Cognitive_technologies/лр1-2/9_matplotlib.ipynb

892 lines
213 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"## Библиотеки Python для анализа данных и машинного обучения\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Основы работы с библиотекой `matplotlib`"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"С библиотекой `matplotlib` мы уже сталкивались, когда строили статистические графики на основе данных из датафреймов `pandas`. Но с помощью `matplotlib` можно строить не только гистограммы, графики плотности и диаграммы рассеяния, но и вообще любые графики. \n",
"\n",
"Для начала построим простенький график для визуализации данных в двух списках. Импортируем модуль pyplot из библиотеки и добавим питоновскую \"магическую\" строчку для того, чтобы графики отображались прямо в ipynb-файле."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"% matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Создадим два небольших списка."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"X = [-2, -0.5, 0, 2, 5, 8, 9, 10]\n",
"Y = [4, 0.25, 0, 4, 25, 64, 81, 100]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Построим график."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x117f3fd68>]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHlVJREFUeJzt3Xl8VOW9x/HPj4QQSEjYAiQEDJvsIhgBl1qV2rpVrHXDDW0KXazWtaL21vb21tKrdWnVXhFUXECRanEvilu1guxr2NeQAGFLIASyPfePGdKIAUJmJmfm5Pt+vfKamTNncr6j4Zsnzzwzx5xziIiIfzXxOoCIiESWil5ExOdU9CIiPqeiFxHxORW9iIjPqehFRHxORS8i4nMqehERn1PRi4j4XLzXAQDatWvnsrKyvI4hIhJT5s2bt8M5l3as/aKi6LOyspg7d67XMUREYoqZbazLfpq6ERHxORW9iIjPqehFRHxORS8i4nMqehERnztm0ZvZs2a23cyW1tjWxsw+MLPVwcvWwe1mZn8xszVmttjMBkcyvIiIHFtdRvTPA+cftm0sMNM51xOYGbwNcAHQM/g1BvhbeGKKiEh9HbPonXOfAbsO2zwCmBS8Pgm4tMb2F1zALKCVmaWHK6yIiF9UVTn+8M5yNu4sifix6jtH38E5VwAQvGwf3N4J2Fxjv7zgtm8wszFmNtfM5hYWFtYzhohIbHrhyw0886/1fLl2Z8SPFe4XY62WbbWefdw5N945l+2cy05LO+Y7eEVEfGP9jhLGvb+Cs3ulcdWpnSN+vPoW/bZDUzLBy+3B7XlAzdSZQH7944mI+EtlleOu1xaRENeEcZedhFlt4+Pwqm/RvwmMCl4fBUyvsf2G4OqbYUDRoSkeERGBiZ+vY97G3fz2kn50TE1skGMe80PNzGwKcDbQzszygAeAccBUM8sBNgFXBHd/F7gQWAPsB26KQGYRkZi0etteHp6xivP6duAHg2p9+TIijln0zrmRR7hreC37OuDmUEOJiPhNRWUVd722iKSEOB78wYAGmbI5JCo+plhExO+e/mwdi/KK+OvIQaS1bNagx9ZHIIiIRFhuQTGPfbiKiwak8/2BGQ1+fBW9iEgElVVUcefURaQ2b8rvL+3vSQZN3YiIRNATH69heUExT19/Cm2SEjzJoBG9iEiELMkr4smP1/CDQZ34Xr+OnuVQ0YuIRMDBikrufG0h7ZIT+O33+3maRVM3IiIR8NiHq1m1bR/P3XQqqS2aeppFI3oRkTCbv2k3T3+6lquyO3NOr/bHfkCEqehFRMLoQHkld722iPTU5vz64j5exwE0dSMiElYP/XMl6wpLeClnKC0TvZ2yOUQjehGRMPlq/S6e/WI91w3rwpk923kdp5qKXkQkDEoOVnDXa4vo3LoF914QHVM2h2jqRkQkDMa9t4LNu/fzyuhhJDWLrmrViF5EJERfrNnBi7M2ctPpXRnara3Xcb5BRS8iEoK9B8r51bTFdGuXxK/O7+V1nFpF198XIiIx5g/v5FJQVMq0n51OYtM4r+PUSiN6EZF6+njldl6Zs5kxZ3VncJfWXsc5IhW9iEg9FO0vZ+zfF3Nih2RuP6+n13GOSlM3IiL18Lu3lrFjXxkTbjiVZvHROWVziEb0IiLHacayrby+YAs3n9ODAZmpXsc5JhW9iMhx2FVSxn1vLKFvegq/OKeH13HqRFM3IiLH4TfTl1JUWs6LOUNJiI+NsXJspBQRiQLvLC7g7cUF/HJ4T/qkp3gdp85U9CIidVC49yC//scSBmam8tNvd/c6znFR0YuIHINzjvvfWEJJWSV/vnIg8XGxVZ2xlVZExAP/WLiFGcu3cdd3T6RH+5ZexzluKnoRkaPYWnSAB6YvI/uE1uSc2c3rOPWiohcROQLnHPe+vpiyyioeumIgcU3M60j1oqIXETmC1+bm8fHKQsae35uu7ZK8jlNvKnoRkVps2VPKf7+9nGHd2nDDaVlexwlJSEVvZreb2TIzW2pmU8ws0cy6mtlsM1ttZq+aWUK4woqINATnHPdMW4xzjocuH0iTGJ2yOaTeRW9mnYBbgWznXH8gDrga+BPwqHOuJ7AbyAlHUBGRhjLp3xv4fM0O7ruoD53btPA6TshCnbqJB5qbWTzQAigAzgWmBe+fBFwa4jFERBrM4rw9/OHdXIb3bs81Q7p4HScs6l30zrktwMPAJgIFXwTMA/Y45yqCu+UBnUINKSLSEIpKy7l58nzat0zkz1cOxCy2p2wOCWXqpjUwAugKZABJwAW17OqO8PgxZjbXzOYWFhbWN4aISFg457j7tUUU7DnAX68ZRKsW/nl5MZSpm+8A651zhc65cuB14HSgVXAqByATyK/twc658c65bOdcdlpaWggxRERCN/Hz9cxYvo2xF/SO6tMC1kcoRb8JGGZmLSzw981wYDnwMXB5cJ9RwPTQIoqIRNb8TbsZ994Kvtu3AzlndvU6TtiFMkc/m8CLrvOBJcHvNR64B7jDzNYAbYGJYcgpIhIRe/aXccvkBaS3SuShK/wzL19TSCcecc49ADxw2OZ1wJBQvq+ISEOoqnLcOXURhXsPMu1np5HavKnXkSJC74wVkUZr/L/WMXPFdu6/qA8nZbbyOk7EqOhFpFGas2EXD/1zJRcNSOeG007wOk5EqehFpNHZue8gt0xeQOfWzfnjDwf4cl6+Jp0cXEQalaoqx+1TF7Frfxlv/Px0UhL9OS9fk0b0ItKoPPXJGj5bVcgD3+9Lv4xUr+M0CBW9iDQaX67dySMfrOKSgRm++RybulDRi0ijULj3ILe+soCstkk8eJn/5+Vr0hy9iPheZZXjtlcXUFxazos5Q0hu1riqr3E9WxFplP4yczVfrNnJ//7wJHp3TPE6ToPT1I2I+Nrnq3fwl49Wc9ngTlyRnel1HE+o6EXEt7YXH+C2VxfQIy2Z/7m0f6Oal69JUzci4ksVlVXcMmUBJQcrmTJ6MC0SGm/dNd5nLiK+9uiHq5i9fhePXDmQnh1aeh3HU5q6ERHf+WTldp78eC1XZXfmssGNc16+JhW9iPhKQVEpt7+6kN4dW/K7Ef28jhMVVPQi4hvllVXcMnkBZRVVPHntYBKbxnkdKSpojl5EfOPhf65k7sbdPH71yXRPS/Y6TtTQiF5EfGFm7jae/mwd1w7twoiTO3kdJ6qo6EUk5uXt3s8dUxfRLyOF/7q4r9dxoo6KXkRiWllFFb+YvIDKKseT12hevjaaoxeRmDbuvRUs3LyHp64dTFa7JK/jRCWN6EUkZr2/dCvPfrGeG0/P4sIB6V7HiVoqehGJSZt27ufuaYsYmJnKvRf29jpOVFPRi0jMOVhRyc2T52PAE9cMplm85uWPRnP0IhJz/vBOLku2FPH09afQuU0Lr+NEPY3oRSSmvL04nxe+3EjOmV35Xr+OXseJCSp6EYkZX6zZwZ1TFzGoSyvuOV/z8nWloheRmPDvtTvImTSHrLZJTLghm4R41Vdd6b+UiES92et2kvP8XDq3bsHLo4fSNrmZ15FiiopeRKLanA27uOn5OWS0SmTy6GG0U8kfNxW9iESteRt3ceOzX9ExJZEpo4eR1lIlXx8hFb2ZtTKzaWa2wsxyzew0M2tjZh+Y2ergZetwhRWRxmPBpt2MenYOaS2bMXn0MNqnJHodKWaFOqJ/HHjfOdcbGAjkAmOBmc65nsDM4G0RkTpbtHkPN0z8ijZJCUwZM4yOqSr5UNS76M0sBTgLmAjgnCtzzu0BRgCTgrtNAi4NNaSINB5L8oq4fuJsWiU1ZcqYYaSnNvc6UswLZUTfDSgEnjOzBWY2wcySgA7OuQKA4GX72h5sZmPMbK6ZzS0sLAwhhoj4xdItRVw3cTYtE5syZfQwOrVSyYdDKEUfDwwG/uacGwSUcBzTNM658c65bOdcdlpaWggxRMQPlucXc93E2SQ3i+eVMcPIbK2PNgiXUIo+D8hzzs0O3p5GoPi3mVk6QPBye2gRRcTvVmwt5toJs2jeNI7Jo4fq82vCrN5F75zbCmw2s17BTcOB5cCbwKjgtlHA9JASioivrdq2l2ufmU1CfBOmjB7GCW118pBwC/XTK28BXjazBGAdcBOBXx5TzSwH2ARcEeIxRMSn1mzfyzXPzCKuiTFl9DCdISpCQip659xCILuWu4aH8n1FxP/WFu5j5DOzAWPy6GF0S0v2OpJv6Z2xItLg1u8oYeT4WTjnmDJ6KD3aq+QjSSceEZEGtSFY8hVVjimjh9GzQ0uvI/meRvQi0mA27dzPyGdmcbCikpd/PJReHVXyDUEjehFpEJt3BUq+tDxQ8n3SU7yO1GhoRC8iEZe3O1Dyew+U81LOUPplpHodqVHRiF5EIip/TynXPDObotJyXv7xUPp3Usk3NI3oRSRithYdYOQzs9hdUsaLOUM5KbOV15EaJY3oRSQithUHSn7nvjJeyBnCyZ1V8l7RiF5Ewm773kDJby8+wKQfncrgLjr/kJc0oheRsCrce5BrnpnN1qIDTPrREE45oY3XkRo9jehFJGx27DvItRNmsWV3Kc/eeCqnZqnko4GKXkTCYldJGddNmM2mXfuZeGM2w7q19TqSBKnoRSRku0vKuHbCbNbvKGHiqFM5vXs7ryNJDZqjF5GQ7NlfxnUTZ7O2cB8TbsjmjB4q+WijEb2I1FtRaTnXT/yK1dv2Mf76UzjrRJ0WNBqp6EWkXooPlHPDxNms2FrM/10/mLN7tfc6khyBil5EjtveA+WMevYrlhcU89S1p3Bu7w5eR5KjUNGLyHHZd7CCG5+bw5K8Ip64ZjDn9VXJRzu9GCsidVZysIKbnvuKhZv38MTIQXyvX0evI0kdaEQvInWyv6yCm56fw/xNe3j86pO5YEC615GkjlT0InJMpWWV5Dw/l7kbdvHoVSdz8UkZXkeS46CiF5GjOlBeyegX5jJ7/U4eufJkLhmoko81mqMXkSM6VPJfrN3Bw5cP5NJBnbyOJPWgEb2I1OpgRSU/eXEen6/ZwZ9+eBI/PCXT60hSTyp6EfmGgxWV/Oyl+Xy6qpBxlw3gyuzOXkeSEKjoReRryiqquPnl+Xy0YjsP/mAAV53axetIEiIVvYhUK6+s4heT5/Nh7nZ+P6If1wxVyfuBil5EgEDJ3zplATOWb+N3l/Tj+tOyvI4kYaKiFxEqKqu47ZWFvLd0K/91cV9GnZ7ldSQJIxW9SCNXUVnF7VMX8c6SAu6/sA85Z3b1OpKEWchFb2ZxZrbAzN4O3u5qZrPNbLWZvWpmCaHHFJFIqKxy3PXaIt5alM/YC3oz+qxuXkeSCAjHiP6XQG6N238CHnXO9QR2AzlhOIaIhFlllePuaYv4x8J87v5eL3767e5eR5IICanozSwTuAiYELxtwLnAtOAuk4BLQzmGiIRfVZVj7N8X8/r8Ldxx3oncfE4PryNJBIU6on8M+BVQFbzdFtjjnKsI3s4D9J5pkShSVeW4740lvDYvj18O78mtw3t6HUkirN5Fb2YXA9udc/Nqbq5lV3eEx48xs7lmNrewsLC+MUTkOFRVOX49fSmvzNnMLef24LbvqOQbg1BG9GcAl5jZBuAVAlM2jwGtzOzQh6VlAvm1Pdg5N945l+2cy05L0wmFRSLNOccDby5j8uxN/Pzs7txx3okEZlvF7+pd9M65e51zmc65LOBq4CPn3LXAx8Dlwd1GAdNDTikiIXHO8bu3lvPirI385Kxu3P29Xir5RiQS6+jvAe4wszUE5uwnRuAYIlJHzjl+/3Yuz/97Az8+sytjL+itkm9kwvJ59M65T4BPgtfXAUPC8X1FJDTOOR58N5dnv1jPTWdkcf9FfVTyjZDeGSviU845/vT+Sp7513pGnXYCv7m4r0q+kVLRi/iQc46HZ6zk/z5dy3XDuvDbS/qp5BsxFb2IDz364Wqe/HgtI4d04b8v6a+Sb+RU9CI+8/iHq/nLzNVcld2ZP1zanyZNVPKNnYpexEee+Gg1j364istPyeSPlw1QyQugohfxjac+WcPDM1Zx2aBO/OmHJ6nkpZqKXsQHxn+2lv99fyUjTs7goSsGEqeSlxpU9CIxbsK/1vHguyv4/sAM/qySl1qo6EVi2HNfrOd/3snlogHpPHrlQOLj9E9avkk/FSIx6oUvN/C7t5Zzfr+OPHb1ySp5OSL9ZIjEoJdmbeQ305dxXt8O/GXkIJqq5OUo9NMhEmOmfLWJX/9jKd/p054nrxlMQrz+GcvR6SdEJIZMnbOZe19fwjm90njyWpW81I1+SkRixLR5edzz+mK+fWIaf7vuFJrFx3kdSWKEil4kBryxII+7py3izB7tePr6U0hsqpKXulPRi0S56Qu3cOfURZzWrS3P3JCtkpfjpqIXiWJvLcrn9lcXMqRrGyaOOlUlL/WioheJUu8uKeC2VxeSndWGZ288leYJKnmpHxW9SBR6f+lWbp2ygEGdW/HcjafSIiEsZ/2URkpFLxJlZizbyi8mz+ekzFSe/9EQkpqp5CU0KnqRKDIzdxs3T55P/06pTPrREJJV8hIGKnqRKPHxiu387KX59E1P4YWcIbRMbOp1JPEJFb1IFPh0VSE/eWkevTq25IWcoaSo5CWMVPQiHvvX6kLGvDCXHmnJvJgzhNTmKnkJL00Ainhky55S/jxjJW8s2ELvjim8/OOhtGqR4HUs8SEVvUgDK9pfzlOfruG5LzYAMOasbtx8Tg9N10jEqOhFGsjBikpe/HIjf/1oDcUHyrlsUCZ3fPdEOrVq7nU08TkVvUiEVVU53lyUz8MzVpK3u5SzTkxj7Pm96ZuR4nU0aSRU9CIR9MWaHTz4bi7L8ovpl5HCuMtO4sye7byOJY2Mil4kApbnFzPu/RV8tqqQTq2a89hVJ3PJwAyaNDGvo0kjpKIXCaOaK2lSEpvy64v6cP1pJ+gkIeKpehe9mXUGXgA6AlXAeOfc42bWBngVyAI2AFc653aHHlUkehWVlvPUJ19fSfPzb/cgtYVW0oj3QhnRVwB3Oufmm1lLYJ6ZfQDcCMx0zo0zs7HAWOCe0KOKRJ9DK2me+HgNRaXl/GBQJ+78bi+tpJGoUu+id84VAAXB63vNLBfoBIwAzg7uNgn4BBW9+IxW0kgsCcscvZllAYOA2UCH4C8BnHMFZtb+CI8ZA4wB6NKlSzhiiDQIraSRWBNy0ZtZMvB34DbnXLFZ3VYVOOfGA+MBsrOzXag5RCItt6CYce+t4FOtpJEYE1LRm1lTAiX/snPu9eDmbWaWHhzNpwPbQw0p4qX8PaX8ecYqXl+QV72S5rphJ+j8rRIzQll1Y8BEINc590iNu94ERgHjgpfTQ0oo4pFvrKT5Vjd+frZW0kjsCWVEfwZwPbDEzBYGt91HoOCnmlkOsAm4IrSIIg1LK2nEb0JZdfM5cKTJyeH1/b4iXqmqcry1OJ+H/qmVNOIvemesCIGVNH98L5elW4rpm57CizkD+FbPNK9jiYSFil4aNa2kkcZARS+NklbSSGOiopdGRStppDFS0UujoJU00pip6MXXtJJGREUvPqaVNCIBKnrxHa2kEfk6Fb34xuErae6/MHB2J62kkcZORS8xTytpRI5ORS8xSytpROpGRS8x5/CVNN/q2Y6xF/SmX0aq19FEopKKXmKKVtKIHD8VvcQEraQRqT8VvUS1/D2lPPLBKv4+XytpROpLRS9Rqai0nL99spbnvliPQytpREKhopeo8o2VNCd34o7vnkhm6xZeRxOJWSp6iQpaSSMSOSp68dy/1+zgQa2kEYkYFb145vCVNI9eNZARAztpJY1ImKnopcFpJY1Iw1LRS4PRShoRb6joJeK0kkbEWyp6iRitpBGJDip6iQitpBGJHjFd9O8uKeCVOZvpn5FC/06p9M9IpXOb5php1UZDcc6xY18Zawv3Bb62l7Bkyx7mbNitlTQiUSKmi76soorCvQcZ/9k6KqocACmJ8fTLSKV/p0D598tIpWu7JOJUNCEpr6xi4879rCvcx9rCkhrFvo/iAxXV+zVvGke3tCTuu7A3N5yWpZU0IlHAnHNeZyA7O9vNnTu33o8/UF7Jqm17WbqlmGX5RSzNLya3oJiyiioAWiTE0Sc9hf4ZKfQLjvx7dkimaVyTcD0F3yjaX87aHYECr1nom3bur/5lCtAhpRnd05LpnpZMt7SkwPX2yaSnJGr0LtJAzGyecy77mPv5oehrU15ZxdrCfSzdUszSLUUsyy9iWX4x+8sqAUiIa0Lv9JbVo/9+Gan07tiyUYxAK6sc+XtKWRMcka/bUVJd7Dv2Hazer2mckdX2UIknfa3YWyZqSaSI1xp90demqsqxfmcJy/KLWbaliKX5RSzdUkxRaTkAcU2Mnu2Tvzb10yc9heRmsTnDtb+sgnXVo/KS6qmW9TtKOBj8awegVYum9AiWeM1Cz2zdnHj91SMStTwtejM7H3gciAMmOOfGHW3/hir62jjnyNtdGpjy2VJcXf6HRrZm0LVdEv1rjPz7ZaTQqkWCJ3kP55xj+96DwRH51ws9v+hA9X5NDLq0afGNqZbuacm0SYqO5yIix8ezojezOGAVcB6QB8wBRjrnlh/pMV4W/ZFsLz5QXfqBqZ9ituwprb4/s3Xz/5R/cN4/rWWziOU5WFHJxp37D5tqCRT7voP/eTE0KSGuusC71yj0E9q2oFm8/6elRBqTuhZ9JOYkhgBrnHPrgkFeAUYARyz6aNQ+JZFzUxI5t3eH6m27Ssq+NvJftqWI95dtrb6/Q0qzwLRPRgo9O7QkOTGe5k3jAl8JgcvE4PXE+Ca1TovsLqmxVLHwP4W+add+arwWSkZqIt3bJ3P5KZnVhd4tLZkOKc20vFREviYSRd8J2Fzjdh4wNALHaXBtkhL4Vs+0r73xp/hAObn5xSytMe//ycrtXyvlI0mIa0Ji0ybVvwSKD1Swq6TsP/fHN6FbuyT6ZaRyycCM6pF613ZJJMXo6wYi0vAi0Ra1DSe/UXtmNgYYA9ClS5cIxGgYKYlNGdqtLUO7ta3eVlpWycZdJZSWVVJaXsmB8kpKy6ooLQ/eDm4vLa+ktCxw//6ySpKaxQdG5+2T6ZGWTEar5lr/LyIhi0TR5wGda9zOBPIP38k5Nx4YD4E5+gjk8EzzhDh6d0zxOoaICACRWDs3B+hpZl3NLAG4GngzAscREZE6CPuI3jlXYWa/AP5JYHnls865ZeE+joiI1E1EXtFzzr0LvBuJ7y0iIsdHb3sUEfE5Fb2IiM+p6EVEfE5FLyLicyp6ERGfi4qPKTazQmBjPR/eDtgRxjhe0nOJPn55HqDnEq1CeS4nOOeOeTLmqCj6UJjZ3Lp8elss0HOJPn55HqDnEq0a4rlo6kZExOdU9CIiPueHoh/vdYAw0nOJPn55HqDnEq0i/lxifo5eRESOzg8jehEROQpfFL2ZPWRmK8xssZm9YWatvM50vMzsfDNbaWZrzGys13nqw8w6m9nHZpZrZsvM7JdeZwqVmcWZ2QIze9vrLKEws1ZmNi347yTXzE7zOlN9mNntwZ+tpWY2xcwSvc5UV2b2rJltN7OlNba1MbMPzGx18LJ1JI7ti6IHPgD6O+dOInBi8ns9znNcgidUfxK4AOgLjDSzvt6mqpcK4E7nXB9gGHBzjD6Pmn4J5HodIgweB953zvUGBhKDz8nMOgG3AtnOuf4EPgb9am9THZfngfMP2zYWmOmc6wnMDN4OO18UvXNuhnOuInhzFoGzWsWS6hOqO+fKgEMnVI8pzrkC59z84PW9BMqkk7ep6s/MMoGLgAleZwmFmaUAZwETAZxzZc65Pd6mqrd4oLmZxQMtqOXsddHKOfcZsOuwzSOAScHrk4BLI3FsXxT9YX4EvOd1iONU2wnVY7YgAcwsCxgEzPY2SUgeA34FVHkdJETdgELgueA01AQzS/I61PFyzm0BHgY2AQVAkXNuhrepQtbBOVcAgYES0D4SB4mZojezD4Pzcod/jaixz/0Epg9e9i5pvdTphOqxwsySgb8Dtznnir3OUx9mdjGw3Tk3z+ssYRAPDAb+5pwbBJQQoSmCSArOX48AugIZQJKZXedtqtgQkTNMRYJz7jtHu9/MRgEXA8Nd7K0ZrdMJ1WOBmTUlUPIvO+de9zpPCM4ALjGzC4FEIMXMXnLOxWKx5AF5zrlDf11NIwaLHvgOsN45VwhgZq8DpwMveZoqNNvMLN05V2Bm6cD2SBwkZkb0R2Nm5wP3AJc45/Z7nacefHFCdTMzAvPAuc65R7zOEwrn3L3OuUznXBaB/x8fxWjJ45zbCmw2s17BTcOB5R5Gqq9NwDAzaxH8WRtODL6ofJg3gVHB66OA6ZE4SMyM6I/hCaAZ8EHg/z+znHM/9TZS3fnohOpnANcDS8xsYXDbfcFzCIu3bgFeDg4k1gE3eZznuDnnZpvZNGA+gSnaBcTQO2TNbApwNtDOzPKAB4BxwFQzyyHwi+yKiBw79mY5RETkePhi6kZERI5MRS8i4nMqehERn1PRi4j4nIpeRMTnVPQiIj6nohcR8TkVvYiIz/0/vlOcXgpzJ+kAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.plot(X,Y)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Как можно заметить, в списке `Y` сохранены элементы списка `X`, возведенные в квадрат. Однако наш график не похож на ветвь параболы, он какой-то угловатый. Это нормально, потому что в списках у нас всего по 8 элементов, то есть, всего 8 точек на графике соединяются линиями. Если бы точек было больше, график был бы более гладким. Воспользуемся функцией `linspace` из библиотеки `numpy` (вот она нам и пригодилась!)."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([-2. , -1.87878788, -1.75757576, -1.63636364, -1.51515152,\n",
" -1.39393939, -1.27272727, -1.15151515, -1.03030303, -0.90909091,\n",
" -0.78787879, -0.66666667, -0.54545455, -0.42424242, -0.3030303 ,\n",
" -0.18181818, -0.06060606, 0.06060606, 0.18181818, 0.3030303 ,\n",
" 0.42424242, 0.54545455, 0.66666667, 0.78787879, 0.90909091,\n",
" 1.03030303, 1.15151515, 1.27272727, 1.39393939, 1.51515152,\n",
" 1.63636364, 1.75757576, 1.87878788, 2. , 2.12121212,\n",
" 2.24242424, 2.36363636, 2.48484848, 2.60606061, 2.72727273,\n",
" 2.84848485, 2.96969697, 3.09090909, 3.21212121, 3.33333333,\n",
" 3.45454545, 3.57575758, 3.6969697 , 3.81818182, 3.93939394,\n",
" 4.06060606, 4.18181818, 4.3030303 , 4.42424242, 4.54545455,\n",
" 4.66666667, 4.78787879, 4.90909091, 5.03030303, 5.15151515,\n",
" 5.27272727, 5.39393939, 5.51515152, 5.63636364, 5.75757576,\n",
" 5.87878788, 6. , 6.12121212, 6.24242424, 6.36363636,\n",
" 6.48484848, 6.60606061, 6.72727273, 6.84848485, 6.96969697,\n",
" 7.09090909, 7.21212121, 7.33333333, 7.45454545, 7.57575758,\n",
" 7.6969697 , 7.81818182, 7.93939394, 8.06060606, 8.18181818,\n",
" 8.3030303 , 8.42424242, 8.54545455, 8.66666667, 8.78787879,\n",
" 8.90909091, 9.03030303, 9.15151515, 9.27272727, 9.39393939,\n",
" 9.51515152, 9.63636364, 9.75757576, 9.87878788, 10. ])"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x = np.linspace(-2, 10, 100) # 100 точек\n",
"x"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x117fd3eb8>]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl4VeW99vHvjyQkBBICJIQwhDAPMhMBQXtUrFWrpXocqx5EWpxarT0WrW9bT49XW6w9dWhPrdQBUJxAq9SiVsGhTghhhoQpQAgJSRgykDnZz/tHNn15KWN2dtbeO/fnuriSvVjJujfDnWc/e61nmXMOERGJXO28DiAiIsGlohcRiXAqehGRCKeiFxGJcCp6EZEIp6IXEYlwKnoRkQinohcRiXAqehGRCBftdQCA5ORkl5GR4XUMEZGwkpWVtd85l3Kq/UKi6DMyMli1apXXMUREwoqZ7T6d/TR1IyIS4VT0IiIRTkUvIhLhVPQiIhFORS8iEuFOWfRm9pyZFZvZxqO2dTWz981sm/9jF/92M7MnzWy7ma03s3HBDC8iIqd2OiP6ecAlx2x7AFjmnBsELPM/BrgUGOT/NQt4qmViiohIc52y6J1znwAHj9k8DZjv/3w+8O2jti9wTb4EkswsraXCiohECp/P8cu/bWbn/sqgH6u5c/SpzrlCAP/H7v7tvYA9R+2X79/2L8xslpmtMrNVJSUlzYwhIhKeXvoqjz//Yydf7TwQ9GO19Juxdpxtx737uHNurnMu0zmXmZJyyit4RUQiRmFZNXPeyWHKwG5cm9kn6MdrbtEXHZmS8X8s9m/PB45O3RsoaH48EZHI4pzjZ29upMHn49dXjsLseOPjltXcol8CTPd/Ph1466jt/+E/+2YSUHZkikdERODt9YV8kF3MfRcPIb1bfKsc85SLmpnZy8D5QLKZ5QMPAXOA18xsJpAHXOPffSlwGbAdqAJmBCGziEhYOlRZx38t2cTo3p2ZMaVfqx33lEXvnLvhBL819Tj7OuCuQEOJiESiX/x1E+U19Txy9USi2gV/yuYIXRkrItIKlucU8ebaAu48fyBDeyS26rFV9CIiQVZeU8+Db2xkSGoCd10wsNWPHxI3HhERiWS/XppDcUUNT988nvbRrT++1oheRCSIPt++n5e/yuN75/VndJ8kTzKo6EVEgqSytoHZr6+nX3JH7v36YM9yaOpGRCRIHnk3h72l1Sy67RziYqI8y6ERvYhIEHyZe4AFX+zmlskZZGZ09TSLil5EpIVV1TUwe/F6+naL58ffGOJ1HE3diIi0tN+8u4W8g1W8MmsS8e29r1mN6EVEWtCXuQeY9/kubpmcwaT+3byOA6joRURaTGXt/5uymX2J91M2R3j/mkJEJEI88m4Oew5V8eqsc0JiyuYIjehFRFrA5zv2s+CL3cyY3I8J/bw9y+ZYKnoRkQBV1NTz40VNF0aFwlk2xwqd1xYiImHqV0uzKSyrZtHt59ChvXcXRp2IRvQiIgH4cEsxL3+1h1lfG8D4vqE1ZXOEil5EpJlKq+q4f/F6Bqd24t6vD/I6zglp6kZEpJkeWrKJg5V1PHfL2cRGh96UzREa0YuINMPb6wt4a20BP7hwECN6dfY6zkmp6EVEzlBxeQ0/fXMjo3t35s4LBngd55RU9CIiZ8A5x/2vr6e6rpH/uXYMMVGhX6Ohn1BEJIS8snIPH24p4YFLhzKweyev45wWFb2IyGnafaCSh9/ezOQB3Zh+TobXcU6bil5E5DQ0NPq499W1RLczfnvNaNq1M68jnTadXikichr+9PEOVueV8sT1Y+iZ1MHrOGdEI3oRkVPYkF/G4x9s44rRPZk2ppfXcc6Yil5E5CSq6xq559U1JHeK5eFpZ3kdp1k0dSMichK/XLqZ3JJKFn53Iknx7b2O0ywa0YuInMDynCJe/DKP753XjykDk72O02wqehGR49h/uJbZi9cztEcC94XgGvNnIqCiN7N7zWyTmW00s5fNLM7M+pnZCjPbZmavmll4vtYRkTbLOcfsxespr2ngyRvGhvSCZaej2UVvZr2Au4FM59wIIAq4HngEeMw5Nwg4BMxsiaAiIq1lwRe7WZ5TzIOXDmVwaoLXcQIW6NRNNNDBzKKBeKAQuBBY7P/9+cC3AzyGiEir2bKvgl8uzeaCISlMn5zhdZwW0eyid87tBX4L5NFU8GVAFlDqnGvw75YPhN9JpyLSJtXUN3L3y2tIjIvmN1ePxix8rn49mUCmbroA04B+QE+gI3DpcXZ1J/j6WWa2ysxWlZSUNDeGiEiLmfNODluKKnj06tGkJMR6HafFBDJ1cxGw0zlX4pyrB94AJgNJ/qkcgN5AwfG+2Dk31zmX6ZzLTElJCSCGiEjglucUMe/zXdwyOYMLhnb3Ok6LCqTo84BJZhZvTa9vpgKbgQ+Bq/37TAfeCiyiiEhwFZfXcN+i9QxLS+SBS4d6HafFBTJHv4KmN11XAxv832sucD/wIzPbDnQDnm2BnCIiQeHzOX702jqq6hr4/Q1jiIsJ71MpjyegJRCccw8BDx2zOReYEMj3FRFpLXP/kcun2/cz56qRDOwe/qdSHo+ujBWRNmt13iF++94WLhvZg+vO7uN1nKBR0YtIm1RWXc/dL6+hR+c4fn3VqIg5lfJ4tHqliLQ5zjl+8sZ69pXV8Nrt59C5Q4zXkYJKI3oRaXNe+iqPpRv2cd83hjAuvYvXcYJORS8ibUp2YTn//dfNnDcomVnn9fc6TqtQ0YtIm1FZ28BdL60msUMMv7t2TFjd4DsQKnoRaROcc/z0zY3s2l/JE9ePiaglDk5FRS8ibcKirHz+smYvd08dxOQB4Xu3qOZQ0YtIxNuyr4Kfv7WRyQO68YMLB3kdp9Wp6EUkolXWNnDnwiw6xcbw+HVjiGoj8/JHU9GLSMRyzvF//rKBnfsrefKGMXRPjPM6kidU9CISsV5ZuYc31xZw70WD29y8/NFU9CISkTbuLeOhJZs4b1Ayd10w0Os4nlLRi0jEKauu586Fq+ka357Hr2s758ufiNa6EZGI4pzjvkXrKCit5tXbzqFbp7ZzvvyJaEQvIhHlz//I5f3NRTx42TDG9438dWxOh4peRCLGitwDPPLuFr45Mo0ZUzK8jhMyVPQiEhGKymu466U19O0az5x/HxnR68ufKc3Ri0jYq2/0cdfC1VTWNvDS9yaSEBfZ68ufKRW9iIS9Xy3NZtXuQzx5w1gGp0bmfV8DoakbEQlrb63dy/Of7WLGlAy+Nbqn13FCkopeRMJWdmE597++nrMzuvDgZcO8jhOyVPQiEpbKquq57YUsEuNi+N8bxxETpTo7Ec3Ri0jY8fkc97y6hsKyal6ZdQ7dE9rmYmWnSz8CRSTsPPbBVj7aUsLPLx+ui6JOg4peRMLKuxsL+f3y7Vyb2ZubJvX1Ok5YUNGLSNjYWlTBj15bx+g+Sfz3tBG6KOo0qehFJCyUVdcza8Eq4ttH8/RN44mLifI6UthQ0YtIyGv0Oe5+eQ17S6t56qZx9OisN1/PhM66EZGQ95t3c/h4awm/unIkZ2d09TpO2NGIXkRC2l/W5PP0J7ncPKkv35mY7nWcsBRQ0ZtZkpktNrMcM8s2s3PMrKuZvW9m2/wfde6TiDTLuj2l3P/6Bib268rPrxjudZywFeiI/gngXefcUGA0kA08ACxzzg0Clvkfi4ickaLyGma9sIqUTrH8UVe+BqTZf3Jmlgh8DXgWwDlX55wrBaYB8/27zQe+HWhIEWlbauobmbVgFRU1DTwzPVO3AwxQID8i+wMlwPNmtsbMnjGzjkCqc64QwP+x+/G+2MxmmdkqM1tVUlISQAwRiSTOOWYvXs/6vWU8ft0YhqUleh0p7AVS9NHAOOAp59xYoJIzmKZxzs11zmU65zJTUlICiCEikeSPH+1gyboC7rt4CBef1cPrOBEhkKLPB/Kdcyv8jxfTVPxFZpYG4P9YHFhEEWkr3tlQyKPvbWHamJ7cef4Ar+NEjGYXvXNuH7DHzIb4N00FNgNLgOn+bdOBtwJKKCJtwob8Mu59bS3j0pN45N9HaXmDFhToBVM/ABaaWXsgF5hB0w+P18xsJpAHXBPgMUQkwu0rq+G7C1bSrWMsT9+cqeUNWlhARe+cWwtkHue3pgbyfUWk7aisbWDm/JUcrmlg8R2TSUnQGTYtTUsgiIhnGn2Oe15ZS3ZhOc9Mz9QZNkGiKxBExDO/XprNB9lF/Pzy4Vw4NNXrOBFLRS8innjxy9088+lObpmcwS1T+nkdJ6Kp6EWk1X2YU8zP39rIhUO787PLtYZNsKnoRaRVbdxbxl0vrWZYWiK/v2EsUe10GmWwqehFpNUUlFZz67yVJHWI4blbzqZjrM4HaQ36UxaRVlFeU8+M51dSXdfIojvOITVRd4lqLSp6EQm6ugYfty3IYkfJYebNmMDQHjqNsjWp6EUkqHw+x+zF6/gi9wC/u3Y05w5K9jpSm6M5ehEJqkf/voU31xbw428M4apxvb2O0yap6EUkaOZ9tpOnPtrBdyamazVKD6noRSQo/ra+kF+8vZmvD0/l4WkjtBqlh1T0ItLivthxgHtfXcu49C46Vz4EqOhFpEVtLihn1oJVpHeL59npWnI4FKjoRaTF5B2oYvrzX9EpLpr5t04gKb6915EEFb2ItJCSilpufm4F9Y0+Ftw6gV5JHbyOJH4qehEJWHlNPbc8/xXF5bU8d8vZDEpN8DqSHEVFLyIBqalv5LvzV7FlXwVP3TSOceldvI4kx9CVsSLSbPWNPu5auJqVuw7y5PVjOX9Id68jyXFoRC8izeLzOX68aB3Lcop5eNoIrhjd0+tIcgIqehE5Y845fr5k4z+XNrhpUl+vI8lJqOhF5Iw455jzbg4vfpnHbf/WX0sbhAEVvYickT9+tIOnP87lxonpPHDJUC1tEAZU9CJy2p79dCePvreFK8f20vo1YURFLyKnZeGK3Tz89mYuOasHj149inZavyZsqOhF5JRez8rnp29u5IIhKTx5w1iio1Qd4UR/WyJyUn9dV8CPF69j8oBuPHXTeNpHqzbCjf7GROSElm4o5IevriWzb1f+/B9aiTJcqehF5Lj+vmkfd7+8hjF9knhuxtnEt9eF9OFKRS8i/2JZdhF3vbSaEb06M2/G2XSKVcmHs4CL3syizGyNmb3tf9zPzFaY2TYze9XMtCC1SBhZll3E7S9mMSwtkfm3TiAhLsbrSBKglhjR3wNkH/X4EeAx59wg4BAwswWOISKtYFl2EXe8uJphaYm8MHMinTuo5CNBQEVvZr2BbwLP+B8bcCGw2L/LfODbgRxDRFrHkZIfmpagko8wgY7oHwdmAz7/425AqXOuwf84H+gV4DFEJMje27TPP12jko9EzS56M7scKHbOZR29+Ti7uhN8/SwzW2Vmq0pKSpobQ0QCtHRDIXctbHrj9YXvquQjUSAj+inAt8xsF/AKTVM2jwNJZnbkLfreQMHxvtg5N9c5l+mcy0xJSQkghog015J1BfzAfwrlglsnkKg3XiNSs4veOfcT51xv51wGcD2w3Dl3I/AhcLV/t+nAWwGnFJEW99qqPdzzyhrG9+3CPJ1dE9GCcR79/cCPzGw7TXP2zwbhGCISgBe+3M3sxes5d2Ay82dM0HnyEa5F/nadcx8BH/k/zwUmtMT3FZGW9+dPcvnl0mwuGtadP3xnnJY1aAP0Y1ykjXDO8dgH23hy2Ta+OTKNx64bowXK2ggVvUgb4Jzj4bezee6znVyb2ZtfXzWKKK0n32ao6EUiXEOjjwf/soHXVuUzY0oGP/vmcN00pI1R0YtEsJr6Ru55ZQ3vbSri7qmDuPeiQbr9XxukoheJUIdrG5i1YBWf7zjAQ1cMZ8aUfl5HEo+o6EUi0P7Dtdw6byWbCsp57LrRXDm2t9eRxEMqepEIs+dgFTc/u4J95TXMvXk8U4eleh1JPKaiF4kgmwvKmf78V9Q1+Fj43YmM79vV60gSAlT0IhHis+37ue2FLDrFRrPo9nMYnJrgdSQJESp6kQjw1tq93LdoHf2SOzJvxgR6JnXwOpKEEBW9SBhzzvH0J7nMeSeHif26Mvc/MrXMsPwLFb1ImGpo9PHQkk0sXJHH5aPS+J9rRxMbrXVr5F+p6EXCUGVtA99/aTUfbinh9n8bwOxvDNHVrnJCKnqRMLOvrIaZ81eSs6+CX145ghsn9vU6koQ4Fb1IGNm4t4yZ81dyuKaBZ6ZncsGQ7l5HkjCgohcJE3/ftI97XllLl/gYFt8xmWFpiV5HkjChohcJcc45/vRxLr95L4dRvTrz5+mZdE+I8zqWhBEVvUgIq21o5CdvbOCN1Xu5fFQaj149mg7tdWaNnBkVvUiIKq6o4Y4XV5O1+xA/+vpgfnDhQC0xLM2iohcJQev2lHLbC1mUVdfz1I3juHRkmteRJIyp6EVCzF/W5HP/6xvonhDL63dMZnhPvekqgVHRi4SI+kYfv1qazfOf7WJS/6788cbxdO3Y3utYEgFU9CIhoKSilu+/tJoVOw8yY0oGD142jJiodl7Hkgihohfx2Oq8Q9y1cDWHqup0NygJChW9iEecc7zw5W4efnszPTrHsfj2yYzo1dnrWBKBVPQiHqiqa+DBNzbw5toCLhzanceuHUPneC0vLMGhohdpZVuLKrhz4Wp2lBzmvosHc+f5A7XypASVil6kFb2elc9P39xIx9hoFs6cyOSByV5HkjZARS/SCqrqGnjorU0syspnUv+uPHn9WLonar0aaR0qepEg21xQzvdfXs3O/ZXcfeFA7p46iGidOimtSEUvEiTOORZ8sZtfLs0mqUMMC787kckDNFUjra/ZRW9mfYAFQA/AB8x1zj1hZl2BV4EMYBdwrXPuUOBRRcLHgcO1zF68nmU5xZw/JIXfXjOa5E6xXseSNiqQEX0D8J/OudVmlgBkmdn7wC3AMufcHDN7AHgAuD/wqCLh4eOtJdy3aB1l1fX81xXDmT45Q6tOiqeaXfTOuUKg0P95hZllA72AacD5/t3mAx+hopc2oLqukTnvZDP/i90M6t6JBbdO0F2gJCS0yBy9mWUAY4EVQKr/hwDOuUIzO+5NLc1sFjALID09vSViiHhmQ34ZP3x1DTtKKrl1Sj9mXzKEuBjdIERCQ8BFb2adgNeBHzrnyk/3Japzbi4wFyAzM9MFmkPEC/WNPv6wfDt/+HA7KZ1ieXHmRM4dpDdcJbQEVPRmFkNTyS90zr3h31xkZmn+0XwaUBxoSJFQtGVfBf+5aC0b95Zz1dhePHTFWVrGQEJSIGfdGPAskO2c+91Rv7UEmA7M8X98K6CEIiGmvtHHnz7awZPLt5EYF8OfbhrHJSN0BygJXYGM6KcANwMbzGytf9uDNBX8a2Y2E8gDrgksokjo2FxQzo8Xr2NTQTmXj0rjF986i246bVJCXCBn3XwKnGhCfmpzv69IKKqpb+TJZdt4+pNcusRrFC/hRVfGipzCl7kHePCNDeTur+Tq8b356TeHkRSvW/xJ+FDRi5zAoco6frU0m0VZ+fTp2kFn1EjYUtGLHMM5x+ur9/KrpdmUV9dzx/kDuPvCQXRor/PiJTyp6EWOkrOvnJ+9uZGVuw4xNj2JX181kqE9dHWrhDcVvQhQXlPPEx9sY97nu0iMi+aRfx/JNeP76M5PEhFU9NKm+XyOxVn5/Oa9HA5U1nH92enM/sYQunTUm60SOVT00mat3HWQh9/ezPr8Msb37cK8GRMY0auz17FEWpyKXtqcPQermPNODn/bUEiPxDgeu2403x7TS0sJS8RS0UubUVpVx/9+uJ35n+8mqp3xw4sGMetr/Ylvr/8GEtn0L1wiXk19Iy98sZs/fLid8pp6rh7Xmx9dPJi0zh28jibSKlT0ErEaGn0szsrniWXbKCyr4d8Gp/DApUN1MxBpc1T0EnF8PsfbGwp5/IOt5JZUMqZPEv9z7WjdmFvaLBW9RAyfz/Hepn089sFWthYdZnBqJ56+eTwXD0/VG63SpqnoJez5fI53Nu7j98u3kbOvgv4pHXnyhrFcPjJNFzyJoKKXMFbf6OOv6wp46qMdbCs+zICUjjx23WiuGNWT6Kh2XscTCRkqegk71XWNLMraw9Mf57K3tJohqQn8/oaxXDYyjSiN4EX+hYpewsaBw7Us+GI3L3y5m4OVdYxLT+IX3zqLC4d21xSNyEmo6CXkbdlXwbzPd/LG6r3UNvi4aFh3vndefyb066o3WUVOg4peQlKjz7E8p5j5n+/i0+37iY1ux1XjejHz3P4M7N7J63giYUVFLyGlpKKW11bt4aUVeewtraZHYhyzLxnCDWena0VJkWZS0YvnfD7Hp9v388rKPP6+qYgGn2PKwG787PJhXDQsVWfQiARIRS+e2XOwikVZ+byelc/e0mq6xMcwY0oG152drukZkRakopdWVVZVz9KNhby5Zi8rdh7EDM4dmMz9lw7lG2elEhut+7KKtDQVvQRdVV0Dy7KLeXt9AR/mlFDX6KN/Skfuu3gwV43rTc8krSIpEkwqegmKw7UNfLSlmHc27mN5djHV9Y2kJMTynYnpXDWuFyN7ddapkSKtJKyL/t2N+3h1ZR5Th6Vy0bBUenSO8zpSm1ZcXsOynGI+2FzEP7bvp67BR3Kn9lw5rhdXjOrJhH5ddeWqiAfCuuhr6hvZUVLJh1s28tM3NzKiVyLnD+7O+UNSGNMnSWdrBFmjz7F2Tykfby3h4y3FrMsvA6BXUgdunJjOJWf1IDND5S7iNXPOeZ2BzMxMt2rVqmZ9rXOO7cWH+SC7mOU5RazOK6XR50iIi+ac/t04d1AykwckMyClo6YKAuScY9eBKj7bvp/Ptu/ni9wDlFbV085gTJ8kpg5LZeqw7gxJTdCftUgrMLMs51zmKfcL96I/Vll1PZ9t38/HW0r4dPt+9pZWA5CSEMuEfl2Z1K8rmRldGZyaoJHmKfh8ju0lh1m56yArcg+yYucBisprAejZOY4pA5P52uAUzhuUTFK8LmYSaW2nW/RhPXVzPJ07xHDZyDQuG5mGc468g1V8tv0AK3YeYEXuQf62vhCAhNhoxqQnMaZPEqN6JzG6d2e6J7btOf6SilrW55eyLr+MdXtKWZ13iIqaBgC6J8QysX83JvbrypSByWR0i9eoXSRMBGVEb2aXAE8AUcAzzrk5J9u/JUf0J+OcY8/BarLyDpK1+xBZu0vZWlRBo6/pzyAlIZbhaYmc1TORoWmJDE7tRP/kTrSPjqy5/vpGHzv3V7JlXwVb9lWwqaCMzYXl/xyttzMY1D2BcX27MN7/S8UuEno8G9GbWRTwv8DXgXxgpZktcc5tbuljnSkzI71bPOnd4rlybG+gaW3zTQVlrMsvY3NBOZsKyvhs+34a/OUf3a7pa/ond6J/SkcyunUkvWs86V3jSUuKIyZE3/BtaPRRWFbDnoNV5B2sYueBSnJLKtm5v5LdByqpb2x6flHtjIEpnZgyIJnhPRMZ1TuJs3om0jE24l7sibRZwfjfPAHY7pzLBTCzV4BpgOdFfzwd2keRmdE0b39EbUPjP0e8W4sq2FFcSe7+w3yyrYS6Bt8/9zNrmtJI69yBtM5xpCTEktIpluSEWLrEx9Alvj1J8e3pFBdNQlw0HdtHN/t9AZ/PcbiugcM1DVTUNFBaVcehqnpKq+rYf7iWkopaSg7XUlhWQ2FpDcUVNfiOerHWPqodfbvF0z+5I18fnsqQ1AQGpybQP6UjcTG6GlUkkgWj6HsBe456nA9MDMJxgiY2OoqhPRIZ2iPx/9ve6HMUldeQd7CKvANV5JdWU1haTWFZDVuLKvh8xwHKqutP+r3bR7ejQ0wUcTHtiG7XjpgoIzqqHUfq39E0Gq9vdDT4fNQ2+Kiua6T2qB8wx5MYF01KQiypiXGcOyiZnp3j6JnUoekVTNd40jp30JvPIm1UMIr+eG3yL28EmNksYBZAenp6EGK0vKh2Rs+kDvRM6sCk/t2Ou09tQyMHDtdxqKqO0qp6Sqvqqaip53Bt00i8pqGRmrpGaup91Pt8NPgL/WjR7doR3c6IjjL/D4UoYmOiSIhtemXQKS6apA7t6dKx6VVD147tNSoXkRMKRtHnA32OetwbKDh2J+fcXGAuNL0ZG4QcnoiNjvrnDwMRkVAQjHcSVwKDzKyfmbUHrgeWBOE4IiJyGlp8RO+cazCz7wPv0XR65XPOuU0tfRwRETk9QTmHzjm3FFgajO8tIiJnJjRPAhcRkRajohcRiXAqehGRCKeiFxGJcCp6EZEIFxLr0ZtZCbC7mV+eDOxvwThe0nMJPZHyPEDPJVQF8lz6OudSTrVTSBR9IMxs1eks0xkO9FxCT6Q8D9BzCVWt8Vw0dSMiEuFU9CIiES4Sin6u1wFakJ5L6ImU5wF6LqEq6M8l7OfoRUTk5CJhRC8iIicREUVvZo+aWY6ZrTezv5hZkteZzpSZXWJmW8xsu5k94HWe5jCzPmb2oZllm9kmM7vH60yBMrMoM1tjZm97nSUQZpZkZov9/0+yzewcrzM1h5nd6/+3tdHMXjazOK8znS4ze87Mis1s41HbuprZ+2a2zf+xSzCOHRFFD7wPjHDOjQK2Aj/xOM8ZOeqG6pcCw4EbzGy4t6mapQH4T+fcMGAScFeYPo+j3QNkex2iBTwBvOucGwqMJgyfk5n1Au4GMp1zI2haBv16b1OdkXnAJcdsewBY5pwbBCzzP25xEVH0zrm/O+ca/A+/pOmuVuHknzdUd87VAUduqB5WnHOFzrnV/s8raCqTXt6maj4z6w18E3jG6yyBMLNE4GvAswDOuTrnXKm3qZotGuhgZtFAPMe5e12ocs59Ahw8ZvM0YL7/8/nAt4Nx7Igo+mPcCrzjdYgzdLwbqodtQQKYWQYwFljhbZKAPA7MBk5+Z/bQ1x8oAZ73T0M9Y2YdvQ51ppxze4HfAnlAIVDmnPu7t6kCluqcK4SmgRLQPRgHCZuiN7MP/PNyx/6adtQ+/4em6YOF3iVtltO6oXq4MLNOwOvAD51z5V7naQ4zuxwods5leZ2lBUQD44CnnHNjgUqCNEUQTP7562lAP6An0NHMbvI2VXgIyh2mgsE5d9Fw5RIgAAABV0lEQVTJft/MpgOXA1Nd+J0zelo3VA8HZhZDU8kvdM694XWeAEwBvmVmlwFxQKKZveicC8diyQfynXNHXl0tJgyLHrgI2OmcKwEwszeAycCLnqYKTJGZpTnnCs0sDSgOxkHCZkR/MmZ2CXA/8C3nXJXXeZohIm6obmZG0zxwtnPud17nCYRz7ifOud7OuQya/j6Wh2nJ45zbB+wxsyH+TVOBzR5Gaq48YJKZxfv/rU0lDN9UPsYSYLr/8+nAW8E4SNiM6E/hD0As8H7T3z9fOudu9zbS6YugG6pPAW4GNpjZWv+2B/33EBZv/QBY6B9I5AIzPM5zxpxzK8xsMbCapinaNYTRFbJm9jJwPpBsZvnAQ8Ac4DUzm0nTD7JrgnLs8JvlEBGRMxERUzciInJiKnoRkQinohcRiXAqehGRCKeiFxGJcCp6EZEIp6IXEYlwKnoRkQj3fwFnm4r9G0jsMQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.plot(x, x**2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Так график больше похож на параболу. Могли бы изобразить ее полностью, определенную на участке от -10 до 10."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x1180f6f98>]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xd4lfX9//HnOycbMkhIGJkk7CErQEBFHDjQIm5QFPduq1Vba9uvbbVWu7RDseBCUUFRKypOREVlhr0JgQwSMggJGWR/fn+cg7+UJiQk5+Q+4/24rlzJuc99OK/cObxy574/53OLMQallFLey8/qAEoppVxLi14ppbycFr1SSnk5LXqllPJyWvRKKeXltOiVUsrLadErpZSX06JXSikvp0WvlFJezt/qAAA9e/Y0ycnJVsdQSimPkpGRUWKMiWlrPbco+uTkZNavX291DKWU8igikt2e9fTQjVJKeTkteqWU8nJa9Eop5eW06JVSystp0SullJdrs+hF5CURKRKRbc2WRYnI5yKy1/G5h2O5iMg/RCRTRLaIyBhXhldKKdW29uzRvwJceMKyh4HlxpgBwHLHbYCLgAGOj9uBuc6JqZRSqqPaLHpjzDdA6QmLLwUWOL5eAMxotvxVY7caiBSRPs4Ke6JNuWU8+fEu9HKISilPY4zhDx/tYHt+ucufq6PH6HsZYwoAHJ9jHcvjgNxm6+U5lv0PEbldRNaLyPri4uIOhdiaV8bzX+9j28GjHXq8UkpZZVXWYeav3M+ewgqXP5ezT8ZKC8ta3N02xswzxqQZY9JiYtp8B2+Lpo+KIzjAjzfX5XTo8UopZZXF63IJD/bnouEuO+jxg44WfeHxQzKOz0WO5XlAQrP14oH8jsc7uYiQAKaN6MPSTflU1zW46mmUUsqpyqrr+HjbIS4bHUdwgM3lz9fRol8KzHF8PQd4v9nyGxyjb9KB8uOHeFxl5rhEKmsb+HCLS59GKaWc5r2NB6lraOKacYld8nztGV75JrAKGCQieSJyC/AkMFVE9gJTHbcBlgFZQCYwH7jbJambGZfcg5SYbixel9v2ykopZTFjDIvW5jIyPoKhfcO75DnbnL3SGDOrlbvObWFdA9zT2VCnQkSYOS6BJ5btYk9hBQN7hXXl0yul1CnZlFvG7sIKnrhsRJc9p1e8M/aKMfEE2ET36pVSbm/R2lxCA21MH9W3y57TK4o+unsQ5w/tzbsb8qhtaLQ6jlJKtaiytoEPtuTzo9P60j2o6y4H4hVFD3DNuASOVNfz2fZCq6MopVSLPticT3VdI9eMT2h7ZSfymqI/o39P4iJDWKRj6pVSbmrR2hwG9QpjdEJklz6v1xS9n59wzbgEvss8TM7haqvjKKXUf9mRf5TNeeVcMy4BkZbeW+o6XlP0AFelxeMnsHi97tUrpdzL4nU5BPr7cfmYFmeFcSmvKvo+ESFMGRTL2+vzaGhssjqOUkoBUFPfyHsbD3LhsN5EhgZ2+fN7VdEDzByXQFFFLSt2d2yiNKWUcraPtxVwtKaBmV18EvY4ryv6cwbHEhsWxGI9KauUchOL1uaSHB3KxJRoS57f64re3+bHlWPj+XJXEQXlx6yOo5TycVnFlazZX8rVFpyEPc7rih7sE50Z7L9FlVLKSq+vycHfT7hybLxlGbyy6BOjQ5k8IIZF63Ko15OySimL1NQ3siQjjwuG9yY2LNiyHF5Z9ACz05MoPFrL8p36TlmllDU+3FJA+bF6Zk9IsjSH1xb9OYNj6RsRzMLVelJWKWWNhauz6R/bnfSUKEtzeG3R2/yEWeMT+TazhP0lVVbHUUr5mG0Hy9mUW8Z1ExItOwl7nNcWPdgnOvP3E95Yk211FKWUj3l9TTbBAX5cPsa6k7DHeXXRx4YHc/6wXrydkUdNvU5frJTqGkdr6vnPxnymj+xLREiA1XG8u+gBZk9Ioqy6no/0mrJKqS7y3oaDHKtvZHa6tSdhj/P6op+YGk1KTDcW6uEbpVQXMMbw+ppsTouP4LT4rp2OuDVeX/QiwnUTktiYU8b2/HKr4yilvNy6A0fYU1hp+ZDK5ry+6AGuHBNPcICfDrVUSrncwtXZhAf786ORXXdN2Lb4RNFHhAbwo9P68v6mg1TU1FsdRynlpUoqa/l4WwFXjI0nJNBmdZwf+ETRA1yXnkR1nX1OaKWUcoW31udS32i4bkKi1VH+i88U/cj4CIbHhbNwdTbGGKvjKKW8TGOT4Y01OaSnRNE/NszqOP/FZ4peRJg9IYk9hZWs3V9qdRyllJf5Zk8xeUeOuc2QyuZ8pugBLh0VR3iwP6+u0qGWSinneuX7A8SGBXH+0N5WR/kfPlX0IYE2Zo5P5JPth8gv04uSKKWcY19xJV/vKWZ2ehKB/u5Xq+6XyMWuT0/64Q0NSinlDK+tyibQ5ses8e51EvY4nyv6hKhQzh3SizfX5ur8N0qpTquoqeft9blcclofYsKCrI7TIp8reoCbJiVTWlXHB5vzrY6ilPJw72TkUVXXyJxJyVZHaVWnil5E7heR7SKyTUTeFJFgEeknImtEZK+ILBaRQGeFdZaJqdEM7NWdV74/oEMtlVId1tRkWLAqm9GJkYxMcI95bVrS4aIXkTjgJ0CaMWY4YANmAk8BTxtjBgBHgFucEdSZRIQ5k5LZnn+UjOwjVsdRSnmob/YWs7+kihvdeG8eOn/oxh8IERF/IBQoAM4BljjuXwDM6ORzuMRlo+1DLV/5/oDVUZRSHuqV7w8QExbERcP7WB3lpDpc9MaYg8BfgBzsBV8OZABlxpgGx2p5QFxnQ7pCaKA/14xL4ONthzhUXmN1HKWUh8kqruSr3cVcNyHRLYdUNteZQzc9gEuBfkBfoBtwUQurtngQXERuF5H1IrK+uLi4ozE65YaJyTTpUEulVAe8uiqbAJtwrZvNa9OSzvwaOg/Yb4wpNsbUA+8Ck4BIx6EcgHigxaEtxph5xpg0Y0xaTExMJ2J0XEJUKOcO7sUba3J0qKVSqt0qaxtYkpHHxSP6EBsWbHWcNnWm6HOAdBEJFfslzs8FdgArgCsd68wB3u9cRNe66fRkDlfV6aUGlVLt9k5GHpW1Ddx4ej+ro7RLZ47Rr8F+0nUDsNXxb80DfgH8TEQygWjgRSfkdJlJqdEMiNWhlkqp9mlqMiz4/gAjEyIZ5cZDKpvr1BkEY8yjxpjBxpjhxpjrjTG1xpgsY8x4Y0x/Y8xVxphaZ4V1heNDLbceLGdDjg61VEqd3MrMErJKqrjJzYdUNufep4q7yOVj4ogICeDFb/dbHUUp5eZeWJlFTFgQ00a495DK5rTosQ+1vHZCIp9sO0RuabXVcZRSbmrXoaOs3FvCjZOS3X5IZXOek9TF5kxMxk+El77TvXqlVMteXLmfkACb210qsC1a9A69I4KZPrIvb63LpfyYXkBcKfXfiipqeH9TPleOjScy1O2m8DopLfpmbjmzH1V1jby5NsfqKEopN/Pq99nUNzVxyxmeMaSyOS36Zob1jWBSajSvfHeA+sYmq+MopdzEsbpGFq7JZuqQXiT37GZ1nFOmRX+C285M4dDRGn0DlVLqB0s25FFWXc+tZ6ZYHaVDtOhPcNbAGPrHdmf+yix9A5VSiqYmw0vf7mdkfATjkntYHadDtOhP4Ocn3HJGP7bnH2V1VqnVcZRSFlu+q4j9JVXcemYK9tlePI8WfQsuGx1HdLdAXliZZXUUpZTF5q/MIi4yhIuG97Y6Sodp0bcgOMDG9ROTWL6riMyiSqvjKKUssiWvjLX7S7np9GT8bZ5bl56b3MVmpycR6O+n0yIo5cPmr9xPWJD9IkWeTIu+FT27B3HFmDje3ZDH4Uq3npdNKeUCB8uOsWxrATPHJxAWHGB1nE7Roj+JW87oR21DE6+t1itQKeVrXnb8Ne8pc86fjBb9SfSPDeO8IbEs+P4A1XUNbT9AKeUVyqrreGNtDpec1oe4yBCr43SaFn0b7pqSypHqehatzbU6ilKqi7y6KpvqukbumpJqdRSn0KJvw9ikKMb3i+KFlVnUNei0CEp5u+q6Bl7+bj/nDo5lcO9wq+M4hRZ9O9w1JZX88hre33TQ6ihKKRdbvC6XI9X1XrM3D1r07TJlYAxD+oTz/Nf7aGrSaRGU8lb1jU3M/yaLcck9SEuOsjqO02jRt4OIcNeUVPYVV/H5zkKr4yilXGTppnzyy2u4e0p/q6M4lRZ9O00b3pvEqFCe+2qfTnamlBdqajLM/Xofg3uHMWVQjNVxnEqLvp38bX7cPjmFzbllrMo6bHUcpZSTfbGzkMyiSu6akuqxk5e1Rov+FFw5Np6e3YOY+9U+q6MopZzIGMNzX+0jISqEi0f0sTqO02nRn4LgABu3nNGPlXtL2JpXbnUcpZSTrM4qZVNuGbdPTvXoycta433fkYtdl55IWJA/z3+te/VKeYu5X++jZ/dArhobb3UUl9CiP0XhwQFcPzGJZdsKyCrWKYyV8nTbDpbzzZ5ibj6jH8EBNqvjuIQWfQfcdHo/Amx+ulevlBeY+9U+woL8mZ2eZHUUl9Gi74CYsCBmjUvg3Q0HyS2ttjqOUqqD9hRWsGxbATdMSiLcw6ciPhkt+g66c0oqfiI8pyNwlPJY//wyk5AAG7eekWJ1FJfSou+gPhEhXD0uniUZuRwsO2Z1HKXUKcosquTDLfncMDGZHt0CrY7jUlr0nXCX423Sz+tevVIe59kVmQT727jtTM+/sEhbOlX0IhIpIktEZJeI7BSRiSISJSKfi8hex+cezgrrbuIiQ7hybAKL1+VSUK579Up5iqziSt7fdJDrJyYR3T3I6jgu19k9+r8DnxhjBgMjgZ3Aw8ByY8wAYLnjtte6e0oqTcbw76+zrI6ilGqnZ1fsI9Dfj9vO9O5j88d1uOhFJByYDLwIYIypM8aUAZcCCxyrLQBmdDakO0uICuWKMfG8sTaHwqM1VsdRSrUh+3AV/9l0kOsmJBET5v1789C5PfoUoBh4WUQ2isgLItIN6GWMKQBwfI5t6cEicruIrBeR9cXFxZ2IYb17zu5PY5Pu1SvlCZ5dkYm/n3DHZN/Ym4fOFb0/MAaYa4wZDVRxCodpjDHzjDFpxpi0mBjPnhI0MTqUy0bH8fqabIoqdK9eKXeVW1rNuxsOMmt8IrHhwVbH6TKdKfo8IM8Ys8Zxewn24i8UkT4Ajs9FnYvoGe49u/8PV6dRSrmn577KxM9PvOoyge3R4aI3xhwCckVkkGPRucAOYCkwx7FsDvB+pxJ6iOSe3ZgxKo7XVmdTUllrdRyl1AnyjlTz9vo8Zo1LoJcP7c1D50fd/Bh4XUS2AKOAJ4AngakisheY6rjtE+45pz91DbpXr5Q7mvvVPvxEuNPH9ubBfpy9w4wxm4C0Fu46tzP/rqdKjenO9JF9WbDqALec2Y/YMN/aa1DKXeWWVvPW+lyuGZdAn4gQq+N0OX1nrJPdd95A6hsNz63Qd8sq5S7+sXwvfiLce/YAq6NYQoveyZJ7duPqtHheX5NN3hGd2VIpq+0rruSdDXlcn55E7wjf/Ctbi94FfnzOAESEfyzfa3UUpXzeM1/sJTjA5pPH5o/ToneBvpEhzJ6QxJKMPPbpVaiUsszOgqN8sDmfm0/vR08fmNOmNVr0LnL32akEB9h4+vM9VkdRymf97fM9hAX7+8ycNq3RoneRnt2DuPn0fny4pYDt+eVWx1HK52zKLePzHYXcMTmFiFDvvXpUe2jRu9Btk1MID/bnb5/pXr1SXe2vn+0mqlsgN57u/fPNt0WL3oUiQgK446xUlu8qIiP7iNVxlPIZa7IOs3JvCXdPSaV7UKfeLuQVtOhd7KbTk+nZPZC/fLrb6ihK+QRjDE9+sove4cHMTk+yOo5b0KJ3sdBAf+45uz+rsg7zXWaJ1XGU8nqfbi9kY04Z908dQHCAzeo4bkGLvgtcOyGRvhHB/OmTXRhjrI6jlNdqaGziT5/uon9sd64YE291HLehRd8Fgvxt3Dd1IJvzylm29ZDVcZTyWm9n5JFVXMXPLxiEv03r7TjdEl3kijHxDOoVxp8+3UVdQ5PVcZTyOsfqGnn68z2MTerB1KG9rI7jVrTou4jNT3h42mCyD1fz5tocq+Mo5XVe+m4/RRW1PHzRYETE6jhuRYu+C00ZGMOk1Gj+vnwvFTX1VsdRymuUVtXx/Ff7OG9IL8YlR1kdx+1o0XchEeGXFw2htKpOLySulBM9uyKTqroGfnHhoLZX9kFa9F1sRHwEl47qywvfZnGoXC8krlRn5Ryu5rVV2Vw5Np4BvcKsjuOWtOgt8OD5g2hqQic8U8oJnvpkFzY/4YHzdW++NVr0FkiICuWGiUm8nZHL7kMVVsdRymOtO1DKR1sLuPOsVJ+74Pep0KK3yL3n9Kd7kD+Pf7RD30SlVAc0NRke/3AHvcODuW2yTlx2Mlr0FokMDeSn5w1k5d4SVuwusjqOUh5n6eZ8NueV89AFgwgN1InLTkaL3kI3TEwiJaYbj3+4k/pGfROVUu11rK6Rpz7ZxYi4CC4bHWd1HLenRW+hAJsfv754CFklVby6KtvqOEp5jBe/zaKgvIZfXzwEPz99c1RbtOgtdvagWCYPjOHvX+yhtKrO6jhKub2iihqe+2ofFw7rzYSUaKvjeAQteouJCL++eAhVdY0884UOt1SqLX/+ZDf1jU08fNFgq6N4DC16NzCwVxjXTUjk9TU57CnU4ZZKtWZjzhHezsjj5tP7kdyzm9VxPIYWvZu4/7yBdAu08diHOtxSqZY0NRl+u3Q7sWFB/PjcAVbH8Sha9G6iR7dA7p9qH2752Y5Cq+Mo5XaWZOSxOa+cX04brNeBPUVa9G7k+vQkBvUK4/cf7OBYXaPVcZRyG+XH6nnqk12kJfVgxigdTnmqtOjdiL/Nj99fOoyDZceY+1Wm1XGUchvPfLGH0uo6fjt9mM413wGdLnoRsYnIRhH50HG7n4isEZG9IrJYRAI7H9N3TEiJZsaovjz/dRYHSqqsjqOU5XYfquDVVdlcOz6R4XERVsfxSM7Yo/8psLPZ7aeAp40xA4AjwC1OeA6f8si0IQT6+/G7D7briVnl04yxn4DtHuTPgzo7ZYd1quhFJB64GHjBcVuAc4AljlUWADM68xy+KDY8mPvOG8CK3cV8sVPnwVG+64MtBazKOsyD5w+kRzc9ONBRnd2jfwb4OXB8opZooMwY0+C4nQfomZMOmDMpmYG9uvO7D7ZTU68nZpXvKT9Wz2Mf7uC0+AiunZBkdRyP1uGiF5FLgCJjTEbzxS2s2uKxBxG5XUTWi8j64uLijsbwWgE2P343fTh5R47x3Ao9Mat8z18/283hylr+MGMENp3PplM6s0d/OjBdRA4Ai7AfsnkGiBSR44Nc44H8lh5sjJlnjEkzxqTFxMR0Iob3mpgazaWOE7OZRZVWx1Gqy2zOLeO11dncMDGZEfF6ArazOlz0xphfGmPijTHJwEzgS2PMdcAK4ErHanOA9zud0of9+uKhBAf48ch7W2lq0hOzyvs1NDbxyHtbiekexAPnD7Q6jldwxTj6XwA/E5FM7MfsX3TBc/iMmLAgHpk2hLX7S1mSkWd1HKVc7rXV2WzPP8qjPxpGWHCA1XG8glOK3hjzlTHmEsfXWcaY8caY/saYq4wxtc54Dl92dVoC45Oj+MOynZRU6uZU3utQeQ1//WwPZw2MYdqI3lbH8Rr6zlgP4OcnPHH5cKrrGnj8wx1Wx1HKZX73wXbqG5t47NLh+g5YJ9Ki9xD9Y8O466xU/rMpn5V7dZSS8j6fbCvg422H+Mm5A0iMDrU6jlfRovcgd5/dn5Se3fjVe9t00jPlVcqr6/nN+9sZ1jec2yenWB3H62jRe5DgABuPXzacnNJq/vb5bqvjKOU0j3+0g9KqOp664jQCbFpLzqZb1MNMSu3JrPGJvPjtfjbkHLE6jlKdtnJvMW9n5HHH5BSdtMxFtOg90CPTBtM7PJiH3t6s0yMoj1ZV28Av391KSkw3fqJXjXIZLXoPFBYcwB+vOI19xVX8ffleq+Mo1WF/+Ww3B8uO8acrTiM4wGZ1HK+lRe+hzhoYw9Vp8cz7JosteWVWx1HqlGVkl/LK9we4IT2JtOQoq+N4NS16D/ari4fSs3sgD729hdoGPYSjPEd1XQM/e2szcZEhPHThYKvjeD0teg8WERLAHy8fwe7CCp79Ume4VJ7jj8t2kVNazV+uGqkX+u4CWvQe7pzBvbh8TBzPfrWPTbl6CEe5v5V7i3ltdTY3n96P9JRoq+P4BC16L/Db6cPoHR7M/Ys3UV3X0PYDlLJI+bF6Hnp7C/1ju/PQBXppwK6iRe8FwoMD+MtVIzlwuIonlu1s+wFKWeR3S7dTXFnL364eqaNsupAWvZeYmBrNrWf0Y+HqHFbs1uvMKvfzybZDvLvxIPec3Z/T4iOtjuNTtOi9yIMXDGJw7zB+vmQLpVV1VsdR6gdFR2t45L2tDI8L58fn9Lc6js/RovciQf42nr5mFOXV9Tzy7laM0StSKes1NRl+9tZmqusaeOaaUTqXjQV0i3uZIX3CeeD8gXyy/RBvr9crUinrzVuZxbeZJTz6o2H0jw2zOo5P0qL3QreemcKk1GgeXbqdzKIKq+MoH7Y5t4y/fLqbi4b3Zua4BKvj+Cwtei9k8xOeuWYUoYE27n1jo058pixRWdvATxZtJDYsiCcvP02vGGUhLXovFRsezF+vHsmuQxU8ppcfVBb4v/e3kVtazTMzRxMRqhf5tpIWvRebMiiWOyan8PqaHD7aUmB1HOVD/rPxIO9uOMiPzxnA+H46YZnVtOi93IMXDGJUQiQPv7uF3NJqq+MoH7C3sIJfvruV8clROpTSTWjRe7kAmx//nDUagHvf3EhdQ5PFiZQ3q6pt4M6FGXQLsvHPa0fjr0Mp3YL+FHxAQlQof7riNDbnlvH4R3q8XrmGMYaH393K/pIq/jFrNL3Cg62OpBy06H3ERSP6cPvkFF5dlc27G3R8vXK+hauz+WBzPg+cP4hJqT2tjqOa0aL3IT+/YBDpKVE88t5WduQftTqO8iKbcsv4/Yc7OHtQDHedlWp1HHUCLXof4m/z45+zxhAREsCdCzMor663OpLyAqVVddzz+gZiw4J5+ppR+PnpeHl3o0XvY2LCgnjuurEUlB/j/rc20dSk8+GojqtvbOLu1zMorqxl7uwxRIYGWh1JtUCL3geNTerBby4Zype7ivj78r1Wx1Ee7PEPd7A6q5QnLx+hUw+7MS16H3V9ehKXj4nj78v36pupVIcsWpvDglXZ3HZmPy4fE291HHUSWvQ+SkR44rIRjEmM5IG3N7E1r9zqSMqDrDtQym/e38bkgTE8fNEQq+OoNnS46EUkQURWiMhOEdkuIj91LI8Skc9FZK/jcw/nxVXOFBxg49/XpxHdLYhbX11H4dEaqyMpD5Bfdoy7FmYQ3yOUf84cjU1Pvrq9zuzRNwAPGGOGAOnAPSIyFHgYWG6MGQAsd9xWbiomLIgX5qRRUdPA7a+u15ku1UlV1jZw64L11NQ3Mf+GsTpZmYfocNEbYwqMMRscX1cAO4E44FJggWO1BcCMzoZUrjWkTzjPXDOKLQfLeWjJFr0ylWpRQ2MT97y+gd2FFfzr2tF6EREP4pRj9CKSDIwG1gC9jDEFYP9lAMS28pjbRWS9iKwvLi52RgzVCecP681DFwzig835/PnT3VbHUW7GGMNv3t/O13uKeXzGcKYMavG/tXJTnS56EekOvAPcZ4xp99stjTHzjDFpxpi0mJiYzsZQTnDXWanMGp/Ic1/t49VVB6yOo9zI3K/38ebaHO6eYn+NKM/i35kHi0gA9pJ/3RjzrmNxoYj0McYUiEgfoKizIVXXEBEeu3QYxRU1PLp0O7FhwVw4vLfVsZTFlm7O50+f7Gb6yL48eP4gq+OoDujMqBsBXgR2GmP+1uyupcAcx9dzgPc7Hk91tePTJIyMj+Qnizay7kCp1ZGUhVbtO8yDb21mfHIUf77qNJ3ewEN15tDN6cD1wDkissnxMQ14EpgqInuBqY7byoOEBNp46cZxxEWGcOuC9XqBcR+1ObeMWxesIyk6lHk3jCXI32Z1JNVB4g4jLNLS0sz69eutjqFOkHO4msvnfk+ATXjrjokkRIVaHUl1kb2FFVz171WEBfuz5M5JOre8mxKRDGNMWlvr6TtjVasSo0N59ebxVNU2cO0LqzlUrm+o8gW5pdXMfnENgTY/Xr8lXUveC2jRq5Ma2jecBTePp7SyjuteWE1JZa3VkZQLFR2tYfaLa6ipb+K1WyaQGK1/xXkDLXrVptGJPXjpxnEcLDvG9S+upay6zupIygVKKmuZ/eIaiitqeeWmcQzqrW+I8hZa9KpdJqREM/+GNPYVVTLn5XVU1OhFS7xJcUUts+atJqe0mhfmpDE6Uaeo8iZa9KrdzhwQw7PXjWH7wXJmv7hWr1DlJYoqapg1fzV5R47x8o3j9XqvXkiLXp2SqUN7MXf2WHbmH2XW/NWUVulhHE9WdLSGWfNWk192jFduGsfE1GirIykX0KJXp2zq0F7Mn5PGvuJKZs5bRVGFjsbxRIVHa5g5fzUF5TW8ctN4JqRoyXsrLXrVIWcNjOHlm8aRd+QYM/+9moLyY1ZHUqdgf0kVV8z9nsLyGhbcPJ7x/aKsjqRcSIteddik1J68evN4iipquer5VewrrrQ6kmqHbQfLuXLu91TXNfLm7emMS9aS93Za9KpT0pKjeOO2CRyra+TKud+TkX3E6kjqJL7PLGHmvNUEB9hYcudEvaC3j9CiV512Wnwk7949iYiQAK6dv5pPtx+yOpJqwcdbC7jx5XX0jQzmnbsmkRLT3epIqoto0SunSIruxjt3TWJwn3DuWpjBa6sOWB1JORhjmPfNPu5+YwMj4iN4646J9I7QaQ18iRa9cpro7kG8edsEzh4Uy2/e384fPtpBY5P1k+b5stqGRn6+ZAtPLNvFtOF9WHjLBCJDA62OpbqYFr1yqtBAf/59/VhumJjE/JX7ufFlfWOVVQ5X1nL9C2t5OyOPn547gH/OGk1IoE417Iu06JXT+dv8+P2lw3ny8hGszjrM9Ge/ZU9x8HDRAAAMNUlEQVShzmnflXYfqmDGc9+xOa+Mf8wazf1TB+pFQ3yYFr1ymZnjE1l0ezpVtY1c9ux3epK2i7yTkceMZ7+jpr6JxXdMZPrIvlZHUhbTolcuNTYpig9+fDr9Y7tzx2sZPP7hDuoamqyO5ZVq6hv5xZItPPD2ZkYmRPDRT85gVIIOn1Ra9KoL9IkIYfEdE7k+PYkXvt3PFXO/50BJldWxvMq+4kpmPPsdi9fn8uNz+rPwlgnEhunIGmWnRa+6RHCAjcdmDOf52WPJKa3m4n+s5L2NeVbH8njGGBavy2H6P7+l8GgNr9w0jgfOH4S/Tf9rq//P3+oAyrdcOLw3I+IjuG/RRu5fvJmvdxfz6I+G0aObDvk7VYVHa3j4nS2s2F1MekoUf7t6FH0jQ6yOpdyQFr3qcnGRIbx5Wzr/WpHJv77M5NvMEn43fTjTRvRGREeGtMUYw9LN+fzf+9upbWjk0R8NZc7EZB1Vo1qlf98pS/jb/LjvvIEsvfcM+kSEcM8bG7hzYQZFR3XK45M5WHaMOxdm8NNFm0iJ6cayn5zJTaf305JXJyXGWP/OxbS0NLN+/XqrYyiLNDQ2MX/lfp7+Yg/B/n48eMEgrh2fqMeZm6ltaOSFlfv515eZGAw/PXcgt09OwaYF79NEJMMYk9bmelr0yl3sK67k1+9tY1XWYQb26s5vLhnKmQNirI5luW/2FPPbpdvJKqnigmG9+M0lQ4nvEWp1LOUGtOiVRzLG8On2Qp5YtpOc0mrOGxLLI9OG+ORMi9sOlvPXz3azYncxydGhPDp9GGcPirU6lnIjWvTKo9XUN/Lydwf415d7qWloYsaoOO49pz/9enazOprLZRZV8vTne/hoawERIQHcNSWVGyclExyg89So/6ZFr7xCUUUN//46i9fXZFPXrPC9cQ9/16GjzPsmi/9sPEhIgI1bzujHrZNTCA8OsDqaclNa9MqrFFXUMP+bLF5bbS/8qUN7ccPEZCalRnv0kMymJsPXe4t5ceV+vs0sISTAxnUTErlrSirR3YOsjqfcnBa98kollbW8+O1+Fq3N4Uh1Pakx3bg+PYkrxsYT5kF7vkeq6li6OZ/XVmeTWVRJr/Ag5kxK5trxiTpfvGo3LXrl1WrqG/loSwGvrs5mc24ZIQE2pg7txaWj+nLmgBgC/d1vaGZNfSMr95bw3sY8vthRRF1jEyPiIrjljH5MG9HHLTMr92Zp0YvIhcDfARvwgjHmyZOtr0WvOmNLXhmL1+WybGsBR6rriQgJ4OxBMZw7pBeTB8YQEWLdnn5pVR3fZpbw+Y5CvtxZSFVdI1HdArl0VF+uGpvA0L7hlmVTns+yohcRG7AHmArkAeuAWcaYHa09RoteOUNdQxPfZhbz4ZYCVuwq4kh1PTY/YXhcBOn9opiQEsVp8ZH0dOGx76KjNWzIOcKGnDJW7TvMtvxyjIGoboFcMKw300b0Jj0lmgB9M5hyAiuLfiLwW2PMBY7bvwQwxvyxtcdo0Stna2wybMw5wle7i1mz/zCbcsuob7S/1nuHBzOsbzipsd1Jju5GcnQoseHBxHQPIjzE/6Qnd40xVNQ2UHS0hoNlNRw8coys4kr2FFWy51AFhxxTOATa/BiZEMHkATGcOTCGEXER+i5W5XTtLXpXTGoWB+Q2u50HTHDB8yjVKpufkJYcRVpyFADH6hrZnFfGtoPlbM8/yo78o6zMLPmfi6AE2vzoFmQjJMD2w7j1RmNoaDRU1TVw9Fg9J17vPMjfj/6x3ZmUGs3QvuGMTuzB8Lhwgvx13LtyD64o+pZ2W/7nzwYRuR24HSAxMdEFMZT6/0ICbaSnRJOeEv3DsqYmQ8HRGrIPV1FcUWv/qKzlWF0j1XWNHKtvRAB/P8HPT+ge5E94cADhIf70Cg+mb2QIfSND6B0erHvryq25oujzgIRmt+OB/BNXMsbMA+aB/dCNC3IodVJ+fkJcZAhxOoe78nKuOCO0DhggIv1EJBCYCSx1wfMopZRqB6fv0RtjGkTkXuBT7MMrXzLGbHf28yillGofl1xhyhizDFjmin9bKaXUqdHBvEop5eW06JVSystp0SullJfToldKKS+nRa+UUl7OLaYpFpFiILuDD+8JlDgxjrNorlOjuU6du2bTXKemM7mSjDExba3kFkXfGSKyvj2T+nQ1zXVqNNepc9dsmuvUdEUuPXSjlFJeToteKaW8nDcU/TyrA7RCc50azXXq3DWb5jo1Ls/l8cfolVJKnZw37NErpZQ6CY8oehG5SkS2i0iTiKSdcN8vRSRTRHaLyAWtPL6fiKwRkb0istgxfbKzMy4WkU2OjwMisqmV9Q6IyFbHei6/fqKI/FZEDjbLNq2V9S50bMNMEXm4C3L9WUR2icgWEXlPRCJbWa9Ltldb37+IBDl+xpmO11Kyq7I0e84EEVkhIjsdr/+ftrDOFBEpb/bz/T9X53I870l/LmL3D8f22iIiY7og06Bm22GTiBwVkftOWKfLtpeIvCQiRSKyrdmyKBH53NFFn4tIj1YeO8exzl4RmdPpMMYYt/8AhgCDgK+AtGbLhwKbgSCgH7APsLXw+LeAmY6vnwfucnHevwL/18p9B4CeXbjtfgs82MY6Nse2SwECHdt0qItznQ/4O75+CnjKqu3Vnu8fuBt43vH1TGBxF/zs+gBjHF+HAXtayDUF+LCrXk/t/bkA04CPsV9xLh1Y08X5bMAh7OPMLdlewGRgDLCt2bI/AQ87vn64pdc9EAVkOT73cHzdozNZPGKP3hiz0xizu4W7LgUWGWNqjTH7gUxgfPMVxH6l53OAJY5FC4AZrsrqeL6rgTdd9RwuMB7INMZkGWPqgEXYt63LGGM+M8Y0OG6uxn4lMqu05/u/FPtrB+yvpXPlZFcRdwJjTIExZoPj6wpgJ/ZrMnuCS4FXjd1qIFJE+nTh858L7DPGdPSNmJ1mjPkGKD1hcfPXUWtddAHwuTGm1BhzBPgcuLAzWTyi6E+ipQuRn/gfIRooa1YqLa3jTGcChcaYva3cb4DPRCTDcd3crnCv48/nl1r5U7E929GVbsa+99eSrthe7fn+f1jH8Voqx/7a6hKOQ0WjgTUt3D1RRDaLyMciMqyLIrX1c7H6NTWT1ne2rNhex/UyxhSA/Rc5ENvCOk7fdi658EhHiMgXQO8W7vqVMeb91h7WwrIThxG162Ll7dHOjLM4+d786caYfBGJBT4XkV2O3/wddrJcwFzgMezf82PYDyvdfOI/0cJjOz0cqz3bS0R+BTQAr7fyzzh9e7UUtYVlLnsdnSoR6Q68A9xnjDl6wt0bsB+eqHScf/kPMKALYrX1c7FyewUC04FftnC3VdvrVDh927lN0RtjzuvAw9pzIfIS7H82+jv2xFq8WLkzMoqIP3A5MPYk/0a+43ORiLyH/bBBp4qrvdtOROYDH7ZwV7su6O7sXI6TTJcA5xrHwckW/g2nb68WtOf7P75OnuPnHMH//lnudCISgL3kXzfGvHvi/c2L3xizTESeE5GexhiXzunSjp+LS15T7XQRsMEYU3jiHVZtr2YKRaSPMabAcSirqIV18rCfSzguHvv5yQ7z9EM3S4GZjhER/bD/Zl7bfAVHgawArnQsmgO09hdCZ50H7DLG5LV0p4h0E5Gw419jPyG5raV1neWE46KXtfJ8XX5BdxG5EPgFMN0YU93KOl21vdrz/S/F/toB+2vpy9Z+OTmL4xzAi8BOY8zfWlmn9/FzBSIyHvv/6cMuztWen8tS4AbH6Jt0oPz4IYsu0Opf1VZsrxM0fx211kWfAueLSA/HodbzHcs6rivOPnf2A3tB5QG1QCHwabP7foV9xMRu4KJmy5cBfR1fp2D/BZAJvA0EuSjnK8CdJyzrCyxrlmOz42M79kMYrt52rwFbgS2OF1mfE3M5bk/DPqpjXxflysR+HHKT4+P5E3N15fZq6fsHfo/9FxFAsOO1k+l4LaV0wTY6A/uf7FuabadpwJ3HX2fAvY5tsxn7Se1JXZCrxZ/LCbkEeNaxPbfSbLSci7OFYi/uiGbLLNle2H/ZFAD1jv66Bft5neXAXsfnKMe6acALzR57s+O1lgnc1Nks+s5YpZTycp5+6EYppVQbtOiVUsrLadErpZSX06JXSikvp0WvlFJeToteKaW8nBa9Ukp5OS16pZTycv8PFUSdZAfBEU0AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"x = np.linspace(-10, 10, 200)\n",
"plt.plot(x, x**2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Поменяем цвет линии по умолчанию на какой-нибудь другой."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x11815f208>]"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xls5Old5/H3t+7DZVf5aLf77p7p6bkyyUw6k2QmCdkMgSSLSHYFq6DVMoJIEQvswrKrJQgJ0PIP7MElsaAhyTKsIggbYDNCYSGEhBwkk/TcR89M9/TpPnzX4bqPZ/+o8mAcu9vtctWvjs9Lslz+1a9cX/+q/PHj3/P8nsecc4iIyODyeV2AiIh0loJeRGTAKehFRAacgl5EZMAp6EVEBpyCXkRkwCnoRUQGnIJeRGTAKehFRAZcwOsCACYnJ92RI0e8LkNEpK889dRTi865qZvt1xNBf+TIEU6dOuV1GSIifcXMLm5nP526EREZcAp6EZEBp6AXERlwCnoRkQGnoBcRGXA3DXoz+7SZzZvZi+u2jZvZF83sTOtzqrXdzOx3zOysmT1vZg90sngREbm57bTo/xD4wIZtnwC+5Jw7Dnyp9TXAB4HjrY+PA7+3O2WKiMhO3TTonXNfBZY3bP4w8Hjr9uPAR9Zt/yPX9C0gaWYzu1XsRsvFCi8uZNFyiCLSb5xzvDCfJV2qdvy5dnqOfto5dw2g9XlPa/t+4PK6/WZb276LmX3czE6Z2amFhYUdFbFSqvLacp50ubajx4uIeGWxWOHMSp5suXeDfiu2ybZNm9vOuceccyedcyenpm56Be+mDo5G8RtcSBd29HgREa9cSBcI+oz9iWjHn2unQT+3dkqm9Xm+tX0WOLhuvwPA1Z2Xd2Mhv4/9iSiXc0VqjUannkZEZFdV6g2urJaajVXfZu3j3bXToH8CeLR1+1Hg8+u2/2hr9M07gMzaKZ5OOTIWo9ZwzOZKnXwaEZFdcylbpOGa+dUN2xle+cfAN4ETZjZrZh8Dfg14v5mdAd7f+hrgC8A54CzwB8BPdqTqdSaiQUZCfp2+EZG+4JzjQrpAKhIkGQl25TlvOnulc+5HtrjrkU32dcBPtVvUrTAzjozFeHEhR7ZcZTTcnQMnIrITK6Uq2UqN+6fHuvacA3Fl7OHRKAZcyBS9LkVE5IbOZwr4zTgwGunacw5E0IcDfvYlIlzKFqg3NKZeRHpTtdFgNlviwGiEoK978TsQQQ/NTo1K3XFtVZ2yItKbZrMl6s5xtEudsGsGJuj3xELEAn7OZ9QpKyK96UKmwGgoQKpLnbBrBibozYzDY1EWChXyFV0pKyK9JV2qslKqciQZw6zzY+fXG5igBzjc+nfoglr1ItJjLmQK+AwOjXb+StiNBiroY0E/e+NhLmaKNDTRmYj0iHrDcTlbZN9IhJC/+7E7UEEPzU7ZUr3B9XzZ61JERAC4kitSbTiOJrvbCbtm4IJ+70iYiN+nK2VFpGdcyBSJB/1MRkOePP/ABb3PjENjUa7nyxSqda/LEZEhl6vUWCxWODLW/U7YNQMX9MAbY1TVKSsiXjufLmDA4bHud8KuGcigj4cCTMfDXMgU1CkrIp6pNxwXMwX2JSJEAn7P6hjIoAc4moxRqjV0payIeGa21Ql7zKNO2DUDG/Qz8TDRgI/z6pQVEY+cSxdIhAKedcKuGdigNzOOJmPMFyqs6kpZEemytSthj3pwJexGAxv00LxS1kCtehHpunPpPH6ProTdaKCDPhrws28kwsWMpi8Wke6p1htczpY4MBr15ErYjbyvoMOOJmNUGo7ZnBYlEZHuuJQtUnfed8KuGfign4qFGAn5dfpGRLrCOcf5dIFkJEgq4m0n7JqBD3oz49hYnOVSlXSp6nU5IjLglorNNWF7pTUPQxD0AIfGovitOdRJRKSTzqXzBH3GgYT3nbBrhiLoQ34fBxJRLmeLVOsNr8sRkQFVqtW5kitxaCxKwOftkMr1hiLoodkpW3eOS1l1yopIZ1zMFHHQ9TVhb2Zogj4VCZIMBzifLuA0/42I7DLnHOczBSajIUbD3V0T9maGJuibV8rGyVZqLBUrXpcjIgNmrjU1ei91wq4ZmqAHODgaJegzXlenrIjsstfTBSJ+H/sSEa9L+S5DFfQBn3FkLMbVXEmLkojIrslVaszlyxxNxvB5PK/NZoYq6AGOpWI44Hw673UpIjIgzq3k8RmerQl7M0MX9PFggJmRMOczRc1/IyJtq9YbXMwUOZCIerq4yI0MXdAD3JaMU6k3NP+NiLTtUrZIrYfmtdlMW0FvZv/BzF4ysxfN7I/NLGJmR83sSTM7Y2afNbPemOxhnalYiNFQgLMreQ21FJEdc87x+kqe8UiQcY8XF7mRHQe9me0H/j1w0jl3L+AHPgr8OvCbzrnjwArwsd0odDeZGcdSMTLlGstFzX8jIjszVyizWq1zWyrudSk31O6pmwAQNbMAEAOuAe8DPte6/3HgI20+R0ccemOopTplRWRnXl8pEPb72N+DQyrX23HQO+euAP8duEQz4DPAU0DaObe2dt8ssL/dIjsh4PNxZCzGlVyJooZaisgtWhtSeaxHh1Su186pmxTwYeAosA+IAx/cZNdNT4Kb2cfN7JSZnVpYWNhpGW05lmwOtTyX0QVUInJrzq3kMXp3SOV67Zy6+V7gvHNuwTlXBf4ceAhItk7lABwArm72YOfcY865k865k1NTU22UsXPxUHOo5YW0lhoUke2rNhpczBY5kIj07JDK9doJ+kvAO8wsZs0lzh8BXga+DPxQa59Hgc+3V2Jn3ZaMU9ZQSxG5BZcyRWoN1/OdsGvaOUf/JM1O16eBF1rf6zHg54GfM7OzwATwqV2os2OmYiESoQCvr2hWSxG5ubUhlakeH1K5XuDmu2zNOffLwC9v2HwOeLCd79tNZsZtqRjPzmVZLlWZ6JMXTkS8MV+osFqtc3Iy4XUp2zaUV8ZutDbU8uyyhlqKyI2dWV4l7PdxoMeHVK6noKc51PJoMsaV1RL5Su3mDxCRoZQpV5kvVLgtFe/5IZXrKehbbkvGMeCsLqASkS2cXc7jN+vpeW02o6BviQb9HByNcjFdpKIFxEVkg1KtzuVckcNjUUL+/orO/qq2w25Pxak5xwWtQCUiG7y+UqDhmjnRbxT06yQjQaZiIc6m8zQ01FJEWmoNx/l0npmRMCOhtgYrekJBv8HxVJxSrcFsruR1KSLSIy5lClQajuOpEa9L2REF/QbT8TCJUIAzy6u6gEpEcM5xtnWB1EQ06HU5O6Kg38DMuD0VJ1OusViseF2OiHjsWr455/zxVBzroyGV6ynoN3FoNErY7+OMLqASGXpnl/NEA3729dEFUhsp6Dfh9zXHyV7Pl8mVdQGVyLBaKVVYLFa4PdX7c87fiIJ+C0eTMXwGZ1bUqhcZVmeW8wR8xpGx/rpAaiMF/RYiAT+HRqNcyhYo17QClciwKVTrXMmVODoWI9hnF0ht1N/Vd9jtqTgNB+d0AZXI0Dnb+m++X+acvxEF/Q2MhoPsjYd5PZ2n1tC0CCLDolJvcD5d4EAiQizY+ytI3YyC/iZOTIxQqTsuZLQClciweH0lT9057pjozwukNlLQ38RENMRkNMSZ5VVNiyAyBGqNBq+n8+yNhxkL9+cFUhsp6LfhjvE4xVqDy1m16kUG3YVMkUrdcWJ8MFrzoKDflul4mLFwgNc0LYLIQGs4x5nlVSaiQSZig7OsqIJ+G8yMO8ZHyFXqXFste12OiHTI5WyRYq0xUK15UNBv2/5EhHjQz6tq1YsMJOccry3nGQ0FmI6HvS5nVynot8lnxvHxOCulqiY7ExlA11bL5Co1TkyM9O3kZVtR0N+Cw6Mxwn4fry6tel2KiOwi5xyvLq8SC/rZ38eTl21FQX8L/L7mFMbzhQorparX5YjILlksNn+n70jF+3rysq0o6G/RsWSMgM94bVmtepFB8epSnrDfx+E+n7xsKwr6WxT0+ziWjHElVyJX0RTGIv1upVRlvlDm9lQcv2/wWvOgoN+R21NxfIZa9SID4LXlVQKtNSgGlYJ+ByIBP0fGYlzKFMlX1aoX6VfZcpUruRK3Jft/KuIbGdyfrMPuGB/BrHluT0T60ytLq/jNuH3ALpDaSEG/Q7Ggn8NjMS5mChSqWphEpN/kyjVmcyVuSzWHTQ+ywf7pOmztMmmdqxfpP68sN1vzxwdgYZGbaSvozSxpZp8zs1fM7LSZvdPMxs3si2Z2pvU5tVvF9pq1Vv0FtepF+kquUuNytsixZIxwoP8XFrmZdlv0vw38P+fcncCbgdPAJ4AvOeeOA19qfT2wTkzEcQ7OqFUv0jdeXVrFb3B8fPBb89BG0JvZKPAe4FMAzrmKcy4NfBh4vLXb48BH2i2yl8WDAQ6NRTmfKVDUIuIiPW+11Zo/mowTGYLWPLTXoj8GLAD/y8yeMbNPmlkcmHbOXQNofd6z2YPN7ONmdsrMTi0sLLRRhvfuHB9pteo1Akek1726vIoNUWse2gv6APAA8HvOufuBPLdwmsY595hz7qRz7uTU1FQbZXgvHgpwcDTKuXSeklr1Ij0rX6lxKVPk6FiM6JC05qG9oJ8FZp1zT7a+/hzN4J8zsxmA1uf59krsD3dOjNBQq16kp6215gdl0e/t2nHQO+euA5fN7ERr0yPAy8ATwKOtbY8Cn2+rwj4xEgpwSK16kZ5VqNa4mClyZMha89A8/dKOfwd8xsxCwDngx2j+8fhTM/sYcAn44Tafo2+cmBjhUrbImeU8b9oz6nU5IrLOq0v5Zmt+wK+C3UxbQe+cexY4ucldj7TzfftVIhTgYCLCuXSe4+PD06Mv0uvylRoXMgWOJGPEgsP3e6krY3fZXZMJGg6tQiXSQ15Zap6bv3MIW/OgoN91I6EAh8einEsXKGhmSxHP5So1LmaLHEvGiQ5hax4U9B1x50QCMzitVr2I504v5vCbcccQjZvfSEHfAbGgn2PJOBczRa1CJeKhTKnKbK7E7anh7jNT0HfIHeNx/GacXsx5XYrI0Hp5KUfQZ0N1FexmFPQdEgn4uT0VZzZXIl2qel2OyNBZLla4tlrm+Hic0IDPN38zw/3Td9jx8ThBn/GyWvUiXffyYo6Q38dtQzDf/M0o6Dso5Pdxx/gI1/NllooVr8sRGRqLhTLzhQonxuMEfYo5HYEOW1umTK16ke5wzvHiQo5IwMexpFrzoKDvuIDPx4mJERYKFebzZa/LERl4V1fLLJeq3D2RwO8zr8vpCQr6LmhOierjpcUczjmvyxEZWA3neGkxSyLUXBBImhT0XeD3GXdNJlgpVbmyWvK6HJGBdTFTZLVS557JBD5Ta36Ngr5LDo9GGQ0FeGkhR0OtepFdV2s4Ti/mGI8EmRkJe11OT1HQd4mZce9Ugny1zvl0wetyRAbO2ZU8pXqDe6dGMbXm/wkFfRdNx8NMxUKcXlqlWm94XY7IwCjXGry2vMrMSJjJWMjrcnqOgr6Lmq36USr1Bq9pyUGRXfPq8iq1huOeyYTXpfQkBX2XpSJBDiYinF1ZpVjVkoMi7cpXapxL5zk8FmU0HPS6nJ6koPfA3ZMJHM0Jl0SkPS8u5jCMu9Wa35KC3gPxUOCNaYwzZU14JrJTi4UKV3Il7hiPD92C37dCQe+ROydGCPqMF+azuohKZAecc7ywkCUS8A39NMQ3o6D3SMjv466JBPOFCtc1NYLILbucK7FSqnLPZIKAJi67IR0dDx1LxRgJ+XlhPquLqERuQa3heGkhSzIc5NCopjq4GQW9h3xmvGlqlNVqnXMruohKZLvOrqxSrDW4b09CF0dtg4LeY3vjYfbEwpxeylGu6SIqkZsp1eq8upRn30iEyZimOtgOBb3HzIz79iSa83RouKXITa3NF3XvlIZTbpeCvgeMhoMcTcY4ny6Q1XBLkS0tFytczBa5PRVnJBTwupy+oaDvEXdNJgj4jOc13FJkU845npvPEvH7uHNyxOty+oqCvkeE/T7ummwOt7y2quGWIhtdzBZZKVW5dyqhdWBvkY5WDzmWjDEaCvD8fJZaQ616kTWVeoOXFnJMRIMc1HDKW6ag7yE+M94yPUqhVue15VWvyxHpGaeXcpTrDd68Z0zDKXeg7aA3M7+ZPWNmf9n6+qiZPWlmZ8zss2amyaFvwWQszMFEhNeWV1mt1LwuR8RzmXKVcysFjo7FSEY0O+VO7EaL/meA0+u+/nXgN51zx4EV4GO78BxD5d49o/jMeE4dszLknHM8P58l4DPu1nDKHWsr6M3sAPDPgU+2vjbgfcDnWrs8DnyknecYRtGAn7smRpjLl7mmeXBkiM3mSiwUKtw9mSDs15nmnWr3yP0W8J+BtUs6J4C0c27tnMMssL/N5xhKt6Xib3TM1tUxK0OoUm/w/HyWZCTIsWTM63L62o6D3sx+AJh3zj21fvMmu26aUmb2cTM7ZWanFhYWdlrGwPKZ8ebpUQrVOq+qY1aG0MuLzQ7Y+6fVAduudlr0DwM/aGYXgD+hecrmt4Ckma1dsnYAuLrZg51zjznnTjrnTk5NTbVRxuCaWtcxmyurY1aGx3Kxwrl0gduSMVLqgG3bjoPeOfcLzrkDzrkjwEeBv3PO/Wvgy8APtXZ7FPh821UOsTftGcVvxjNzGXXMylBoOMczcxkifp+WB9wlnejd+Hng58zsLM1z9p/qwHMMjUjAz71Toyy25vgQGXTn0gUy5Rr3TY8SVAfsrtiVWYGcc18BvtK6fQ54cDe+rzQdGYtyKVvkhfkse+NhIlobUwZUsVrn5cUc0/Ew+0ciXpczMPTnsg+YGfdPj1JrOF6Yz3pdjkjHPNdabe0te0bVAbuLFPR9YjQc5MTECJdzJeY0tl4G0JVckaurJe6aSBDXFMS7SkHfR06MjzAS9PPsXEaTnslAqdQbPDuXZSwc4Ph43OtyBo6Cvo/4fcb9e8fIV+ucXtRqVDI4XpjPUqk3eOveJD6dstl1Cvo+MxULc2QsxpmVPMvFitfliLRtLl/mYrbI8fG4Ji3rEAV9H3rTVIJowMdT19OaHkH6Wq3R4Jm5DCMhP3dNaMx8pyjo+1DQ7+OBvUlylboWFJe+9tJijkK1zlunk/h9OmXTKQr6PjUdD3N4LMqZ5TwrJZ3Ckf6zVKzw+kqBY8kYEzEtW9FJCvo+9qapUcIBH09dy+gUjvSVWqPBqWtpYkE/92ie+Y5T0PexkN/H/dNjZCs1zXApfeXFhRz5ap237h3TQt9doCPc52ZGIhwajfLq0qpG4UhfmMuXOZcucHsqzlQs7HU5Q0FBPwDevGeUSMDPqWtpao3GzR8g4pFKvcFT19MkQgHu0cyUXaOgHwBBv4+TM2OsVuu8sKBRONK7np/PUq41ODkzplE2XaSgHxBTsTDHU3HOpwtcXy15XY7Id7mSK3EpW+TExAipiEbZdJOCfoDcPZlgNBTgqesZyjWdwpHeUazVeWYuQzIc4M6JEa/LGToK+gHi9xlvm0lSbV1tqBWppBc453jqWpp6o8HJGc1l4wUF/YAZiwS5ezLB1dWSVqSSnnBmOc98ocJ9e8YYDWsuGy8o6AfQ8VScqViI5+ayZMtVr8uRIbZcrPDSYo59IxGOjEW9LmdoKegHkJlxciZJwGd8+6omPhNvVBsNvnMtTSTg44G9Y1oxykMK+gEVDfh560zzqtnntfygeOC5uSz5ap23zaQIaZFvT+noD7C98UhzyGWmwGxO5+uley5li1zKFrlzYoRJTVjmOQX9gLtnKkEqEuSZ6xnylZrX5cgQyJarPHM9w0Q0pKGUPUJBP+B8Zjw4kwTg29fSNDTkUjqo1mjw5NUVAj7jwX0aStkrFPRDIB4K8MDeMVZKVZ2vl45xzvH09Qy5Sp0H9yWJBvxelyQtCvohsT8R5Xgqzrl0gUuZgtflyAA6ly4wmytx92RCs1L2GAX9ELlnKsFkNMQzcxnSJY2vl92zXKzw/HyW6XiYE+Nxr8uRDRT0Q8RnzfOmQb+PJ6+uUKlrPhxpX7nW4NtX00QDft42k9R4+R6koB8ykYCft+9LUajWOXUtrflwpC0N53jy6gqlep23709qvHyP0qsyhCaiIe7bM8r1fJnTS1qCUHbu+fksi8UKD0yPaerhHqagH1LHkjEOjUZ5ZWlVF1PJjpxPFziXLnA8FefQWMzrcuQGFPRDysy4f3qM8UiQp66lWVHnrNyCxUKFZ+cy7ImFuXdKSwL2uh0HvZkdNLMvm9lpM3vJzH6mtX3czL5oZmdan1O7V67sJr/PeMf+FCG/n29eWaZYq3tdkvSBQrXOk1dXiAf9PLhPna/9oJ0WfQ34j865u4B3AD9lZncDnwC+5Jw7Dnyp9bX0qEjAz0P7U1Trjm9dWdFMl3JD1UaDb15Zpu5cq5GgkwL9YMevknPumnPu6dbtHHAa2A98GHi8tdvjwEfaLVI6aywS5G0zSVZKVZ66rpE4srmGc3z7appsucaD+5JaRKSP7MqfYzM7AtwPPAlMO+euQfOPAbBni8d83MxOmdmphYWF3ShD2rAvEeGeyQSzuRIvLea8Lkd6jHOOZ+eyzOXLvGV6jL3xiNclyS1oO+jNbAT4M+BnnXPbnkjFOfeYc+6kc+7k1NRUu2XILrhjPM6RsRivLed5fSXvdTnSQ15bznMhU+CO8ThHkxph02/aCnozC9IM+c845/68tXnOzGZa988A8+2VKN1iZrxlepS98TDPzWe5kit5XZL0gMvZIi8t5jjQ+q9P+k87o24M+BRw2jn3G+vuegJ4tHX7UeDzOy9Puq05TUKKVCTId66tsFioeF2SeGihUOap62kmoiHeulcjbPpVOy36h4F/A7zPzJ5tfXwI+DXg/WZ2Bnh/62vpIwGf8dD+cWKB5rBLLTA+nJaLFb45u0I8GOCd+1P4fQr5fhXY6QOdc18HtnrlH9np95XeEA74ePjAOF+5tMQ3Zpd5z6EJ4sEdv12kz2TLVf5hdplQwMe7Do5rGGWf06snW4qHAjx8YJxaw/G1y8sUq7qgahjkKzW+PruMz4x3HxjXAiIDQEEvN5SMBHn4wDiVWoOvzy5R0tWzA61Yq/P12WXqDcfDB8eJh/Rf3CBQ0MtNjUdDPHSgObXxN2aXNY/9gCrV6nzj8jKlWoOHD4wzpguiBoaCXrZlMhbmHfvHyVVqfGN2marCfqCUanW+dnmZfLXGQwdSjEc15fAgUdDLtk3Hwzy4L0W6VOXratkPjLWQL1TrPHRgXOu9DiAFvdySfSMR3r4/RaZc5WuXlyjXFPb9rFir87XLSxSqdR4+kFLIDygFvdyyfSMR3tk6jfO1y+qg7Vf/GPLNc/KTCvmBpaCXHZmOh3n4wDj5ap2vXmq2CKV/rFZq/P2lJUpvhLzOyQ8yBb3s2FQszLsOjFOqN/jq5SVylZrXJck2rJSq/P2lJWoNx7sPKeSHgYJe2jIRC/Hug+PUG46/v7TIUlFz4/Sy+XyZr11ewm/G9xya0ILeQ0JBL21LRUJ8z6EJgj4fX7u8xFXNetmTruSK/MOVZWIBP99zaIKELoYaGgp62RUjoQDvPTTBWDjIt66uaD77HuKc47XlVZ68miYZDvKeQxNEg5rWYJgo6GXXhAN+3n1w/I357F+Yz2pZQo/VG46nr2d4cSHH/kSEdx2c0ARlQ0j/u8muCvh8vGN/iufns5xZyZMpV3lwnxaR9kK5VudbV9MsFSvcOTHCXRMjmk9+SOm3T3adz4y3TI9x//QYC4UKX764qDntuyxTrvLlS0uslCq8bSbJ3ZMJhfwQU9BLxxxNxnjPoQlqDcdXLqqTtlsuZgp85eIS9YbjPQcnODga9bok8ZiCXjpqIhrinx2eJBEO8K2rKzw/n6Wh8/YdUW84nrqe5qnrGVKRII8cmdTkZALoHL10QSzo5z0HJ3hhIcvZlTyLhQoP7ksyouF9uyZXqfHklRWylRonWufjfTpVIy1q0UtX+H3N8/Zv35ciX63xdxcWuZQpeF1W33POcSFd4MsXFinV6zx0IMU9kwmFvPwTalJJV+1PREhFpvjOtRVOXc8wly9z3/QYYY3KuWXFWp2nW8dwMhri5EySmMbHyyYU9NJ1saCfdx+c4NWlVV5ZWmW+UOHN06PsH4loZMg2OOeYzZV4di5Dwznu2zPKbcmYjp1sSUEvnvCZcddkgpmRCE9fz/Dtq2n2jYR58/SYFqO+gUK1zvPzGa6ulhmPBHnrTFJTGchN6R0inkpGgrz38ARnlvOcXsqxcH6BuycTHE3GdJ55nXrDcXYlzytLq4DjnskEd4zH1YqXbVHQi+d8ZpyYGGFfIsKzcxmem89yPl3gTXtGmY5rMYy5fJnn5jKsVuvsGwlz355RYkH96sr26d0iPSMRCvCuA+NcXS3z4kKWb8wuszce5k17Rofy9ES6VOWlxRxz+TLxoJ+H9qfYOxLxuizpQ8P32yM9zczYn4iwNx7m7EqeV5dW+dvzCxwcjXLnxMhQjL3PlWu8vJTjSq5E0GfcO5ngtlQcv0+naWRnBv+3RvqS39c8nXN4LMpry3nOp/NcyhY5NBrlxMTIQLbwM+UqZ5abP2fAjDsnRjieihPU0FNp0+D9tshAiQT83LdnlDvG45xZznOuFfj7RsIcS8aZioX6ukPSOcdcvszZlTzzhQp+M25PxTkxHies0UeySxT00hciAT9v2jPK8fE4Z1fyXMgUuLpaJhHycywZ59BotK9avuV6g9lskXPpArlKjUjAxz2t0Uaa0ll2m4Je+kok4OfeqVHumkgwm2sG5XPzWV5cyDEzEubgaJTpeLgnh2bWG465QpnLmSLX8iUaDpLhICdnkhxIRHqyZhkMHQl6M/sA8NuAH/ikc+7XOvE8Mrz8PuPwWIzDYzFWShUupItcWS0y2+rA3BsPMzMSYU887GkLuVxrMF8oc221xPXVMjXnCPl9HE3GODwaIxkJelabDI9dD3oz8wO/C7wfmAW+Y2ZPOOde3u3nEoHm4uSpvSHe7EaZy5e5kitxPV/icq6E0bwoazIaYjIWIhUJEungue9irc5yscJyscpCoUK6teBKyO/jwGiU/YkIU7GQWu/SVZ1o0T8InHXOnQMwsz9M3TH8AAAHv0lEQVQBPgwo6KWjfGbMjESYGYngnGO5WOV6vsxisdnZeaa1YHkk4CMZDpIIBRgJBYgH/UQDfsIBH0Gf3bBz1zlHreEo1uoUaw0K1Tq5So1suUa2UqVUa7RqgVQkyN2TI+yJhUlFgn3daSz9rRNBvx+4vO7rWeDtHXgekS2ZGROxEBOxEJCg1nCslCqkS1XS5RqZUpX5QpnGhjVQfAYBn+G35geAA5yDWqNBZeMDWo9JhALsiYUZCwcYj4ZIhoMa9y49oxNBv9m7+7t+O8zs48DHAQ4dOtSBMkT+UcBnTMXCTMX+cUoF5xzFWoN8tUap1qBUq1OuN6g1mq32unMYzTe0mRHwGUGfj6DfiAaa/wXEgn6iAZ9a69LTOhH0s8DBdV8fAK5u3Mk59xjwGMDJkye1tpx0nZkRC/o1h7sMvE4MR/gOcNzMjppZCPgo8EQHnkdERLZh11v0zrmamf008Nc0h1d+2jn30m4/j4iIbE9HxtE7574AfKET31tERG6NrrUWERlwCnoRkQGnoBcRGXAKehGRAaegFxEZcOac99cqmdkCcHGHD58EFnexnN2ium6N6rp1vVqb6ro17dR12Dk3dbOdeiLo22Fmp5xzJ72uYyPVdWtU163r1dpU163pRl06dSMiMuAU9CIiA24Qgv4xrwvYguq6Narr1vVqbarr1nS8rr4/Ry8iIjc2CC16ERG5gb4IejP7YTN7ycwaZnZyw32/YGZnzexVM/v+LR5/1MyeNLMzZvbZ1vTJu13jZ83s2dbHBTN7dov9LpjZC639Tu12HZs836+Y2ZV1tX1oi/0+0DqGZ83sE12o67+Z2Stm9ryZ/YWZJbfYryvH62Y/v5mFW6/x2dZ76Uinaln3nAfN7Mtmdrr1/v+ZTfZ5r5ll1r2+v9TpulrPe8PXxZp+p3W8njezB7pQ04l1x+FZM8ua2c9u2Kdrx8vMPm1m82b24rpt42b2xVYWfdHMUls89tHWPmfM7NG2i3HO9fwHcBdwAvgKcHLd9ruB54AwcBR4HfBv8vg/BT7auv37wL/tcL3/A/ilLe67AEx28dj9CvCfbrKPv3XsjgGh1jG9u8N1fR8QaN3+deDXvTpe2/n5gZ8Efr91+6PAZ7vw2s0AD7RuJ4DXNqnrvcBfduv9tN3XBfgQ8Fc0F+h6B/Bkl+vzA9dpjjP35HgB7wEeAF5ct+2/Ap9o3f7EZu97YBw41/qcat1OtVNLX7TonXOnnXOvbnLXh4E/cc6VnXPngbM0Fyd/gzXXeHsf8LnWpseBj3Sq1tbz/Svgjzv1HB3wxoLuzrkKsLage8c45/7GOVdrffktmiuReWU7P/+Hab53oPleesQ6vH6gc+6ac+7p1u0ccJrmmsz94MPAH7mmbwFJM5vp4vM/ArzunNvphZhtc859FVjesHn9+2irLPp+4IvOuWXn3ArwReAD7dTSF0F/A5stRL7xF2ECSK8Llc322U3vBuacc2e2uN8Bf2NmT7XWze2Gn279+/zpLf5V3M5x7KQfp9n620w3jtd2fv439mm9lzI031td0TpVdD/w5CZ3v9PMnjOzvzKze7pU0s1eF6/fUx9l68aWF8drzbRz7ho0/5ADezbZZ9ePXUcWHtkJM/tbYO8md/2ic+7zWz1sk20bhxFta7Hy7dhmjT/CjVvzDzvnrprZHuCLZvZK6y//jt2oLuD3gF+l+TP/Ks3TSj++8Vts8ti2h2Nt53iZ2S8CNeAzW3ybXT9em5W6ybaOvY9ulZmNAH8G/KxzLrvh7qdpnp5YbfW//F/geBfKutnr4uXxCgE/CPzCJnd7dbxuxa4fu54Jeufc9+7gYdtZiHyR5r+NgVZLbNPFynejRjMLAP8SeOsNvsfV1ud5M/sLmqcN2gqu7R47M/sD4C83uWtbC7rvdl2tTqYfAB5xrZOTm3yPXT9em9jOz7+2z2zrdR7ju/8t33VmFqQZ8p9xzv35xvvXB79z7gtm9j/NbNI519E5XbbxunTkPbVNHwSeds7NbbzDq+O1zpyZzTjnrrVOZc1vss8szb6ENQdo9k/uWL+funkC+GhrRMRRmn+Zv71+h1aAfBn4odamR4Gt/kNo1/cCrzjnZje708ziZpZYu02zQ/LFzfbdLRvOi/6LLZ6v6wu6m9kHgJ8HftA5V9hin24dr+38/E/QfO9A8730d1v9cdotrT6ATwGnnXO/scU+e9f6CszsQZq/00sdrms7r8sTwI+2Rt+8A8isnbLogi3/q/bieG2w/n20VRb9NfB9ZpZqnWr9vta2netG73O7HzQDahYoA3PAX6+77xdpjph4Ffjguu1fAPa1bh+j+QfgLPB/gHCH6vxD4Cc2bNsHfGFdHc+1Pl6ieQqj08fufwMvAM+33mQzG+tqff0hmqM6Xu9SXWdpnod8tvXx+xvr6ubx2uznB/4LzT9EAJHWe+ds6710rAvH6F00/2V/ft1x+hDwE2vvM+CnW8fmOZqd2g91oa5NX5cNdRnwu63j+QLrRst1uLYYzeAeW7fNk+NF84/NNaDayq+P0ezX+RJwpvV5vLXvSeCT6x7746332lngx9qtRVfGiogMuH4/dSMiIjehoBcRGXAKehGRAaegFxEZcAp6EZEBp6AXERlwCnoRkQGnoBcRGXD/Hw3kxPqbLqM4AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.plot(x, x**2, 'lightblue')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Или так:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x11827b3c8>]"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XeYlNX5xvHvI4sgRAUEAVEEo0HUWNdoNFHEgiVRY8WKFTt2xRBjDUpiiQVRhCgqERGNLTZUbIkCS1FAEFBRkEVARGlBkPP745n9ZYO7bJlyZt65P9e11+7OvrNz8+7wzJnznmIhBEREJLnWix1ARESyS4VeRCThVOhFRBJOhV5EJOFU6EVEEk6FXkQk4VToRUQSToVeRCThVOhFRBKuJHYAgJYtW4YOHTrEjiEiUlDGjRu3MITQqqbj8qLQd+jQgbKystgxREQKipl9Xpvj1HUjIpJwKvQiIgmnQi8iknAq9CIiCadCLyKScDUWejP7m5nNN7PJlW5rYWYjzWxG6nPz1O1mZneb2Uwz+9DMds1meBERqVltWvQPAwevdVtv4PUQwjbA66nvAQ4Btkl99AQGZCamiIjUV42FPoTwNrBorZuPAIakvh4CHFnp9keCex9oZmZtMxX2R8aMgd69QdshikihCQGuuAImTsz6Q9W3j751CKEcIPV509Tt7YDZlY6bk7rtR8ysp5mVmVnZggUL6peirAz69YPx4+t3fxGRWN58E26/HSZPrvHQdGX6YqxVcVuVze0QwsAQQmkIobRVqxpn8FbtxBNhgw3gwQfrd38RkVgGDYJmzeDoo7P+UPUt9F9VdMmkPs9P3T4H2KLScZsDc+sfrwbNmsGxx8Lf/w7LlmXtYUREMmrRInjqKTj5ZG+sZll9C/1zQI/U1z2AZyvdfmpq9M2ewLcVXTxZc9ZZsGQJDB+e1YcREcmYxx6DlSu9fuWAhRouZJrZ40AXoCXwFXAd8AwwHGgPfAEcG0JYZGYG3IuP0lkOnB5CqHG1stLS0lDvRc1CgM6dYZNN4F//qt/vEBHJlRBgxx29JT9mTFq/yszGhRBKazquxtUrQwgnVPOj/as4NgAX1Bwvg8z8VfHKK2HKFNh++5w+vIhInYwZ4xdgH3ggZw+ZjJmxPXpAw4YweHDsJCIi6/bgg9C0KZxQXRs685JR6Fu1giOPhEce8X4vEZF8tGQJDBsG3bvDhhvm7GGTUejBu2++/hqeeSZ2EhGRqg0b5iMEc3QRtkJyCv0BB8CWW2pMvYjkrwcfhB12gD32yOnDJqfQr7cenHkmvP46fPpp7DQiIv/rgw9g7FhvzVtVc0uzJzmFHuD0073g66KsiOSbQYOgUSM45ZScP3SyCv3mm8Mhh8BDD8Hq1bHTiIi4FSt8ktRRR0GLFjl/+GQVeoCzz4bycnjxxdhJRETcU0/B4sVenyJIXqE/7DBo29bfJomI5INBg2DrraFLlygPn7xCX1ICp50G//wnzJkTO42IFLvp0+Gtt3ywSI4vwlZIXqEHv6odglr1IhLf/ff/twEaSTIL/VZbQbduPmZ11arYaUSkWK1YAQ8/7Bdh27SJFiOZhR7gvPNg7lx4/vnYSUSkWA0fDt984/UoouQW+sMOgy22gAHan1xEIhkwwJdR33ffqDGSW+gbNICePeG112DGjNhpRKTYTJgAo0fDuedGuwhbIbmFHvwqd0lJTtd9FhEBvDW/wQZw6qmxkyS80Ldt68sXP/SQXxQREcmFb7+FoUN9zflmzWKnSXihB78IsmgRPPlk7CQiUiwefRSWL49+EbZC8gv9fvtBp066KCsiuRGCj50vLfWPPJD8Qm/mF0Pefx8mToydRkSS7t13ff/qPGnNQzEUevA9ZTfYQK16Ecm+AQO8X75799hJ/l9xFPrmzf2kDx0K330XO42IJNX8+TBihDcumzSJneb/FUehB+++WbbML5KIiGTD3/7my66cc07sJP+jeAr97rvDrrv626oQYqcRkaT54Qefs9Oli8+GzSPFU+jN/OLIlCnwzjux04hI0rzyCsyalVcXYSsUT6EHOPFEv0hy772xk4hI0txzz38naeaZ4ir0TZr4WvVPPw2zZ8dOIyJJ8fHH8PLL3ppff/3YaX6kuAo9wAUX/HdCg4hIJvTv7wW+Z8/YSapUfIW+Qwf47W9h4ED4z39ipxGRQvfdd76e1vHHQ+vWsdNUqfgKPUCvXrBwIQwbFjuJiBS6IUNg6VK46KLYSaqVVqE3s0vNbIqZTTazx82ssZl1NLPRZjbDzJ4ws/zrsNpvP9h+e7j7bg21FJH6W7PGL8LuuacP4c5T9S70ZtYO6AWUhhB2ABoA3YF+wJ0hhG2Ab4AzMxE0o8z81XfCBPj3v2OnEZFC9eqrvrFRHrfmIf2umxJgAzMrAZoA5UBXYETq50OA/BtrBHDyyT7U8p57YicRkUJ1992+6fcxx8ROsk71LvQhhC+B24Av8AL/LTAOWBxCWJ06bA7QLt2QWdG0qe9ANWIEfPll7DQiUmimT4eXXvLlVfJwSGVl6XTdNAeOADoCmwFNgUOqOLTKTnAz62lmZWZWtmDBgvrGSM8FF3gfm4Zaikhd9e8PDRvm3bo2VUmn6+YA4LMQwoIQwirgaWAvoFmqKwdgc2BuVXcOIQwMIZSGEEpbtWqVRow0dOzoQy0feEBDLUWk9pYs8SGVxx3nXTd5Lp1C/wWwp5k1MTMD9gc+AkYBFR1WPYBn04uYZb16wYIFMHx47CQiUiiGDPFi36tX7CS1YiGN4YVmdgNwPLAamACchffJDwNapG47OYSwcl2/p7S0NJSVldU7R1pCgB128I1Jxo71ETkiItVZs8ZXp2zWDEaPjhrFzMaFEGrcr7CkpgPWJYRwHXDdWjd/Cvwind+bUxVDLc87D957D/baK3YiEclnI0f6hdjHHoudpNaKc2bs2k45xXehuvPO2ElEJN/dcYf3yx97bOwktaZCDz7U8pxzfFXLzz6LnUZE8tWkST5J6qKL8n5IZWUq9BUuvBDWWw/uuit2EhHJV3fe6cudn3tu7CR1okJfoV07OOEEGDwYFi+OnUZE8s28eTB0KJx2GrRoETtNnajQV3bZZb4K3cCBsZOISL65917f+PvSS2MnqTMV+sp23hm6dvX1K1atip1GRPLF8uUwYAAccQRsvXXsNHWmQr+2yy/3tW80gUpEKgwZAosW+bv+ApTWhKlMiTpham1r1vgEqsaNYdw4TaASKXZr1sC22/53glQe1YTaTphSi35t663nfXATJsBbb8VOIyKxvfCCrzl/+eV5VeTrQoW+KqecAq1awe23x04iIrHdfju0bw9HHx07Sb2p0FelcWNfwviFF2DatNhpRCSWsjJ4+224+GIoSWvFmKhU6Ktz3nnQqJGWRRApZrffDhttBGedFTtJWlToq7PppnDqqfDII76MsYgUly++gCefhLPP9mJfwFTo1+XSS31Dkvvui51ERHKtYjmUAllzfl1U6Nelc2ffgeqee2DZsthpRCRXFi3yneeOP94vxBY4Ffqa9O4NX38NgwbFTiIiudK/vzfueveOnSQjVOhrstdesM8+flHm++9jpxGRbFu2zLttfvMb+PnPY6fJCBX62ujdG2bPhr//PXYSEcm2wYP9XXxCWvOgJRBqJwTYZRdYuRKmTPHZsyKSPKtWwU9/CltuCe+8EztNjbQEQiaZ+av7tGnw3HOx04hItjz+uL97v+aa2EkySi362lq9Gjp1gpYt4f33C3bNCxGpRsWChiUl8MEHBfF/XC36TCspgSuvhDFj4M03Y6cRkUx7/nmYOtXfvRdAka8LFfq6OO00aN0abrkldhIRyaQQ/P91x45w3HGx02ScCn1dNG7ss2VHjvS16kUkGd56y9eav/LKgl68rDoq9HV17rm+7kW/frGTiEim3Hqrr2912mmxk2SFCn1dbbyxL2E8YgRMnx47jYika/x4eOUVf7e+wQax02SFCn19XHwxrL++WvUiSXDrrf4u/bzzYifJGhX6+mjd2pcufeQRmDUrdhoRqa8pU/zd+YUX+rv1hFKhr6+rr/YZshqBI1K4br4ZmjSByy6LnSSrVOjra/PN4cwz4aGHfIMCESks06bBE094a36TTWKnySoV+nRULHqkvnqRwvOnP/nF18svj50k69Iq9GbWzMxGmNk0M5tqZr80sxZmNtLMZqQ+N89U2LzTvj2cfrqvVT9nTuw0IlJb06f7arTnnw+tWsVOk3XptujvAl4OIWwL7ARMBXoDr4cQtgFeT32fXNdc42tk/PnPsZOISG317QuNGsEVV8ROkhP1LvRmthGwDzAYIITwfQhhMXAEMCR12BDgyHRD5rUOHaBHDxg4EObOjZ1GRGryySfw2GM++bF169hpciKdFv1WwALgITObYGaDzKwp0DqEUA6Q+rxpVXc2s55mVmZmZQsWLEgjRh74/e99dcu//CV2EhGpSd++0LChL3dQJNIp9CXArsCAEMIuwDLq0E0TQhgYQigNIZS2KvQ+sq22glNOgfvvh3nzYqcRkep89pnPf+nZE9q2jZ0mZ9Ip9HOAOSGE0anvR+CF/yszawuQ+jw/vYgFok8f31P2tttiJxGR6txyCzRo4PNgiki9C30IYR4w28w6pW7aH/gIeA7okbqtB/BsWgkLxdZbw0knwX33wfzieG0TKSiff+7zXs4+GzbbLHaanEp31M1FwFAz+xDYGegL3AocaGYzgANT3xeHPn18X1m16kXyz623+mz2ImvNg/ez11sIYSJQ1TZW+6fzewtWp05wwglw770+pbpNm9iJRAS8b37wYDjrLJ/VXmQ0MzbTrr/e++r79o2dREQq3HST98336RM7SRQq9Jm29dZwxhk+Aufzz2OnEZGPP4YhQ3wWbLt2sdNEoUKfDdde632BN94YO4mIXH+9r2lThH3zFVTos2GLLXwTg4cf9taEiMTx4YcwbBhccolvFVikVOiz5ZprvBVx3XWxk4gUrz/+0TcUKYIVKtdFhT5bNt3UWxFPPAETJ8ZOI1J8xoyBZ5/1pQ6aJ3cR3dpQoc+mK66AZs28z15Ecuvaa6FlS+jVK3aS6FTos6lZM7jqKnjhBXjvvdhpRIrH22/Dq696F+qGG8ZOE52FEGJnoLS0NJSVlcWOkR3LlvmiZ9tvD2+8ETuNSPKFAHvtBbNnw4wZfq0socxsXAihqkmr/0Mt+mxr2tQnaYwaBa+/HjuNSPI98wy8/z7ccEOii3xdqEWfCytXwjbb+JIIo0eDWexEIsm0ejXssIPPY/nwQyhJa5WXvKcWfT5p1MhbF2PHwogRsdOIJNdDD/nclVtuSXyRrwu16HPlhx9g551hxQr46CNYf/3YiUSSZflyX4KkY0d4992ieOesFn2+adDANxD/5BPfX1ZEMuuvf4XycujXryiKfF2o0OfSwQdD167ejfPdd7HTiCTHwoVe4A8/HH71q9hp8o4KfS6Zeat+4UL/LCKZ0bcvLF3qffPyIyr0ubbbbnDiiXDHHfDll7HTiBS+Tz+F/v3htNNgu+1ip8lLKvQx3HyzX5zVgmci6evd20fY3HRT7CR5S4U+ho4d4cILfSjY5Mmx04gUrnffhSef9LXmi2zD77pQoY+lTx/YaCNfPjUPhriKFJw1a3xv5nbtin4Z4pqo0MfSooV33bz6Krz4Yuw0IoXn8cd9EmLfvr7UiFRLE6ZiWrUKfv5zb9FPngwNG8ZOJFIYli+HTp2gdWtfd3694myzasJUIWjYEG6/HaZP91EDIlI7d94Jc+b46LUiLfJ1oTMU26GHQrduPolq4cLYaUTy37x5Pl7+qKNgn31ipykIKvSxmXmrfskS361eRNbt97+H77/3mbBSKyr0+WD77eHcc+H++2HKlNhpRPLX6NE+LPmSS3wBM6kVFfp8ccMNvuXZpZdquKVIVdasgYsugrZttQ9zHanQ54tNNvFiP3Kk71wvIv/r4Yd9OOWf/6x9YOtIwyvzyerVsMsu3l//0UfQpEnsRCL5YfFi+NnP/OOdd7QMcYqGVxaikhIfZvn553DrrbHTiOSP66/3UWn33KMiXw9pF3oza2BmE8zshdT3Hc1stJnNMLMnzExbKdXFPvvASSf5iIKZM2OnEYlv8mS491445xx/xyt1lokW/cXA1Erf9wPuDCFsA3wDnJmBxyguf/mL7zN78cW6MCvFLQTo1cvXhbr55thpClZahd7MNgcOAwalvjegK1CxA/YQ4Mh0HqMotW3rb1VffBGefz52GpF4nngCRo3yIr/JJrHTFKx0W/R/Ba4C1qS+3wRYHEJYnfp+DtAuzccoThdd5OPrL77YNxQXKTaLF/tw49JS77aReqt3oTez3wDzQwjjKt9cxaFV9j2YWU8zKzOzsgULFtQ3RnI1bOj9krNmaXs0KU5/+APMn+8TCRs0iJ2moKXTot8bONzMZgHD8C6bvwLNzKwkdczmwNyq7hxCGBhCKA0hlLZq1SqNGAnWpYtvO9ivH0ybFjuNSO6MHQv33ecb9Oy2W+w0Ba/ehT6EcE0IYfMQQgegO/BGCOEkYBRwTOqwHoBm/6Tjjjt8PP055/jMQJGkW73an+9t2mh7wAzJxjj6q4HLzGwm3mc/OAuPUTxat/ZROG+/7TMDRZLuvvtgwgS46y4fbSNp08zYQrBmjXfjTJ7sXTibbho7kUh2fPkldO4Me+/to840OWqdNDM2SdZbDx54AJYu9T0yRZLq4ot957X+/VXkM0iFvlB07gy9e8PQob7wmUjSPP00PPUU/PGPsNVWsdMkirpuCsl//gM77eQXqyZN0qJnkhzffAPbbeeTBUeP1v7JtaSumyRq3NjHFH/6qbd6RJLi8sthwQIYPFhFPgtU6AvNfvtBz56+OfL778dOI5K+kSN916irrtKiZVmirptC9N13sMMO0LSpD0Nr3Dh2IpH6WboUfv5zX8Rv4kQ9l+tIXTdJttFG8OCDPtTyhhtipxGpvz/8wfdfGDxYRT6LVOgLVbducMYZPplK74akEP3733D33XDBBT5uXrJGXTeFbPFiX+GyRQsv9o0axU4kUjvLlvkIsh9+gA8/1B6w9aSum2LQrBkMHOgzZv/0p9hpRGrvqqt89NjDD6vI54AKfaE77DA49VTo2xfGjImdRqRmI0f6ejaXXAL77hs7TVFQ100SfPst7Lijd91MmOCjcUTy0eLFPmJso41g3DjYYIPYiQqaum6KycYbw5Ahvpn4lVfGTiNSvV69YN48eOQRFfkcUqFPii5dfMGzAQPgpZdipxH5sX/8Ax59FPr08e0BJWfUdZMkK1fC7rv7VPJJk6Bly9iJRFx5uXcvtm/vM7q1zEFGqOumGDVqBI89BosW+Q49efAiLsKaNT5gYNkyf36qyOecCn3S7Lgj3HyzL/n60EOx04jAbbfBa6/5jlGdO8dOU5RU6JPossuga1e46CKYOjV2GilmY8d6n/zRR8NZZ8VOU7RU6JOoQQN/i9y0KRx/PKxYETuRFKMlS+CEE3yN+Qcf1I5REanQJ1Xbtj6EbdIkbT8ocVx4IXz2me+K1rx57DRFTYU+yQ4+2MfV338/PPlk7DRSTIYO9YbGtdfCr38dO03R0/DKpFu1yv+jTZvms2Y7doydSJLuo498mO9uu8Ebb0BJSexEiaXhleIaNoTHH/evu3eH77+Pm0eSbelSv/D6k5/AsGEq8nlChb4YdOzoGzuMGaP+esmeEODss2H6dC/ym20WO5GkqNAXi6OPhiuugP79fRq6SKYNGOAF/qabfG9jyRsq9MXkllt8TZxzzoEPPoidRpJkzBhfdvjQQ6F379hpZC0q9MWkpMRbXM2bw1FHwTffxE4kSbBwIRx3nHfVPPoorKeykm/0Fyk2rVvDiBEwezaccoqvQyJSX6tWwbHH+tLDI0b4tpaSd1Toi9Evfwl33gn//CfceGPsNFLILrsM3nzTZ75q6eG8pUJfrM4/31cUvOEGTaaS+hk0CO69Fy6/3N8dSt5SoS9WZvDAA96679HDt3UTqa133/XGQrdu0K9f7DRSg3oXejPbwsxGmdlUM5tiZhenbm9hZiPNbEbqsxa5yFeNG/uuP61aweGHw9y5sRNJIZg924frdujgk/EaNIidSGqQTot+NXB5CKEzsCdwgZltB/QGXg8hbAO8nvpe8lXr1vD8877B+JFHaqVLWbclS7xRsGIFPPusFisrEPUu9CGE8hDC+NTXS4CpQDvgCGBI6rAhwJHphpQs23FHX4SqrAzOOEM7U0nVVq/2YZSTJsHw4dpEpIBkpI/ezDoAuwCjgdYhhHLwFwNg02ru09PMysysbMGCBZmIIek44gjo29fH2ffpEzuN5JsQ4IIL4OWXfQbswQfHTiR1kHahN7OfAE8Bl4QQvqvt/UIIA0MIpSGE0latWqUbQzLh6quhZ0+fQdu/f+w0kk/69YOBA+Gaa3w9GykoaS0tZ2YN8SI/NITwdOrmr8ysbQih3MzaAvPTDSk5YuYFvrzctyHcbDP43e9ip5LYhg3zAn/CCb4fsRScdEbdGDAYmBpCuKPSj54DeqS+7gE8W/94knMVyyT84hf+H/vdd2MnkpjefNOH3/76177ZvJY3KEjp/NX2Bk4BuprZxNTHocCtwIFmNgM4MPW9FJImTeCFF6B9ex9hoQ3Gi9PYsfDb38LWW8Mzz0CjRrETST3Vu+smhPAuUN1uv/vX9/dKnmjZ0i+87bUXHHQQvPOOj5uW4vDRR37BtVUrGDlSa9gUOL0Pk+pttRW88orvGtS1K3z5ZexEkguffQYHHugt+Nde0wYiCaBCL+u2007esl+wAA44AObr2nqilZd7kV+xAl591V/speCp0EvN9tjDV7r8/HPvxlm0KHYiyYb5873Iz5sHL70EO+wQO5FkiAq91M4++/iU96lT4ZBD4LtaT5mQQvDVV77936ef+pIYe+wRO5FkkAq91N6BB/qSxuPH+9faoSoZ5s3zIj9rFrz4ovZ7TSAVeqmbww+Hp56CiRP9Au3ChbETSTrKy72wf/GFd9d06RI7kWSBCr3U3eGHw3PPwbRpXhjmzYudSOpj7lwv8rNne5HfZ5/YiSRLVOilfrp187f5s2bBvvvCnDmxE0ldzJgBe+/tQ2ZfftlnvkpiqdBL/e23n4+zLy/3QvHxx7ETSW2MH+9FfulSGDUKfvWr2Ikky1ToJT177w1vvAHLlvnX770XO5GsyxtveHdbkybwr39pQ+8ioUIv6Sst9QLfvLlfoH3mmdiJpCpPPeVDY9u39yL/s5/FTiQ5okIvmfHTn8K//+27VR19NNx3X+xEUiEEuO02OPZYf1F++21o1y52KskhFXrJnFatvGvg0EN9N6IrroAffoidqritXAlnnglXXgnHHKMFyoqUCr1kVtOm8I9/eKG//XYv+ppYFceCBT6x7aGH4LrrfJ+BJk1ip5IIVOgl80pK4N574cEHfVTH7rvDlCmxUxWXyZN9GYOxY+Hxx+H667VpSBHTX16y56yzfIeipUthzz11kTZXHnnEi/yKFfDWW9C9e+xEEpkKvWTXXntBWRl07uz7z15+OXz/fexUybRihb+49ujhW0FOmOCfpeip0Ev2bb65j/Q4/3y44w4v/jNnxk6VLB9/7K34wYPhD3/wi65t2sROJXlChV5yo3Fj6N8fnn7al8LdZRd47LHYqQpfCF7cS0t97ZqXXoKbbvLrJCIpKvSSW7/7na98ufPOcMopcPLJ8PXXsVMVprlz4Te/8e6a0lLvqjn44NipJA+p0EvutW/vo3Guvx6eeAK2287XuQ8hdrLCEAL8/e++A9SoUXDXXfD667DFFrGTSZ5SoZc4Skp8bHdZmReo447zGbXl5bGT5bcvvvDzdNJJ0KmTvzvq1UtDJ2Wd9OyQuHbaCd5/H2691Zc93m4778tfvTp2svyyciXccouPXnr5ZT9f776r9WqkVlToJb6SErj6avjgA79Ie+GF3oc/cmTsZPnh1Vd9DaHf/973AZg61c9Xgwaxk0mBUKGX/NGpk/c1P/20jwk/6CDfzWr69NjJ4pgwAQ47zIv7mjX+jufpp2HLLWMnkwKjQi/5xcxH5kyZ4t0To0Z5d85pp/muSMVg2jS/ZrHrrr78c79+MGmSLzEsUg8q9JKfGjf27okZM/xi4/DhsO22cOqpyW3hT5rks1q3397Hw197LXz2GVx1lZ8PkXpSoZf81qaNz6b99FO49FIYMcIvSB51lHfzFPqQzDVrvKgfeKD3w48YAZdc4v/eG2+EjTeOnVASQIVeCkObNr55xqxZ3sJ9+2044ADv1rnnHvjuu9gJ6+brr32Fzx128KWcP/rIR9XMnu3LO7dqFTuhJIgKvRSWTTf1gjhnDgwZAhtt5F07bdvCiSfCCy/k76Jp//kPPPec7/S02WZw0UW+Pvxjj3kXTe/e2hREssJCFt76mtnBwF1AA2BQCOHWdR1fWloaysrKMp5DikRZma/38uST3lJu3txbyb/9rY9YadYsXraFC+G11+DZZ/1FaOlSaNnSJzydfrrPIxCpJzMbF0KocYf3jBd6M2sATAcOBOYAY4ETQggfVXcfFXrJiO+/97H3w4fDP//pRb9BA9htN9h3X//YfXd/V5At5eU+Uua993zE0Pjxfh2hZUu/rnDMMdClCzRsmL0MUjRiFvpfAteHELqlvr8GIIRwS3X3UaGXjPvhB59x+9JLvvnG6NGwapX/rF07n5i17bawzTaw9dbeldK6tbf+zar/vSH49YC5c305gs8/9yWCp0zxXZ2+/NKPW399Xwu+WzefD7DbbprgJBlX20KfjbVM2wGzK30/B9gjC48jUr0GDWDvvf0DYPly31Zv/Hj/mDjRW/8rV/7v/dZfHzbc0PvON9jAb/vhB1+SYckSWLzYR8pU1rixjwTq2tVn9P7ylz4GvlGj7P87RWohG4W+qubQj942mFlPoCdA+/btsxBDpJImTf7bfVNhzRq/qPvJJ97lMm8efPUVLFvmH8uXe+u+pMRfODbc0Fv8zZr5O4D27f2jXTu11iWvZaPQzwEqr5e6OTB37YNCCAOBgeBdN1nIIbJu663332ItkmDZGF45FtjbLTEeAAAGWklEQVTGzDqa2fpAd+C5LDyOiIjUQsZb9CGE1WZ2IfAKPrzybyGEKZl+HBERqZ2sbCwZQngReDEbv1tEROpGM2NFRBJOhV5EJOFU6EVEEk6FXkQk4VToRUQSLiurV9Y5hNkC4PN63r0lsDCDcTJFuepGueouX7MpV92kk2vLEEKNmxfkRaFPh5mV1WZRn1xTrrpRrrrL12zKVTe5yKWuGxGRhFOhFxFJuCQU+oGxA1RDuepGueouX7MpV91kPVfB99GLiMi6JaFFLyIi61AQhd7MjjWzKWa2xsxK1/rZNWY208w+NrNu1dy/o5mNNrMZZvZEavnkTGd8wswmpj5mmdnEao6bZWaTUsdlff9EM7vezL6slO3Qao47OHUOZ5pZ7xzk+ouZTTOzD83sH2ZW5Q7euTpfNf37zaxR6m88M/Vc6pCtLJUecwszG2VmU1PP/4urOKaLmX1b6e/7x2znSj3uOv8u5u5Ona8PzWzXHGTqVOk8TDSz78zskrWOydn5MrO/mdl8M5tc6bYWZjYyVYtGmlnzau7bI3XMDDPrkXaYEELefwCdgU7Am0Bppdu3Az4AGgEdgU+ABlXcfzjQPfX1/cB5Wc57O/DHan42C2iZw3N3PXBFDcc0SJ27rYD1U+d0uyznOggoSX3dD+gX63zV5t8PnA/cn/q6O/BEDv52bYFdU19vCEyvIlcX4IVcPZ9q+3cBDgVewnec2xMYneN8DYB5+DjzKOcL2AfYFZhc6bY/A71TX/eu6nkPtAA+TX1unvq6eTpZCqJFH0KYGkL4uIofHQEMCyGsDCF8BswEflH5ADMzoCswInXTEODIbGVNPd5xwOPZeows+AUwM4TwaQjhe2AYfm6zJoTwaghhderb9/GdyGKpzb//CPy5A/5c2j/1t86aEEJ5CGF86uslwFR8T+ZCcATwSHDvA83MrG0OH39/4JMQQn0nYqYthPA2sGitmys/j6qrRd2AkSGERSGEb4CRwMHpZCmIQr8OVW1EvvZ/hE2AxZWKSlXHZNKvga9CCDOq+XkAXjWzcal9c3PhwtTb579V81axNucxm87AW39VycX5qs2///+PST2XvsWfWzmR6iraBRhdxY9/aWYfmNlLZrZ9jiLV9HeJ/ZzqTvWNrRjnq0LrEEI5+As5sGkVx2T83GVl45H6MLPXgDZV/KhPCOHZ6u5WxW1rDyOq1WbltVHLjCew7tb83iGEuWa2KTDSzKalXvnrbV25gAHATfi/+Sa8W+mMtX9FFfdNezhWbc6XmfUBVgNDq/k1GT9fVUWt4rasPY/qysx+AjwFXBJC+G6tH4/HuyeWpq6/PANsk4NYNf1dYp6v9YHDgWuq+HGs81UXGT93eVPoQwgH1ONutdmIfCH+trEk1RKrcrPyTGQ0sxLgKGC3dfyOuanP883sH3i3QVqFq7bnzsweBF6o4ke12tA907lSF5l+A+wfUp2TVfyOjJ+vKtTm319xzJzU33ljfvy2POPMrCFe5IeGEJ5e++eVC38I4UUzu8/MWoYQsrqmSy3+Lll5TtXSIcD4EMJXa/8g1vmq5CszaxtCKE91Zc2v4pg5+LWECpvj1yfrrdC7bp4DuqdGRHTEX5nHVD4gVUBGAcekbuoBVPcOIV0HANNCCHOq+qGZNTWzDSu+xi9ITq7q2ExZq1/0d9U8Xs43dDezg4GrgcNDCMurOSZX56s2//7n8OcO+HPpjepenDIldQ1gMDA1hHBHNce0qbhWYGa/wP9Pf53lXLX5uzwHnJoafbMn8G1Fl0UOVPuuOsb5Wkvl51F1tegV4CAza57qaj0odVv95eLqc7ofeIGaA6wEvgJeqfSzPviIiY+BQyrd/iKwWerrrfAXgJnAk0CjLOV8GDh3rds2A16slOOD1McUvAsj2+fuUWAS8GHqSdZ27Vyp7w/FR3V8kqNcM/F+yImpj/vXzpXL81XVvx+4EX8hAmiceu7MTD2XtsrBOfoV/pb9w0rn6VDg3IrnGXBh6tx8gF/U3isHuar8u6yVy4D+qfM5iUqj5bKcrQleuDeudFuU84W/2JQDq1L160z8us7rwIzU5xapY0uBQZXue0bquTYTOD3dLJoZKyKScIXedSMiIjVQoRcRSTgVehGRhFOhFxFJOBV6EZGEU6EXEUk4FXoRkYRToRcRSbj/A40ml+/5b7+dAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.plot(x, x**2, 'red')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Список цветов в Python см. [здесь](https://matplotlib.org/users/colors.html). \n",
"\n",
"Теперь изменим тип линии. По умолчанию используется сплошная линия, но ее можно заменить на пунктирную или что-то подобное:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x1182db4a8>]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XmYVNWZx/HvSyO2EBUQUBYRjEQhjmvHMS4TFRVccYkOJkaiSQjjvkaIMZrERI1RY5SBgDguIYqCijsiosYYwQbZF0EU2cEAKsgi9Jk/3urYwW56qeVU3fp9nqefrrp1u++vb1W/devcc8+xEAIiIpJcjWIHEBGR7FKhFxFJOBV6EZGEU6EXEUk4FXoRkYRToRcRSTgVehGRhFOhFxFJOBV6EZGEaxw7AECrVq1Cp06dYscQESkokyZN+jiE0Lq29fKi0Hfq1Iny8vLYMURECoqZLazLemq6ERFJOBV6EZGEU6EXEUk4FXoRkYRToRcRSbhaC72ZPWBmK81sRpVlLc1srJnNS31vkVpuZvYnM5tvZtPM7JBshhcRkdrV5Yj+QaDnNsv6A+NCCF2Acan7ACcBXVJffYFBmYkpIiINVWuhDyG8AazeZnEv4KHU7YeAM6osfzi4t4HmZtY2U2FrCOhfIiKFJIe1q6Ft9LuHEJYBpL63SS1vDyyqst7i1LKvMLO+ZlZuZuWrVq1qWIqpU6FbN5g8uWE/LyISy2uvwYEHwty5Wd9Upk/GWjXLqn3LCiEMCSGUhRDKWreu9Qre6u21FyxcCPff37CfFxGJ5f774aOPoGPHrG+qoYV+RWWTTOr7ytTyxcCeVdbrACxteLxaNG8O55wDw4fD+vVZ24yISEatXg2jRsH558NOO2V9cw0t9M8AfVK3+wCjqyy/INX75nDgk8omnqz58Y/hs8/giSeyuhkRkYz5y19g0yb4yU9ysjkLtZwMMLNHgWOAVsAK4CbgaeBxoCPwEXBOCGG1mRlwH95L53PgwhBCraOVlZWVhQYPahaCt9O3bAl//3vDfoeISK6EAAcc4EfyEyem9avMbFIIoay29WodvTKEcF4ND3WvZt0AXFJ7vAwyg1tugS1bfAdadacJRETyyL33QkVFzjaXF8MUp+3ss2MnEBGpGzM45picbjI5QyCsWAG33+7tXiIi+eizz+Cqq+CDD3K62eQU+qlToX9/ePrp2ElERKr32GPwxz/CypW1r5tBySn0xx/v/eqHDo2dRESkekOHwv77w2GH5XSzySn0jRrBj34E48bBggWx04iI/LupU+Gdd7xLeI47jSSn0ANceKEX/GHDYicREfl3998PO+4IP/hBzjedrELfoQOcdlrO279ERGrVpAlccIFf85NjyeheWdWoUVBSEjuFiMi/u/POaJtO1hE9fFnkGzoipohIps2eHXU49eQVeoAHHoB27WDx4thJRKTYvfeeD9MSsUdgMgv9McfA1q0avlhE4hs8GBo3htNPjxYhmYV+772hRw9/B/3ii9hpRKRYbdgADz4IZ50Fe+wRLUYyCz3A//wPLF0Kzz4bO4mIFKsRI2DNGq9HESW30J9yCuy5JwwZEjuJiBSr4cOha1f4zneixkhe98pKJSXw6KPQpUvsJCJSrEaP9ulOIw+fntxCD3DkkbETiEgxa9rUj+gjS27TTaW//Q1OPdVPioiI5MInn8Chh8LYsbGTAMVQ6L/4Ap5/XnPKikjuPPIITJ4MLVrETgIUQ6E/9ljYd18YNCh2EhEpBiF4vSkr8688kPxCbwb9+sHbb8OUKbHTiEjS/e1vMGtW9C6VVSW/0AP06eMzruuoXkSybdAgaN4ceveOneRfkt3rplKLFjBggI9/IyKSTeee6/3mmzaNneRfiqPQA9x4Y+wEIlIMzjwzdoKvKI6mm0rr1vlFVBGHCxWRhNq6Fe66C5Yvj53kK4qr0I8YAd/7np8sERHJpDFj4Jpr8rK+FFehP+88P0ly332xk4hI0tx7L7RtC716xU7yFcVV6Js29RnYn3wSFi2KnUZEkmLuXHjpJe9S2aRJ7DRfUVyFHuCSS7yNfvDg2ElEJCkGDvQC37dv7CTVKr5C36mTz/QybVrsJCKSFGvWeNPw7rvHTlKt4uleWdXw4XnVx1VECtwjj0BFRewUNUrriN7MrjKzmWY2w8weNbNSM+tsZhPMbJ6ZjTCz/Guwqizya9aoq6WINFxFBSxY4Lcb5W8DSYOTmVl74HKgLISwP1AC9AZuB+4OIXQB1gA/ykTQjHv9db9S9q23YicRkUI1Zgzssw+MHx87yXal+xbUGNjJzBoDTYFlwHHAyNTjDwFnpLmN7Cgrg9JS+NOfYicRkUJ1773eLp/nkxw1uNCHEJYAfwA+wgv8J8AkYG0IYUtqtcVA+3RDZkWzZt7VctQoWLw4dhoRKTTvvQcvvpi3XSqrSqfppgXQC+gMtAOaASdVs2q1jeBm1tfMys2sfNWqVQ2NkZ6LL/Y2NnW1FJH6GjgQdtghb7tUVpVO083xwAchhFUhhC+AJ4EjgOapphyADsDS6n44hDAkhFAWQihr3bp1GjHS0Lmzd7UcOtRnohIRqYsvvvBxs/77v2GPPWKnqVU63Ss/Ag43s6bABqA7UA6MB74LPAb0AUanGzKrbr0VSkr8nVlEpC522AFmzICNG2MnqZMGF/oQwgQzGwlMBrYA7wJDgOeBx8zsltSyYZkImjV5MEO7iBSQEHzmujZtYieps7R63YQQbgoh7BdC2D+E8IMQwqYQwoIQwmEhhH1CCOeEEDZlKmzWLF4MZ58N//hH7CQiku/GjIGjjoKPPoqdpM6K88rYbbVo4f1gGzWCJ56InUZE8tndd8P77xdE23yl/L2UK5eaNYOf/tRHtfzgg9hpRCRfTZ8OL78Ml12W910qq1Khr3TZZX5S9o9/jJ1ERPLV3Xf7ECr9+sVOUi8q9JXatfNZ24cNg7VrY6cRkXyzfLkPiHjhhdCyZew09aI2+qquvdaHMRYR2dYuu/icsD17xk5Sbyr0VR1wgH+JiGyraVOfuKgAqelmWxUV8PTTMHZs7CQiki+eeAL+/Oe8HnN+eyzkwXjsZWVloby8PHYMV1EB++/vI1tOmuQXRohI8aqogP32827Yb7+dVzXBzCaFEMpqW09H9Ntq1AiuvhrefRdeey12GhGJ7dlnYd48rwt5VOTrQ4W+OuefD61bw513xk4iIrHddRfstZdfPV+gVOirU1rqJ12efx7mzImdRkRiKS+HN96AK66AxoXbd0WFviYXXwzf/CYsrXaUZREpBps3Q/fu8KP8nBG1rgr3LSrbWrf2y50LtE1ORDLgiCPglVdip0ibjui3x8zHm86XHkEikjtjx8I//xk7RUao0Nemb1/o0QPWr4+dRERyZfVqOPNMv1o+AVToa9Ovnz/pQ4fGTiIiuTJwoB/cXX117CQZoUJfmyOOgP/6L+9quXlz7DQikm3r18M998Cpp8J//EfsNBmhQl8X/fv7LFR//WvsJCKSbcOGedt8//6xk2SMCn1d9Ozpg50l4Oy7iNRi1iw4+mg48sjYSTJG3SvrwgzGjYPddoudRESybfBg722XIDqir6tWrbzgr1njs8CLSLJUVMCHH/rt0tKoUTJNhb4+3noLOnTQYGciSfTss/D1r8Obb8ZOknEq9PVxyCGw885w662xk4hIJoXg/9d77QWHHx47Tcap0NdHaSlcdZVfMTdpUuw0IpIpb7wBEybAddcV9OBlNVGhr69+/XzuyNtui51ERDLlttugTRv44Q9jJ8kKFfr62nVXH8L4qac0sqVIEixZAq++6p/Wd9opdpqsSN5nlFy46ir43vegXbvYSUQkXe3bw4IFfv4toVToG6J1a/8C75LVSB+MRArSxo1+7q19+9hJskoVqqFCgD594NJLYycRkYa66CI4/fTEXxujQt9QZtCsGdx/P3z0Uew0IlJfc+bAY49Bt26Jn2BIhT4dlYMe3X573BwiUn+//a2ffL3mmthJsi6tQm9mzc1spJnNMbPZZvZtM2tpZmPNbF7qe4tMhc07HTvChRf6Uf2SJbHTiEhdvfeej0Z78cVfnm9LsHSP6O8BXgoh7AccCMwG+gPjQghdgHGp+8k1YICfkL3jjthJRKSu7r4bmjRJzAxStbHQwJMQZrYLMBXYO1T5JWY2FzgmhLDMzNoCr4UQ9t3e7yorKwvlhTwv6+OP++Qke+wRO4mI1MW6dTBxIhx3XOwkaTGzSSGEslrXS6PQHwQMAWbhR/OTgCuAJSGE5lXWWxNC+ErzjZn1BfoCdOzY8dCFCxc2KIeISL2EkJiTr3Ut9Ok03TQGDgEGhRAOBtZTj2aaEMKQEEJZCKGsdRLayKZOhRNOgOXLYycRkZp88IFPIjRxYuwkOZVOoV8MLA4hTEjdH4kX/hWpJhtS31emF7FANG3ql1H/4Q+xk4hITW69FebN8+HGi0iDC30IYTmwyMwq29+74804zwB9Usv6AKPTSlgounSB738f/vd/YWVxvLeJFJSFC+H//g9+8pOiG74k3V43lwHDzWwacBDwO+A24AQzmweckLpfHG64ATZt0lG9SD667TYfruT662Mnybm0xroJIUwBqjsR0D2d31uw9t0XzjsP7rsPrr5avXBE8sXChTBsGPz4x0XXbAMa1Czzbr4ZDj0UmjevdVURyZEOHeDBB+E734mdJIoGd6/MpILvRy8iEkEuulfK9vz1r3DjjbFTiMgll8C998ZOEZUKfba88w787ncwd27sJCLFa9o07wm3YkXsJFGp0GfLgAE+Mt5NN8VOIlK8brzRp/8sghEqt0eFPlvatIErr4QRI2DKlNhpRIrPxInwzDNw3XXQIrmD6NaFCn02XXut975RW71I7v3iF9CqFVx+eewk0al7ZTY1bw533QW77BI7iUjxufFGb5tP8KTfdaVCn20XXhg7gUhxOvro2AnyhppucuHzz+HXv4bx42MnEUm+0aO9S+W6dbGT5A0d0edCSYlPN/jcczBhQmLGwhbJO1u2+Fg2jRpBaWnsNHlDR/S5sOOO8Ktfed/6kSNjpxFJrgce8GtXbr0VGus4tpKGQMiVrVvhoINg40aYOdPnqxSRzFm/3ocL79wZ3nyzKD45awiEfFNSAr//PcyfD0OGxE4jkjz33APLlvn/WREU+frQZ5tc6tkTfvYzOOKI2ElEkqd3b78a/cgjYyfJO2q6EREpUGq6yWfLlvl0ZkuWxE4iUvgWLIBevfy7VEtNNzFs3AgPPwwheLdLEWm466+HV15Rd8rt0BF9DJ07w6WX+kTFM2bETiNSuN5807ssX3990U34XR8q9LHccIOPgXPNNX5kLyL1U1HhczO3b1/0wxDXRoU+lpYtfaz6l1+G55+PnUak8IwY8eUEP82axU6T19RGH9Mll/iJ2UMOiZ1EpPCcfDLcfTecf37sJHlP3StFRAqUulcWklmz4LTT4OOPYycRyX/Ll8Phh4MODutMhT4fhAAvvgg33xw7iUj++/nPYfJkn9hH6kSFPh9885vQrx8MHuwDnolI9SZM8G7JV14J++wTO03BUKHPF7/6lU95dtVV6m4pUp2KCrjsMmjbVvMw15MKfb7YbTcv9mPHqrulSHVGjvTulL//veaBrSd1r8wnF1/sR/Pdu8dOIpJ/zjrL+86fc07sJAVHhT6fNG4MV1zht0PQmNoilTZv9sl6zj03dpKClHbTjZmVmNm7ZvZc6n5nM5tgZvPMbISZaSql+iov9xO08+fHTiIS34wZsNdePq6NNEgm2uivAGZXuX87cHcIoQuwBvhRBrZRXNq3h8WL/eheJ2almIUAl18OmzZB166x0xSstAq9mXUATgHuT9034Digcgbsh4Az0tlGUWrb1vvUv/ACPPts7DQi8YwYAePHwy23eIcFaZB0j+j/CPwMqEjd3w1YG0LYkrq/GGif5jaK02WXefPNFVfAhg2x04jk3tq13t24rAx++tPYaQpagwu9mZ0KrAwhTKq6uJpVq217MLO+ZlZuZuWrVq1qaIzk2mEHuO8++PBDeOSR2GlEcu+JJ2DlSr+QsKQkdpqC1uBBzczsVuAHwBagFNgFeAroAewRQthiZt8Gbg4h9Nje79KgZtvx6qtwzDHQSJc8SBGaNQu6dYudIm9lfVCzEMKAEEKHEEInoDfwagjh+8B44Lup1foAoxu6DQGOO86L/MqVfmWgSNJt2QLvv++3VeQzIhuHidcDV5vZfLzNflgWtlFc5syBb3wDHnwwdhKR7Bs40Av87Nm1ryt1ovHoC0FFhTffzJjhRb9Nm9iJRLJjyRLYbz846ijvdaaLBrdL49EnSaNG8Oc/w7p1PkemSFJdcYU33QwcqCKfQSr0haJrVxgwAIYP94HPRJLmySdh1Cj45S9h771jp0kUFfpCMmCAt9W/+mrsJCKZN3eu95m/9trYSRJHbfSF5tNPYZddYqcQyY4vvvBrSKRO1EafVJVFfupUn05NpNC98YYPcwAq8lmiYYoL0datcPbZ/k/x7rtQWho7kUjDrFsHffr4a3j6dB+qWzJOR/SFqKTEeyXMmeOzUokUql/8AhYuhKFDVeSzSIW+UPXoARddBHfc4ePXixSat96CP/0JLrnE+81L1uhkbCFbu9ZHuGzZ0ov9jjvGTiRSN+vXw4EHejPktGmaA7aB6noyVp+VClnz5v6R9x//0MUlUlh22skvjjrwQBX5HNARvYjkVkWFRmPNEHWvLDavvw7du/tHYpF8tXYtHHSQZk7LMRX6pKio8L7I110XO4lIzS6/3MeYb9s2dpKiokKfFMce6wOeDRoEL74YO43IVz31lM+WdsMNPtSB5Iza6JNk40b41rfg44/94pNWrWInEnHLlsEBB0DHjvD227oCNkPURl+MSkvhL3+B1athyJDYaUS+9Nhjfv7oL39RkY9AR/RJ9O67fsJLXS4ln3zwAXTuHDtFouiIvpgdfLAX+YUL4b33YqeRYvbuu96MCCryEemCqaTauhVOPBGaNIGJE/0CFZFc+uwzOOccH5tp1iz/LlHoiD6pSkrgnnt8nllNPygxXHqpN9fcf7+KfGQq9EnWs6f3qx88GJ54InYaKSbDh8PDD8ONN8LRR8dOU/R0MjbpNm/2f7Q5c2DKFLWTSvbNm+fniQ45xKe91PDDWaOTseKaNPGubeedB61bx04jxaBTJ7jqKn/dqcjnBR3RF5vNm734i2RaCH4CVnMa54yO6OWrli3zj9OPPBI7iSTRoEGw//6waFHsJLINFfpi0rq1D4vw05/65OIimTJxIlx5pQ9z0L597DSyDRX6YtK4MYwYAS1awFlnwZo1sRNJEnz8MZx7LrRr5z1tNNZ83tEzUmx23927Wi5aBBdc4MMbizTUF1/4RVHLl8PIkT6tpeQdFfpidMQRcPfd3mavo3pJx+ef+yfFoUM19HAeU6+bYhWCH42pB440VAg+ppKmBoxGvW5k+8y8yH/6qbevTpoUO5EUkjff9KkrV65UkS8ADX6GzGxPMxtvZrPNbKaZXZFa3tLMxprZvNT3FpmLKxm3cSNMmACnnw5Ll8ZOI4Vg0SI4+2xYvFhjyxeIdN6KtwDXhBC6AocDl5hZN6A/MC6E0AUYl7ov+apNG5+o+ZNP4IwzYMOG2Ikkn332mR8UbNgAo0d7Dy7Jew0u9CGEZSGEyanbnwGzgfZAL+Ch1GoPAWekG1Ky7IADfBCq8nK46CJvexXZ1pYt3sw3fTo8/jh07Ro7kdRRRhrXzKwTcDAwAdg9hLAM/M0AaFPDz/Q1s3IzK1+1alUmYkg6evWC3/0Oxo+HJUtip5F8tGKFD1g2eLCPjCoFI+1eN2b2NeB14LchhCfNbG0IoXmVx9eEELb7+U69bvJECLBqlTfniFTn88+hadPYKSQlJ71uzGwHYBQwPITwZGrxCjNrm3q8LbAynW1IDpl5ka+ogP794amnYieSfPDoo96kt3mzinyBSqfXjQHDgNkhhLuqPPQM0Cd1uw8wuuHxJIrNm+H1131o4zffjJ1GYnrtNfjhD+H993XupoClc0R/JPAD4Dgzm5L6Ohm4DTjBzOYBJ6TuSyEpLfWeOB07eg+L2bNjJ5IY3nkHTjsN9tnHP93tuGPsRNJADZ4VIITwJmA1PNy9ob9X8kSrVvDSSz5cwoknwt/+5hNKSHGYOdNPuLZuDWPHagybAqdL2qRme+8NY8Z4U86MGbHTSC6tWgW77eZFvl272GkkTZrnS7bvwANhwQJo1szvb90KJSVxM0n2VM5AdswxMGuWpgJMCB3RS+0qi/zjj8Phh8Pq1XHzSHasXOkjUA4a5PdV5BNDhV7qrkULmDYNTjrJB0OT5FixAo49FubPh/32i51GMkyFXuruhBN80pLJk/22xrJPhuXLvch/+CG88ILflkRRoZf6Of10GDUKpkyB446D9etjJ5J0bNjgz+NHH8GLL3rbvCSOGuGk/k4/HZ55xi+m0pWShW2nnaBfPzj4YDj66NhpJEs0w5Skb+ZM2HVX6NAhdhKpq3nz/OTrkUfGTiJpqOtYNzqil/Rs2QJnnunTEr70Euy7b+xEUpvJk/2E+i67+FXP6l2TeGqjl/Q0bgx//au31R95JPzjH7ETyfa8+qq3w++0Ezz/vIp8kVChl/SVlXmBb9HCT+w9/XTsRFKdUaP8SL5jR/j73+Eb34idSHJEhV4y4+tfh7fe8tmqhgzRSIf5aPRof1N+4w1o3z52GskhfW6TzGnd2psGKip8bPvVq/0krYZMiGfTJvj4Yy/sQ4b4c6OeUkVHR/SSWc2awc47+8nZnj3h5JN1YVUsq1b5hW0nnOBj2JSWqsgXKRV6yY4ddoC+fX0O2m99y7tgSu7MmAH/+Z8+pvwvf+kDlUnRUqGX7Pnxj32GonXrfDA0naTNjYcf9iK/YYPPFNa7d+xEEpkKvWTXEUdAeTl07Qo33OD97iV7tmyBgQPhsMPg3Xf9uxQ9nYyV7OvQwXt6LF/u/bbXr/fbX/967GTJ8d57PitYy5beP755c/WRl3/REb3kRmnpl1MR9u8PBx0Ew4dHjZQIIcCwYXDooXDVVb6sVSsVefk3KvSSe9dd54X+/PP965//jJ2oMC1dCqee6udCysrglltiJ5I8pUIvudexo/fGuflmGDECunXzk4ZSd6+/Dvvv7/vxnntg3DjYc8/YqSRPqdBLHI0bw003waRJfqJ2r71iJyoMlVccd+0KRx3l8wJcfjk00r+y1EyvDonrgAO8C2anTl7Ezj/fe42od86/27QJbr0Vunf3q1vbtPE5ATRejdSBCr3kj08/9XbnSy/1NvyxY2Mnyg8vv+xviD//ufem+eyz2ImkwKjQS/7YdVdva37ySb/Y58QTfTarZctiJ4tjxQofQqJHDz+Kf/FF3ze77ho7mRQYFXrJL2Y+kcnMmXDbbTBnDnzta/7Ypk1xs+XK55/79xYtvNjffjtMn+5jB4k0gAq95KfSUrj+epg1ywdJ27LF5zW94AK/OCiJpk+HPn38ROuGDT4+TXk5/Oxnvj9EGkiFXvJb5YU/mzb5pBkjR3ohPOssb+Yp9HHvK5tkTjzR2+FHjoTvftdH/wT/hCOSJhV6KQzNmsGdd8KHH/oR7htvwPHH+zy1hezvf/d2+JkzvVfNokX+d+6yS+xkkiAW8uCIqKysLJSXl8eOIYVk40Z46ik45xw/6v/Nb7yZ5/vf96PjfByWd+NG70HzyCN+3cAf/uCfSJ5+Gk45JT8zS14zs0khhLLa1svKEb2Z9TSzuWY238z6Z2MbUuRKS+G8875s2qmo8CJ62mmwxx7eH/+ZZ+JmrPTCC561dWvo1cuvG6g8wVx58llFXrIo44XezEqAgcBJQDfgPDPrluntiPybm27ybpjPPefFfswYePTRLx//zW98VMeVK7ObY9ky7wJ5443+5gN+xP7KK/C97/mb0dKlPvyDSI5kvOnGzL4N3BxC6JG6PwAghHBrTT+jphvJuK1bYe1a2G0376K4555fnuBs39578FxyiXdZ3LjR2/53390vSNreCdAQvrywq2NHP3fwyitwxx3ezr5kia/XpInP8tSli+fYeWfNnSsZF7Pppj2wqMr9xallIrlTUuJFHryAr13rTSZ33QXHHuuFvXIu2+nTvSdPy5beJNSqlRfx55/3x19/3Ydo2G03bypq3twHYpswwR/ftMnnZz3uOD+R+tZb/mbQpYs/3ry5irxElY1Bq6s7HPrKxwYz6wv0BejYsWMWYohU0bQpfOc7/rWtzp19bPzly/3of906v2hp99398ZYt/ed23tmLdvPm0K6dF3vwE6mnnJK7v0WkntR0IyJSoGI23bwDdDGzzmbWBOgN5En3BxGR4pPxppsQwhYzuxQYA5QAD4QQZmZ6OyIiUjdZmVgyhPAC8EI2freIiNSPhkAQEUk4FXoRkYRToRcRSTgVehGRhFOhFxFJuLwYptjMVgELG/jjrYCPMxgnU5SrfpSr/vI1m3LVTzq59gohtK5tpbwo9Okws/K6XBmWa8pVP8pVf/maTbnqJxe51HQjIpJwKvQiIgmXhEI/JHaAGihX/ShX/eVrNuWqn6znKvg2ehER2b4kHNGLiMh2FEShN7NzzGymmVWYWdk2jw1ITUI+18x61PDznc1sgpnNM7MRqeGTM51xhJlNSX19aGZTaljvQzObnlov64Pwm9nNZrakSraTa1gvpxO6m9kdZjbHzKaZ2VNm1ryG9XKyv2r7+81sx9RzPD/1WuqUrSxVtrmnmY03s9mp1/8V1axzjJl9UuX5/WW2c6W2u93nxdyfUvtrmpkdkoNM+1bZD1PM7FMzu3KbdXK2v8zsATNbaWYzqixraWZjU7VorJm1qOFn+6TWmWdmfdIOE0LI+y+gK7Av8BpQVmV5N2AqsCPQGXgfKKnm5x8HeqduDwb+J8t57wR+WcNjHwKtcrjvbgaurWWdktS+2xtoktqn3bKc60Sgcer27cDtsfZXXf5+4GJgcOp2b2BEDp67tsAhqds7A+9Vk+sY4LlcvZ7q+rwAJwMv4jPOHQ5MyHG+EmA53s88yv4C/gs4BJhRZdnvgf6p2/2re90DLYEFqe8aGGPUAAAEGElEQVQtUrdbpJOlII7oQwizQwhzq3moF/BYCGFTCOEDYD5wWNUVzMyA44CRqUUPAWdkK2tqe+cCj2ZrG1lwGDA/hLAghLAZeAzft1kTQng5hLAldfdtoEM2t1eLuvz9vfDXDvhrqXvquc6aEMKyEMLk1O3PgNkUzvzLvYCHg3sbaG5mbXO4/e7A+yGEhl6ImbYQwhvA6m0WV30d1VSLegBjQwirQwhrgLFAz3SyFESh3466TES+G7C2SlHJ9mTlRwMrQgjzang8AC+b2aTUvLm5cGnq4/MDNXxUjD2h+0X40V91crG/6vL3/2ud1GvpE/y1lROppqKDgQnVPPxtM5tqZi+a2TdzFKm25yX2a6o3NR9sxdhflXYPISwDfyMH2lSzTsb3XVYmHmkIM3sF2KOah24IIYyu6ceqWbZtN6I6TVZeF3XMeB7bP5o/MoSw1MzaAGPNbE7qnb/BtpcLGAT8Bv+bf4M3K1207a+o5mfT7o5Vl/1lZjcAW4DhNfyajO+v6qJWsyxrr6P6MrOvAaOAK0MIn27z8GS8eWJd6vzL00CXHMSq7XmJub+aAKcDA6p5ONb+qo+M77u8KfQhhOMb8GOLgT2r3O8ALN1mnY/xj42NU0di1a2TkYxm1hg4Czh0O79jaer7SjN7Cm82SKtw1XXfmdlQ4LlqHqrLfsx4rtRJplOB7iHVOFnN78j4/qpGXf7+ynUWp57nXfnqx/KMM7Md8CI/PITw5LaPVy38IYQXzOx/zaxVCCGrY7rU4XnJymuqjk4CJocQVmz7QKz9VcUKM2sbQliWaspaWc06i/FzCZU64OcnG6zQm26eAXqnekR0xt+ZJ1ZdIVVAxgPfTS3qA9T0CSFdxwNzQgiLq3vQzJqZ2c6Vt/ETkjOqWzdTtmkXPbOG7eV8Qncz6wlcD5weQvi8hnVytb/q8vc/g792wF9Lr9b05pQpqXMAw4DZIYS7alhnj8pzBWZ2GP4//c8s56rL8/IMcEGq983hwCeVTRY5UOOn6hj7axtVX0c11aIxwIlm1iLV1HpialnD5eLsc7pfeIFaDGwCVgBjqjx2A95jYi5wUpXlLwDtUrf3xt8A5gNPADtmKeeDQL9tlrUDXqiSY2rqaybehJHtffcIMB2YlnqRtd02V+r+yXivjvdzlGs+3g45JfU1eNtcudxf1f39wK/xNyKA0tRrZ37qtbR3DvbRUfhH9mlV9tPJQL/K1xlwaWrfTMVPah+Rg1zVPi/b5DJgYGp/TqdKb7ksZ2uKF+5dqyyLsr/wN5tlwBep+vUj/LzOOGBe6nvL1LplwP1Vfvai1GttPnBhull0ZayISMIVetONiIjUQoVeRCThVOhFRBJOhV5EJOFU6EVEEk6FXkQk4VToRUQSToVeRCTh/h/kauCEx7ZKQwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.plot(x, x**2, 'red', linestyle = '--')"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x1183f75f8>]"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XecVNXdx/HPjy5EKbooRQUjQdEnsWzUiIkFFUUFrA8aExI1qLFgjS0xMSQqSWyJiKFFNEqxRMQSRUR5EhVdQBQpgtgoIlYUVNp5/vjNxs06y5YpZ+bO9/167Wvanb3fvTP7mzvnnnuOhRAQEZHkahQ7gIiI5JYKvYhIwqnQi4gknAq9iEjCqdCLiCScCr2ISMKp0IuIJJwKvYhIwqnQi4gkXJPYAQC22Wab0KVLl9gxRESKysyZM98PIZTVtlxBFPouXbpQUVERO4aISFExs7fqspyabkREEk6FXkQk4VToRUQSToVeRCThVOhFRBKu1kJvZmPM7D0zm1vlvnZmNsXMFqUu26buNzP7s5ktNrOXzWyvXIYXEZHa1WWP/g7giGr3XQ5MDSF0A6ambgMcCXRL/QwChmcnpoiINFSthT6EMB34sNrd/YCxqetjgf5V7r8zuOeBNmbWIVthawjoPyIixSSPtauhbfTbhhBWAKQu26fu7wS8U2W5pan7vsbMBplZhZlVrFq1qmEp5syBHj1g1qyGPV9EJJann4bvfAcWLsz5qrJ9MNbS3Jf2IyuEMCKEUB5CKC8rq/UM3vR23BHefBNGjmzY80VEYmndGnbfHXbYIeeramihX1nZJJO6fC91/1Jg+yrLdQaWNzxeLdq0gRNPhHvugTVrcrYaEZGs22svr11bbJHzVTW00D8EDExdHwhMqnL/j1O9b/YDPqls4smZn/0MPv0UJk7M6WpERLLm2Wfh9dfztrq6dK8cBzwHdDezpWZ2OnA9cJiZLQIOS90GeBRYAiwGRgI/z0nqqg44ALp3h1Gjcr4qEZGMhQBnngmnnJK3VdY6emUI4eQaHuqVZtkAnJNpqHoxgzPOgEsvhXnz/OCsiEihmjED5s6FESPytspknBk7cCA0baq9ehEpfKNGQatWMGBA3laZjEJfVgb9+8Odd8KXX8ZOIyKS3qefwvjxXuS33DJvq01GoQdvvvngA5g8OXYSEZH0xo3zHoJnnJHX1RbEDFNZceih8NhjfikiUohGjfK+8/vum9fVJmePvlEjOOIIaJKczy4RSZA5c+DFF31v3tKdW5o7ySn04N2Wfv1ruPHG2ElERP7bqFHQvDn86Ed5X3Wydn/N/FOzoUMqiIjkSrNm8OMfQ7t2eV91sgo9wP33Q+PGsVOIiPy3G26ItupkNd3AV0W+oSNiiohk2/z5UYdTT16hBxgzBjp2hKVLYycRkVK3cKGfsR9xlN1kFvqDDoKNG3WmrIjE17Ej3HYb9O0bLUIyC/1OO0Hv3v4Jun597DQiUsq23BLOPhu22y5ahGQWevANu3y5zpQVkXgeeQRuvx02bIgaI7mF/qijYPvtYbjmJxeRSIYMgVtuid4TMLmFvnFjGDQInnwSFi2KnUZESs3s2T4k8Vln5f1M2OqSW+gBTj/dh0S4/fbYSUSk1Awf7tMEDhxY+7I5luxC36GDD198xx3w+eex04hIqfjkE7j7bjj5ZJ/bOrJkF3rwg7Jr18KsWbGTiEipuOsurztnnx07CZDEIRCqO/hg733Ttm3sJCJSCkLwZpvycv8pAMnfozf7qshr9ikRybX/+z+fv7pA9uahFAo9+CfsgQfC+efHTiIiSTd8uLfL53FO2Nokv+kGfK/+0EP9VGQRkVw66STfsWzZMnaS/yiNQg/wq1/FTiAipeDYY2Mn+JrSaLqp9NlnPjlvxOFCRSShNm702e3efTd2kq8prUI/YQKccoofLBERyaaKCrj44oKsL6VV6CtPXrj11thJRCRp9t3Xx57v1y92kq8prULfsqXPwP7AA/DOO7HTiEhSVDYHf+tbPjdsgSmtQg9wzjn+omj8GxHJlosu8haDAj3+V3qFvksXOOYYGDECvvgidhoRKXarV/tsdk2bRh+lsialV+jBT5x6/30YPz52EhEpdnfc4T36zjsvdpIaZVTozexCM3vVzOaa2Tgza2FmXc1shpktMrMJZlZ4DVYHHwy77QZ//nPBftUSkSKwaZN37thvP/jud2OnqVGDC72ZdQLOB8pDCLsDjYEBwFDgphBCN+Aj4PRsBM0qM//0nT0bnn02dhoRKVaPP+4TGxX48CqZNt00AbYwsyZAS2AFcAhwX+rxsUD/DNeRG6ee6tMNNirN1isRyYK//MUn/T7++NhJNqvBQyCEEJaZ2Z+At4HPgSeAmcDHIYTKmXCXAp0yTpkLrVrBww/HTiEixeq11+Cxx+CaawqyS2VVmTTdtAX6AV2BjkAr4Mg0i6ZtBDezQWZWYWYVq1atamiMzK1cCdOmxVu/iBSnYcO8p82gQbGT1CqTdotDgTdCCKtCCOuBB4D9gTapphyAzsDydE8OIYwIIZSHEMrLysoyiJGhs8/24UTXr4+XQUSKy/r1Pm7W//6vN90UuExGr3wb2M/MWuJNN72ACmAacAIwHhgITMo0ZE797nc+gXjTprGTiEixaNoU5s4tmnNxMmmjn2Fm9wGzgA3AbGAE8Agw3sx+l7pvdDaC5kyPHrETiEgxCcF77rVvHztJnWXU5SSE8OsQwi4hhN1DCD8KIXwZQlgSQtgnhLBzCOHEEELhz9+3dKkfNX/uudhJRKTQPf44HHAAvP127CR1VjoTj2xO27Z+QLZRI7j33thpRKSQrVvne/VF0DZfSZ3Iwbtannmmj2r5xhux04hIIevbF/7974LvUlmVCn2lc8/1Pfqbb46dREQK1fTpRXMAtioV+kqdOvkwo6NHw8cfx04jIoXm3XfhsMPgl7+MnaTeVOiruugiWLPGhzAWEanq1lu9//xZZ8VOUm8q9FXtsQcccoiParluXew0IlIo1q6F4cN9msCdd46dpt5U6Ku7+GJYtgwmToydREQKxdix8OGHXh+KkIUCGI+9vLw8VFRUxI7hNm2C3XeH1q3Vr15EvCbssot3w37++YKaRcrMZoYQymtbTv3oq2vUCO66C7bfPnYSESkEkyf7mPPjxxdUka8PFfp09t47dgIRKRQ33gg77ljwY85vjtroazJvnp/mvGBB7CQiEktFhfedHzzYBz8sUir0NSkr8/70y9OOsiwipWDdOujVC04vvBlR66N4P6JyrawMXnmlaNvkRCQL9t8fnnwydoqMaY9+c8z8dOdC6REkIvkzZQp88EHsFFmhQl+bQYOgd28/Y1ZESsOaNX7w9ZJLYifJChX62px1lp8oMXJk7CQiki+tWsGzzxbluDbpqNDXZv/94Qc/gBtu0LAIIqVk993hm9+MnSIrVOjr4vLLfRaqe+6JnUREcm3YMBgwAD7/PHaSrFGhr4sjjoDvfAeGDvXToUUkmdav9//zZctgiy1ip8kaFfq6MPO9+gULYNKk2GlEJFfGjYN33vH/9wTRoGZ1tWEDdO8O22xTcAMbiUgWVA5o2KQJzJlTFP/jdR3UTHv0ddWkCVx6KbzwAjz9dOw0IpJtkyfD/Pm+N18ERb4+VOjr4yc/gT59inrMCxFJIwS47jro2hVOOil2mqxTxaqPFi3gkUdipxCRbJs+HWbMgNtuS+SOnPboG+KDDzQDlUiSXH89tG/v39oTSIW+IW66CU45RSNbiiTBsmXw1FNw4YWJ6lJZVfK+o+TD4MF+QkXHjrGTiEimOnWCJUtgyy1jJ8kZFfqGKCvzH/AuWY30xUikKH3xhR9769QpdpKcUoVqqBBg4EA499zYSUSkoU47Dfr29f/nBFOhbygzH+Fu1Ch4++3YaUSkIb73Pfj+9xPXb746FfpMVJ4mff31cXOISMOcd56fCJlwGRV6M2tjZveZ2QIzm29m3zOzdmY2xcwWpS7bZitswdlhB/jpT2H0aB/dUkSKw6JFMGaMD2JWAjLdo78F+GcIYRfgO8B84HJgagihGzA1dTu5rrjCD8gOHRo7iYjU1e9/78fXPvwwdpK8aHChN7OtgB8AowFCCOtCCB8D/YCxqcXGAv0zDVnQunTxg7IjR6pfvUgxeP11+Pvfffa4bbeNnSYvMtmj3wlYBfzNzGab2SgzawVsG0JYAZC6bJ/uyWY2yMwqzKxi1apVGcQoAFde6aNb/uEPsZOISG2uvRaaNi2JtvlKmRT6JsBewPAQwp7AGurRTBNCGBFCKA8hlJdV9kkvVjvtBD/6Efz1r/Duu7HTiEhN3ngD7rwTBg2CDh1ip8mbTAr9UmBpCGFG6vZ9eOFfaWYdAFKX72UWsUhcdZWfOPXss7GTiEhNrrsOGjeGyy6LnSSvGlzoQwjvAu+YWffUXb2AecBDwMDUfQOB0piSaeedvY3+uONiJxGRdN56C/72NzjjjJIbviTTIRDOA+42s2bAEuCn+IfHRDM7HXgbODHDdRSP1q398u23veuliBSO66/3b90JmyawLjIq9CGEl4B001j1yuT3FrXrroMhQ3yQpO22i51GRMD35keP9r35zp1jp8k7DWqWbSee6IMktWkTO4mIVOrcGe64Aw48MHaSKDQ5uIhIkdLk4LHdcw/86lexU4jIOefAX/4SO0VUKvS58uKLfmLGwoWxk4iUrvXrvX1+5crYSaJS002uvPeen0h19NEwfnzsNCKlbeNG7z+fMGq6ia19e7jgApgwAV56KXYakdKzcKGfCQuJLPL1oUKfS5dc4r1v1FYvkn/nnw8HHFAyQxFvjgp9LrVpA7/4BTz8MDz3XOw0IqVj+nR44gm4+GIfwKzEqY0+19as8bb63XaDp56KnUYk+UKA/feHd97xCUa22CJ2opxRG32haNXKBzybNg2mTo2dRiT5HnwQnn8errkm0UW+PlTo8+HMM2H77X1AJRHJnQ0bfNa3Hj18QiABNARCfjRv7nvzXbvGTiKSbGPGeG+bSZOgicpbJe3R50u3bv7GW70a1q2LnUYkedasgd/8Bnr2hGOOiZ2moKjQ59PSpfDNb8KIEbGTiCTPLbfAihUwdCiYxU5TUPTdJp86dYLTTvMeASKSXQMG+MHXnj1jJyk46l4pIlKk1L2ykK1YAT/7GSxbFjuJSPFbsgT69fNLSUtNNzF88YXPRB8CjBoVO41IcZs3D2bO9Al/JC3t0cfQtSuce673q587N3YakeJ29NE+eFmJTfhdHyr0sVx1FWy1lY/FUQDHSUSKzqZN3l9+0yaNZ1MLFfpY2rWDX//aB1569NHYaUSKz7hx0L8/PPRQ7CQFT71uYlq/Hv7nf3yPfu5c7ZWI1NXatdC9O2y7LbzwAjQqzX1W9bopBk2bwg03wGuvwbBhsdOIFI+bbvITEG+8sWSLfH1oC8XWpw/07u0j7b3/fuw0IoXv3XfhuuvguOPgBz+InaYoqNDHZuZ7JZ9/7kMZi8jmXXmljxc1dGjsJEVD/egLQY8ePklCWVnsJCKFbcYM75Z86aWw886x0xQN7dEXisoiP2eOuluKpLNpE5x3HnTooHmY60mFvpA88gjssYdfish/u+8+ePFF+MMfYMstY6cpKmq6KSS9e8PNN0OvXrGTiBSe446DCRPgxBNjJyk6KvSFpEkTGDzYr4egMbVFKq1bB82awUknxU5SlDJuujGzxmY228weTt3uamYzzGyRmU0ws2aZxywxFRWw226weHHsJCLxzZ0LO+4I//pX7CRFKxtt9IOB+VVuDwVuCiF0Az4CTs/COkpLp05+MsjgwTowK9K4MXz3u7DrrrGTFK2MCr2ZdQaOAkalbhtwCHBfapGxQP9M1lGSOnTwuS8ffRQmT46dRiSuXXf18Wy23jp2kqKV6R79zcAvgE2p21sDH4cQNqRuLwU6ZbiO0nTeed58M3iwn0wlUmo+/hh+/nM/E1Yy0uBCb2ZHA++FEGZWvTvNomnbHsxskJlVmFnFqlWrGhojuZo2hVtvhTffhOuvj51GJP9++Uv46181E1sWZLJH3xPoa2ZvAuPxJpubgTZmVtmbpzOwPN2TQwgjQgjlIYTyMp0Rmt5BB8Epp3ihX7AgdhqR/HnxRbjtNp+gZ++9Y6cpeg0u9CGEK0IInUMIXYABwFMhhB8C04ATUosNBCZlnLKU3XQTtGoFZ57pZwaKJN2GDf5+3247GDIkdppEyMWZsZcBF5nZYrzNfnQO1lE62rf3MwGnT/cxPkSS7rbbYPZsuOUWn4VNMpaVE6ZCCE8DT6euLwH2ycbvlZTTToNnnoHOnWMnEcmtZcu8bf6II+CEE2pfXupEZ8YWg0aN4K67YqcQyb3Bg33mtWHDdGZ4FmlQs2Ly5Zdw9dUwZUrsJCLZ98ADcP/9/h7faafYaRJFhb6YhOCDOj31VOwkItm3cCGUl8Mll8ROkjiaHLzYrF6tA1SSXOvX+zkkUieaHDypKov8nDkwa1bcLCLZMH36V9NoqsjnhA7GFqONG+H44/2fYvZsaNEidiKRhhsyxAfxe+UVH6pbsk579MWocWPvlbBgAVxzTew0IpmZNMkHLVORzxkV+mLVu7f3r//jH338epFi89prsHYttGwJ3brFTpNoKvTF7IYbYNtt4ac/9a6XIsVizRro0weOPTZ2kpKgQl/M2rSBESN8Bp7f/z52GpG6+8UvYMkSuPLK2ElKggp9sTvqKPjxj+Haa+GFF2KnEandlCk+ns0FF8CBB8ZOUxLUjz4JPvkEvv1taN7ce+G0ahU7kUh6H38Mu+/u3YRnzoQttoidqKipH30pad0axo6FVavg5ZdjpxGp2fnn+4xRd96pIp9H6s+UFAcdBG+9pbNmpXD94x8+ON/VV/tQB5I32qNPkq228vFwRo70vXuRQrFiBQwaBHvt5cMQS16p0CfN66/79GsjR8ZOIvKV8eO9S+Xf/65hDiJQ003S7LwzPP887LFH7CQiX7nwQujfH7p2jZ2kJGmPPon23NMnbXjrLT/7UCSW2bN9DBtQkY9Ie/RJtXEjHH44NGvm/evVw0FiOP98eO89mDfPx2iSKLRHn1SNG/vkynPnwkUXxU4jper++32yHBX5qFTok+yII+DSS+H22+Hee2OnkVIyezZs2ADt2+t4UQFQoU+63/8e9t0XfvYzeOON2GmkFMybB9//Plx2WewkkqJCn3RNm8K4cX59wABYty5uHkm2zz6DE07wYTguvjh2GklRoS8FXbvC6NF+UFbt9ZIrIfhJUQsXer/5jh1jJ5IUFfpScfzxvoc1bJifhi6SbcOH+7fHIUPg4INjp5Eq1L2ylFx/Pbz0ko92KZJNL7zgww736QOXXx47jVSjQl9KmjSBJ56ARvoiJ1n0/vtw0kneVHPXXXp/FSC9IqWm8p9w8mQ49VTYtCluHilu69fDiSf60MP33Qft2sVOJGmo0Jeqt9+GBQvgo49iJ5Fitnatf1McOVJDDxcwzTBVqkLwvbFmzWInkWIVgo+ptGmTmmsi0QxTsnlmXuRXr/b21ZkzYyeSYvLvf0OvXj6OjYp8wWvwK2Rm25vZNDObb2avmtng1P3tzGyKmS1KXbbNXlzJui++gBkzoG9fWL48dhopFqtWwYcfamz5IpHJR/EG4OIQwq7AfsA5ZtYDuByYGkLoBkxN3ZZC1b69H5j95BMfL/zzz2MnkkJW2dTbv79/C2yr/bhi0OBCH0JYEUKYlbr+KTAf6AT0A8amFhsL9M80pOTYt78Nd98NFRVw2mlf/TOLVLV+PfTrB2PG+G2NSFk0stK4ZmZdgD2BGcC2IYQV4B8GQPsanjPIzCrMrGKV5jeNr18/uPZaP3Vdc3pKdSHAOef4t7+NG2OnkXrKuNCb2TeA+4ELQgir6/q8EMKIEEJ5CKG8rKws0xiSDZdd5mOVXHst3HZb7DRSSIYO9S6UV1zhI6FKUcnozFgza4oX+btDCA+k7l5pZh1CCCvMrAPwXqYhJU/MfCycFSt8gvEOHeDYY2OnktjGj/cCf/LJ8LvfxU4jDZBJrxsDRgPzQwg3VnnoIWBg6vpAYFLD40neNWni/9j77OMTlqi9vrQ9/TQMHOjjy//tb+pKWaQy2aPvCfwIeMXMXkrddyVwPTDRzE4H3gZOzCyi5F3LlvDoo35pFjuNxPLii3DMMbDzzvDgg9C8eexE0kANLvQhhH8BNVWBXg39vVIgKscs+eQTb7cfOhS6dIkaSfLo1Vd9KsqyMpgyRWPYFDl9D5PNW7oUnnnGJxmX0rFqFWy9tRd5TSBS9DRMsWzebrvB66/71HDgXevUfzq51q3zoTEOOsjnfm2iEpEE2qOX2lUW+YkTYb/9/NR3SZ4PPvARKIcP99sq8omhQi9117YtvPwyHHmkD4YmybLllv4NbpddYieRLFOhl7o77DC4916YNcuvayz7ZFi50meJatbM53zVfK+Jo0Iv9dO3L9x/v889e8ghXiCkeK1Y4e3x/frpnIkEU6GX+uvbFx56yGeoOuggn0ZOis/y5b73/s47PnG8zplILBV6aZjevf2kqjffhAMP9G6YUjwWLYKePWHZMvjnP/3MV0ksFXppuIMPhscf96//hx8OGzbETiR1MWuWF/nPPoNp0+CAA2InkhxT/ynJTM+e8NRTXuzVHa/wPfWUTxrSrh088QR861uxE0ke6D9TMldeZW7iO+6ANm28mEhhuf9+OOUU6NbNv4l16hQ7keSJCr1kz8aNPmZ569bei0MH9wrLpEn+oTx5ssauKTEq9JI9jRt7c8CmTV7kP/zQi76GTIjnyy+9C2ynTjBihL82LVvGTiV5poOxkl2tWvkZluvX++iHffroxKqYBgzwk9vWrYMWLVTkS5QKveRG06Y+vPG0afDd7/qwt5J/F1wAV1/tZ71KyVKhl9w54wyfoeizz3wwtAcfjJ2oNIwdC9dd59cPPND36qWkqdBLbu2/P1RUwK67+vyzF1/szQiSfWvXwumnw09+Ak8+qfMa5D9U6CX3OneG6dPh5z+HG2/04r94cexUybJwoX9rGjMGfvlL7z6p8xokRYVe8qNFCxg2DB54AJYsgT339LFyJDMhwOjR3m1y+XJ47DEYMkRFXv6LCr3k17HH+siXF1wA3bv7fRs3xs1UrJYvh6OP9mMh5eUwe7b3dBKpRoVe8m+HHXyv0wzeessnunjmmdipisszz8Duu3uvpltugalTYfvtY6eSAqXvdxLXF1/4yTw77hg7SXEIwT8gd93VByP70580Xo3USnv0Elf37t4Fs0sXL2Knnupt+eox8nXDh0OvXn52a/v2PieAirzUgQq9FI7Vq73d+dxzYY89YMqU2IkKQ+XMT9/4hg8Y9+mncfNI0VGhl8LRurW3NT/wAHz+uY9x37cvvPZa7GRxzJ4NRx0FN9/st0891bdN69Zxc0nRUaGXwmLmPXNefdWnt5s2DXr08JOAFi2KnS4/FiyAk06CvfaC557z4SRAo4FKg6nQS2Fq0QIuu8yL+/nnw8SJ3jtn8ODYyXLnlVdg4EDYbTfvD/+rX8Ebb3hTlkgGVOilsG23nZ9Nu2QJXHihd80EP1g7bdpX7dfFatMmL+qHHw7f/jbcd5+fY7BkCfz2t2qmkaxQ90opDttt510JK02eDMcd5xOUH3lkvFyZ+ve/fSjnjh19ILJBgzQpiGSdCr0UpyOPhHvu8bHWwU/AmjcPfvhD3zsu1GF5Q/Dmmfbt/YPrgAP8AOtRRxVuZil6OWm6MbMjzGyhmS02s8tzsQ4pcS1awMknfzWmy6ZNPrvVMcf43v+pp8KECfDxx3Fzvv8+jB/vxxvAD6hutZVP0FJ5+9hjVeQlpyxkuY3TzBoDrwGHAUuBF4GTQwjzanpOeXl5qKioyGoOKUHr1nnf+4kT4ZFH4IMPfBrDvff2cdn79YOePXObYcUK7ynz3HN+DGHWLN+LLyvz3jRqlpEsMrOZIYTy2pbLxR79PsDiEMKSEMI6YDzQLwfrEflvzZp5E8jYsbByJfzrX3D55X7/zTfDuHG+3IYNvhf9z3/67S++8CL80Ud1O7i7bh3Mnw9r1vjtJ5+E3r19OOaOHeH44+HPf4YttvADqjNm+AeAirxEkos2+k7AO1VuLwX2zcF6RGrWuLHvvVfuwa9d6zNdgX8ILF781Vy2r7wC++zj15s18zlvW7b0Qg0+uuaGDd7757jj4Pnn/RvC1KlwyCE+AfeqVX59jz3ge9/zPvDNm+f3bxapQS4KfbqzOr62m2Rmg4BBADtUdpkTyZWWLb+aGLtTJy/ulbp2hbvvhnff9Q+BNWv8Z+1ab0Nv0sQ/OLbZxpffZRdfvkcPv33UUf4jUqByUeiXAlXHS+0MLK++UAhhBDACvI0+BzlE6mabbeCUU+q+fPv29VteJLJctNG/CHQzs65m1gwYADyUg/WIiEgdZH2PPoSwwczOBR4HGgNjQgivZns9IiJSNzk5YSqE8CjwaC5+t4iI1I/GuhERSTgVehGRhFOhFxFJOBV6EZGEU6EXEUm4rA9q1qAQZquAtxr49G2A97MYJ1uUq36Uq/4KNZty1U8muXYMIZTVtlBBFPpMmFlFXUZvyzflqh/lqr9CzaZc9ZOPXGq6ERFJOBV6EZGES0KhHxE7QA2Uq36Uq/4KNZty1U/OcxV9G72IiGxeEvboRURkM4qi0JvZiWb2qpltMrPyao9dkZqEfKGZ9a7h+V3NbIaZLTKzCanhk7OdcYKZvZT6edPMXqphuTfN7JXUcjmfKNfMfmNmy6pk61PDcnmd0N3M/mhmC8zsZTP7h5m1qWG5vGyv2v5+M2ueeo0Xp95LXXKVpco6tzezaWY2P/X+H5xmmYPM7JMqr+/Vuc6VWu9mXxdzf05tr5fNbK88ZOpeZTu8ZGarzeyCasvkbXuZ2Rgze8/M5la5r52ZTUnVoilm1raG5w5MLbPIzAZmHCaEUPA/wK5Ad+BpoLzK/T2AOUBzoCvwOtA4zfMnAgNS128Hzs5x3huAq2t47E1gmzxuu98Al9SyTOPUttsJaJbapj1ynOtwoEnq+lBgaKztVZe/H/g5cHvq+gBgQh5euw7AXqnrWwKvpckCOgoMAAAEPklEQVR1EPBwvt5PdX1dgD7AY/iMc/sBM/KcrzHwLt7PPMr2An4A7AXMrXLfH4DLU9cvT/e+B9oBS1KXbVPX22aSpSj26EMI80MIC9M81A8YH0L4MoTwBrAYn5z8P8zMgEOA+1J3jQX65ypran0nAeNytY4cyPuE7iGEJ0IIG1I3n8dnIoulLn9/P/y9A/5e6pV6rXMmhLAihDArdf1TYD4+J3Mx6AfcGdzzQBsz65DH9fcCXg8hNPREzIyFEKYDH1a7u+r7qKZa1BuYEkL4MITwETAFOCKTLEVR6Dcj3UTk1f8RtgY+rlJU0i2TTd8HVoYQFtXweACeMLOZqXlz8+Hc1NfnMTV8VazLdsyl0/C9v3Tysb3q8vf/Z5nUe+kT/L2VF6mmoj2BGWke/p6ZzTGzx8xstzxFqu11if2eGkDNO1sxtlelbUMIK8A/yIH2aZbJ+rbLycQjDWFmTwLbpXnoqhDCpJqelua+6t2I6jRZeV3UMePJbH5vvmcIYbmZtQemmNmC1Cd/g20uFzAcGIL/zUPwZqXTqv+KNM/NuDtWXbaXmV0FbADuruHXZH17pYua5r6cvY/qy8y+AdwPXBBCWF3t4Vl488RnqeMvDwLd8hCrttcl5vZqBvQFrkjzcKztVR9Z33YFU+hDCIc24Gl1mYj8ffxrY5PUnljaycqzkdHMmgDHAXtv5ncsT12+Z2b/wJsNMipcdd12ZjYSeDjNQ3Wa0D3buVIHmY4GeoVU42Sa35H17ZVGXf7+ymWWpl7n1nz9a3nWmVlTvMjfHUJ4oPrjVQt/COFRM7vNzLYJIeR0TJc6vC45eU/V0ZHArBDCyuoPxNpeVaw0sw4hhBWppqz30iyzFD+WUKkzfnyywYq96eYhYECqR0RX/JP5haoLpArINOCE1F0DgZq+IWTqUGBBCGFpugfNrJWZbVl5HT8gOTfdstlSrV302BrWl/cJ3c3sCOAyoG8IYW0Ny+Rre9Xl738If++Av5eequnDKVtSxwBGA/NDCDfWsMx2lccKzGwf/H/6gxznqsvr8hDw41Tvm/2ATyqbLPKgxm/VMbZXNVXfRzXVoseBw82sbaqp9fDUfQ2Xj6PPmf7gBWop8CWwEni8ymNX4T0mFgJHVrn/UaBj6vpO+AfAYuBeoHmOct4BnFXtvo7Ao1VyzEn9vIo3YeR6290FvAK8nHqTdaieK3W7D96r4/U85VqMt0O+lPq5vXqufG6vdH8/8Fv8gwigReq9szj1XtopD9voAPwr+8tVtlMf4KzK9xlwbmrbzMEPau+fh1xpX5dquQwYltqer1Clt1yOs7XEC3frKvdF2V74h80KYH2qfp2OH9eZCixKXbZLLVsOjKry3NNS77XFwE8zzaIzY0VEEq7Ym25ERKQWKvQiIgmnQi8iknAq9CIiCadCLyKScCr0IiIJp0IvIpJwKvQiIgn3/3hNiH8dJbY4AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.plot(x, x**2, 'red', linestyle = '-.')