 604.2654\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 553.5225 - val_loss: 599.0461\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 561.1441 - val_loss: 592.1159\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 522.5424 - val_loss: 582.9927\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 4 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 585.6804 - val_loss: 614.8694\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 618.5751 - val_loss: 611.8187\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 600.1210 - val_loss: 607.9120\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 621.2402 - val_loss: 602.7731\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 609.1983 - val_loss: 596.5415\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 5 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 596.9474 - val_loss: 610.0466\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 596.0833 - val_loss: 606.2469\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 559.5897 - val_loss: 601.3677\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 574.9702 - val_loss: 595.3797\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 570.6473 - val_loss: 588.4459\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 5 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 590.8694 - val_loss: 615.7645\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 603.0107 - val_loss: 613.6794\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 583.2117 - val_loss: 611.9788\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 582.7026 - val_loss: 610.3809\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 582.0776 - val_loss: 608.6775\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 5 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 53ms/step - loss: 566.3148 - val_loss: 603.9608\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 583.9716 - val_loss: 599.2953\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 583.5847 - val_loss: 593.6814\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 557.5854 - val_loss: 587.1545\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 544.3121 - val_loss: 579.4622\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 5 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 36ms/step - loss: 600.1282 - val_loss: 616.9155\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 601.2795 - val_loss: 613.7653\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 605.4685 - val_loss: 610.4695\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 554.8090 - val_loss: 606.7399\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.0607 - val_loss: 602.4106\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 5 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 39ms/step - loss: 593.4799 - val_loss: 627.0647\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 612.4179 - val_loss: 623.8695\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 551.4013 - val_loss: 621.2029\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 620.3746 - val_loss: 618.5594\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 584.5075 - val_loss: 615.9523\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 5 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 528.4935 - val_loss: 594.1304\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 558.1116 - val_loss: 587.1459\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 559.2000 - val_loss: 579.0854\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 563.6385 - val_loss: 569.6216\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 553.2297 - val_loss: 558.3900\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 5 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 415ms/step - loss: 567.9349 - val_loss: 611.8828\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 579.3818 - val_loss: 608.4337\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 571.7415 - val_loss: 604.9928\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 575.6711 - val_loss: 601.3419\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 549.2462 - val_loss: 597.2441\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 5 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 40ms/step - loss: 600.1758 - val_loss: 612.4308\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 606.9484 - val_loss: 607.0645\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 575.1463 - val_loss: 601.3125\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 561.5768 - val_loss: 594.4871\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 552.8677 - val_loss: 586.4096\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 5 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 574.6588 - val_loss: 585.0426\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 544.8026 - val_loss: 575.0246\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 555.9749 - val_loss: 564.0140\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 519.7692 - val_loss: 551.6743\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 505.1598 - val_loss: 537.9764\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 5 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 575.2311 - val_loss: 616.0853\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 575.6508 - val_loss: 609.5977\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 555.5295 - val_loss: 602.6528\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 590.3766 - val_loss: 594.9826\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 540.2772 - val_loss: 586.1041\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 6 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 575.7532 - val_loss: 615.3877\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 591.8653 - val_loss: 614.7827\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 590.2935 - val_loss: 614.1790\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 576.2551 - val_loss: 613.5801\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 605.6788 - val_loss: 612.9765\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 6 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 575.0014 - val_loss: 604.0804\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 582.1771 - val_loss: 600.6964\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 585.2771 - val_loss: 596.9517\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 576.3898 - val_loss: 592.7004\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 560.0438 - val_loss: 587.7908\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 6 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 587.7421 - val_loss: 611.2015\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 572.7630 - val_loss: 603.9563\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 611.8669 - val_loss: 596.6475\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 589.4993 - val_loss: 589.2073\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 580.4987 - val_loss: 581.6493\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 6 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 595.3208 - val_loss: 631.5584\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 612.1807 - val_loss: 626.4420\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 622.6662 - val_loss: 621.8556\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 600.0891 - val_loss: 617.5721\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 595.6735 - val_loss: 613.4724\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 6 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 43ms/step - loss: 586.5641 - val_loss: 621.2786\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 595.6893 - val_loss: 618.3033\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 574.9240 - val_loss: 616.0107\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 573.7456 - val_loss: 614.1047\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 583.3596 - val_loss: 612.4375\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 6 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 576.1227 - val_loss: 580.9888\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 554.0581 - val_loss: 566.8970\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 513.2196 - val_loss: 552.2583\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 520.8271 - val_loss: 536.7910\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 488.3886 - val_loss: 520.0650\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 6 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 550.6259 - val_loss: 593.5175\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 585.1075 - val_loss: 583.9466\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 533.0625 - val_loss: 573.3350\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 556.6165 - val_loss: 561.4353\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 519.1438 - val_loss: 547.5443\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 6 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 34ms/step - loss: 600.0696 - val_loss: 620.3765\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 572.3287 - val_loss: 618.0975\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 581.5381 - val_loss: 616.4121\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 625.4896 - val_loss: 615.0701\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 576.0955 - val_loss: 613.9970\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 6 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 42ms/step - loss: 582.8755 - val_loss: 616.4282\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 559.6349 - val_loss: 612.1315\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 576.4064 - val_loss: 608.0025\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 613.8885 - val_loss: 603.4895\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 554.6630 - val_loss: 598.5764\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 6 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 47ms/step - loss: 569.4247 - val_loss: 610.0422\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 582.3602 - val_loss: 603.9917\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 601.5789 - val_loss: 596.8344\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 554.7487 - val_loss: 588.3826\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 537.5374 - val_loss: 578.0715\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 7 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 40ms/step - loss: 554.4824 - val_loss: 613.2926\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 574.8907 - val_loss: 610.5780\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 563.7858 - val_loss: 607.1232\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 567.7944 - val_loss: 602.5421\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 583.2776 - val_loss: 596.8621\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 7 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 602.9573 - val_loss: 615.5170\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 605.7890 - val_loss: 614.7924\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 567.9322 - val_loss: 613.8364\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 555.5655 - val_loss: 612.0635\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 570.5594 - val_loss: 608.6909\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 7 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 37ms/step - loss: 606.3577 - val_loss: 613.9852\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 567.5362 - val_loss: 609.1849\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 548.8388 - val_loss: 603.8015\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 581.3730 - val_loss: 597.6882\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 585.7629 - val_loss: 590.4969\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 7 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 591.1777 - val_loss: 600.7480\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.4359 - val_loss: 595.0212\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 553.3027 - val_loss: 588.2223\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 583.1266 - val_loss: 580.1310\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 552.7569 - val_loss: 570.5607\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 7 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 43ms/step - loss: 616.5025 - val_loss: 630.1808\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 601.7515 - val_loss: 625.2386\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 595.3197 - val_loss: 620.0466\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 546.2297 - val_loss: 613.7390\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 571.5416 - val_loss: 606.3775\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 7 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 40ms/step - loss: 548.4457 - val_loss: 601.6500\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 557.5625 - val_loss: 595.6363\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 574.5303 - val_loss: 588.4987\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 574.0443 - val_loss: 580.0773\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 582.3912 - val_loss: 570.1429\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 7 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m18s\u001b[0m 40ms/step - loss: 555.6176 - val_loss: 581.5909\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 590.4429 - val_loss: 573.0851\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 523.4789 - val_loss: 563.7444\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 538.3705 - val_loss: 553.0943\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 524.7291 - val_loss: 541.0953\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 7 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 44ms/step - loss: 624.8087 - val_loss: 638.4260\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 596.5673 - val_loss: 631.7274\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 582.8115 - val_loss: 625.9722\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 561.1878 - val_loss: 621.0466\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 574.3505 - val_loss: 616.6713\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 7 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 43ms/step - loss: 596.4510 - val_loss: 621.5436\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 561.2673 - val_loss: 618.2548\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 569.9281 - val_loss: 616.3384\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 613.1426 - val_loss: 614.7633\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 581.6943 - val_loss: 613.4513\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 7 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 43ms/step - loss: 600.1129 - val_loss: 613.9268\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 608.5285 - val_loss: 607.5841\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 565.3448 - val_loss: 600.7566\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 576.9280 - val_loss: 592.3781\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 564.4082 - val_loss: 580.7554\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 8 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 583.1463 - val_loss: 619.9553\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 599.2440 - val_loss: 617.4239\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 597.8394 - val_loss: 615.5959\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 578.2630 - val_loss: 614.2945\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 580.8322 - val_loss: 613.4572\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 8 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 42ms/step - loss: 562.9882 - val_loss: 605.9849\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 572.2379 - val_loss: 602.0680\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 580.0343 - val_loss: 597.6362\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 592.2832 - val_loss: 592.3323\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 530.1703 - val_loss: 586.2322\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 8 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 569.3349 - val_loss: 618.1254\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 557.7446 - val_loss: 613.9548\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 579.5079 - val_loss: 610.2311\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 565.3365 - val_loss: 606.3496\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 560.3441 - val_loss: 602.1328\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 8 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 46ms/step - loss: 546.2412 - val_loss: 608.0234\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 584.0759 - val_loss: 604.5342\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 574.8295 - val_loss: 600.3177\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 574.9371 - val_loss: 595.1906\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 524.9286 - val_loss: 589.1091\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 8 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 580.8728 - val_loss: 602.7999\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 650.8024 - val_loss: 596.7800\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 580.1933 - val_loss: 589.6160\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 566.5983 - val_loss: 580.4055\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 550.8264 - val_loss: 569.0062\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 8 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 40ms/step - loss: 607.6055 - val_loss: 608.4283\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 582.1105 - val_loss: 601.2827\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 564.7000 - val_loss: 592.4340\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 574.4800 - val_loss: 581.1378\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 538.4087 - val_loss: 567.3357\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 8 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 545.6650 - val_loss: 601.5211\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 558.9515 - val_loss: 595.1388\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 527.0066 - val_loss: 587.9511\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 547.5620 - val_loss: 579.3771\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 574.7241 - val_loss: 569.3887\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 8 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 601.8695 - val_loss: 617.3146\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 571.0638 - val_loss: 610.1118\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 565.2122 - val_loss: 602.8719\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 541.1330 - val_loss: 594.5241\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 569.4930 - val_loss: 584.3807\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 8 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 40ms/step - loss: 572.4277 - val_loss: 617.3583\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 581.3661 - val_loss: 614.0927\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 581.5656 - val_loss: 610.7095\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 565.2277 - val_loss: 606.9241\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 557.5320 - val_loss: 602.4756\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 8 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 36ms/step - loss: 577.0100 - val_loss: 616.5787\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 579.3473 - val_loss: 610.9371\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 590.2412 - val_loss: 605.6999\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 592.6883 - val_loss: 600.0797\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 591.2661 - val_loss: 593.2957\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 9 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 36ms/step - loss: 554.3740 - val_loss: 602.8387\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 567.1177 - val_loss: 597.1975\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 564.3367 - val_loss: 589.4650\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 531.5952 - val_loss: 580.8206\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 551.8959 - val_loss: 571.1060\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 9 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 40ms/step - loss: 617.0297 - val_loss: 632.9064\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 591.4948 - val_loss: 625.6478\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 580.6179 - val_loss: 620.0900\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 584.0639 - val_loss: 616.6064\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 602.9521 - val_loss: 614.8732\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 9 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 595.9733 - val_loss: 607.9163\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 576.3283 - val_loss: 601.9413\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 568.9147 - val_loss: 594.2950\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 582.7991 - val_loss: 584.6434\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 528.6410 - val_loss: 573.3223\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 9 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 35ms/step - loss: 567.4282 - val_loss: 592.2026\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 541.4160 - val_loss: 583.7242\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 534.8074 - val_loss: 574.6100\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 529.4369 - val_loss: 564.1166\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 559.5212 - val_loss: 551.5129\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 9 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 36ms/step - loss: 597.1119 - val_loss: 615.0612\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 568.0019 - val_loss: 611.7405\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 603.6477 - val_loss: 608.4126\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 580.4025 - val_loss: 604.7787\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 539.6465 - val_loss: 600.4311\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 9 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 37ms/step - loss: 596.1691 - val_loss: 612.5967\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 611.4229 - val_loss: 609.4214\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 583.5192 - val_loss: 605.9615\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 598.4033 - val_loss: 601.6875\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 580.0815 - val_loss: 596.7711\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 9 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 67ms/step - loss: 576.6946 - val_loss: 603.5472\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 551.6305 - val_loss: 595.5836\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 531.8687 - val_loss: 587.1875\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 539.8287 - val_loss: 577.8774\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 522.0319 - val_loss: 567.4939\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 4 нейронами в первом слое, 9 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 55ms/step - loss: 593.2957 - val_loss: 595.8859\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - loss: 596.4379 - val_loss: 590.1481\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 558.4659 - val_loss: 583.6083\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 562.8588 - val_loss: 575.9707\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 533.8090 - val_loss: 567.0606\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 3 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m58s\u001b[0m 127ms/step - loss: 614.0750 - val_loss: 613.8688\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 593.2664 - val_loss: 608.5186\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 562.6469 - val_loss: 603.6132\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 571.8753 - val_loss: 598.5270\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 571.5702 - val_loss: 592.0762\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 3 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 64ms/step - loss: 589.4821 - val_loss: 598.3503\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 534.0452 - val_loss: 592.0930\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 528.9742 - val_loss: 584.1315\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 537.1346 - val_loss: 574.0823\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 554.8876 - val_loss: 561.8139\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 3 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 58ms/step - loss: 577.0184 - val_loss: 602.7333\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 591.1616 - val_loss: 596.1420\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 567.7167 - val_loss: 587.9594\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 566.3266 - val_loss: 577.9047\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 549.0204 - val_loss: 565.3776\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 3 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 48ms/step - loss: 581.3886 - val_loss: 591.0929\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 570.7881 - val_loss: 584.2738\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 551.6797 - val_loss: 576.1771\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 547.9814 - val_loss: 566.7624\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 528.5432 - val_loss: 555.6689\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 3 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 43ms/step - loss: 600.3503 - val_loss: 617.5727\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 550.8029 - val_loss: 613.0522\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 573.7513 - val_loss: 609.1525\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 567.7562 - val_loss: 605.3641\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.3751 - val_loss: 600.9380\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 3 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 54ms/step - loss: 595.5669 - val_loss: 621.4929\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 542.7947 - val_loss: 614.8625\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 580.1696 - val_loss: 609.0839\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 562.7655 - val_loss: 603.8622\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 556.1420 - val_loss: 598.4907\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 4 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 41ms/step - loss: 570.2943 - val_loss: 616.3669\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 552.4639 - val_loss: 615.1574\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 600.2980 - val_loss: 614.3368\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 536.9030 - val_loss: 613.6738\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 558.4593 - val_loss: 613.0544\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 4 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 42ms/step - loss: 589.3281 - val_loss: 611.7921\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 595.0160 - val_loss: 606.0967\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 600.9698 - val_loss: 599.4603\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 589.3025 - val_loss: 591.3040\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 579.7316 - val_loss: 582.0252\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step\n",
"Обучение модели с 7 нейронами в первом слое, 4 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 577.1989 - val_loss: 614.2137\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 531.5895 - val_loss: 608.9191\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 567.0363 - val_loss: 603.0654\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 585.7351 - val_loss: 596.6177\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 589.3939 - val_loss: 589.2708\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 4 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 44ms/step - loss: 570.5903 - val_loss: 604.6026\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 550.9299 - val_loss: 600.5034\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 557.0369 - val_loss: 595.6838\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 587.8149 - val_loss: 589.9575\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 560.7301 - val_loss: 583.4926\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 4 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 591.1511 - val_loss: 637.7001\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 569.9907 - val_loss: 630.3248\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 603.5782 - val_loss: 624.5807\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 600.4774 - val_loss: 620.0908\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 565.3546 - val_loss: 616.4883\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 4 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 47ms/step - loss: 553.4386 - val_loss: 595.2028\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 550.7620 - val_loss: 587.2186\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 531.2789 - val_loss: 578.7379\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 569.9855 - val_loss: 569.3254\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 544.0319 - val_loss: 558.7719\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 4 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 40ms/step - loss: 593.7923 - val_loss: 607.0656\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 568.9161 - val_loss: 601.0662\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 569.4044 - val_loss: 594.7828\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 536.8749 - val_loss: 588.0824\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 569.2358 - val_loss: 580.5308\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 4 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 575.8136 - val_loss: 598.6220\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 596.1732 - val_loss: 590.2819\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 571.0621 - val_loss: 580.1239\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 553.1989 - val_loss: 567.6035\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 574.7801 - val_loss: 551.8751\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 4 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 65ms/step - loss: 584.7678 - val_loss: 605.6364\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 6ms/step - loss: 551.8297 - val_loss: 590.4045\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 555.0952 - val_loss: 572.9991\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 515.5753 - val_loss: 553.0842\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 522.2345 - val_loss: 529.6155\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 4 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 536.3441 - val_loss: 588.7745\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 548.0111 - val_loss: 581.3977\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 532.8460 - val_loss: 572.8892\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 532.1871 - val_loss: 563.0321\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 526.4382 - val_loss: 550.9909\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 607.3186 - val_loss: 626.6782\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 607.9925 - val_loss: 619.5336\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 560.6229 - val_loss: 613.4608\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 587.3893 - val_loss: 607.8087\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 606.4897 - val_loss: 601.6830\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 6 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m66s\u001b[0m 89ms/step - loss: 601.9569 - val_loss: 619.7871\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 601.4853 - val_loss: 612.3615\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 591.1422 - val_loss: 605.4666\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 550.2604 - val_loss: 597.9626\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 590.9355 - val_loss: 588.9301\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 6 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 51ms/step - loss: 583.9097 - val_loss: 612.8184\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 576.9272 - val_loss: 608.4898\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 569.8398 - val_loss: 603.2050\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 578.6508 - val_loss: 596.0663\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 558.9449 - val_loss: 586.6553\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 7 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 78ms/step - loss: 682.9529 - val_loss: 684.4500\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 598.4101 - val_loss: 669.9399\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 633.5281 - val_loss: 657.2653\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 589.4343 - val_loss: 646.9860\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 641.9538 - val_loss: 638.3497\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 7 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 45ms/step - loss: 554.0937 - val_loss: 604.0084\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 575.3718 - val_loss: 599.4064\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 552.0785 - val_loss: 593.0931\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 564.1531 - val_loss: 584.2567\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 576.0508 - val_loss: 572.3775\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 7 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 42ms/step - loss: 584.3272 - val_loss: 623.3212\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 614.0076 - val_loss: 615.8028\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 574.4011 - val_loss: 608.5233\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 602.2184 - val_loss: 600.8315\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 599.4862 - val_loss: 592.1819\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 7 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 68ms/step - loss: 584.2435 - val_loss: 624.2371\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 598.9189 - val_loss: 619.9628\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 588.8420 - val_loss: 616.4939\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 540.7812 - val_loss: 613.6182\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 615.4330 - val_loss: 611.6350\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 7 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 44ms/step - loss: 585.3123 - val_loss: 612.7400\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 561.1118 - val_loss: 608.6359\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 548.1056 - val_loss: 604.4569\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 575.4965 - val_loss: 599.8101\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 586.6858 - val_loss: 594.2057\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 7 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 44ms/step - loss: 607.9954 - val_loss: 634.3937\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 609.3887 - val_loss: 628.7917\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 574.3486 - val_loss: 624.3218\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 605.9152 - val_loss: 620.4414\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 573.3682 - val_loss: 617.4581\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 7 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 41ms/step - loss: 540.2188 - val_loss: 583.1343\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 570.7288 - val_loss: 570.3170\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 514.2877 - val_loss: 553.9526\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 512.7129 - val_loss: 533.6614\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 476.4032 - val_loss: 509.2600\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 7 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 554.3757 - val_loss: 598.1276\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 578.8255 - val_loss: 590.8859\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 552.3746 - val_loss: 582.0064\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 532.6655 - val_loss: 570.6368\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 539.3738 - val_loss: 555.9247\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 7 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 46ms/step - loss: 599.3203 - val_loss: 616.4481\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 575.8719 - val_loss: 608.1284\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 568.5617 - val_loss: 598.8002\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 582.8112 - val_loss: 587.2736\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 557.4383 - val_loss: 573.5302\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 7 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 596.6922 - val_loss: 615.6158\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 602.3942 - val_loss: 610.1403\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 592.5522 - val_loss: 604.0655\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 551.3334 - val_loss: 596.5167\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 578.8568 - val_loss: 586.3674\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 8 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 43ms/step - loss: 608.6127 - val_loss: 627.0688\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 628.7432 - val_loss: 623.3696\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 578.2917 - val_loss: 620.3335\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 565.1227 - val_loss: 617.9268\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 588.6346 - val_loss: 616.0469\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 8 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 38ms/step - loss: 616.1115 - val_loss: 649.0124\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 584.8393 - val_loss: 640.0288\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 623.1580 - val_loss: 632.7040\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 559.8129 - val_loss: 627.1909\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.4888 - val_loss: 622.9218\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 8 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 40ms/step - loss: 586.3382 - val_loss: 586.5051\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 533.9826 - val_loss: 578.2744\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 516.8787 - val_loss: 569.8785\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 547.9246 - val_loss: 561.0897\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 516.1589 - val_loss: 551.3456\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 8 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 52ms/step - loss: 574.2825 - val_loss: 604.4384\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 9ms/step - loss: 579.9310 - val_loss: 598.5541\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 571.1044 - val_loss: 591.7547\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 570.2614 - val_loss: 583.7786\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 542.3851 - val_loss: 574.5256\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 8 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 42ms/step - loss: 630.2159 - val_loss: 631.4525\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 600.1782 - val_loss: 625.6135\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.8016 - val_loss: 621.2352\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 572.0643 - val_loss: 617.9588\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 586.7719 - val_loss: 615.3755\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 8 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 44ms/step - loss: 557.0103 - val_loss: 600.1933\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 562.0134 - val_loss: 589.4425\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 590.6286 - val_loss: 577.2032\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 539.6230 - val_loss: 562.9153\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 506.0464 - val_loss: 545.4738\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 8 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 44ms/step - loss: 563.3328 - val_loss: 581.6815\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 574.2814 - val_loss: 568.4789\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 522.8185 - val_loss: 552.9257\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m69s\u001b[0m 87ms/step - loss: 597.9473 - val_loss: 638.2727\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 632.0684 - val_loss: 630.0554\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 568.6810 - val_loss: 624.3201\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 605.1948 - val_loss: 620.2946\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 594.0323 - val_loss: 617.3459\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 10 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 57ms/step - loss: 591.4943 - val_loss: 571.6177\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 548.9744 - val_loss: 557.1314\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 541.3235 - val_loss: 538.6676\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 495.0211 - val_loss: 515.9792\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 502.0854 - val_loss: 487.7271\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 22ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 10 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 51ms/step - loss: 608.1395 - val_loss: 621.2615\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 585.5773 - val_loss: 617.7543\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 558.2491 - val_loss: 614.9623\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 614.6101 - val_loss: 612.6162\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 625.4420 - val_loss: 610.4114\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 10 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 49ms/step - loss: 582.0848 - val_loss: 598.0070\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 565.1224 - val_loss: 586.8260\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 550.8884 - val_loss: 572.4842\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 524.7823 - val_loss: 554.5336\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 543.4659 - val_loss: 532.5734\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 10 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 49ms/step - loss: 596.7543 - val_loss: 613.4620\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 587.0316 - val_loss: 609.1102\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 595.3857 - val_loss: 603.9905\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 615.7781 - val_loss: 597.7021\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 565.7328 - val_loss: 589.9875\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 7 нейронами в первом слое, 10 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 50ms/step - loss: 642.5421 - val_loss: 622.1821\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 589.7750 - val_loss: 617.7454\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 582.8613 - val_loss: 614.4525\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 558.1337 - val_loss: 611.6933\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 596.3534 - val_loss: 609.0505\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step\n",
"Обучение модели с 7 нейронами в первом слое, 10 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 50ms/step - loss: 607.8049 - val_loss: 639.8495\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 607.5671 - val_loss: 631.6399\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 654.7657 - val_loss: 625.4783\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 583.2362 - val_loss: 620.9357\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 606.4731 - val_loss: 617.4537\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 1 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 46ms/step - loss: 553.6382 - val_loss: 615.3754\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 615.3035 - val_loss: 614.7684\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 567.0718 - val_loss: 614.1652\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 600.0450 - val_loss: 613.5609\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 566.7026 - val_loss: 612.9565\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 1 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 54ms/step - loss: 607.9416 - val_loss: 621.9361\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 564.8807 - val_loss: 619.4988\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 600.1462 - val_loss: 617.5491\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 576.6304 - val_loss: 616.0148\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 588.5242 - val_loss: 614.8832\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 1 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 43ms/step - loss: 604.6536 - val_loss: 612.5388\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 599.6902 - val_loss: 610.6426\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 586.2263 - val_loss: 608.4539\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 560.6669 - val_loss: 605.9619\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 564.2922 - val_loss: 602.8068\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 1 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 42ms/step - loss: 617.8077 - val_loss: 616.7820\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 553.7733 - val_loss: 615.2945\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 573.9390 - val_loss: 614.3833\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 598.0424 - val_loss: 613.6508\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 555.9803 - val_loss: 613.0101\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 1 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 44ms/step - loss: 545.1505 - val_loss: 610.8772\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 566.7784 - val_loss: 606.9567\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 572.0395 - val_loss: 601.8712\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 591.0183 - val_loss: 595.3871\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 588.8446 - val_loss: 586.9610\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 1 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 42ms/step - loss: 577.8979 - val_loss: 611.3228\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 602.5472 - val_loss: 608.5945\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 595.1288 - val_loss: 605.2994\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 587.8209 - val_loss: 601.2541\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 558.1336 - val_loss: 596.3288\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 1 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 42ms/step - loss: 583.3870 - val_loss: 616.0514\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 595.7501 - val_loss: 614.7307\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 540.4177 - val_loss: 613.6598\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 598.2975 - val_loss: 612.7576\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 608.9086 - val_loss: 611.8891\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 1 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 42ms/step - loss: 544.8025 - val_loss: 574.6697\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 538.7465 - val_loss: 561.3064\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 547.5618 - val_loss: 545.4678\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 527.6629 - val_loss: 527.0237\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 483.1440 - val_loss: 506.3715\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 1 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 42ms/step - loss: 596.9289 - val_loss: 612.6575\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 587.8966 - val_loss: 609.8700\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 596.4249 - val_loss: 606.2399\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 549.2664 - val_loss: 601.6625\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 553.7043 - val_loss: 595.8201\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 1 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 42ms/step - loss: 614.0049 - val_loss: 615.8420\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 595.9683 - val_loss: 613.8305\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 607.2962 - val_loss: 612.1027\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 566.9392 - val_loss: 610.4678\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 604.7554 - val_loss: 608.8276\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step\n",