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Список всех типов линий см. [здесь](https://matplotlib.org/gallery/lines_bars_and_markers/line_styles_reference.html). "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Кроме того, можно изменить толщину линии, добавив аргумент `linewidth`."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x118459710>]"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XecVNX9//HXR5oUFRREEA2QYCWJZW3R+DWiBrERY28kiERjjRgDthhLxAYWbIgodo0FjT+NBUmi0RiBgA0VooCIARQQRUCQ8/vjM5M7g7uwu1POlPfz8djHnnP3zs5n785+9s65536OhRAQEZHKtU7sAEREpLCU6EVEKpwSvYhIhVOiFxGpcEr0IiIVToleRKTCKdGLiFQ4JXoRkQqnRC8iUuGaxg4AoH379qFr166xwxARKSsTJ078NITQYW37lUSi79q1KxMmTIgdhohIWTGzmfXZT0M3IiIVToleRKTCKdGLiFQ4JXoRkQqnRC8iUuHWmujNbLSZzTOztzK2bWhmz5vZtNTndqntZmY3mNl0M3vDzHYoZPAiIrJ29Tmjvwvovdq2wcC4EEIPYFyqD7A/0CP1MRC4JT9h1mHePLj2Wvj3vwv6NCIieffKK3DDDbBgQcGfaq2JPoTwd2D1SA4BxqTaY4C+GdvvDu6fQFsz65SvYLPccgt06QLnnAM33VSQpxARKZjrroMzz4TOneHuuwv6VI0do+8YQvgEIPV549T2TYGPMvabndr2LWY20MwmmNmE+fPnNzyC7baDFSu8/eCD8MUXDf8eIiIxzJ8PY8d6e/ly2HHHgj5dvi/GWi3bal19PIQwMoRQE0Ko6dBhrXfwftuuu8K223p7yRJ44IGGfw8RkRjuvjs5Ud1ttySXFUhjE/3c9JBM6vO81PbZwGYZ+3UB5jQ+vDUwg5NOSvqjRhXkaURE8ioEuP32pJ+ZxwqksYn+SaBfqt0PeCJj+wmp2Te7Ap+nh3gK4rjjoHlzb7/+OkyZUrCnEhHJi5dfhvfe8/Z668ERRxT8KeszvfIB4FVgSzObbWYnAkOBfc1sGrBvqg/wNPABMB24Hfh1QaJO22gj+PnPk77O6kWk1GXmqWOOgdatC/6UFkKtQ+hFVVNTExpdvfLFF6FXL2+3bQtz5kDLlvkLTkQkXxYt8lk2S5d6//XXoaam0d/OzCaGENb6Dcr/zti99oLvftfbixbBI49EDUdEpE73358k+e22K/hsm7TyT/TrrAMDBiR9Dd+ISCmq7SKs1TZRMf/KP9ED9OsHTZp4++9/Ty50iIiUikmTYPJkb7ds6ePzRVIZib5TJzjooKSvs3oRKTWZZ/OHH+7XFIukMhI9ZA/fjBkDX38dLxYRkUxLlvj4fFpmviqCykn0vXvDpqlqC/Pnw5NPxo1HRCTt4YeTMi1bbgl77FHUp6+cRN+kCfTvn/Q1fCMipSIzHw0YULSLsGmVk+gBTjwxOYDPPQczZkQNR0SEt9/2ksQAzZr55JEiq6xE/53vwH77eTsEGD06bjwiIpln8337QmOKOOaoshI9ZF/kGD0aVq6MF4uIVLdly7JrzRf5Imxa5SX6gw+GjVPl8T/+GJ56Km48IlK9/vSnZAWprl1hn32ihFF5ib55cx+rT7ulsKsZiojUKTP//OpXfid/BJWX6AEGDsy+KDt9etx4RKT6TJkCr77q7WbNsmcFFlllJvquXaFPn6R/223RQhGRKpV5Nn/YYcmQcgSVmegBTjklad95p18UEREphsWL4d57k35mPoqgchN9794+3RLgs8/8ooiISDHce6+XPQBfD7bId8KurnITfZMmPlafduut8WIRkeoRQna+Ofnkot8Ju7rKTfTgs2+aNfP2K6/AG2/EjUdEKt8rr8Cbb3q7VSs4/vi48VDpib5jRzj00KSvqZYiUmiZeebYY2GDDeLFklLZiR6yL4Lce29SQU5EJN/mz8++Hhj5Imxa5Sf6PfeErbf29pdfZl8JFxHJpzvvTNbC2GUX2H77uPGkVH6iN/OLIWm33OIXS0RE8mnVqux7djLzTmSVn+gBTjjBL4qAXyRJlwwVEcmX556DDz7wdrt2cOSRcePJUB2Jvm1bOPropK+pliKSb5l55Re/8AXAS0R1JHrIvijy8MMwb168WESkssyaBX/+c9IvoWEbqKZEv+OOsPPO3v766+wV2UVEcnHzzT5GD16KeIst4sazmupJ9ACnn560b74ZVqyIF4uIVIalS7NPHDPzTImorkR/+OF+ExXAnDnw+ONx4xGR8nf//cniIt26wQEHxI2nFtWV6Fu08OL/aTfcEC8WESl/IWTnkVNP9TpbJaa6Ej34RZKmTb39j3/ApElx4xGR8vXSS0kNrVatoi4usiY5JXoz+42ZvW1mb5nZA2a2rpl1M7PXzGyamT1kZs3zFWxedOoERxyR9G+8MV4sIlLeMs/mTzjB58+XoEYnejPbFDgDqAkh9ASaAEcBVwLDQwg9gIXAiXV/l0gyL5Y88IDXpxARaYhZs2Ds2KR/2mnxYlmLXIdumgItzawp0Ar4BNgbeCT19TFA3xyfI/922QV22snby5fDqFFx4xGR8nPLLfDNN97u1csXGClRjU70IYSPgWuAWXiC/xyYCCwKIaxM7TYb2DTXIPPO7NtTLVeurHt/EZFMS5fCyJFJvwSnVGbKZeimHXAI0A3oDLQG9q9l11oriJnZQDObYGYT5scYOjniiGSx3tmzs9+CiYisyQMPJFMqu3aFAw+MGs7a5DJ0sw/wYQhhfghhBfAY8COgbWooB6ALMKe2B4cQRoYQakIINR06dMghjEbSVEsRaYwymVKZKZdEPwvY1cxamZkBvYB3gPHAYal9+gFP5BZiAWVOtXzpJZg8OW48IlL6Xn4ZpkzxdqtWvmRpictljP41/KLrJODN1PcaCfwOONvMpgMbAXfkIc7C6NwZDjss6WuqpYisTebZ/HHHleyUykwWSmARjpqamjBhwoQ4T/7qq/CjH3l73XV9ylSMoSQRKX2zZkH37slsmzffhJ49o4VjZhNDCDVr26/67oxd3a67Qk3qOC1bplr1IlK3G29MkvxPfhI1yTeEEr0Z/OY3SX/ECE/4IiKZFi/OnlJ59tnxYmkgJXrwqpZdunh73jy477648YhI6bnjDk/2AFtuCX36xI2nAZToAZo1gzPPTPrDhmkBcRFJrFwJ11+f9M8+G9Ypn/RZPpEW2oAB0KaNt995B559Nm48IlI6HnsMZs70dvv2cPzxceNpICX6tLZtPdmnXXttvFhEpHSEkJ0Pfv3rklr4uz6U6DOdeWbyduyFF5KbIkSkev3jH/Cvf3m7RQu/E7bMKNFn6to1+waq4cOjhSIiJWLYsKR9/PFJjawyokS/uswpU/ff72vLikh1mj49u+Bh5lTsMqJEv7pddoHdd/f2ihU+r15EqtN11yUz8PbfH7bZJm48jaREX5tBg5L2rbfCkiXxYhGROBYsgDvvTPqZeaHMKNHX5uCD4bvf9fbChXDXXVHDEZEIbrsNvvrK2z/4Aey9d9x4cqBEX5smTeCss5L+8OFJfQsRqXxff51dzXbQIC+XUqaU6Ovyy18m5Uf/8x94/PG48YhI8dx3H3zyibc7dYKjjoobT46U6OvSujWcckrSv/JKlUUQqQarVvnfe9oZZ0Dz5vHiyQMl+jU54wyvUQ8wYQKMGxc3HhEpvLFj4b33vL3++tknfGVKiX5NOnaE/v2T/tCh8WIRkcILIfvv/Ne/hg02iBdPnijRr8055yQL/44bB6+/HjceESmc8eOTv/EWLbKr2pYxJfq16dYt+0JM5tidiFSWzLP5/v1hk03ixZJHSvT18bvfJe3HHoN3340Xi4gUxsSJ8Pzz3l5nHX83XyGU6Ovj+9+HAw7wdghw9dVx4xGR/Ms8mz/ySF8EvEIo0dfXkCFJ+557YPbseLGISH69/z48+mjSHzw4XiwFoERfX7vvDnvs4e0VK7JLl4pIebvqquQ+mT59vORBBVGib4jM//IjR8Jnn8WLRUTy4+OP4e67k36Fnc2DEn3D9Onj4/XgFS1vuiluPCKSu+HD/V06+Dv3H/84bjwFoETfEGbZ/+1vuEEljEXK2YIFXoo8rQLP5kGJvuGOOMKXHAQfurnttqjhiEgOMk/Wevb0d+0VSIm+oZo2zZ5Xf9VVsHRpvHhEpHE+/9xXkEobPNjnz1egyvypCu2Xv4RNN/X23Ll+YVZEyssNN3iyB9hii7IvRbwmSvSN0aJF9ljelVfCsmXx4hGRhlm82C/Cpp1/flLTqgIp0TfWgAG+IAH4AgWjRsWNR0Tqb8QIXyYUfNnQY46JG0+B5ZTozaytmT1iZu+a2VQz283MNjSz581sWupzu3wFW1LWXTd7rH7oUFi+PF48IlI/X3wB116b9M8/36+9VbBcz+ivB/4SQtgK+CEwFRgMjAsh9ADGpfqVaeBAr1kPftPF6NFx4xGRtbv5Zp9WCV6d9rjj4sZTBI1O9Ga2PrAncAdACOHrEMIi4BBgTGq3MUDfXIMsWS1bwrnnJv0rrvBFhUWkNC1ZAtdck/TPOw+aNYsXT5HkckbfHZgP3Glm/zazUWbWGugYQvgEIPV549oebGYDzWyCmU2YP39+DmFEdvLJsHHqR/zoI7jrrqjhiMga3HILfPqptzffHE44IW48RZJLom8K7ADcEkLYHlhCA4ZpQggjQwg1IYSaDh065BBGZK1aZdet/uMfdVYvUoq++iq7xPh555X9ot/1lUuinw3MDiG8luo/gif+uWbWCSD1eV5uIZaBU06B9u29PXOmlzEWkdJy220wL5WOunSBX/wiajjF1OhEH0L4L/CRmW2Z2tQLeAd4EuiX2tYPeCKnCMtBmzYwaFDSv/zypEiSiMS3dKnfxZ42ZIjfD1Mlcp11czpwn5m9AWwH/BEYCuxrZtOAfVP9ynfqqbDhht7+8EOd1YuUkpEj4b//9Xbnzr4ebBXJKdGHECanxtl/EELoG0JYGEL4LITQK4TQI/V5Qb6CLWnrrQdnn530L7lE8+pFSsGSJX7tLO13v/P7YKqI7ozNpzPOyB6r192yIvGNGJE9Nj9wYNx4IlCiz6f11steW/ayy/xKv4jE8fnnXosq7cILq+5sHpTo8++UU3wMEHxMcMSIuPGIVLPhw5OaNt27e+XZKqREn28tW8JFFyX9K69MSqGKSPF89hkMG5b0L764Ku6CrY0SfSH07+9nD+A1NTJfbCJSHFdd5QXMALbeuuIrVK6JEn0hNGsGf/hD0h82LLntWkQK77//hRtvTPqXXFLR9ebXRom+UI4+GrbZxttffpl9QUhECuuPf0yW+NxuOzj00LjxRKZEXyhNmvism7QRI2DOnHjxiFSLmTO93EHaZZdV7Fqw9VXdP32h9e0LNTXeXrYsO/GLSGFcdFFSWHC33aBPn7jxlAAl+kIy87o3abffDh98EC8ekUo3ZUp2+ZGhQ/3vsMop0RfavvvCnnt6e+XK7KmXIpJfQ4ZACN4+8MDkb6/KKdEXmll2nY377oN//ztePCKVavx4eOYZb5v5im8CKNEXx+67wyGHJP3f/jY56xCR3IXgxcrS+vWDnj3jxVNilOiLZejQZB7vuHHw3HNx4xGpJI8+Cq+/7u0WLbLvYxEl+qLZaisYMCDpn3sufPNNvHhEKsWKFb4sYNoZZ/h6sPI/SvTFdPHF0Lq1t994A+69N2o4IhXhjjtg2jRvt20Lg+u9dHXVUKIvpk02yV5I/IILkrv3RKThFi/Onsk2ZEiy0pv8jxJ9sQ0aBB07env2bLjhhrjxiJSzK66A+fO9vdlmcPrpceMpUUr0xbbeej6Ek/bHPyYvVBGpvxkzvN582tChXiZcvkWJPoYTT4Qtt/T24sXw+9/HjUekHA0enKzLvPPOcNRRceMpYUr0MTRrBtdck/Rvuw3eeitePCLl5tVX4aGHkv6wYVVfuGxNdGRiOeAAL48AsGoV/OY3uolKpD5C8L+XtMMP95sSpU5K9LGYZZ+FvPACPPVU3JhEysFDD8Frr3m7eXOt9VAPSvQx9ewJJ5+c9AcNSsqrisi3LV2aXergrLOgW7d48ZQJJfrY/vAH2GADb0+b5guUiEjtrrkGZs3ydvv22XfESp2U6GNr3z571s0ll2i6pUhtZs7Mrkh56aXJSZKskRJ9KTj1VNhiC29//jlceGHceERK0TnnZK8De9JJceMpI0r0paB5c7j22qQ/ciRMnBgvHpFSM24cPPJI0r/xxqQarKyVEn2pOOAA6N3b2yH4Wf6qVXFjEikFK1bAmWcm/WOPhT32iBdPGVKiLxVmXvemeXPvv/Ya3Hln3JhESsHNN8Pbb3u7TRu46qq48ZShnBO9mTUxs3+b2VOpfjcze83MppnZQ2bWPPcwq0SPHr76VNrgwbBgQbx4RGKbNy97ssKFF0LnzvHiKVP5OKM/E5ia0b8SGB5C6AEsBE7Mw3NUj/POSxZN+PRTXZiV6jZkiE9QAJ+wcNZZceMpUzklejPrAhwAjEr1DdgbSF81GQP0zeU5qk6rVtkV+W69FSZNihePSCwvvwyjRyf9669PhjalQXI9o78OOBdIXzXcCFgUQliZ6s8GNs3xOarPz34G++3n7VWrdGFWqs+KFdl3jfftm0xWkAZrdKI3swOBeSGEzHmAVsuutVbqMrOBZjbBzCbM1w1C2cx8+lizZt7/5z+zz2xEKt3w4ckF2NattUBPjnI5o98dONjMZgAP4kM21wFtzaxpap8uwJzaHhxCGBlCqAkh1HTo0CGHMCrUFltkLzv429/C3Lnx4hEplhkzshfnueQSXz1KGq3RiT6EMCSE0CWE0BU4CngxhHAsMB44LLVbP+CJnKOsVhdckBRsWrQIzj47bjwihRaCLweYvgP2hz+EM86IG1MFKMQ8+t8BZ5vZdHzM/o4CPEd1aNUKbrkl6d9/Pzz7bLx4RArtiSeSct1mPhmhadM1P0bWKi+JPoTw1xDCgan2ByGEnUMI3wshHB5CWJ6P56haP/0pHH100j/lFPjqq3jxiBTKl19mL+49cCDsumu8eCqI7owtB8OHQ9u23v7wQ6/aJ1JpLrgAZs/2docO2ZUqJSdK9OWgY0e4+uqkf8018Oab8eIRybdXX82eWTNsGLRrFy+eCqNEXy7694cf/9jbK1d6idZvvokbk0g+LF8OJ56YrJncu7cXLpO8UaIvF+usA7fdlsytf+01v1NQpNxddhlMTVVRadPGL8BabbfkSGMp0ZeTrbf2ccy088/35QdFytWUKTB0aNIfOhS+85148VQoJfpyM2SIzy0GWLbM3/KqPIKUo5Ur/fW7MlUxZY89fFaZ5J0Sfblp1szr1KfnFr/0Etx0U9yYRBpj+PBkJbUWLWDUKB+ilLzTUS1H22/vterTBg+GDz6IF49IQ02dChddlPQvvhi23DJaOJVOib5cXXABbLutt7/6CgYM0BCOlIcVK+CEE3zoEfzEZdCguDFVOCX6ctWihQ/hpN/qjh/vsxVESt0VV8CECd5u3hzGjElmk0lBKNGXs512gnPPTfrnnAPvvx8vHpG1mTgx+87uSy+F738/XjxVQom+3P3+98kfytKlcNxx/tZYpNQsW+ZDNulZNrvvriGbIlGiL3frrgv33psssfb663D55XFjEqnNhRfCO+94u1UruOsuaNIkakjVQom+EvzgB353Ydpll/mdsyKl4qWX4Nprk/4118D3vhcvniqjRF8pzj4b9tzT2998A8cfD0uWxI1JBGDhQh9STNey2W+/7PVgpeCU6CtFkyY+e2G99bw/bVr2UoQiMYQAv/oVzJrl/Xbt4I47VMumyJToK0nXrr6oeNqtt8LYsdHCEWH0aPjTn5L+qFHQpUu8eKqUEn2lOeEE+PnPk37//snZlEgxvftu9nqvAwfCoYfGi6eKKdFXGjO4/XbYfHPvL1zoSxFqyqUU0/Ll/rpLL3u59dZe20aiUKKvRO3awQMPJFPXXnnFa4mIFMt558Hkyd5u3txfj61axY2piinRV6of/Sh7yuUVV8ALL8SLR6rHn//sSwGmXX11UlpbolCir2Tnngv77uvtEHyK29y5cWOSyvbhh36dKO2AA+D00+PFI4ASfWVbZx245x5fXBw8yR99dHILukg+LVsGhx0GixZ5f7PNfMqvplJGp0Rf6Tp29BIJ6T+28eOzlyMUyZezzoJJk7zdrJlPq9xoo7gxCaBEXx322ceLn6VdeSU89li8eKTy3HOPL16fNmwY7LJLvHgkixJ9tbjwQujTJ+n/4hfw3nvRwpEK8tZb2SUNjjwSTj01XjzyLUr01SI9Xt+tm/e/+MJvXvnyy7hxSXlbuNBfR+n58ltu6fdxaFy+pCjRV5MNN4RHH/XSxuAlYwcMSIpNiTTEN9/4xf1p07zfqpW/vtL1lqRkKNFXm+23z15y8KGH4Kqr4sUj5WvwYHj22aR/113JOsZSUpToq1G/ftljqkOGwBNPxItHys8993hN+bTzz4fDD48Xj6yREn21uv76pH59CHDssTBlStyYpDz8619w0klJ/+CD4ZJL4sUja9XoRG9mm5nZeDObamZvm9mZqe0bmtnzZjYt9bld/sKVvGne3MdTu3f3/pIl/gerO2dlTebMgZ/9zIuWAWyzjZ/dr6NzxlKWy29nJTAohLA1sCtwqpltAwwGxoUQegDjUn0pRe3bw5NPJhfPZs3yGRTLlsWNS0rTF194SYM5c7zfrp0P+a2/fty4ZK0anehDCJ+EECal2l8AU4FNgUOAMandxgB9cw1SCmjbbf2CbPqM7JVXNBNHvm3lSp8fn65I2aSJv2607mtZyMv7LTPrCmwPvAZ0DCF8Av7PANi4jscMNLMJZjZh/vz5+QhDGmv//bMvrN13n5eZFQH/p3/aafDMM8m2225LCuZJycs50ZtZG+BR4KwQwuL6Pi6EMDKEUBNCqOnQoUOuYUiuzjrLVwBKGzoURoyIF4+Ujquuyi5vcP75cOKJ8eKRBssp0ZtZMzzJ3xdCSBdPmWtmnVJf7wTMyy1EKQozuOkmOPDAZNsZZ6gmTrV78EGfL5927LFw6aXx4pFGyWXWjQF3AFNDCBmrDPAk0C/V7gdogna5aNrU/7DTxahCgGOOgZdfjhuXxPHcc9m15ffaC+64Q+UNylAuZ/S7A8cDe5vZ5NRHH2AosK+ZTQP2TfWlXLRu7SsE9ejh/eXL4aCDvHCVVI9XXvFplOm1hrfayt/dtWgRNy5plKaNfWAI4WWgrn/tvRr7faUEdOgAf/kL7LYbzJvnC0nssw+89FLyD0Aq1xtv+DTKdKGyzTf3s/t2uiWmXOkuB6ld9+7w9NPJHPu5c6FXL5g5M25cUljTpsF++yWrRG28MTz/vK8WJWVLiV7qtuOO8P/+H7Rs6f2PPoK9905umJHK8tFHPmUyfXf0Bht40bIttogbl+RMiV7W7Mc/9rsfmzf3/gcf+DCO7n2oLLNm+cXW9Du2li39n/x220UNS/JDiV7Wbt994ZFHfFYOwNSpSvaVZOZMT/IffOD9Zs38wuvuu0cNS/JHiV7q56CD/I7ZdKmEN96A//s/+OSTuHFJbmbM8CT/4Yfeb97ck3zv3jGjkjxTopf6O+IIGDMmSfZTp3qp448+ihuXNE46yc+Y4f10ks+8aU4qghK9NMxxx8H993tRK4Dp0z3Zp9/2S3l47z1/R5Yek2/RAsaO9WmVUnGU6KXhjjzSx+ybNfP+jBme7N99N2pYUk+vvw577OEXYCFJ8vvvHzcuKRglemmcvn19Nk56ofGPP/aLd6+8EjcuWbPnn4ef/AQ+/dT7rVr5mgQak69oSvTSePvv71PwWrXy/oIFflPV2LFx45LaPfywD80sWeL9DTeEF1/0G6SkoinRS2723hv++lcvmwC+OtXPfw433xw1LMkQgq8RfNRRSe2aLl28WF26gJ1UNCV6yd1OO/mQTXq1oVWr4NRTYcgQb0s8K1bAySf7egPpVcO22sp/X1tvHTc2KRolesmP733Pk8fOOyfbhg71CoiL670ejeTTggXw05/CyJHJtl139TN51a6pKkr0kj8dOviYb+YUvSef9OQybVq8uKrRu+/6sMz48cm2Y47x/kYbxYtLolCil/xq3dovxg4alGybOtXP9P/yl3hxVZOxY/2f6/TpybbLL4d7701mSUlVUaKX/Gva1Bcbv+eeJLEsWuRn+pdfDt98Eze+SrVihf+D/dnP4PPPfVurVvDoo77Yu1aGqlpK9FI4xx3n48Fdunh/1Sq44AKfzqdSx/k1a5bftDYsY1XP73zHF4s59NB4cUlJUKKXwtpxR5gwwcsdp734Ivzwhz4HX3L31FOw/fbwz38m2w46CCZNgh12iBeXlAwleim8jh09uV94YTJ88OmnXjzr7LNh6dK48ZWrxYvhxBM9qS9Y4NuaNIGrr/a7ljfcMG58UjKU6KU4mjaFSy6BceOgc+dk+/DhvrjFyy/Hi60cjRsH3/8+jB6dbNt0U/jb3+CcczQeL1mU6KW4fvITmDIluxTu++/7+PLpp8OXX8aLrRx88YUfp332SYqSgReamzJFi4VIrZTopfjat/f59bfemiw+HgKMGAE9e8Izz8SNrxSFAA884He1jhiRbN9oI3joIXjwQc2Plzop0UscZvCrX8Hbb0OfPsn2mTO936ePyh6nvf221xQ65pjs2UoHHwxvveULwoisgRK9xLXZZj5r5J57si8ePvOMj0H/5jewcGG8+GKaP99//u2288JxaZ06+bKOY8fCJptEC0/KhxK9xGfmc+6nToUBA5ILiStXwnXXQY8ecOWV1TN+v2iRz1Dq1s1//pUrfXuTJj5L6d13/exeF1ylnpTopXRsvDHcfjtMnJg97/6zz2DwYOjaFa64wi9IVqLFi70QXPfucNllSd148IvVkyfDtdfC+uvHi1HKkhK9lJ7tt/dpgg8/7Mk97bPP/Fb+rl3hD3+ATz6JFWF+zZzppQu6dPHSzplDVT17+hDNX//qbZFGUKKX0mQGhx/ui1iPHJmd8BcsgIsvhs0398U0XnopqbVeLkKAf/zDp0V27+6lCzLfqXzvez4OP3kyHHKL42dnAAAI4klEQVSIhmkkJ0r0UtqaN4eTTvK59qNG+bh12sqVPrVwzz39guWwYb52bSn7+GMfntl6a1+g++GHsxdn2WorH7565x0fh2/SJF6sUjEslMCZUE1NTZgwYULsMKQcrFjh1Rhvuqn2u2nNYK+9vILjQQdlvxOIZcYMePxxeOSRuhdP79XLL7T27g3r6PxL6sfMJoYQata6XyESvZn1Bq4HmgCjQghD17S/Er00ypQpvjbtvffCV1/Vvk/Pnn4X6V57+QXeYtR/mTcPXn0VXngBnnvO343Upk0bH3o67TQv8ibSQNESvZk1Ad4H9gVmA68DR4cQ3qnrMUr0kpNFi+Cxx+D++7142ppe0z16eEXHHXbwYZIePXyMvEWLhj/v0qVehmDqVL+p6c034V//gg8/rPsx66zjZSBOOMEXUW/duuHPK5ISM9HvBlwcQvhpqj8EIIRwRV2PUaKXvJkzxys3/vnPnvSXL1/7Y8x8GcRNNvFKm+uvDy1b+oeZL5SycqVfLF240D8+/thvaKqPli39HcWhh/qF1Q4dcvoRRdLqm+ibFuC5NwU+yujPBnYpwPOIfFvnznDKKf7x5Zfw97/7VM2//c3r4te2ulUIPtwyb15+YmjRAmpqvMDYfvv5Zy3hJxEVItHXNg/sW28bzGwgMBBg8803L0AYUvXatEnq5oAPtbz1li/IMXmyL1g+fboPvzTmnW3Tpj73/bvf9WsB227rY+3bbeezhURKRCES/Wxgs4x+F+Bb68aFEEYCI8GHbgoQh0i2li1hp538I9PXX/swzNy5/rFkiV/cTV/gbdrUpzm2aQPt2kHbtl5vZpNNNP1RykIhEv3rQA8z6wZ8DBwFHFOA5xHJj+bNfdGOTTeNHYlIQeQ90YcQVprZacCz+PTK0SGEt/P9PCIiUj+FOKMnhPA08HQhvreIiDSMbsETEalwSvQiIhVOiV5EpMIp0YuIVDglehGRClcSZYrNbD4ws5EPbw98msdw8kVxNYziarhSjU1xNUwucX0nhLDW4kklkehzYWYT6lPUp9gUV8MoroYr1dgUV8MUIy4N3YiIVDglehGRClcJiX5k7ADqoLgaRnE1XKnGprgapuBxlf0YvYiIrFklnNGLiMgalEWiN7PDzextM1tlZjWrfW2ImU03s/fM7Kd1PL6bmb1mZtPM7CEzy/uqEKnvOzn1McPMJtex3wwzezO1X8HXTzSzi83s44zY+tSxX+/UMZxuZoOLENfVZvaumb1hZo+bWds69ivK8Vrbz29mLVK/4+mp11LXQsWS8Zybmdl4M5uaev2fWcs+e5nZ5xm/34sKHVfqedf4ezF3Q+p4vWFmOxQhpi0zjsNkM1tsZmettk/RjpeZjTazeWb2Vsa2Dc3s+VQuet7M2tXx2H6pfaaZWb+cgwkhlPwHsDWwJfBXoCZj+zbAFKAF0A34D9Cklsc/DByVat8KnFLgeK8FLqrjazOA9kU8dhcD56xlnyapY9cdaJ46ptsUOK79gKap9pXAlbGOV31+fuDXwK2p9lHAQ0X43XUCdki11wPeryWuvYCnivV6qu/vBegDPIOvOLcr8FqR42sC/BefZx7leAF7AjsAb2VsuwoYnGoPru11D2wIfJD63C7VbpdLLGVxRh9CmBpCeK+WLx0CPBhCWB5C+BCYDuycuYOZGbA38Ehq0xigb6FiTT3fEcADhXqOAtgZmB5C+CCE8DXwIH5sCyaE8FwIYWWq+098JbJY6vPzH4K/dsBfS71Sv+uCCSF8EkKYlGp/AUzF12QuB4cAdwf3T6CtmXUq4vP3Av4TQmjsjZg5CyH8HViw2ubM11FdueinwPMhhAUhhIXA80DvXGIpi0S/BrUtRL76H8JGwKKMpFLbPvn0Y2BuCGFaHV8PwHNmNjG1bm4xnJZ6+zy6jreK9TmOhdQfP/urTTGOV31+/v/tk3otfY6/tooiNVS0PfBaLV/ezcymmNkzZrZtkUJa2+8l9mvqKOo+2YpxvNI6hhA+Af9HDmxcyz55P3YFWXikMczsBWCTWr50fgjhiboeVsu21acR1Wux8vqoZ4xHs+az+d1DCHPMbGPgeTN7N/Wfv9HWFBdwC3Ap/jNfig8r9V/9W9Ty2JynY9XneJnZ+cBK4L46vk3ej1dtodayrWCvo4YyszbAo8BZIYTFq315Ej488WXq+stYoEcRwlrb7yXm8WoOHAwMqeXLsY5XQ+T92JVMog8h7NOIh9VnIfJP8beNTVNnYrUuVp6PGM2sKXAosOMavsec1Od5ZvY4PmyQU+Kq77Ezs9uBp2r5Ur0WdM93XKmLTAcCvUJqcLKW75H341WL+vz86X1mp37PG/Dtt+V5Z2bN8CR/XwjhsdW/npn4QwhPm9nNZtY+hFDQmi71+L0U5DVVT/sDk0IIc1f/QqzjlWGumXUKIXySGsqaV8s+s/FrCWld8OuTjVbuQzdPAkelZkR0w/8z/ytzh1QCGQ8cltrUD6jrHUKu9gHeDSHMru2LZtbazNZLt/ELkm/Vtm++rDYu+rM6nu9/C7qnzoaOwo9tIePqDfwOODiE8FUd+xTreNXn538Sf+2Av5ZerOufU76krgHcAUwNIQyrY59N0tcKzGxn/G/6swLHVZ/fy5PACanZN7sCn6eHLIqgznfVMY7XajJfR3XlomeB/cysXWqodb/UtsYrxtXnXD/wBDUbWA7MBZ7N+Nr5+IyJ94D9M7Y/DXROtbvj/wCmA38CWhQozruAk1fb1hl4OiOOKamPt/EhjEIfu3uAN4E3Ui+yTqvHler3wWd1/KdIcU3HxyEnpz5uXT2uYh6v2n5+4BL8HxHAuqnXzvTUa6l7EY7RHvhb9jcyjlMf4OT06ww4LXVspuAXtX9UhLhq/b2sFpcBN6WO55tkzJYrcGyt8MS9Qca2KMcL/2fzCbAilb9OxK/rjAOmpT5vmNq3BhiV8dj+qdfadOCXucaiO2NFRCpcuQ/diIjIWijRi4hUOCV6EZEKp0QvIlLhlOhFRCqcEr2ISIVTohcRqXBK9CIiFe7/Ay7UqU8AQA1UAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.plot(x, x**2, 'red', linewidth = 3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Теперь построим график, состоящий только из точек (можно считать диаграммой рассеяния)."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.collections.PathCollection at 0x1185738d0>"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEGxJREFUeJzt3W9sXXd5wPHvMycdt0XILXWrxqmWIkWGig4ZWahQCSHC5PJHxKqoVLSxiFWKJnVQ/sjQsBd92SIj/kybkKIWyERVqIKXVoxhurQI7QURTo1I2+C1KiONExojMCC4Eml49sIn4ISkju+5N8f31+9Hquz787HPc3Tbr2/PPdc3MhNJUrn+oukBJEm9ZeglqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKt6HpAQCuvPLK3LJlS9NjSFJfOXjw4M8zc2i17dZF6Lds2cLs7GzTY0hSX4mIn17Idp66kaTCGXpJKpyhl6TCGXpJKpyhl6TCrRr6iPhSRJyIiCdXrF0REY9GxDPVx8ur9YiIf4mIZyPiRxHxxl4OL0n9aN/cAjfd+xjX3fWf3HTvY+ybW+jp/i7kEf1XgJvPWrsL2J+ZW4H91W2AdwJbq392Al/szpiSVIZ9cwvsmj7EwlKbBBaW2uyaPtTT2K8a+sz8HvCLs5a3A3uqz/cAEyvW/z2XfR8YjIhrujWsJPW7qZl52idPnbHWPnmKqZn5nu2z03P0V2fmcYDq41XV+jDw/IrtjlZrfyYidkbEbETMLi4udjiGJPWXY0vtNa13Q7efjI1zrJ3z3cczc3dmjmXm2NDQqq/glaQibBpsrWm9GzoN/QunT8lUH09U60eBa1dstxk41vl4klSWyfERWhsHzlhrbRxgcnykZ/vsNPSPADuqz3cAD69Y//vq6psbgV+dPsUjSYKJ0WHuueUGhgdbBDA82OKeW25gYvScZ7m7YtU/ahYRDwJvA66MiKPA3cC9wEMRcTtwBLi12vxbwLuAZ4HfAR/swcyS1NcmRod7GvazrRr6zHz/eb607RzbJnBH3aEkSd3jK2MlqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXAbmh5AktaTfXMLTM3Mc2ypzabBFpPjI0yMDjc9Vi21HtFHxEcj4qmIeDIiHoyIV0TEdRFxICKeiYivR8Ql3RpWknpp39wCu6YPsbDUJoGFpTa7pg+xb26h6dFq6Tj0ETEMfBgYy8zXAwPAbcCngc9l5lbgl8Dt3RhUknptamae9slTZ6y1T55iama+oYm6o+45+g1AKyI2AJcCx4G3A3urr+8BJmruQ5IuimNL7TWt94uOQ5+ZC8BngCMsB/5XwEFgKTNfrDY7CvT3yS1JLxubBltrWu8XdU7dXA5sB64DNgGXAe88x6Z5nu/fGRGzETG7uLjY6RiS1DWT4yO0Ng6csdbaOMDk+EhDE3VHnVM37wB+kpmLmXkSmAbeAgxWp3IANgPHzvXNmbk7M8cyc2xoaKjGGJLUHROjw9xzyw0MD7YIYHiwxT233ND3V93UubzyCHBjRFwKtIFtwCzwOPA+4GvADuDhukNK0sUyMTrc92E/W51z9AdYftL1CeBQ9bN2A58EPhYRzwKvBu7vwpySpA7VesFUZt4N3H3W8nPAm+r8XElS9/gnECSpcIZekgpn6CWpcIZekgpn6CWpcIZekgpn6CWpcIZekgpn6CWpcIZekgpn6CWpcIZekgpn6CWpcIZekgpn6CWpcIZekgpn6CWpcIZekgpn6CWpcIZekgpn6CWpcIZekgpn6CWpcBuaHkCSLtS+uQWmZuY5ttRm02CLyfERJkaHmx5r3TP0kvrCvrkFdk0fon3yFAALS212TR8CMPar8NSNpL4wNTP/x8if1j55iqmZ+YYm6h+GXlJfOLbUXtO6/sTQS+oLmwZba1rXnxh6SX1hcnyE1saBM9ZaGweYHB9paKL+4ZOxkvrC6Sdcvepm7Qy9pL4xMTps2DtQ69RNRAxGxN6I+HFEHI6IN0fEFRHxaEQ8U328vFvDSpLWru45+i8A387M1wJvAA4DdwH7M3MrsL+6LUlqSMehj4hXAW8F7gfIzN9n5hKwHdhTbbYHmKg7pCSpc3Ue0b8GWAS+HBFzEXFfRFwGXJ2ZxwGqj1ed65sjYmdEzEbE7OLiYo0xJEkvpU7oNwBvBL6YmaPAb1nDaZrM3J2ZY5k5NjQ0VGMMSdJLqRP6o8DRzDxQ3d7LcvhfiIhrAKqPJ+qNKEmqo+PQZ+bPgOcj4vSrFbYBTwOPADuqtR3Aw7UmlCTVUvc6+g8BD0TEJcBzwAdZ/uXxUETcDhwBbq25D0lSDbVCn5k/BMbO8aVtdX6uJKl7/Fs3klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9Jhasd+ogYiIi5iPhmdfu6iDgQEc9ExNcj4pL6Y0qSOtWNR/R3AodX3P408LnM3Ar8Eri9C/uQJHWoVugjYjPwbuC+6nYAbwf2VpvsASbq7EOSVE/dR/SfBz4B/KG6/WpgKTNfrG4fBYZr7kOSVEPHoY+I9wAnMvPgyuVzbJrn+f6dETEbEbOLi4udjiFJWkWdR/Q3Ae+NiP8DvsbyKZvPA4MRsaHaZjNw7FzfnJm7M3MsM8eGhoZqjCFJeikdhz4zd2Xm5szcAtwGPJaZfws8Dryv2mwH8HDtKSVJHevFdfSfBD4WEc+yfM7+/h7sQ5J0gTasvsnqMvO7wHerz58D3tSNnytJqs9XxkpS4Qy9JBXO0EtS4Qy9JBXO0EtS4Qy9JBXO0EtS4Qy9JBXO0EtS4Qy9JBXO0EtS4Qy9JBXO0EtS4Qy9JBXO0EtS4Qy9JBXO0EtS4Qy9JBXO0EtS4Qy9JBXO0EtS4TY0PYD0crZvboGpmXmOLbXZNNhicnyEidHhpsdSYQy91JB9cwvsmj5E++QpABaW2uyaPgRg7NVVnrqRGjI1M//HyJ/WPnmKqZn5hiZSqQy91JBjS+01rUudMvRSQzYNtta0LnXK0EsNmRwfobVx4Iy11sYBJsdHGppIpfLJWKkhp59w9aob9Zqhlxo0MTps2NVznrqRpMIZekkqXMehj4hrI+LxiDgcEU9FxJ3V+hUR8WhEPFN9vLx740qS1qrOI/oXgY9n5uuAG4E7IuJ64C5gf2ZuBfZXtyVJDek49Jl5PDOfqD7/DXAYGAa2A3uqzfYAE3WHlCR1rivn6CNiCzAKHACuzszjsPzLALjqPN+zMyJmI2J2cXGxG2NIks6hdugj4pXAN4CPZOavL/T7MnN3Zo5l5tjQ0FDdMSRJ51Er9BGxkeXIP5CZ09XyCxFxTfX1a4AT9UaUJNVR56qbAO4HDmfmZ1d86RFgR/X5DuDhzseTJNVV55WxNwEfAA5FxA+rtU8B9wIPRcTtwBHg1nojSpLq6Dj0mfk/QJzny9s6/bmSpO7ylbGSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVLgNTQ9Qx765BaZm5jm21GbTYIvJ8REmRoebHutlzftEWn/6NvT75hbYNX2I9slTACwstdk1fQjAsDTE+0Ran/r21M3UzPwfg3Ja++QppmbmG5pI3ifS+tS3oT+21F7TunrP+0Ran/o29JsGW2taV+95n0jrU9+GfnJ8hNbGgTPWWhsHmBwfaWgieZ9I61PfPhl7+sk9r/BYP7xPpPUpMrP7PzTiZuALwABwX2be+1Lbj42N5ezsbNfnaIqXGEq6GCLiYGaOrbZd1x/RR8QA8G/A3wBHgR9ExCOZ+XS397UedXKJob8YJPVSL87Rvwl4NjOfy8zfA18DtvdgP+vSWi8xPP2LYWGpTfKnXwz75hYuwrSSXg56Efph4PkVt49Way8La73E0GvPJfVaL0If51j7sycCImJnRMxGxOzi4mIPxmjGWi8x9NpzSb3Wi9AfBa5dcXszcOzsjTJzd2aOZebY0NBQD8ZoxlovMfTac0m91ovQ/wDYGhHXRcQlwG3AIz3Yz7o0MTrMPbfcwPBgiwCGB1vcc8sN531y1WvPJfVa16+6ycwXI+KfgBmWL6/8UmY+1e39rGcTo8MXfNWM155L6rWeXEe/VqVdRy9JF8OFXkfft38CQZJ0YQy9JBXO0EtS4Qy9JBXO0EtS4dbFVTcRsQj8tMaPuBL4eZfGaVIpxwHlHEspxwEey3pU9zj+KjNXfcXpugh9XRExeyGXGK13pRwHlHMspRwHeCzr0cU6Dk/dSFLhDL0kFa6U0O9ueoAuKeU4oJxjKeU4wGNZjy7KcRRxjl6SdH6lPKKXJJ1HEaGPiKmI+HFE/Cgi/iMiBpueaa0i4uaImI+IZyPirqbn6UREXBsRj0fE4Yh4KiLubHqmuiJiICLmIuKbTc9SR0QMRsTe6r+TwxHx5qZn6kREfLT6d+vJiHgwIl7R9EwXKiK+FBEnIuLJFWtXRMSjEfFM9fHyXuy7iNADjwKvz8y/Bv4X2NXwPGuy4g3V3wlcD7w/Iq5vdqqOvAh8PDNfB9wI3NGnx7HSncDhpofogi8A387M1wJvoA+PKSKGgQ8DY5n5epb/DPptzU61Jl8Bbj5r7S5gf2ZuBfZXt7uuiNBn5ncy88Xq5vdZflerflLEG6pn5vHMfKL6/Dcsx6Rv/7B+RGwG3g3c1/QsdUTEq4C3AvcDZObvM3Op2ak6tgFoRcQG4FLO8e5161Vmfg/4xVnL24E91ed7gIle7LuI0J/lH4D/anqINSruDdUjYgswChxodpJaPg98AvhD04PU9BpgEfhydRrqvoi4rOmh1iozF4DPAEeA48CvMvM7zU5V29WZeRyWHygBV/ViJ30T+oj47+q83Nn/bF+xzT+zfPrggeYm7cgFvaF6v4iIVwLfAD6Smb9uep5ORMR7gBOZebDpWbpgA/BG4IuZOQr8lh6dIuil6vz1duA6YBNwWUT8XbNT9Yeuv5Vgr2TmO17q6xGxA3gPsC3775rRC3pD9X4QERtZjvwDmTnd9Dw13AS8NyLeBbwCeFVEfDUz+zEsR4GjmXn6/6720oehB94B/CQzFwEiYhp4C/DVRqeq54WIuCYzj0fENcCJXuykbx7Rv5SIuBn4JPDezPxd0/N0oIg3VI+IYPk88OHM/GzT89SRmbsyc3NmbmH5/nisTyNPZv4MeD4iTr/j/Dbg6QZH6tQR4MaIuLT6d20bffik8lkeAXZUn+8AHu7FTvrmEf0q/hX4S+DR5fuf72fmPzY70oUr6A3VbwI+AByKiB9Wa5/KzG81OJOWfQh4oHog8RzwwYbnWbPMPBARe4EnWD5FO0cfvUI2Ih4E3gZcGRFHgbuBe4GHIuJ2ln+R3dqTffffWQ5J0loUcepGknR+hl6SCmfoJalwhl6SCmfoJalwhl6SCmfoJalwhl6SCvf/vNivv9QY/28AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.scatter(X, Y)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Теперь будем менять цвет точек и тип точек (тип маркера) одновременно."