"Обучение модели с 8 нейронами в первом слое, 2 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 44ms/step - loss: 571.3237 - val_loss: 619.7255\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 554.0870 - val_loss: 617.8766\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 585.0772 - val_loss: 616.4786\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m115s\u001b[0m 109ms/step - loss: 565.5318 - val_loss: 602.3282\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 620.3588 - val_loss: 597.7111\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 578.2780 - val_loss: 592.5125\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 556.2996 - val_loss: 586.3754\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 600.4295 - val_loss: 579.2304\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 4 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 66ms/step - loss: 572.3240 - val_loss: 614.9280\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 9ms/step - loss: 603.5054 - val_loss: 613.6037\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 573.7949 - val_loss: 611.8249\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 613.9921 - val_loss: 609.6066\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 611.7141 - val_loss: 606.2892\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 4 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 59ms/step - loss: 568.7288 - val_loss: 622.2951\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 576.7958 - val_loss: 619.1028\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 611.0689 - val_loss: 616.8295\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 610.7489 - val_loss: 615.2329\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 601.9799 - val_loss: 613.8096\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 17ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"Обучение модели с 8 нейронами в первом слое, 4 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 53ms/step - loss: 588.2146 - val_loss: 618.8886\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 582.5411 - val_loss: 616.5967\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 612.0239 - val_loss: 614.6472\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 575.5269 - val_loss: 612.9546\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 622.2051 - val_loss: 611.3028\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 4 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 50ms/step - loss: 575.2284 - val_loss: 610.5618\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 7ms/step - loss: 587.4974 - val_loss: 605.7908\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 581.8640 - val_loss: 600.6074\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 556.3754 - val_loss: 594.7123\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 564.9568 - val_loss: 587.8892\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 4 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 45ms/step - loss: 544.7870 - val_loss: 600.0055\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 584.6445 - val_loss: 594.6470\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 570.2700 - val_loss: 588.3793\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 568.5061 - val_loss: 580.7568\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 529.1400 - val_loss: 571.8693\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 4 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 45ms/step - loss: 593.0672 - val_loss: 612.7731\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 566.6876 - val_loss: 609.5414\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 610.8165 - val_loss: 605.3008\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 607.8616 - val_loss: 599.8521\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 549.2209 - val_loss: 592.8553\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 4 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 46ms/step - loss: 588.2009 - val_loss: 603.8483\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 584.7094 - val_loss: 595.1299\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 554.0216 - val_loss: 585.0035\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 563.3868 - val_loss: 572.8038\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 570.3339 - val_loss: 558.5716\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 4 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 44ms/step - loss: 587.2526 - val_loss: 616.8361\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 626.7792 - val_loss: 614.6894\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 547.4177 - val_loss: 612.5798\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 569.4482 - val_loss: 610.0874\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 579.4869 - val_loss: 606.8992\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 4 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 67ms/step - loss: 616.8353 - val_loss: 600.3507\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 578.6425 - val_loss: 594.0549\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 555.8911 - val_loss: 586.6581\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 552.3608 - val_loss: 577.4734\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 553.1828 - val_loss: 565.8233\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 5 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m13s\u001b[0m 42ms/step - loss: 551.8945 - val_loss: 577.1461\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 564.7496 - val_loss: 568.4442\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 523.9716 - val_loss: 558.6763\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 511.8854 - val_loss: 548.0012\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 486.4839 - val_loss: 535.5768\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 5 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 694.8887 - val_loss: 646.7208\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 634.9199 - val_loss: 638.9412\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 616.5648 - val_loss: 632.5775\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 580.0562 - val_loss: 627.3632\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 555.1658 - val_loss: 623.3431\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 5 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 43ms/step - loss: 563.7675 - val_loss: 575.3242\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 554.3483 - val_loss: 567.2267\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 539.4186 - val_loss: 557.8575\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 542.8606 - val_loss: 546.9545\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 534.7184 - val_loss: 534.1260\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 5 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 44ms/step - loss: 569.7621 - val_loss: 609.1004\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 581.7213 - val_loss: 605.1409\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 577.9955 - val_loss: 600.3429\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 574.2175 - val_loss: 594.0950\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 571.0649 - val_loss: 584.2651\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 5 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 43ms/step - loss: 604.5027 - val_loss: 622.0065\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 583.1144 - val_loss: 618.6495\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 574.8715 - val_loss: 616.3278\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 569.8417 - val_loss: 614.5737\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 579.6877 - val_loss: 613.2252\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 5 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 44ms/step - loss: 520.3795 - val_loss: 573.4938\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 552.9630 - val_loss: 562.8348\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 548.9023 - val_loss: 550.1382\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 522.9861 - val_loss: 534.0407\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 516.3886 - val_loss: 510.6824\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 5 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 40ms/step - loss: 630.0383 - val_loss: 638.9836\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 622.0895 - val_loss: 630.9852\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 609.5878 - val_loss: 624.8017\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 606.0517 - val_loss: 619.9960\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 547.8758 - val_loss: 616.2567\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 5 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 42ms/step - loss: 615.8676 - val_loss: 613.5370\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 575.3018 - val_loss: 608.6517\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 597.4740 - val_loss: 602.8984\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 578.7963 - val_loss: 595.6263\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 550.4627 - val_loss: 586.1635\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m133s\u001b[0m 173ms/step - loss: 595.9853 - val_loss: 620.1576\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 629.0024 - val_loss: 608.8491\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 554.7825 - val_loss: 597.7117\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 567.7162 - val_loss: 585.6858\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 501.9368 - val_loss: 572.4857\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 25ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 7 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 59ms/step - loss: 607.3539 - val_loss: 634.1476\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 586.8986 - val_loss: 625.1512\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 601.4051 - val_loss: 617.5591\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 566.6728 - val_loss: 610.8094\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 548.9219 - val_loss: 603.8304\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"Обучение модели с 8 нейронами в первом слое, 8 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 60ms/step - loss: 568.5481 - val_loss: 617.0651\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 571.3225 - val_loss: 615.9987\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 618.5713 - val_loss: 615.0903\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 586.7700 - val_loss: 614.2509\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 567.8616 - val_loss: 613.5075\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 8 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 51ms/step - loss: 538.3058 - val_loss: 576.1633\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 547.5137 - val_loss: 564.9530\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 495.4619 - val_loss: 552.7424\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 534.3157 - val_loss: 539.3154\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 535.1236 - val_loss: 524.5388\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 8 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 49ms/step - loss: 566.4578 - val_loss: 603.7348\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 573.5870 - val_loss: 598.9806\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 540.0468 - val_loss: 593.5327\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 570.3890 - val_loss: 587.1464\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 561.3781 - val_loss: 579.4387\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 8 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 49ms/step - loss: 593.9284 - val_loss: 632.1790\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 596.3859 - val_loss: 623.9909\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 620.8655 - val_loss: 618.5519\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 602.2837 - val_loss: 615.7825\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 556.6223 - val_loss: 614.2433\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 8 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 76ms/step - loss: 585.4478 - val_loss: 616.1060\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 601.9326 - val_loss: 611.4313\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 597.0504 - val_loss: 605.8557\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 596.5287 - val_loss: 599.1102\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 563.1931 - val_loss: 590.5156\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 8 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 45ms/step - loss: 609.0925 - val_loss: 660.5022\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 604.4770 - val_loss: 647.3646\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 599.6420 - val_loss: 636.2617\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 595.8341 - val_loss: 626.3931\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 599.2368 - val_loss: 617.1230\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 8 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 45ms/step - loss: 583.8019 - val_loss: 616.2780\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 570.6670 - val_loss: 613.2111\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 615.5720 - val_loss: 608.8460\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 560.7093 - val_loss: 602.9111\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 583.5342 - val_loss: 594.8046\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 8 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 46ms/step - loss: 576.6111 - val_loss: 622.5837\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 592.1643 - val_loss: 616.1674\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 597.4404 - val_loss: 611.2982\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 572.7471 - val_loss: 606.9699\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 591.9001 - val_loss: 602.3946\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 8 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 47ms/step - loss: 598.0391 - val_loss: 621.6064\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 592.5846 - val_loss: 613.2479\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 565.5711 - val_loss: 605.3784\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - loss: 551.5959 - val_loss: 597.0971\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 550.1633 - val_loss: 586.9172\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 8 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 42ms/step - loss: 637.4027 - val_loss: 617.6178\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 595.4486 - val_loss: 610.0365\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 564.5092 - val_loss: 602.9080\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 618.2401 - val_loss: 595.3715\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 558.0901 - val_loss: 586.9018\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 9 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 44ms/step - loss: 583.8793 - val_loss: 615.1911\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 618.0261 - val_loss: 614.1514\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 559.3990 - val_loss: 612.6981\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 587.4930 - val_loss: 610.6110\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 588.1973 - val_loss: 607.6924\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 9 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 44ms/step - loss: 635.8842 - val_loss: 644.2142\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 604.2639 - val_loss: 633.8762\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 589.4907 - val_loss: 627.0873\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 626.6346 - val_loss: 622.5989\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 581.2159 - val_loss: 619.5609\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 9 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 44ms/step - loss: 584.6912 - val_loss: 594.0615\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 608.1562 - val_loss: 585.9459\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 559.9963 - val_loss: 575.4382\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 493.6625 - val_loss: 562.1919\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 570.7574 - val_loss: 545.4515\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 9 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 41ms/step - loss: 608.0405 - val_loss: 626.8607\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 571.3682 - val_loss: 622.6411\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 614.8603 - val_loss: 619.6829\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 526.5177 - val_loss: 617.6904\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 586.9424 - val_loss: 616.1526\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 9 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 42ms/step - loss: 606.5828 - val_loss: 611.0027\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 573.3860 - val_loss: 604.5707\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 580.5422 - val_loss: 598.3725\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 588.5269 - val_loss: 591.4533\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 545.4554 - val_loss: 583.4404\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 9 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 44ms/step - loss: 530.3353 - val_loss: 574.4113\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 528.6716 - val_loss: 557.0696\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 530.5069 - val_loss: 535.1830\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 501.1587 - val_loss: 507.8463\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 442.1259 - val_loss: 472.4626\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 8 нейронами в первом слое, 9 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 620.1805 - val_loss: 622.0546\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 578.8287 - val_loss: 615.1417\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 599.6165 - val_loss: 609.5871\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m168s\u001b[0m 94ms/step - loss: 600.3480 - val_loss: 613.9152\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 578.3750 - val_loss: 610.5892\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 577.5359 - val_loss: 606.4177\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - loss: 587.5632 - val_loss: 601.0308\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 593.4045 - val_loss: 594.0226\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 2 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 60ms/step - loss: 538.3336 - val_loss: 552.9465\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 8ms/step - loss: 498.5683 - val_loss: 537.5297\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 523.4846 - val_loss: 520.3965\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 488.6495 - val_loss: 501.0008\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 454.0887 - val_loss: 479.7940\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 2 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 67ms/step - loss: 555.4232 - val_loss: 615.7983\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 550.9705 - val_loss: 614.8767\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 576.7457 - val_loss: 614.2080\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 586.6820 - val_loss: 613.6063\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 580.8768 - val_loss: 613.0084\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 2 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m8s\u001b[0m 55ms/step - loss: 551.0869 - val_loss: 595.9045\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 537.6609 - val_loss: 589.9338\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 570.8981 - val_loss: 582.7374\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 559.1210 - val_loss: 573.8939\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 535.5885 - val_loss: 563.3570\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 2 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 49ms/step - loss: 619.1014 - val_loss: 614.2712\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 562.8139 - val_loss: 612.2508\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 583.3335 - val_loss: 609.9912\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 614.2905 - val_loss: 607.4484\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 541.4780 - val_loss: 604.4334\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 2 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 59ms/step - loss: 621.1356 - val_loss: 618.2780\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 599.2698 - val_loss: 615.8420\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 569.8906 - val_loss: 613.9533\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 611.1141 - val_loss: 612.2561\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 562.0417 - val_loss: 610.6010\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 2 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 49ms/step - loss: 605.1956 - val_loss: 633.5751\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 593.7930 - val_loss: 628.6404\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 586.6973 - val_loss: 624.4440\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 606.5775 - val_loss: 620.7308\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 561.5830 - val_loss: 617.6251\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 2 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 56ms/step - loss: 610.6007 - val_loss: 619.3505\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 577.7938 - val_loss: 616.4846\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 601.3193 - val_loss: 614.0391\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.5188 - val_loss: 612.0815\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 595.0906 - val_loss: 610.4153\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 2 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 47ms/step - loss: 568.1738 - val_loss: 618.0627\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 578.5044 - val_loss: 616.6042\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 584.1474 - val_loss: 615.4315\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 550.4841 - val_loss: 614.3894\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 589.8928 - val_loss: 613.4478\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 2 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 46ms/step - loss: 576.8873 - val_loss: 613.8839\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 540.7064 - val_loss: 609.9266\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 604.8718 - val_loss: 605.0347\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 597.0815 - val_loss: 598.5868\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 518.0311 - val_loss: 590.3255\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 2 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 51ms/step - loss: 587.9967 - val_loss: 615.7957\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 615.6848 - val_loss: 613.7176\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 581.3787 - val_loss: 611.2975\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 576.3231 - val_loss: 608.0925\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 623.1678 - val_loss: 603.8463\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step\n",
"Обучение модели с 9 нейронами в первом слое, 3 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 45ms/step - loss: 599.7114 - val_loss: 609.5698\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 569.2302 - val_loss: 604.1826\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 604.2635 - val_loss: 597.0795\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 561.9347 - val_loss: 587.2872\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 565.4352 - val_loss: 575.4760\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 3 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 57ms/step - loss: 562.6625 - val_loss: 603.9363\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - loss: 582.8300 - val_loss: 598.5172\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 520.5667 - val_loss: 592.0411\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 550.8822 - val_loss: 584.0154\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 547.9621 - val_loss: 574.1405\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 3 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 46ms/step - loss: 568.5707 - val_loss: 615.8002\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 618.4549 - val_loss: 611.3040\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 583.6077 - val_loss: 606.6973\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 554.8461 - val_loss: 601.8967\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 588.9014 - val_loss: 596.2263\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 3 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 48ms/step - loss: 593.2717 - val_loss: 608.6530\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 558.3196 - val_loss: 604.3762\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 569.5698 - val_loss: 598.6169\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 565.3044 - val_loss: 590.8975\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 571.2752 - val_loss: 580.8235\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 3 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 45ms/step - loss: 626.0878 - val_loss: 618.9280\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 561.6918 - val_loss: 616.1312\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 589.9729 - val_loss: 614.0569\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 581.0569 - val_loss: 612.4060\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 582.1110 - val_loss: 610.8480\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 3 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 44ms/step - loss: 566.7141 - val_loss: 624.3651\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 590.2020 - val_loss: 619.6525\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 628.9454 - val_loss: 616.3215\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 603.7504 - val_loss: 613.8926\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 576.9587 - val_loss: 611.8494\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 3 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 46ms/step - loss: 620.1124 - val_loss: 613.7665\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.4448 - val_loss: 607.5564\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 567.2911 - val_loss: 601.7499\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 569.1741 - val_loss: 596.0488\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 552.0405 - val_loss: 589.9277\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 3 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 44ms/step - loss: 608.0938 - val_loss: 619.9305\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 581.5751 - val_loss: 615.0252\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 605.7702 - val_loss: 609.7519\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 568.6978 - val_loss: 603.8799\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 578.6197 - val_loss: 596.9574\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 3 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 45ms/step - loss: 585.8641 - val_loss: 609.9654\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 554.6754 - val_loss: 606.6788\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 553.7015 - val_loss: 601.9441\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 575.9609 - val_loss: 594.3710\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 545.9402 - val_loss: 583.3926\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 3 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 42ms/step - loss: 584.3323 - val_loss: 618.2276\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 601.7584 - val_loss: 614.7115\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 590.8873 - val_loss: 611.0466\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 594.0460 - val_loss: 607.1500\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 585.5366 - val_loss: 602.8742\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 4 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 49ms/step - loss: 596.9317 - val_loss: 618.2910\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 621.2275 - val_loss: 616.7078\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 611.5232 - val_loss: 615.3765\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - loss: 546.0509 - val_loss: 614.2599\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 557.2013 - val_loss: 613.4214\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 4 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 44ms/step - loss: 591.7559 - val_loss: 597.5133\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 594.4169 - val_loss: 591.5593\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 565.8892 - val_loss: 583.5352\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 534.7764 - val_loss: 573.1512\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 542.8770 - val_loss: 560.7584\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 4 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 47ms/step - loss: 590.8929 - val_loss: 626.5095\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 579.5677 - val_loss: 619.2546\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 574.4357 - val_loss: 