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.collections.PathCollection at 0x1185d1c88>"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAD8NJREFUeJzt3W+oXHedx/H3J41dvRVpa29LbZrcCsE/yErlItWCiPFB/YPpAwuVu25wC5cFV+sf0Goe9FFAWfHPsotwadUsDtUSu7TIrms3VmQfGPa2FW2Nuy21uY2NzRWtinfBLf3ug5nYNObfnTOTufPr+wXhzPnOmTnfwySfOfnNb+akqpAktWvTpBuQJI2XQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklq3OZJNwBwySWX1Nzc3KTbkKSpcv/99/+qqmbPtN2GCPq5uTmWl5cn3YYkTZUkh85mO4duJKlxBr0kNc6gl6TGGfSS1DiDXpIad8agT/KVJEeTPHRc7eIk9yZ5ZLC8aFBPkn9I8miSHyd5wzibl6Sp1OvB3Bxs2tRf9npj3d3ZnNF/DbjuhNotwP6q2g7sH6wDvAPYPvizCHx5NG1KUiN6PVhchEOHoKq/XFwca9ifMeir6gfAr08o7wT2Dm7vBa4/rv7P1fdD4MIkl4+qWUmaert3w9ra82tra/36mAw7Rn9ZVR0BGCwvHdSvAJ44brvDg9qfSbKYZDnJ8urq6pBtSNKUWVlZX30ERv1hbE5SO+nVx6tqqarmq2p+dvaM3+CVpDZs3bq++ggMG/RPHRuSGSyPDuqHgSuP224L8OTw7UlSY/bsgZmZ59dmZvr1MRk26O8Bdg1u7wLuPq7+14PZN9cAvz02xCNJAhYWYGkJtm2DpL9cWurXx+SMP2qW5A7grcAlSQ4DtwKfAe5MchOwAtww2PxfgXcCjwJrwAfG0LMkTbeFhbEG+4nOGPRV9b5T3LXjJNsW8MGuTUmSRsdvxkpS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6Tj9XowNwebNvWXvd6kO+qsU9An+WiSh5M8lOSOJC9OclWSA0keSfLNJOePqllJGqteDxYX4dAhqOovFxenPuyHDvokVwAfBuar6nXAecCNwGeBL1TVduA3wE2jaFSSxm73blhbe35tba1fn2Jdh242Ay9JshmYAY4AbwP2De7fC1zfcR+SdG6srKyvPiWGDvqq+gXwOWCFfsD/FrgfeLqqnhlsdhi4omuTknRObN26vvqU6DJ0cxGwE7gKeAVwAfCOk2xap3j8YpLlJMurq6vDtiFJo7NnD8zMPL82M9OvT7EuQzdvB35eVatV9X/AXcCbgQsHQzkAW4AnT/bgqlqqqvmqmp+dne3QhiSNyMICLC3Btm2Q9JdLS/36FNt85k1OaQW4JskM8L/ADmAZuA94L/ANYBdwd9cmJemcWViY+mA/UZcx+gP0P3R9APjJ4LmWgE8CH0vyKPBy4PYR9ClJGlKXM3qq6lbg1hPKjwFv7PK8kqTR8ZuxktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJc0PXo9mJuDTZv6y15v0h1Nhc2TbkCSzkqvB4uLsLbWXz90qL8OsLAwub6mgGf0kqbD7t3Phfwxa2v9uk7LoJc0HVZW1lfXnxj0kqbD1q3rq+tPDHpJ02HPHpiZeX5tZqZf12kZ9JKmw8ICLC3Btm2Q9JdLS34QexacdSNpeiwsGOxD6HRGn+TCJPuS/CzJwSRvSnJxknuTPDJYXjSqZiVJ69d16OZLwHeq6tXA64GDwC3A/qraDuwfrEuSJmTooE/yMuAtwO0AVfXHqnoa2AnsHWy2F7i+a5OSpOF1OaN/JbAKfDXJg0luS3IBcFlVHQEYLC892YOTLCZZTrK8urraoQ1J0ul0CfrNwBuAL1fV1cAfWMcwTVUtVdV8Vc3Pzs52aEOSdDpdgv4wcLiqDgzW99EP/qeSXA4wWB7t1qIkqYuhg76qfgk8keRVg9IO4KfAPcCuQW0XcHenDiVJnXSdR/8hoJfkfOAx4AP03zzuTHITsALc0HEfkqQOOgV9Vf0ImD/JXTu6PK8kaXT8CQRJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUuM5Bn+S8JA8m+fZg/aokB5I8kuSbSc7v3qYkaVijOKO/GTh43PpngS9U1XbgN8BNI9iHJGlInYI+yRbgXcBtg/UAbwP2DTbZC1zfZR+SpG66ntF/EfgE8Oxg/eXA01X1zGD9MHBFx31IkjoYOuiTvBs4WlX3H18+yaZ1iscvJllOsry6ujpsG5KkM+hyRn8t8J4kjwPfoD9k80XgwiSbB9tsAZ482YOraqmq5qtqfnZ2tkMbkqTTGTroq+pTVbWlquaAG4HvVdUCcB/w3sFmu4C7O3cpSRraOObRfxL4WJJH6Y/Z3z6GfUiSztLmM29yZlX1feD7g9uPAW8cxfNKkrrzm7GS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPopUnq9WBuDjZt6i97vUl3pAZtnnQD0gtWrweLi7C21l8/dKi/DrCwMLm+1BzP6KVJ2b37uZA/Zm2tX5dGyKCXJmVlZX11aUgGvTQpW7eury4NyaCXJmXPHpiZeX5tZqZfl0bIoJcmZWEBlpZg2zZI+sulJT+I1cg560aapIUFg11j5xm9JDXOoJekxg0d9EmuTHJfkoNJHk5y86B+cZJ7kzwyWF40unYlSevV5Yz+GeDjVfUa4Brgg0leC9wC7K+q7cD+wbokaUKGDvqqOlJVDwxu/x44CFwB7AT2DjbbC1zftUlJ0vBGMkafZA64GjgAXFZVR6D/ZgBceorHLCZZTrK8uro6ijYkSSfROeiTvBT4FvCRqvrd2T6uqpaqar6q5mdnZ7u2IUk6hU5Bn+RF9EO+V1V3DcpPJbl8cP/lwNFuLUqSuugy6ybA7cDBqvr8cXfdA+wa3N4F3D18e5Kkrrp8M/Za4P3AT5L8aFD7NPAZ4M4kNwErwA3dWpQkdTF00FfVfwI5xd07hn1eSdJo+c1YSWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekho33UHf68HcHGza1F/2epPuSL4m0oazedINDK3Xg8VFWFvrrx861F8HWFiYXF8vZL4m0oaUqpp0D8zPz9fy8vL6HjQ31w+SE23bBo8/Poq2tF6+JtI5leT+qpo/03bTO3SzsrK+usbP10TakKY36LduXV9d4+drIm1I0xv0e/bAzMzzazMz/bomw9dE2pCmN+gXFmBpqT/+m/SXS0t+6DdJvibShjSWoE9yXZL/TvJoklvGsQ+gHyCPPw7PPttfbpRAeSFPMdyor4n0AjbyoE9yHvBPwDuA1wLvS/LaUe9nwzo2xfDQIah6borh6cL+hfzGIGnsxnFG/0bg0ap6rKr+CHwD2DmG/WxMu3c/N4/8mLW1fv1khnljkKR1GEfQXwE8cdz64UHthWG9UwzX+8YgSes0jqDPSWp/9q2sJItJlpMsr66ujqGNCVnvFEPnnksas3EE/WHgyuPWtwBPnrhRVS1V1XxVzc/Ozo6hjQlZ7xRD555LGrNxBP1/AduTXJXkfOBG4J4x7GdjWu8UQ+eeSxqzkf+oWVU9k+TvgH8HzgO+UlUPj3o/G9rCwtlPKzy23e7d/eGarVv7Ie+0REkjMr0/aiZJL3Dt/6iZJOmsGPSS1DiDXpIaZ9BLUuMMeklq3IaYdZNkFTjJNejO2iXAr0bUziS1chzQzrG0chzgsWxEXY9jW1Wd8RunGyLou0qyfDZTjDa6Vo4D2jmWVo4DPJaN6Fwdh0M3ktQ4g16SGtdK0C9NuoERaeU4oJ1jaeU4wGPZiM7JcTQxRi9JOrVWzuglSafQRNAn+fskP0vy4yT/kuTCSfe0XufsgupjlOTKJPclOZjk4SQ3T7qnrpKcl+TBJN+edC9dJLkwyb7Bv5ODSd406Z6GkeSjg79bDyW5I8mLJ93T2UrylSRHkzx0XO3iJPcmeWSwvGgc+24i6IF7gddV1V8C/wN8asL9rEtDF1R/Bvh4Vb0GuAb44JQex/FuBg5OuokR+BLwnap6NfB6pvCYklwBfBiYr6rX0f8Z9Bsn29W6fA247oTaLcD+qtoO7B+sj1wTQV9V362qZwarP6R/Vatp0sQF1avqSFU9MLj9e/phMrXXC06yBXgXcNuke+kiycuAtwC3A1TVH6vq6cl2NbTNwEuSbAZmOMnV6zaqqvoB8OsTyjuBvYPbe4Hrx7HvJoL+BH8D/Nukm1in5i6onmQOuBo4MNlOOvki8Ang2Uk30tErgVXgq4NhqNuSXDDpptarqn4BfA5YAY4Av62q7062q84uq6oj0D9RAi4dx06mJuiT/MdgXO7EPzuP22Y3/eGD3uQ6HcpZXVB9WiR5KfAt4CNV9btJ9zOMJO8GjlbV/ZPuZQQ2A28AvlxVVwN/YExDBOM0GL/eCVwFvAK4IMlfTbar6TDySwmOS1W9/XT3J9kFvBvYUdM3Z/SsLqg+DZK8iH7I96rqrkn308G1wHuSvBN4MfCyJF+vqmkMlsPA4ao69r+rfUxh0ANvB35eVasASe4C3gx8faJddfNUksur6kiSy4Gj49jJ1JzRn06S64BPAu+pqrVJ9zOEJi6oniT0x4EPVtXnJ91PF1X1qaraUlVz9F+P701pyFNVvwSeSPKqQWkH8NMJtjSsFeCaJDODv2s7mMIPlU9wD7BrcHsXcPc4djI1Z/Rn8I/AXwD39l9/flhVfzvZls5eQxdUvxZ4P/CTJD8a1D5dVf86wZ7U9yGgNziReAz4wIT7WbeqOpBkH/AA/SHaB5mib8gmuQN4K3BJksPArcBngDuT3ET/jeyGsex7+kY5JEnr0cTQjSTp1Ax6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIa9/8ZPB6Y/d9eHgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.scatter(X, Y, color ='red', marker = 'o')"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.collections.PathCollection at 0x1186eefd0>"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEFxJREFUeJzt3W+IXXeZwPHvs53paidIWzsdatIkNQlqIyuViVQLIsYX9Q+mLyzU2ZjBLYQFV6uW0eq+KJOwoKxo3e4ihFbNYqlOYqXFZF27sSL7osFJW7RN7LbUNYmNzYh2FF0wxWdfnFMyxElm5p57c+b+8v3AcO45c+6c53Kb79yeOTM3MhNJUrn+qu0BJEm9ZeglqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKN9D2AABXXHFFrl27tu0xJKmvHDp06NeZObzQfssi9GvXrmV6errtMSSpr0TELxazn6duJKlwhl6SCmfoJalwhl6SCmfoJalwC4Y+Ir4aEScj4sk52y6PiIcj4pl6eVm9PSLiXyLi2Yj4SUS8uZfDS1Lfmp2FjRurZY8t5hX914Ebz9h2B3AgMzcAB+p1gHcDG+qP7cBXujOmJBVm3z44fBj27+/5oRYMfWb+CPjNGZu3ALvr27uBm+Zs//esPApcGhFXdWtYSep7Y2OwYgWMj1fr27ZV62NjPTtkp+foRzLzBEC9vLLevhI4Nme/4/W2vxAR2yNiOiKmZ2ZmOhxDkvrMjh2wejUMDlbrg4OwZg3s3NmzQ3b7h7Exz7Z53308M3dl5mhmjg4PL/gbvJJUhvXrq9ifOgVDQ9VychLWrevZITsN/Qsvn5Kplyfr7ceBq+fstwp4vvPxJKlAU1NV5Ccnq+WePT09XKehfwioTzAxDjw4Z/u2+uqb64HZl0/xSJJqExPw9NNw++3VcmKip4db8I+aRcT9wDuAKyLiOHAn8DlgKiJuBY4CN9e77wfeAzwL/BH4cA9mlqT+tmnT6dsjI9VHDy0Y+sz84Fk+tXmefRP4SNOhJEnd42/GSlLhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0knWl2FjZurJYFaBT6iPhERDwVEU9GxP0R8YqIuCYiDkbEMxHxrYi4uFvDStJ5sW8fHD4M+/e3PUlXdBz6iFgJfAwYzcw3AhcBtwCfB76UmRuA3wK3dmNQSeq5sTFYsQLGx6v1bduq9bGxdudqqOmpmwHglRExAFwCnADeCeytP78buKnhMSTp/NixA1avhsHBan1wENasgZ07252roY5Dn5m/BL4AHKUK/CxwCHgxM1+qdzsOrGw6pCSdF+vXV7E/dQqGhqrl5CSsW9f2ZI00OXVzGbAFuAZ4DTAEvHueXfMs998eEdMRMT0zM9PpGJLUXVNTVeQnJ6vlnj1tT9TYQIP7vgv4eWbOAETEA8DbgEsjYqB+Vb8KeH6+O2fmLmAXwOjo6LzfDCTpvJuYgLvvhpER2LoVjh1re6LGmoT+KHB9RFwC/B+wGZgGHgE+AHwTGAcebDqkJJ03mzadvj0yUn30uSbn6A9S/dD1MeCn9dfaBXwa+GREPAu8Gri3C3NKkjrU5BU9mXkncOcZm58D3tLk60qSusffjJWkwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6Sf1ldhY2bqyWWhRDL6m/7NsHhw/D/v1tT9I3DL2k/jA2BitWwPh4tb5tW7U+NtbuXH3A0EvqDzt2wOrVMDhYrQ8Owpo1sHNnu3P1AUMvqT+sX1/F/tQpGBqqlpOTsG5d25Mte4ZeUv+YmqoiPzlZLffsaXuivjDQ9gCStGgTE3D33TAyAlu3wrFjbU/UFwy9pP6xadPp2yMj1YcW1OjUTURcGhF7I+JnEXEkIt4aEZdHxMMR8Uy9vKxbw0qSlq7pOfovA9/LzNcDbwKOAHcABzJzA3CgXpcktaTj0EfEq4C3A/cCZOafMvNFYAuwu95tN3BT0yElSZ1r8or+tcAM8LWIeDwi7omIIWAkM08A1Msr57tzRGyPiOmImJ6ZmWkwhiTpXJqEfgB4M/CVzLwO+ANLOE2TmbsyczQzR4eHhxuMIUk6lyahPw4cz8yD9fpeqvC/EBFXAdTLk81GlCQ10XHoM/NXwLGIeF29aTNwGHgIqP8YBePAg40mlCQ10vQ6+o8C90XExcBzwIepvnlMRcStwFHg5obHkCQ10Cj0mfkEMDrPpzY3+bqSpO7xb91IUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVrnHoI+KiiHg8Ir5br18TEQcj4pmI+FZEXNx8TElSp7rxiv424Mic9c8DX8rMDcBvgVu7cAxJUocahT4iVgHvBe6p1wN4J7C33mU3cFOTY0iSmmn6iv4u4FPAn+v1VwMvZuZL9fpxYGXDY0iSGug49BHxPuBkZh6au3meXfMs998eEdMRMT0zM9PpGJKkBTR5RX8D8P6I+F/gm1SnbO4CLo2IgXqfVcDz8905M3dl5mhmjg4PDzcYQ5J0Lh2HPjM/k5mrMnMtcAvwg8z8W+AR4AP1buPAg42nlCR1rBfX0X8a+GREPEt1zv7eHhxDkrRIAwvvsrDM/CHww/r2c8BbuvF1JUnN+ZuxklQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy+1bXYWNm6sllIPGHqpbfv2weHDsH9/25OoUIZeasvYGKxYAePj1fq2bdX62Fi7c6k4hl5qy44dsHo1DA5W64ODsGYN7NzZ7lwqjqGX2rJ+fRX7U6dgaKhaTk7CunVtT6bCGHqpTVNTVeQnJ6vlnj1tT6QCDbQ9gHRBm5iAu++GkRHYuhWOHWt7IhXI0Ett2rTp9O2RkepD6jJP3UhS4Qy9JBWu49BHxNUR8UhEHImIpyLitnr75RHxcEQ8Uy8v6964kqSlavKK/iXg9sx8A3A98JGIuBa4AziQmRuAA/W6JKklHYc+M09k5mP17d8DR4CVwBZgd73bbuCmpkNKkjrXlXP0EbEWuA44CIxk5gmovhkAV57lPtsjYjoipmdmZroxhiRpHo1DHxErgG8DH8/M3y32fpm5KzNHM3N0eHi46RiSpLNoFPqIGKSK/H2Z+UC9+YWIuKr+/FXAyWYjSpKaaHLVTQD3Akcy84tzPvUQUP85PsaBBzsfT5LUVJPfjL0B+BDw04h4ot72WeBzwFRE3AocBW5uNqIkqYmOQ5+Z/w3EWT69udOvK0nqLn8zVpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIK1/+hn52FjRurpZYHnxNpWen/0O/bB4cPw/79bU+il/mcSMtK/4Z+bAxWrIDx8Wp927ZqfWys3bkuZD4n0rLUv6HfsQNWr4bBwWp9cBDWrIGdO9ud60LmcyItS/0b+vXrq7CcOgVDQ9VychLWrWt7sguXz4m0LPVv6AGmpqqgTE5Wyz172p5IPifSshOZ2fYMjI6O5vT09NLv+OMfV6cKRkbghRfg2DEYHe3+gFo8nxPpvImIQ5m54D+wnryij4gbI+LpiHg2Iu7oxTEA2LSpCgpUy+UUlAv1EsPl/JxIF6iuhz4iLgL+DXg3cC3wwYi4ttvHWfaWeonhhfqNQVLP9eIV/VuAZzPzucz8E/BNYEsPjrM8dXqJodeeS+qRXoR+JXBszvrxetuFYamXGHrtuaQe60XoY55tf/ET34jYHhHTETE9MzPTgzFastRLDL32XFKP9SL0x4Gr56yvAp4/c6fM3JWZo5k5Ojw83IMxWrSUSwy99lxSj/Ui9D8GNkTENRFxMXAL8FAPjrN8TUzA00/D7bdXy4mJc+/vteeSeqgn19FHxHuAu4CLgK9m5j+da/+Or6MvhdeeS+rAYq+jH+jFwTNzP+DlI4u1adPp2yMjp69Dl6Qu6O8/gSBJWpChl6TCGXpJKpyhl6TCGXpJKtyy+DPFETED/KLBl7gC+HWXxmlTKY8DynkspTwO8LEsR00fx5rMXPA3TpdF6JuKiOnFXEu63JXyOKCcx1LK4wAfy3J0vh6Hp24kqXCGXpIKV0rod7U9QJeU8jignMdSyuMAH8tydF4eRxHn6CVJZ1fKK3pJ0lkUEfqI+OeI+FlE/CQivhMRl7Y901KdtzdU76GIuDoiHomIIxHxVETc1vZMTUXERRHxeER8t+1ZmoiISyNib/3v5EhEvLXtmToREZ+o/9t6MiLuj4hXtD3TYkXEVyPiZEQ8OWfb5RHxcEQ8Uy8v68Wxiwg98DDwxsz8G+B/gM+0PM+SFPSG6i8Bt2fmG4DrgY/06eOY6zbgSNtDdMGXge9l5uuBN9GHjykiVgIfA0Yz841Ufwb9lnanWpKvAzeese0O4EBmbgAO1OtdV0ToM/P7mflSvfoo1bta9ZMi3lA9M09k5mP17d9TxaRv3y84IlYB7wXuaXuWJiLiVcDbgXsBMvNPmfliu1N1bAB4ZUQMAJcwz7vXLVeZ+SPgN2ds3gLsrm/vBm7qxbGLCP0Z/g74j7aHWKLi3lA9ItYC1wEH252kkbuATwF/bnuQhl4LzABfq09D3RMRQ20PtVSZ+UvgC8BR4AQwm5nfb3eqxkYy8wRUL5SAK3txkL4JfUT8V31e7syPLXP2+Ueq0wf3tTdpRxb1hur9IiJWAN8GPp6Zv2t7nk5ExPuAk5l5qO1ZumAAeDPwlcy8DvgDPTpF0Ev1+estwDXAa4ChiNja7lT9oSfvMNULmfmuc30+IsaB9wGbs/+uGV3UG6r3g4gYpIr8fZn5QNvzNHAD8P76bTFfAbwqIr6Rmf0YluPA8cx8+f+u9tKHoQfeBfw8M2cAIuIB4G3AN1qdqpkXIuKqzDwREVcBJ3txkL55RX8uEXEj8Gng/Zn5x7bn6UARb6geEUF1HvhIZn6x7XmayMzPZOaqzFxL9Xz8oE8jT2b+CjgWEa+rN20GDrc4UqeOAtdHxCX1f2ub6cMfKp/hIWC8vj0OPNiLg/TNK/oF/Cvw18DD1fPPo5n59+2OtHiZ+VJE/APwn5x+Q/WnWh6rEzcAHwJ+GhFP1Ns+W7+HsNr1UeC++oXEc8CHW55nyTLzYETsBR6jOkX7OH30G7IRcT/wDuCKiDgO3Al8DpiKiFupvpHd3JNj999ZDknSUhRx6kaSdHaGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIK9//iqiCxUV+OWgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.scatter(X, Y, color ='red', marker = '*')"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.collections.PathCollection at 0x11874c390>"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEFhJREFUeJzt3W9sXXd5wPHvs4YOGoLaUruKk7IEKeKP0EotCxUqIeTwooaI9AWVYBuxWaVoEoPyR4LCXjR5MQk0BGXahBy1QCaqQhe6tEIsowtN0V4Q4bQVtA5bo3BJg0N9ERji8CKr8uyFD5qbJrF9z705vr9+P1J17z0+1+e5uu3Xp8fn+kRmIkkq1580PYAkqbcMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuHWND0AwHXXXZebNm1qegxJ6itHjhz5dWYOLLXeqgj9pk2bmJqaanoMSeorEfGL5aznoRtJKpyhl6TCGXpJKpyhl6TCGXpJKtySoY+Ir0XEbEQ8vWjZtRHxaEQ8W91eUy2PiPjHiDgWET+JiOFeDi9J/ao112LXoV205lo939Zy9ui/Adx63rK7gIOZuQU4WD0GGAO2VP/sBL7anTElqSytuRa7H9+9OkKfmT8EfnPe4u3A3ur+XuC2Rcv/JRf8CLg6ItZ3a1hJKsW5PPei217q9Bj99Zl5CqC6HayWbwCeW7TeyWrZS0TEzoiYioipdrvd4RiS1H+m29NM7J8AYGL/BNPt6Z5ur9u/jI0LLLvg1cczc09mjmTmyMDAkp/glaQizJyeYXhymPmz84xuHmX+7DzDk8PMnJ7p2TY7/RMIz0fE+sw8VR2ama2WnwRuWLTeRqB300tSnxlaN8TktknGtowxuHaQ2TOzHDh2gKF1Qz3bZqd79I8A49X9ceDhRct3VGff3Az87o+HeCRJC8bfOs7g2oUj3oNrB9lx446ebm/JPfqIeAB4F3BdRJwE7gY+DzwYEXcAJ4Dbq9W/B7wHOAb8AfhwD2aWJK3AkqHPzA9e5EtbL7BuAh+pO5QkqXv8ZKwkFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS9J5WnMtdh3aRWuu1fQoXVEr9BHxiYh4JiKejogHIuKVEbE5Ig5HxLMR8e2IuLJbw0rS5dCaa7H78d2GPiI2AB8DRjLzLcAVwAeALwBfzswtwG+BO7oxqCRdLufy3Itu+13dQzdrgFdFxBrgKuAUMArsq76+F7it5jYk6bKZbk8zsX8CgIn9E0y3p5sdqAs6Dn1m/hL4InCChcD/DjgCzGXmC9VqJ4ENdYeUpMth5vQMw5PDzJ+dZ3TzKPNn5xmeHGbm9EzTo9WyptMnRsQ1wHZgMzAH/CswdoFV8yLP3wnsBHjd617X6RiS1DVD64aY3DbJ2JYxBtcOMntmlgPHDjC0bqjp0Wqpc+jm3cDPM7Odmf8LPAS8A7i6OpQDsBG44I/CzNyTmSOZOTIwMFBjDEnqnvG3jjO4dhCAwbWD7LhxR8MT1Vcn9CeAmyPiqogIYCswDTwGvL9aZxx4uN6IkqQ66hyjP8zCL12fAH5afa89wGeAT0bEMeC1wH1dmFOS1KGOj9EDZObdwN3nLT4OvK3O95UkdY+fjJWkwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SX2lNddi16FdtOZaTY/SNwy9pL7Smmux+/Hdhn4FDL2kvnIuz73oVksz9JL6xnR7mon9EwBM7J9guj3d7EB9wtBL6gszp2cYnhxm/uw8o5tHmT87z/DkMDOnZ5oebdVb0/QAkrQcQ+uGmNw2ydiWMQbXDjJ7ZpYDxw4wtG6o6dFWvcjMpmdgZGQkp6ammh5DkvpKRBzJzJGl1vPQjSQVrlboI+LqiNgXET+LiKMR8faIuDYiHo2IZ6vba7o1rCRp5eru0X8FOJCZbwRuBI4CdwEHM3MLcLB6LElqSMehj4jXAO8E7gPIzLOZOQdsB/ZWq+0Fbqs7pCSpc3X26F8PtIGvR8STEXFvRKwFrs/MUwDV7eCFnhwROyNiKiKm2u12jTEkSZdSJ/RrgGHgq5l5E3CGFRymycw9mTmSmSMDAwM1xpAkXUqd0J8ETmbm4erxPhbC/3xErAeobmfrjShJqqPj0Gfmr4DnIuIN1aKtwDTwCDBeLRsHHq41oSSplrqfjP0ocH9EXAkcBz7Mwg+PByPiDuAEcHvNbUiSaqgV+sx8CrjQp7K21vm+kqTu8ZOxklQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9Jhasd+oi4IiKejIjvVo83R8ThiHg2Ir4dEVfWH1OS1Klu7NHfCRxd9PgLwJczcwvwW+COLmxDktShWqGPiI3Ae4F7q8cBjAL7qlX2ArfV2YYkqZ66e/T3AJ8GzlWPXwvMZeYL1eOTwIaa25Ak1dBx6CNiGzCbmUcWL77AqnmR5++MiKmImGq3252OIUlaQp09+luA90VEC/gWC4ds7gGujog11TobgZkLPTkz92TmSGaODAwM1BhDknQpHYc+Mz+bmRszcxPwAeAHmfmXwGPA+6vVxoGHa08pSepYL86j/wzwyYg4xsIx+/t6sA1J0jKtWXqVpWXmIeBQdf848LZufF9JUn1+MlaSCmfoJalwhl6SCmfoJalwhl6SCmfoJalwhl6SCmfoJalwhl6SCmfoJalwhl6SCmfoJalwhl6SCmfoJalwhl6SCmfoJalwhl6SCmfoJalwhl6SCmfoJalwhl6SCmfopYa15lrsOrSL1lyr6VFUKEMvNaw112L347sNvXrG0EsNO5fnXnQrdZuhlxo03Z5mYv8EABP7J5huTzc7kIpk6KWGzJyeYXhymPmz84xuHmX+7DzDk8PMnJ5pejQVZk3TA0gvV0PrhpjcNsnYljEG1w4ye2aWA8cOMLRuqOnRVJjIzKZnYGRkJKemppoeQ5L6SkQcycyRpdbz0I0kFc7QS1LhDL0kFa7j0EfEDRHxWEQcjYhnIuLOavm1EfFoRDxb3V7TvXElSStVZ4/+BeBTmfkm4GbgIxHxZuAu4GBmbgEOVo8lSQ3pOPSZeSozn6junwaOAhuA7cDearW9wG11h5Qkda4rx+gjYhNwE3AYuD4zT8HCDwNg8CLP2RkRUxEx1W63uzGGJOkCaoc+Il4NfAf4eGb+frnPy8w9mTmSmSMDAwN1x5AkXUSt0EfEK1iI/P2Z+VC1+PmIWF99fT0wW29ESVIddc66CeA+4GhmfmnRlx4Bxqv748DDnY8nSaqrzt+6uQX4EPDTiHiqWvY54PPAgxFxB3ACuL3eiJKkOjoOfWb+FxAX+fLWTr+vJKm7/GSsJBXO0EtS4Qy9JBXO0EtS4Qy9JBXO0EtS4Qy9JBXO0EtS4Qy9JBXO0EtS4Qy9JBXO0EtS4Qy9JBXO0EtS4Qy9JBXO0EtS4Qy9JBXO0EtS4Qy9JBXO0EtS4Qy9JBXO0EtS4Qy9JBWur0Pfmmux69AuWnOtpkfRIr4v0urS96Hf/fhug7LK+L5Iq0tfh/5cnnvRrVYH3xdpdenb0E+3p5nYPwHAxP4JptvTzQ4kwPdFWo36MvQzp2cYnhxm/uw8o5tHmT87z/DkMDOnZ5oe7WXN90VandY0PUAnhtYNMbltkrEtYwyuHWT2zCwHjh1gaN1Q06O9rPm+SKtTZGbTMzAyMpJTU1NNjyFJfSUijmTmyFLr9eTQTUTcGhH/HRHHIuKuXmxjNfP0QkmrSddDHxFXAP8MjAFvBj4YEW/u9nZWs05OL/SHg6Re6cUe/duAY5l5PDPPAt8CtvdgO6tWJ6cXeu65pF7pReg3AM8tenyyWvay0OnphZ57LqlXehH6uMCyl/zGNyJ2RsRUREy12+0ejHH5dXp6oeeeS+qlXpxeeRK4YdHjjcBLSpeZe4A9sHDWTQ/muOw6Ob3wjz8crnrFVYxuHuXJU08yPDnM8TuPe1qipK7o+umVEbEG+B9gK/BL4MfAX2TmMxd7zsv99Mq9T+19yQ+HHTfuaHosSavcck+v7Ml59BHxHuAe4Arga5n595da/+UeeknqxHJD35NPxmbm94Dv9eJ7S5JWpi//1o0kafkMvSQVztBLUuEMvSQVztBLUuFWxZ8pjog28IsOn34d8OsujtMkX8vqU8rrAF/LalT3dfxZZg4stdKqCH0dETG1nPNI+4GvZfUp5XWAr2U1ulyvw0M3klQ4Qy9JhSsh9HuaHqCLfC2rTymvA3wtq9FleR19f4xeknRpJezRS5IuoYjQR8Q/RMTPIuInEfFvEXF10zOtVAkXVI+IGyLisYg4GhHPRMSdTc9UV0RcERFPRsR3m56ljoi4OiL2Vf+dHI2Itzc9Uyci4hPVv1tPR8QDEfHKpmdaroj4WkTMRsTTi5ZdGxGPRsSz1e01vdh2EaEHHgXekpl/zsLfwv9sw/OsSEEXVH8B+FRmvgm4GfhIn76Oxe4EjjY9RBd8BTiQmW8EbqQPX1NEbAA+Boxk5ltY+DPoH2h2qhX5BnDrecvuAg5m5hbgYPW464oIfWZ+PzNfqB7+iIWrWvWTIi6onpmnMvOJ6v5pFmLSt9cLjoiNwHuBe5uepY6IeA3wTuA+gMw8m5lzzU7VsTXAq6oLHF3FBa5et1pl5g+B35y3eDuwt7q/F7itF9suIvTn+Wvg35seYoWKu6B6RGwCbgIONztJLfcAnwb6/YrtrwfawNerw1D3RsTapodaqcz8JfBF4ARwCvhdZn6/2alquz4zT8HCjhIw2IuN9E3oI+I/q+Ny5/+zfdE6f8fC4YP7m5u0I8u6oHq/iIhXA98BPp6Zv296nk5ExDZgNjOPND1LF6wBhoGvZuZNwBl6dIigl6rj19uBzcAQsDYi/qrZqfpDT64w1QuZ+e5LfT0ixoFtwNbsv3NGl3VB9X4QEa9gIfL3Z+ZDTc9Twy3A+6rLYr4SeE1EfDMz+zEsJ4GTmfnH/7vaRx+GHng38PPMbANExEPAO4BvNjpVPc9HxPrMPBUR64HZXmykb/boLyUibgU+A7wvM//Q9Dwd+DGwJSI2R8SVLPyC6ZGGZ1qxiAgWjgMfzcwvNT1PHZn52czcmJmbWHg/ftCnkSczfwU8FxFvqBZtBaYbHKlTJ4CbI+Kq6t+1rfThL5XP8wgwXt0fBx7uxUb6Zo9+Cf8E/Cnw6ML7z48y82+aHWn5MvOFiPhb4D/4/wuqP9PwWJ24BfgQ8NOIeKpa9rnqGsJq1keB+6sdiePAhxueZ8Uy83BE7AOeYOEQ7ZP00SdkI+IB4F3AdRFxErgb+DzwYETcwcIPstt7su3+O8ohSVqJIg7dSJIuztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuH+DwIl4cTCB7zPAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.scatter(X, Y, color ='green', marker = '2')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Список маркеров смотри [здесь](https://matplotlib.org/api/markers_api.html)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Если бы все строки кода со `scatter()` были в одной ячейке, то графики бы просто накладывались друг на друга."