613.6238\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 561.4421 - val_loss: 609.3063\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 591.3416 - val_loss: 605.5052\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 4 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 42ms/step - loss: 577.4763 - val_loss: 598.5851\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 581.0563 - val_loss: 589.3987\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 547.6857 - val_loss: 579.2987\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 544.2031 - val_loss: 568.2524\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 544.8348 - val_loss: 555.7681\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 4 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 42ms/step - loss: 596.9692 - val_loss: 614.2443\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 589.2206 - val_loss: 608.6340\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 586.9073 - val_loss: 602.8608\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 602.8012 - val_loss: 596.5204\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 561.6192 - val_loss: 589.3101\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 4 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 45ms/step - loss: 578.7082 - val_loss: 604.5535\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 587.6305 - val_loss: 599.0908\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m157s\u001b[0m 225ms/step - loss: 540.1394 - val_loss: 571.1385\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 526.3996 - val_loss: 556.5192\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 553.7454 - val_loss: 539.5095\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 495.6083 - val_loss: 519.4907\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 521.4485 - val_loss: 495.8064\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 6 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 54ms/step - loss: 609.8320 - val_loss: 623.4389\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 603.7404 - val_loss: 619.3452\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 558.6277 - val_loss: 615.8184\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 570.1028 - val_loss: 612.2346\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 606.6160 - val_loss: 607.9360\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 6 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 49ms/step - loss: 584.9000 - val_loss: 605.2477\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 557.6364 - val_loss: 599.9202\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 573.8587 - val_loss: 591.4573\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 582.0200 - val_loss: 577.7695\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 496.7111 - val_loss: 558.0425\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 6 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 48ms/step - loss: 586.1882 - val_loss: 613.1577\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 596.3764 - val_loss: 608.7386\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 562.3983 - val_loss: 603.6099\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 542.4784 - val_loss: 597.5200\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 563.8059 - val_loss: 589.9766\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 6 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 126ms/step - loss: 605.0548 - val_loss: 599.7557\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 9ms/step - loss: 590.7278 - val_loss: 591.0421\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 564.0419 - val_loss: 580.0231\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 534.8871 - val_loss: 566.1208\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 522.0161 - val_loss: 548.1844\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 6 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 50ms/step - loss: 527.9802 - val_loss: 577.3853\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 551.7814 - val_loss: 564.8755\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 502.6378 - val_loss: 549.7415\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 544.6517 - val_loss: 531.2582\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 467.3008 - val_loss: 507.7986\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 6 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 49ms/step - loss: 574.3591 - val_loss: 621.5646\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 597.4391 - val_loss: 617.5233\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 579.3281 - val_loss: 614.5333\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 627.2474 - val_loss: 612.4025\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 626.9125 - val_loss: 610.6682\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 6 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 49ms/step - loss: 542.5411 - val_loss: 548.1108\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 519.8772 - val_loss: 526.7020\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 476.7104 - val_loss: 500.8036\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 494.2970 - val_loss: 469.1220\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 413.9377 - val_loss: 431.0153\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 7 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 50ms/step - loss: 607.5258 - val_loss: 607.9107\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 580.0129 - val_loss: 601.6561\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 545.0922 - val_loss: 592.9806\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 548.0131 - val_loss: 581.8607\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 556.2074 - val_loss: 568.2406\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 7 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 48ms/step - loss: 535.8814 - val_loss: 584.5532\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 579.2166 - val_loss: 573.8013\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 556.0631 - val_loss: 560.6812\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 515.6107 - val_loss: 544.8664\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 479.1105 - val_loss: 526.3058\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 7 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 62ms/step - loss: 585.5193 - val_loss: 616.8553\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 581.3079 - val_loss: 615.2606\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 590.2545 - val_loss: 614.3917\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 574.1694 - val_loss: 613.7170\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 588.0883 - val_loss: 613.0818\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 7 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 46ms/step - loss: 555.5255 - val_loss: 617.3829\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 572.4541 - val_loss: 614.5117\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 566.6532 - val_loss: 612.6298\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 604.5732 - val_loss: 611.0041\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 544.7855 - val_loss: 609.2337\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 7 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 46ms/step - loss: 555.0804 - val_loss: 575.0692\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 561.4854 - val_loss: 563.5242\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 503.2046 - val_loss: 549.6683\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 497.3761 - val_loss: 533.0295\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 519.9210 - val_loss: 513.0419\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"Обучение модели с 9 нейронами в первом слое, 7 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 44ms/step - loss: 636.7830 - val_loss: 610.1039\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 591.6611 - val_loss: 606.6082\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 573.5453 - val_loss: 601.9981\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 595.0308 - val_loss: 595.8417\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 561.9500 - val_loss: 586.6356\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 7 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 43ms/step - loss: 615.9232 - val_loss: 629.8302\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 614.7463 - val_loss: 625.3132\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 599.5413 - val_loss: 621.8495\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 563.2911 - val_loss: 619.0445\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 579.5833 - val_loss: 616.7769\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 7 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 45ms/step - loss: 581.6986 - val_loss: 608.4760\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.4934 - val_loss: 601.4603\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 589.4883 - val_loss: 591.6496\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 533.6469 - val_loss: 579.4332\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 561.5948 - val_loss: 564.6593\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 7 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 46ms/step - loss: 583.8972 - val_loss: 613.0626\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 603.8810 - val_loss: 607.8724\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 568.5754 - val_loss: 602.3587\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 559.9207 - val_loss: 595.9537\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 522.0438 - val_loss: 587.5381\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 7 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 63ms/step - loss: 572.3481 - val_loss: 609.3615\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 8ms/step - loss: 593.9794 - val_loss: 603.1929\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 604.9774 - val_loss: 596.0926\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 543.3276 - val_loss: 587.2411\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 555.8508 - val_loss: 575.7213\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 8 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 54ms/step - loss: 620.5253 - val_loss: 615.7256\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 579.9537 - val_loss: 614.9946\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 592.0007 - val_loss: 614.3342\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 531.6656 - val_loss: 613.7064\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 610.6405 - val_loss: 613.0868\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 8 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 43ms/step - loss: 610.7629 - val_loss: 622.1969\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 580.3354 - val_loss: 619.1252\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 612.5386 - val_loss: 616.7555\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 575.6522 - val_loss: 614.7556\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 581.0975 - val_loss: 613.0063\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 8 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 42ms/step - loss: 593.3187 - val_loss: 620.9000\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 585.4264 - val_loss: 613.2603\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 551.0693 - val_loss: 606.1598\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 572.9720 - val_loss: 599.3742\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 566.8470 - val_loss: 592.5641\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 8 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 40ms/step - loss: 587.6717 - val_loss: 620.6282\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.3574 - val_loss: 618.1898\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 564.8207 - val_loss: 616.1894\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 592.2249 - val_loss: 614.8264\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 586.1285 - val_loss: 613.7372\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 8 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 63ms/step - loss: 581.9141 - val_loss: 594.0733\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 557.2505 - val_loss: 585.4850\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 530.6807 - val_loss: 576.0630\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 547.8077 - val_loss: 565.2299\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 549.0105 - val_loss: 552.5912\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 8 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 42ms/step - loss: 542.3885 - val_loss: 599.2841\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 560.8972 - val_loss: 593.0805\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 569.6587 - val_loss: 584.8195\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 541.6210 - val_loss: 573.7847\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 528.6252 - val_loss: 559.0510\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 8 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 58ms/step - loss: 615.7083 - val_loss: 614.5706\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 8ms/step - loss: 633.0629 - val_loss: 611.6428\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 568.4351 - val_loss: 608.1331\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 574.0085 - val_loss: 603.5179\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 606.9446 - val_loss: 597.2902\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 8 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 42ms/step - loss: 559.1197 - val_loss: 586.6930\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 560.4664 - val_loss: 573.4405\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 532.4759 - val_loss: 557.2869\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 536.3912 - val_loss: 536.4798\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 484.9583 - val_loss: 510.9530\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 8 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 562.8428 - val_loss: 608.8370\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 554.8467 - val_loss: 595.5947\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 539.0953 - val_loss: 581.5732\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 533.5249 - val_loss: 566.3134\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 548.0852 - val_loss: 547.5435\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 8 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 556.5795 - val_loss: 576.7574\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 517.6967 - val_loss: 564.1599\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 530.6653 - val_loss: 549.4617\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 526.1104 - val_loss: 531.9816\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 526.9307 - val_loss: 510.9707\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 9 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 44ms/step - loss: 594.2582 - val_loss: 623.3329\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m219s\u001b[0m 210ms/step - loss: 601.9975 - val_loss: 582.0651\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 9ms/step - loss: 541.9167 - val_loss: 567.5743\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 568.8614 - val_loss: 550.1330\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 532.5084 - val_loss: 528.8264\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 493.7609 - val_loss: 502.9917\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step \n",
"Обучение модели с 9 нейронами в первом слое, 10 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 56ms/step - loss: 610.3607 - val_loss: 603.4529\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 10ms/step - loss: 568.2833 - val_loss: 594.4146\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 558.9599 - val_loss: 583.2377\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 544.9586 - val_loss: 568.2372\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 544.1309 - val_loss: 548.0348\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 1 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 55ms/step - loss: 569.2278 - val_loss: 611.6777\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 575.8446 - val_loss: 608.6506\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 591.1617 - val_loss: 604.8722\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 594.0020 - val_loss: 600.2473\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 559.5377 - val_loss: 594.8557\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step\n",
"Обучение модели с 10 нейронами в первом слое, 1 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 53ms/step - loss: 564.2162 - val_loss: 615.3723\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 570.3484 - val_loss: 614.7661\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 589.4365 - val_loss: 614.1569\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 590.0004 - val_loss: 613.5528\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 604.2523 - val_loss: 612.9507\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 1 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 51ms/step - loss: 638.2367 - val_loss: 645.9429\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 600.9233 - val_loss: 638.3427\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 598.3043 - val_loss: 632.2808\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 610.2206 - val_loss: 627.9264\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 617.9487 - val_loss: 624.6978\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 1 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 48ms/step - loss: 602.2764 - val_loss: 624.7228\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 581.8558 - val_loss: 619.9517\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 590.9724 - val_loss: 616.7672\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 562.4141 - val_loss: 614.6374\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 594.3513 - val_loss: 612.9543\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 1 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 47ms/step - loss: 629.0245 - val_loss: 637.2925\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 589.2368 - val_loss: 628.7019\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 585.5605 - val_loss: 622.5222\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 571.3409 - val_loss: 618.3593\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 583.2625 - val_loss: 615.8286\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 1 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 47ms/step - loss: 593.9841 - val_loss: 618.4468\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 593.6722 - val_loss: 615.6993\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 606.9044 - val_loss: 613.4890\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 577.7236 - val_loss: 611.6652\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 565.9578 - val_loss: 610.0539\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 1 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 47ms/step - loss: 554.9215 - val_loss: 616.3203\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 590.9244 - val_loss: 615.2657\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 559.5695 - val_loss: 614.4258\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 576.7863 - val_loss: 613.7207\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 624.8112 - val_loss: 613.0809\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 1 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 48ms/step - loss: 572.9906 - val_loss: 613.5584\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 574.2574 - val_loss: 611.1523\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 600.8792 - val_loss: 608.2714\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 595.4774 - val_loss: 604.5471\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 547.7579 - val_loss: 599.5109\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 1 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 47ms/step - loss: 592.0422 - val_loss: 607.5330\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 585.7690 - val_loss: 603.5537\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 550.4872 - val_loss: 598.6563\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 555.9360 - val_loss: 592.7199\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 546.6873 - val_loss: 585.6437\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 1 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 51ms/step - loss: 552.4565 - val_loss: 603.9963\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 8ms/step - loss: 594.8225 - val_loss: 596.6465\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 560.7496 - val_loss: 586.8323\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 559.2936 - val_loss: 574.0569\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 562.1908 - val_loss: 557.8743\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 2 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 47ms/step - loss: 580.1622 - val_loss: 616.1942\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 631.2480 - val_loss: 615.2383\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 598.9712 - val_loss: 614.4429\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 591.7122 - val_loss: 613.7411\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 587.6500 - val_loss: 613.0734\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 2 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 48ms/step - loss: 540.4877 - val_loss: 576.2765\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 579.8721 - val_loss: 566.1829\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 548.2440 - val_loss: 554.4568\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 514.6876 - val_loss: 540.2207\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 503.3422 - val_loss: 523.1263\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 2 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 44ms/step - loss: 520.7094 - val_loss: 548.0403\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 525.6781 - val_loss: 531.6514\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 492.9155 - val_loss: 512.5854\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 487.6229 - val_loss: 490.7375\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 464.5585 - val_loss: 465.6639\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 2 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 47ms/step - loss: 541.9500 - val_loss: 619.8885\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 604.0154 - val_loss: 616.4031\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 572.8011 - val_loss: 613.9585\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 560.7999 - val_loss: 612.1439\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 566.0677 - val_loss: 610.4980\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 2 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 50ms/step - loss: 556.4252 - val_loss: 608.1793\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 545.8453 - val_loss: 602.8263\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 547.2748 - val_loss: 596.2382\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 554.2907 - val_loss: 588.1523\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 541.4193 - val_loss: 578.7010\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 2 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 44ms/step - loss: 547.5511 - val_loss: 571.9656\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 574.4399 - val_loss: 560.6226\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 504.6616 - val_loss: 547.8925\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 529.8970 - val_loss: 532.6126\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 498.9600 - val_loss: 514.9919\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 2 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 47ms/step - loss: 543.2523 - val_loss: 599.5012\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 571.3825 - val_loss: 587.6177\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 515.1202 - val_loss: 573.7930\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 515.7352 - val_loss: 556.6105\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 494.6793 - val_loss: 536.3552\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 2 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 45ms/step - loss: 630.3671 - val_loss: 615.5292\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 598.6343 - val_loss: 614.8217\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 547.0599 - val_loss: 614.1418\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 570.8134 - val_loss: 613.4222\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 597.5302 - val_loss: 612.6514\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 2 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 43ms/step - loss: 629.2423 - val_loss: 614.7234\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 566.1277 - val_loss: 612.4301\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 570.6060 - val_loss: 609.7548\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 566.8675 - val_loss: 606.3232\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 602.1690 - val_loss: 601.7203\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 2 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 45ms/step - loss: 583.9588 - val_loss: 614.4217\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 582.7952 - val_loss: 610.0579\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 587.4488 - val_loss: 605.6566\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 571.4858 - val_loss: 600.5510\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 554.8690 - val_loss: 593.9215\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 3 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 45ms/step - loss: 587.6642 - val_loss: 612.7697\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 585.5833 - val_loss: 610.3243\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 558.4722 - val_loss: 607.0993\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 553.1913 - val_loss: 602.3752\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 623.1895 - val_loss: 597.0378\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 3 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 42ms/step - loss: 570.0952 - val_loss: 577.8788\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 548.0232 - val_loss: 568.0591\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 544.4015 - val_loss: 557.2131\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 518.7430 - val_loss: 545.1841\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 500.5933 - val_loss: 531.6719\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 3 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 585.4387 - val_loss: 618.5679\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 622.0263 - val_loss: 616.5303\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 568.1393 - val_loss: 614.8595\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 573.8029 - val_loss: 613.3939\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 587.4173 - val_loss: 611.6766\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 3 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 65ms/step - loss: 556.5392 - val_loss: 612.9275\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 548.4797 - val_loss: 611.0863\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 556.3570 - val_loss: 608.5721\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - loss: 609.2059 - val_loss: 604.8781\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 557.3229 - val_loss: 599.7202\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 3 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 574.0501 - val_loss: 598.8999\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 573.4469 - val_loss: 588.6804\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 563.9785 - val_loss: 575.4523\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 545.2623 - val_loss: 558.0367\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 503.5368 - val_loss: 535.4073\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 3 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 42ms/step - loss: 562.3522 - val_loss: 597.8420\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 534.9513 - val_loss: 590.6607\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 506.2541 - val_loss: 582.1131\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 519.9619 - val_loss: 571.5207\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 541.0408 - val_loss: 559.0747\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 3 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 44ms/step - loss: 542.8841 - val_loss: 609.7429\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 53ms/step - loss: 526.9054 - val_loss: 599.9484\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 550.2501 - val_loss: 589.0623\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 544.0369 - val_loss: 574.9429\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 533.9728 - val_loss: 556.4735\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 521.8607 - val_loss: 532.9998\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 6 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 74ms/step - loss: 561.3949 - val_loss: 610.8839\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 58ms/step - loss: 573.5720 - val_loss: 605.0499\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 127ms/step - loss: 585.9442 - val_loss: 599.5127\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 109ms/step - loss: 586.6895 - val_loss: 593.2741\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 51ms/step - loss: 526.3260 - val_loss: 586.2930\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 210ms/step\n",
"Обучение модели с 10 нейронами в первом слое, 6 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 47ms/step - loss: 601.3587 - val_loss: 593.5108\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 551.5456 - val_loss: 584.6125\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 563.3281 - val_loss: 573.1920\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 566.2795 - val_loss: 559.0468\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 438.6276 - val_loss: 541.9208\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 6 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 44ms/step - loss: 586.3369 - val_loss: 627.0991\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 568.4474 - val_loss: 620.7369\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 606.7675 - val_loss: 615.2332\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 585.1511 - val_loss: 609.9362\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 567.5249 - val_loss: 604.1691\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 7 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 46ms/step - loss: 541.1266 - val_loss: 606.5419\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 536.7733 - val_loss: 600.9736\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 569.8938 - val_loss: 592.7383\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 583.0751 - val_loss: 580.0422\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 527.8055 - val_loss: 565.5621\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 7 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 45ms/step - loss: 585.6851 - val_loss: 597.4675\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 586.0068 - val_loss: 591.8885\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 573.9694 - val_loss: 585.2964\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 563.4943 - val_loss: 577.3838\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 562.4500 - val_loss: 567.8790\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 7 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 46ms/step - loss: 579.3303 - val_loss: 600.0277\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 555.8713 - val_loss: 593.8044\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 558.3784 - val_loss: 585.7953\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 590.9572 - val_loss: 575.3597\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 546.9554 - val_loss: 562.2997\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 7 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 45ms/step - loss: 633.9147 - val_loss: 660.8832\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 628.5635 - val_loss: 645.8491\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 563.0427 - val_loss: 635.1329\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 603.6896 - val_loss: 628.3460\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 585.8209 - val_loss: 624.1385\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 7 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 43ms/step - loss: 558.1095 - val_loss: 616.1245\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 561.9268 - val_loss: 614.9084\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 588.5429 - val_loss: 613.7492\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 571.6689 - val_loss: 612.4379\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 598.6802 - val_loss: 610.8672\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 7 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 52ms/step - loss: 553.5255 - val_loss: 573.7211\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 534.3998 - val_loss: 561.7080\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 537.8250 - val_loss: 548.0556\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 526.2017 - val_loss: 532.5710\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 491.8398 - val_loss: 514.4373\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 7 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 47ms/step - loss: 574.2016 - val_loss: 602.0043\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 571.4362 - val_loss: 592.1240\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 543.8156 - val_loss: 579.3336\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 568.2399 - val_loss: 563.2989\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 540.5292 - val_loss: 544.7719\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 7 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 56ms/step - loss: 560.4799 - val_loss: 613.2604\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 9ms/step - loss: 565.5671 - val_loss: 607.7604\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 569.5967 - val_loss: 601.0427\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 541.0434 - val_loss: 591.7910\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 547.8569 - val_loss: 579.4562\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 7 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 46ms/step - loss: 595.0397 - val_loss: 623.1247\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 609.0417 - val_loss: 618.3843\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 629.3424 - val_loss: 613.8254\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 598.3447 - val_loss: 609.0151\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 581.6705 - val_loss: 603.1431\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 7 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 47ms/step - loss: 633.5527 - val_loss: 612.1630\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 547.2532 - val_loss: 604.9915\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 566.9116 - val_loss: 596.8962\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 596.1977 - val_loss: 587.2405\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - loss: 559.0214 - val_loss: 575.3659\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 8 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 44ms/step - loss: 597.5429 - val_loss: 615.4014\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 565.9164 - val_loss: 614.3820\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 593.2687 - val_loss: 612.4446\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 587.2915 - val_loss: 609.1129\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 578.1528 - val_loss: 604.7136\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 8 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 45ms/step - loss: 611.7517 - val_loss: 628.6502\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 606.8482 - val_loss: 622.6349\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 584.5647 - val_loss: 617.8098\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 621.1434 - val_loss: 614.0330\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 561.2109 - val_loss: 611.5011\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 8 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 45ms/step - loss: 590.8047 - val_loss: 610.6744\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 598.9133 - val_loss: 605.0761\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 551.1465 - val_loss: 597.7068\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 584.8429 - val_loss: 588.7451\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 565.9162 - val_loss: 578.0307\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 8 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 48ms/step - loss: 584.4236 - val_loss: 623.5779\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 595.1346 - val_loss: 619.6039\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 538.6551 - val_loss: 616.9612\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 626.9835 - val_loss: 615.0468\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 577.3366 - val_loss: 613.8394\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 8 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 47ms/step - loss: 583.4027 - val_loss: 590.9370\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 581.1501 - val_loss: 572.9406\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 550.8452 - val_loss: 551.1519\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 493.2307 - val_loss: 526.2761\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 486.8211 - val_loss: 497.6823\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 8 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 43ms/step - loss: 635.8013 - val_loss: 594.2400\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 612.5912 - val_loss: 582.5603\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 517.9933 - val_loss: 568.8417\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 517.4490 - val_loss: 552.4291\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 493.8420 - val_loss: 532.4716\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 8 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 58ms/step - loss: 572.0648 - val_loss: 591.3498\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 572.6078 - val_loss: 580.8655\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 515.2766 - val_loss: 568.5303\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 527.7025 - val_loss: 553.6922\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 554.8275 - val_loss: 536.6482\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 8 во втором, и 8 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 48ms/step - loss: 600.5304 - val_loss: 630.4674\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 612.7968 - val_loss: 623.3669\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 592.7863 - val_loss: 618.1339\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 568.1839 - val_loss: 613.8411\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 564.6390 - val_loss: 609.9502\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 8 во втором, и 9 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 49ms/step - loss: 563.7340 - val_loss: 614.9425\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 578.8722 - val_loss: 609.5099\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 574.1723 - val_loss: 603.7741\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 539.5153 - val_loss: 596.5688\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 572.9349 - val_loss: 585.9036\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 8 во втором, и 10 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 43ms/step - loss: 634.5063 - val_loss: 618.0957\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 578.9622 - val_loss: 613.7985\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 602.3012 - val_loss: 609.3740\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 595.4795 - val_loss: 604.0467\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 564.3668 - val_loss: 597.2245\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 9 во втором, и 1 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 42ms/step - loss: 611.2300 - val_loss: 606.9801\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 555.3319 - val_loss: 599.6547\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - loss: 542.8948 - val_loss: 589.2236\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 545.5011 - val_loss: 576.6499\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 540.2739 - val_loss: 561.7223\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 9 во втором, и 2 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 43ms/step - loss: 586.8746 - val_loss: 618.6143\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 575.5472 - val_loss: 616.9866\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 557.1453 - val_loss: 615.6853\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 618.6382 - val_loss: 614.6147\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 611.7836 - val_loss: 613.7295\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step\n",
"Обучение модели с 10 нейронами в первом слое, 9 во втором, и 3 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 43ms/step - loss: 605.1722 - val_loss: 612.6568\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 608.1279 - val_loss: 609.6458\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 583.2621 - val_loss: 605.8234\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 569.6353 - val_loss: 600.4926\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 576.5450 - val_loss: 593.3180\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 9 во втором, и 4 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 539.5215 - val_loss: 588.4831\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 548.0881 - val_loss: 573.0848\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 539.6017 - val_loss: 554.4219\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 499.9349 - val_loss: 532.4686\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 483.8774 - val_loss: 506.6277\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 9 во втором, и 5 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 41ms/step - loss: 615.5460 - val_loss: 608.1291\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 596.2010 - val_loss: 598.9401\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 548.2751 - val_loss: 588.8687\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 581.1364 - val_loss: 577.3313\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 524.4141 - val_loss: 561.7872\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 9 во втором, и 6 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 39ms/step - loss: 591.5432 - val_loss: 590.6041\n",
"Epoch 2/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 550.0154 - val_loss: 579.6906\n",
"Epoch 3/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 532.2417 - val_loss: 567.6364\n",
"Epoch 4/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - loss: 539.0940 - val_loss: 552.5871\n",
"Epoch 5/50\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 6ms/step - loss: 516.8676 - val_loss: 533.5253\n",
"Epoch 5: early stopping\n",
"Restoring model weights from the end of the best epoch: 1.\n",
"\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n",
"\u001b[1m4/4\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step \n",
"Обучение модели с 10 нейронами в первом слое, 9 во втором, и 7 в третьем слое\n",
"Epoch 1/50\n",
"\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m49s\u001b[0m 4s/step - loss: 525.2076"
]
}
],
"source": [
"from tensorflow.keras.models import Sequential\n",
"from tensorflow.keras.layers import Dense, Input\n",
"from tensorflow.keras.callbacks import EarlyStopping\n",
"from sklearn.metrics import mean_squared_error\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# Списки для хранения ошибок\n",
"train_mse_3layers = []\n",
"test_mse_3layers = []\n",
"\n",
"# Настройка ранней остановки\n",
"early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True, verbose=1)\n",
"\n",
"# Количество нейронов до 1-10 для трехслойной модели\n",
"for neurons_layer1 in range(1, 11):\n",
" for neurons_layer2 in range(1, 11):\n",
" for neurons_layer3 in range(1, 11):\n",
" print(f\"Обучение модели с {neurons_layer1} нейронами в первом слое, {neurons_layer2} во втором, и {neurons_layer3} в третьем слое\")\n",
" \n",
" # Построение модели с тремя скрытыми слоями\n",
" model = Sequential()\n",
" model.add(Input(shape=(X_train.shape[1],))) # Входной слой\n",
" model.add(Dense(neurons_layer1, activation='relu', kernel_regularizer='l2')) # Первый скрытый слой\n",
" model.add(Dense(neurons_layer2, activation='relu', kernel_regularizer='l2')) # Второй скрытый слой\n",
" model.add(Dense(neurons_layer3, activation='relu', kernel_regularizer='l2')) # Третий скрытый слой\n",
" model.add(Dense(1, activation='linear')) # Выходной слой\n",
" \n",
" # Компиляция модели\n",
" model.compile(optimizer='adam', loss='mean_squared_error')\n",
" \n",
" # Обучение модели с ранней остановкой\n",
" history = model.fit(X_train, y_train, epochs=50, validation_data=(X_test, y_test),\n",
" callbacks=[early_stopping], verbose=1)\n",
" \n",
" # Предсказания на обучающих и тестовых данных\n",
" y_train_pred = model.predict(X_train)\n",
" y_test_pred = model.predict(X_test)\n",
" \n",
" # Оценка ошибки на обучающих и тестовых данных\n",
" train_mse_3layers.append((neurons_layer1, neurons_layer2, neurons_layer3, mean_squared_error(y_train, y_train_pred)))\n",
" test_mse_3layers.append((neurons_layer1, neurons_layer2, neurons_layer3, mean_squared_error(y_test, y_test_pred)))\n",
"\n",
"# Нахождение модели с минимальной ошибкой на тестовой выборке\n",
"best_config_3layers = min(test_mse_3layers, key=lambda x: x[3])\n",
"print(f\"Лучшая конфигурация трехслойной сети: {best_config_3layers[0]} нейронов в первом слое, \"\n",
" f\"{best_config_3layers[1]} нейронов во втором слое, {best_config_3layers[2]} нейронов в третьем слое с MSE = {best_config_3layers[3]:.4f}\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Объяснение:\n",
"1. Модель с двумя скрытыми слоями: Мы перебираем количество нейронов в первом и втором слое в диапазоне от 1 до 10, обучаем модели с ранней остановкой и сохраняем MSE для каждой конфигурации.\n",
"2. Модель с тремя скрытыми слоями: Аналогично, но с дополнительным третьим слоем. Мы варьируем количество нейронов во всех трёх слоях и оцениваем качество модели.\n",
"3. Ранняя остановка: EarlyStopping прекратит обучение, если в течение 10 эпох качество на валидационных данных не будет улучшаться.\n",
"4. Поиск лучшей модели: После завершения перебора мы находим конфигурацию с минимальной ошибкой на тестовой выборке."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.4"
}
},
"nbformat": 4,
"nbformat_minor": 4
}