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.collections.PathCollection at 0x11886a438>"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEiJJREFUeJzt3X+MlPWdwPH3RylXYW2EuqKAHjZBkDSttltDa1K19A9pm7IkNRHWHumRDBfaaltMoS2RKDktvdofRoIBtaXpRIvWO029a+uBtbk/JF2woVo8UXoFKoU1rW3DYozp5/7YMcdRZGFmx2fny/uVbHaeZ5+Z5zMZfO/js8/sRmYiSSrXaVUPIElqL0MvSYUz9JJUOEMvSYUz9JJUOEMvSYUz9JJUOEMvSYUz9JJUuDFVDwBw9tln57Rp06oeQ5I6yrZt217KzO7hthsVoZ82bRr9/f1VjyFJHSUifnsi23nqRpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXDDhj4i7o2IgxHx9BHrJkbEYxGxq/F5QmN9RMQdEfF8ROyIiPe0c3hJ6ij1OjtmzaD7qqXsmDUD6vU3ZbcnckT/XeDqo9atADZn5nRgc2MZYC4wvfFRA9aNzJiS1OHqdajV2HR4Ki9duY4HDk+BWu1Nif2woc/MnwN/OGr1PGBj4/ZGoPeI9d/LIU8CZ0XEeSM1rCR1qoW1LroGD3BbLAfg1lhB1+ABFta62r7vZs/RT8rM/QCNz+c01k8B9h6x3b7Gur8REbWI6I+I/oGBgSbHkKTOcMvgjUzq3kL2LgYgexdzbvcWVg8ua/u+R/qHsXGMdXmsDTNzfWb2ZGZPd/ewv3xNkjrauJmH2btkPjn2EKftvoIce4g9S+ZzxsxX2r7vZn975YGIOC8z9zdOzRxsrN8HnH/EdlOBF1sZUJJKMHnlGi65/Umefe56Vh26i5vHb+Dii+5g8srZbd93s0f0jwCLGrcXAQ8fsf4fGlffzAb+9PopHkk6pfX1sbb3I+yasIBl8U12TVjA2vkfgb6+tu86Mo95ZuX/Noi4D7gSOBs4AKwC/g3YBFwA7AGuycw/REQAdzJ0lc4g8KnMHPYXzff09KS/j16STk5EbMvMnuG2G/bUTWYueIMvzTnGtgl8evjxJElvFt8ZK0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0kA9To7Zs2g+6ql7Jg1A+r1qicaMS2FPiI+HxHPRMTTEXFfRLw1Ii6MiK0RsSsifhARY0dqWElqi3odajU2HZ7KS1eu44HDU6BWKyb2TYc+IqYA1wM9mflO4HTgWmAN8M3MnA78EVg8EoNKUrssrHXRNXiA22I5ALfGCroGD7Cw1lXxZCOj1VM3Y4AzImIMMA7YD3wIeLDx9Y1Ab4v7kKS2umXwRiZ1byF7h45Ls3cx53ZvYfXgsoonGxlNhz4zfwd8HdjDUOD/BGwDXs7M1xqb7QOmtDqkJLXTuJmH2btkPjn2EKftvoIce4g9S+ZzxsxXqh5tRLRy6mYCMA+4EJgMjAfmHmPTfIP71yKiPyL6BwYGmh1Dklo2eeUaLnl0KWfeuZWvfe+9nHnnVi59dCmTV66perQRMaaF+34Y+E1mDgBExEPAB4CzImJM46h+KvDise6cmeuB9QA9PT3H/GYgSW+Kvj7WvjCRCzYsYNLgdq6b8AR756+GvmMdu3aeVkK/B5gdEeOAw8AcoB94HPgEcD+wCHi41SElqd3ed9NcuGko7JMaH6Vo5Rz9VoZ+6Lod+FXjsdYDy4EvRMTzwNuBe0ZgTklSk1o5oiczVwGrjlq9G7islceVJI0c3xkrSYUz9JJUOEMvSYUz9JJUOEMvSYUz9JJUOEMvSYUz9JJUOEMvSYUz9JJUOEMvSYUz9JJUOEMvSYUz9JJUOEMvSYUz9JJUOEMvSYUz9JJUOEMvSYUz9JJUOEMvSYUz9JJUOEMvafSr19kxawbdVy1lx6wZUK9XPVFHMfSSRrd6HWo1Nh2eyktXruOBw1OgVjP2J8HQSxrVFta66Bo8wG2xHIBbYwVdgwdYWOuqeLLOYegljWq3DN7IpO4tZO9iALJ3Med2b2H14LKKJ+schl7SqDZu5mH2LplPjj3EabuvIMceYs+S+Zwx85WqR+sYY6oeQJKOZ/LKNVxy+5M8+9z1rDp0FzeP38DFF93B5JWzqx6tYxh6SaNbXx9rX5jIBRsWMGlwO9dNeIK981dD39yqJ+sYkZlVz0BPT0/29/dXPYYkdZSI2JaZPcNt19I5+og4KyIejIhnI2JnRLw/IiZGxGMRsavxeUIr+5AktabVH8Z+G/hxZs4E3g3sBFYAmzNzOrC5sSxJqkjToY+ItwEfBO4ByMxXM/NlYB6wsbHZRqC31SElSc1r5Yj+HcAA8J2IeCoi7o6I8cCkzNwP0Ph8zrHuHBG1iOiPiP6BgYEWxpAkHU8roR8DvAdYl5mXAoc4idM0mbk+M3sys6e7u7uFMSRJx9NK6PcB+zJza2P5QYbCfyAizgNofD7Y2oiSpFY0HfrM/D2wNyJmNFbNAX4NPAIsaqxbBDzc0oSSpJa0+oapzwL1iBgL7AY+xdA3j00RsRjYA1zT4j4kSS1oKfSZ+UvgWBfrz2nlcSVJI8dfaiZJhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhWs59BFxekQ8FRE/aixfGBFbI2JXRPwgIsa2PqYkqVkjcUR/A7DziOU1wDczczrwR2DxCOxDktSklkIfEVOBjwJ3N5YD+BDwYGOTjUBvK/uQJLWm1SP6bwFfBP7aWH478HJmvtZY3gdMaXEfkqQWNB36iPgYcDAztx25+hib5hvcvxYR/RHRPzAw0OwYkqRhtHJEfznw8Yj4H+B+hk7ZfAs4KyLGNLaZCrx4rDtn5vrM7MnMnu7u7hbGkCQdT9Ohz8wvZebUzJwGXAtsycw+4HHgE43NFgEPtzylJKlp7biOfjnwhYh4nqFz9ve0YR+SpBM0ZvhNhpeZPwN+1ri9G7hsJB5XktQ63xkrSYUz9JJUOEMvSYUz9JJUOEMvSYUz9JJUOEMvSYUz9JJUOEMvSYUz9JJUOEMvSYUz9JJUOEMvSYUz9JJUOEMvSYUz9JJUOEMvSYUz9JJUOEMvSYUz9JJUOEMvVaVeZ8esGXRftZQds2ZAvV71RCqUoZeqUK9Drcamw1N56cp1PHB4CtRqxl5tYeilCiysddE1eIDbYjkAt8YKugYPsLDWVfFkKpGhlypwy+CNTOreQvYuBiB7F3Nu9xZWDy6reDKVyNBLFRg38zB7l8wnxx7itN1XkGMPsWfJfM6Y+UrVo6lAY6oeQDoVTV65hktuf5Jnn7ueVYfu4ubxG7j4ojuYvHJ21aOpQIZeqkJfH2tfmMgFGxYwaXA71014gr3zV0Pf3KonU4EiM6uegZ6enuzv7696DEnqKBGxLTN7htvOc/SSVLimQx8R50fE4xGxMyKeiYgbGusnRsRjEbGr8XnCyI0rSTpZrRzRvwYsy8yLgdnApyNiFrAC2JyZ04HNjWVJUkWaDn1m7s/M7Y3bfwF2AlOAecDGxmYbgd5Wh5QkNW9EztFHxDTgUmArMCkz98PQNwPgnJHYhySpOS2HPiK6gB8Cn8vMP5/E/WoR0R8R/QMDA62OIUl6Ay2FPiLewlDk65n5UGP1gYg4r/H184CDx7pvZq7PzJ7M7Onu7m5lDEnScbRy1U0A9wA7M/MbR3zpEWBR4/Yi4OHmx5MktaqVd8ZeDnwS+FVE/LKx7svAV4FNEbEY2ANc09qIkqRWNB36zPwvIN7gy3OafVxJ0sjynbGSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVDhDL0mFM/SSVLgyQl+vs2PWDLqvWsqOWTOgXq96olObr4c0qnR+6Ot1qNXYdHgqL125jgcOT4FazbhUxddDGnU6PvQLa110DR7gtlgOwK2xgq7BAyysdVU82anJ10MafTo+9LcM3sik7i1k72IAsncx53ZvYfXgsoonOzX5ekijT8eHftzMw+xdMp8ce4jTdl9Bjj3EniXzOWPmK1WPdkry9ZBGnzFVD9CqySvXcMntT/Lsc9ez6tBd3Dx+AxdfdAeTV86uerRTkq+HNPp0fOjp62PtCxO5YMMCJg1u57oJT7B3/mrom1v1ZKcmXw9p1InMHPkHjbga+DZwOnB3Zn71eNv39PRkf3//iM9RqXqdHf98C3MmzWHzgc286ys3QV9f1VNJKkhEbMvMnuG2G/Fz9BFxOrAWmAvMAhZExKyR3s+o1uwlhl5/LqkN2vHD2MuA5zNzd2a+CtwPzGvDfkatpi4x9PpzSW3SjtBPAfYesbyvse6U0cwlhl5/Lqld2hH6OMa6v/lBQETUIqI/IvoHBgbaMEZ1mrnE0OvPJbVLO0K/Dzj/iOWpwItHb5SZ6zOzJzN7uru72zBGdSavXMMljy7lzDu38rXvvZcz79zKpY8uZfLKNW94H68/l9Qu7bi88hfA9Ii4EPgdcC2wsA37Gb2auMTQ688ltcuIhz4zX4uIzwA/Yejyynsz85mR3s9o976b5sJNQ2Gf1Pg4Lq8/l9QmbbmO/mQVeR29JLVZZdfRS5JGF0MvSYUz9JJUOEMvSYUz9JJUOEMvSYUz9JJUuFFxHX1EDAC/HYGHOht4aQQep2o+j9GjhOcAPo/RZqSex99n5rC/Q2ZUhH6kRET/ibx5YLTzeYweJTwH8HmMNm/28/DUjSQVztBLUuFKC/36qgcYIT6P0aOE5wA+j9HmTX0eRZ2jlyT9rdKO6CVJRyku9BHxLxHxbETsiIh/jYizqp7pREXE1RHx3xHxfESsqHqeZkTE+RHxeETsjIhnIuKGqmdqRUScHhFPRcSPqp6lWRFxVkQ82PjvYmdEvL/qmZoREZ9v/Jt6OiLui4i3Vj3TiYiIeyPiYEQ8fcS6iRHxWETsanye0M4Zigs98Bjwzsx8F/Ac8KWK5zkhEXE6sBaYC8wCFkTErGqnasprwLLMvBiYDXy6Q5/H624AdlY9RIu+Dfw4M2cC76YDn09ETAGuB3oy850M/VGja6ud6oR9F7j6qHUrgM2ZOR3Y3Fhum+JCn5k/zczXGotPMvQ3azvBZcDzmbk7M18F7gfmVTzTScvM/Zm5vXH7LwxFZUq1UzUnIqYCHwXurnqWZkXE24APAvcAZOarmflytVM1bQxwRkSMAcZxjL9FPRpl5s+BPxy1eh6wsXF7I9DbzhmKC/1R/hH4j6qHOEFTgL1HLO+jQwP5uoiYBlwKbK12kqZ9C/gi8NeqB2nBO4AB4DuNU1B3R8T4qoc6WZn5O+DrwB5gP/CnzPxptVO1ZFJm7oehgyPgnHburCNDHxH/2ThPd/THvCO2+QpDpxHq1U16UuIY6zr2kqiI6AJ+CHwuM/9c9TwnKyI+BhzMzG1Vz9KiMcB7gHWZeSlwiDafJmiHxjnsecCFwGRgfERcV+1UnWPE/zj4myEzP3y8r0fEIuBjwJzsnOtH9wHnH7E8lQ75X9OjRcRbGIp8PTMfqnqeJl0OfDwiPgK8FXhbRHw/MzstLvuAfZn5+v9VPUgHhh74MPCbzBwAiIiHgA8A3690quYdiIjzMnN/RJwHHGznzjryiP54IuJqYDnw8cwcrHqek/ALYHpEXBgRYxn6QdMjFc900iIiGDofvDMzv1H1PM3KzC9l5tTMnMbQa7GlAyNPZv4e2BsRMxqr5gC/rnCkZu0BZkfEuMa/sTl04A+Vj/AIsKhxexHwcDt31pFH9MO4E/g74LGhfw88mZn/VO1Iw8vM1yLiM8BPGLqi4N7MfKbisZpxOfBJ4FcR8cvGui9n5r9XONOp7rNAvXEAsRv4VMXznLTM3BoRDwLbGTol+xQd8i7ZiLgPuBI4OyL2AauArwKbImIxQ9/ErmnrDJ1zZkOS1IziTt1Ikv4/Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhftfkHk+YNeE/i4AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.scatter(X, Y, color ='red', marker = 'o')\n",
"plt.scatter(X, Y, color ='blue', marker = '*')\n",
"plt.scatter(X, Y, color ='green', marker = '2')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Если присмотреться, то на красных точках можно увидеть синие звездочки и зеленые треугольники. Чтобы такого не происходило (например, если вы создаете и сохраняете графики в цикле в пределах одной ячейки), нужно добавить строку с функцией `clf()`, которая очищает координатную плоскость для следующего графика (*clf* от *clear figure*)."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.collections.PathCollection at 0x1189585c0>"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEFxJREFUeJzt3W+IXXeZwPHvs53paidIWzsdatIkNQlqIyuViVQLIsYX9Q+mLyzU2ZjBLYQFV6uW0eq+KJOwoKxo3e4ihFbNYqlOYqXFZF27sSL7osFJW7RN7LbUNYmNzYh2FF0wxWdfnFMyxElm5p57c+b+8v3AcO45c+6c53Kb79yeOTM3MhNJUrn+qu0BJEm9ZeglqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKN9D2AABXXHFFrl27tu0xJKmvHDp06NeZObzQfssi9GvXrmV6errtMSSpr0TELxazn6duJKlwhl6SCmfoJalwhl6SCmfoJalwC4Y+Ir4aEScj4sk52y6PiIcj4pl6eVm9PSLiXyLi2Yj4SUS8uZfDS1K/mp2FjRurZa8t5hX914Ebz9h2B3AgMzcAB+p1gHcDG+qP7cBXujOmJJVl3z44fBj27+/9sRYMfWb+CPjNGZu3ALvr27uBm+Zs//esPApcGhFXdWtYSep3Y2OwYgWMj1fr27ZV62NjvTtmp+foRzLzBEC9vLLevhI4Nme/4/W2vxAR2yNiOiKmZ2ZmOhxDkvrLjh2wejUMDlbrg4OwZg3s3Nm7Y3b7h7Exz7Z53308M3dl5mhmjg4PL/gbvJJUhPXrq9ifOgVDQ9VychLWrevdMTsN/Qsvn5Kplyfr7ceBq+fstwp4vvPxJKk8U1NV5Ccnq+WePb09XqehfwiozzAxDjw4Z/u2+uqb64HZl0/xSJIqExPw9NNw++3VcmKit8db8I+aRcT9wDuAKyLiOHAn8DlgKiJuBY4CN9e77wfeAzwL/BH4cA9mlqS+tmnT6dsjI9VHLy0Y+sz84Fk+tXmefRP4SNOhJEnd42/GSlLhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0knWF2FjZurJYlaBT6iPhERDwVEU9GxP0R8YqIuCYiDkbEMxHxrYi4uFvDStL5sG8fHD4M+/e3PUl3dBz6iFgJfAwYzcw3AhcBtwCfB76UmRuA3wK3dmNQSeq1sTFYsQLGx6v1bduq9bGxdudqqumpmwHglRExAFwCnADeCeytP78buKnhMSTpvNixA1avhsHBan1wENasgZ07252rqY5Dn5m/BL4AHKUK/CxwCHgxM1+qdzsOrGw6pCSdD+vXV7E/dQqGhqrl5CSsW9f2ZM00OXVzGbAFuAZ4DTAEvHueXfMs998eEdMRMT0zM9PpGJLUVVNTVeQnJ6vlnj1tT9TcQIP7vgv4eWbOAETEA8DbgEsjYqB+Vb8KeH6+O2fmLmAXwOjo6LzfDCTpfJuYgLvvhpER2LoVjh1re6LmmoT+KHB9RFwC/B+wGZgGHgE+AHwTGAcebDqkJJ0vmzadvj0yUn30uybn6A9S/dD1MeCn9dfaBXwa+GREPAu8Gri3C3NKkjrU5BU9mXkncOcZm58D3tLk60qSusffjJWkwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SX1ldhY2bqyWWhxDL6mv7NsHhw/D/v1tT9I/DL2kvjA2BitWwPh4tb5tW7U+NtbuXP3A0EvqCzt2wOrVMDhYrQ8Owpo1sHNnu3P1A0MvqS+sX1/F/tQpGBqqlpOTsG5d25Mtf4ZeUt+YmqoiPzlZLffsaXui/jDQ9gCStFgTE3D33TAyAlu3wrFjbU/UHwy9pL6xadPp2yMj1YcW1ujUTURcGhF7I+JnEXEkIt4aEZdHxMMR8Uy9vKxbw0qSlq7pOfovA9/LzNcDbwKOAHcABzJzA3CgXpcktaTj0EfEq4C3A/cCZOafMvNFYAuwu95tN3BT0yElSZ1r8or+tcAM8LWIeDwi7omIIWAkM08A1Msr57tzRGyPiOmImJ6ZmWkwhiTpXJqEfgB4M/CVzLwO+ANLOE2TmbsyczQzR4eHhxuMIUk6lyahPw4cz8yD9fpeqvC/EBFXAdTLk81GlCQ10XHoM/NXwLGIeF29aTNwGHgIqP8aBePAg40mlCQ10vQ6+o8C90XExcBzwIepvnlMRcStwFHg5obHkCQ10Cj0mfkEMDrPpzY3+bqSpO7xb91IUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVrnHoI+KiiHg8Ir5br18TEQcj4pmI+FZEXNx8TElSp7rxiv424Mic9c8DX8rMDcBvgVu7cAxJUocahT4iVgHvBe6p1wN4J7C33mU3cFOTY0iSmmn6iv4u4FPAn+v1VwMvZuZL9fpxYGXDY0iSGug49BHxPuBkZh6au3meXfMs998eEdMRMT0zM9PpGJKkBTR5RX8D8P6I+F/gm1SnbO4CLo2IgXqfVcDz8905M3dl5mhmjg4PDzcYQ5J0Lh2HPjM/k5mrMnMtcAvwg8z8W+AR4AP1buPAg42nlCR1rBfX0X8a+GREPEt1zv7eHhxDkrRIAwvvsrDM/CHww/r2c8BbuvF1JUnN+ZuxklQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy+1bHYWNm6sllIvGHqpZfv2weHDsH9/25OoVIZeasnYGKxYAePj1fq2bdX62Fi7c6k8hl5qyY4dsHo1DA5W64ODsGYN7NzZ7lwqj6GXWrJ+fRX7U6dgaKhaTk7CunVtT6bSGHqpRVNTVeQnJ6vlnj1tT6QSDbQ9gHQhm5iAu++GkRHYuhWOHWt7IpXI0Est2rTp9O2RkepD6jZP3UhS4Qy9JBWu49BHxNUR8UhEHImIpyLitnr75RHxcEQ8Uy8v6964kqSlavKK/iXg9sx8A3A98JGIuBa4AziQmRuAA/W6JKklHYc+M09k5mP17d8DR4CVwBZgd73bbuCmpkNKkjrXlXP0EbEWuA44CIxk5gmovhkAV57lPtsjYjoipmdmZroxhiRpHo1DHxErgG8DH8/M3y32fpm5KzNHM3N0eHi46RiSpLNoFPqIGKSK/H2Z+UC9+YWIuKr+/FXAyWYjSpKaaHLVTQD3Akcy84tzPvUQUP89PsaBBzsfT5LUVJPfjL0B+BDw04h4ot72WeBzwFRE3AocBW5uNqIkqYmOQ5+Z/w3EWT69udOvK0nqLn8zVpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIK1/ehn52FjRurpZYHnxNpeen70O/bB4cPw/79bU+il/mcSMtL34Z+bAxWrIDx8Wp927ZqfWys3bkuZD4n0vLUt6HfsQNWr4bBwWp9cBDWrIGdO9ud60LmcyItT30b+vXrq7CcOgVDQ9VychLWrWt7sguXz4m0PPVt6AGmpqqgTE5Wyz172p5IPifS8hOZ2fYMjI6O5vT09JLv9+MfV6cKRkbghRfg2DEYHe3BgFo0nxPp/ImIQ5m54L+wnryij4gbI+LpiHg2Iu7oxTEANm2qggLVcjkF5UK9xHA5PyfSharroY+Ii4B/A94NXAt8MCKu7fZxlrulXmJ4oX5jkNR7vXhF/xbg2cx8LjP/BHwT2NKD4yxLnV5i6LXnknqlF6FfCRybs3683nZBWOolhl57LqnXehH6mGfbX/zENyK2R8R0REzPzMz0YIx2LPUSQ689l9RrvQj9ceDqOeurgOfP3Ckzd2XmaGaODg8P92CM9izlEkOvPZfUa70I/Y+BDRFxTURcDNwCPNSD4yxbExPw9NNw++3VcmLi3Pt77bmkXurJdfQR8R7gLuAi4KuZ+U/n2r/T6+hL4bXnkjqx2OvoB3px8MzcD3j9yCJt2nT69sjI6evQJakb+vpPIEiSFmboJalwhl6SCmfoJalwhl6SCrcs/kxxRMwAv2jwJa4Aft2lcdpUyuOAch5LKY8DfCzLUdPHsSYzF/yN02UR+qYiYnox15Iud6U8DijnsZTyOMDHshydr8fhqRtJKpyhl6TClRL6XW0P0CWlPA4o57GU8jjAx7IcnZfHUcQ5eknS2ZXyil6SdBZFhD4i/jkifhYRP4mI70TEpW3PtFTn6w3Veykiro6IRyLiSEQ8FRG3tT1TUxFxUUQ8HhHfbXuWJiLi0ojYW/87ORIRb217pk5ExCfq/7aejIj7I+IVbc+0WBHx1Yg4GRFPztl2eUQ8HBHP1MvLenHsIkIPPAy8MTP/Bvgf4DMtz7MkBb2h+kvA7Zn5BuB64CN9+jjmug040vYQXfBl4HuZ+XrgTfThY4qIlcDHgNHMfCPVn0G/pd2pluTrwI1nbLsDOJCZG4AD9XrXFRH6zPx+Zr5Urz5K9a5W/aSIN1TPzBOZ+Vh9+/dUMenb9wuOiFXAe4F72p6liYh4FfB24F6AzPxTZr7Y7lQdGwBeGREDwCXM8+51y1Vm/gj4zRmbtwC769u7gZt6cewiQn+GvwP+o+0hlqi4N1SPiLXAdcDBdidp5C7gU8Cf2x6kodcCM8DX6tNQ90TEUNtDLVVm/hL4AnAUOAHMZub3252qsZHMPAHVCyXgyl4cpG9CHxH/VZ+XO/Njy5x9/pHq9MF97U3akUW9oXq/iIgVwLeBj2fm79qepxMR8T7gZGYeanuWLhgA3gx8JTOvA/5Aj04R9FJ9/noLcA3wGmAoIra2O1V/6Mk7TPVCZr7rXJ+PiHHgfcDm7L9rRhf1hur9ICIGqSJ/X2Y+0PY8DdwAvL9+W8xXAK+KiG9kZj+G5ThwPDNf/r+rvfRh6IF3AT/PzBmAiHgAeBvwjVanauaFiLgqM09ExFXAyV4cpG9e0Z9LRNwIfBp4f2b+se15OlDEG6pHRFCdBz6SmV9se54mMvMzmbkqM9dSPR8/6NPIk5m/Ao5FxOvqTZuBwy2O1KmjwPURcUn939pm+vCHymd4CBivb48DD/biIH3zin4B/wr8NfBw9fzzaGb+fbsjLV5mvhQR/wD8J6ffUP2plsfqxA3Ah4CfRsQT9bbP1u8hrHZ9FLivfiHxHPDhludZssw8GBF7gceoTtE+Th/9hmxE3A+8A7giIo4DdwKfA6Yi4laqb2Q39+TY/XeWQ5K0FEWcupEknZ2hl6TCGXpJKpyhl6TCGXpJKpyhl6TCGXpJKpyhl6TC/T/bAyCxeQ/dHgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.scatter(X, Y, color ='red', marker = 'o')\n",
"plt.clf()\n",
"plt.scatter(X, Y, color ='blue', marker = '*')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"На плоскости представлен только последний график с синими звездочками, красные точки от первого графика был стерты с помощью `clf()`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"При построении графиков стоит иметь в виду, что функция `plot()` всегда соединяет точки, причем последовательно, в том порядке, в котором они следуют в списках или массивах. Из-за этой особенности, допустив ошибку, связанную с заданием неверной области определения функции, можно получить некорректные графики. Построим для примера гиперболу."
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x118644630>]"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XuUHGd55/Hv093TM5rRbXSzB108MpbvJrZpHBISSHxDdsByCAE7m6AkZnWyi8MGThLs4w34OHDWhE3IZX0AAYrN1RCyXrSJOL5hcBYjozEIS7axJcuSJUu2ZEnWZUZz6e5n/6jqmepR94xmqqZ7uv37nNOnq956q/tVdWmefup9q19zd0REREpS9W6AiIhMLwoMIiJSRoFBRETKKDCIiEgZBQYRESmjwCAiImUUGEREpIwCg4iIlFFgEBGRMpl6N2AyFixY4N3d3fVuhohIQ3niiSdedfeF49VryMDQ3d1NT09PvZshItJQzGzXqdTTpSQRESmjwCAiImUUGEREpIwCg4iIlEkkMJjZOjPbb2Zbq2w3M/tHM9tuZk+a2aWRbavNbFv4WJ1Ee0REZPKSyhjuBlaOsf0aYEX4WAN8DsDM5gGfAH4ZuAz4hJl1JtQmERGZhEQCg7s/Chwao8oq4Cse2AjMNbMu4J3Ag+5+yN0PAw8ydoAREZEpVqs+hsXA7sj6nrCsWvlJzGyNmfWYWc+BAwemrKEicT309Cu8fKS/3s0QmbRaBQarUOZjlJ9c6L7W3XPunlu4cNwb90Tqwt35k689wdc2ntJ9RCLTUq0Cwx5gaWR9CbB3jHKRhlR0yBed4wP5ejdFZNJqFRjWAx8IRye9FTji7vuA+4Grzawz7HS+OiwTaUj5YhGAXgUGaWCJ/FaSmX0T+A1ggZntIRhp1ALg7p8HNgDXAtuBPuCPwm2HzOyvgU3hS93h7mN1YotMa4VicCW0b7BQ55aITF4igcHdbxxnuwMfqrJtHbAuiXaI1Fs+DAy9g8oYpHHpzmeRBBVLGcOAMgZpXAoMIglSxiDNQIFBJEHqY5BmoMAgkqDhjEGjkqSBKTCIJKhQCALDCWUM0sAUGEQSNHwfw2CeYDCeSONRYBBJUKmPoegwkC/WuTUik6PAIJKgUh8DqJ9BGpcCg0iCCpHAoJFJ0qgUGEQSVJYx6F4GaVAKDCIJKhRH+hV6dfezNCgFBpEE5QvRS0nKGKQxKTCIJKhQ1vmsjEEakwKDSILyRWUM0vgUGEQSVJYxaFSSNCgFBpEElWUMuo9BGlQigcHMVprZs2a23cxuqbD9s2a2OXw8Z2avRbYVItvWJ9EekXopG5WkjEEaVOwZ3MwsDdwFXAXsATaZ2Xp3f7pUx90/Eqn/p8AlkZc44e4Xx22HyHSgjEGaQRIZw2XAdnff4e6DwL3AqjHq3wh8M4H3FZl21McgzSCJwLAY2B1Z3xOWncTMzgCWA9+PFLeZWY+ZbTSz66u9iZmtCev1HDhwIIFmiySvdB9DyjQqSRpXEoHBKpRV+73hG4DvuHv0q9Qyd88Bvwf8vZm9sdKO7r7W3XPunlu4cGG8FotMkVLGMKutRfcxSMNKIjDsAZZG1pcAe6vUvYFRl5HcfW/4vAP4AeX9DyINpdTHMHtGhhNDyhikMSURGDYBK8xsuZllCf74nzS6yMzOATqBH0fKOs2sNVxeALwNeHr0viKNojQqabYyBmlgsUcluXvezG4G7gfSwDp3f8rM7gB63L0UJG4E7vXyaa3OA75gZkWCIHVndDSTSKMZzhjaWjjYO1Dn1ohMTuzAAODuG4ANo8o+Pmr99gr7PQZclEQbRKaDQuRS0ouH+urcGpHJ0Z3PIgmKZgwalSSNSoFBJEEjGUOL7mOQhqXAIJKg0n0Ms9taGMwXGSoUx9lDZPpRYBBJUKFYxAw6WtOA5n2WxqTAIJKgfNHJpIyO1mBch/oZpBEpMIgkqFB00imjPRtkDLqXQRqRAoNIgoKMIUVHVhmDNC4FBpEEDWcMrcoYpHEpMIgkKF8sBn0MyhikgSkwiCSolDGURiXpXgZpRAoMIgnKF4JRSe2ljEGzuEkDUmAQSVCh6KTTI5eSlDFII1JgEElQaVTSjHC4qjIGaUQKDCIJKvUxZDMpsukUfUPKGKTxKDCIJKg0KgmgvTWtjEEakgKDSIJKGQNARzajPgZpSIkEBjNbaWbPmtl2M7ulwvY/NLMDZrY5fHwwsm21mW0LH6uTaI9IvZR+KwmgPZvWfQzSkGLP4GZmaeAu4CpgD7DJzNZXmKLzW+5+86h95wGfAHKAA0+E+x6O2y6ReohmDO2tGd35LA0piYzhMmC7u+9w90HgXmDVKe77TuBBdz8UBoMHgZUJtEmkLoL7GIL/Vh3KGKRBJREYFgO7I+t7wrLRfsfMnjSz75jZ0gnui5mtMbMeM+s5cOBAAs0WSV5ZxpBNK2OQhpREYLAKZT5q/f8C3e7+JuAh4J4J7BsUuq9195y75xYuXDjpxopMpXyxSCZdCgwZZQzSkJIIDHuApZH1JcDeaAV3P+juA+HqF4E3n+q+Io2kbFRSa1qjkqQhJREYNgErzGy5mWWBG4D10Qpm1hVZvQ54Jly+H7jazDrNrBO4OiwTaUj5opO2SMag+xikAcUeleTueTO7meAPehpY5+5PmdkdQI+7rwc+bGbXAXngEPCH4b6HzOyvCYILwB3ufihum0Tqpfw+hjR9QwWKRSeVqnTVVGR6ih0YANx9A7BhVNnHI8u3ArdW2XcdsC6JdojUW77oI30MrRncoT9fGP61VZFGoDufRRIUZAwjw1VBs7hJ41FgEElQ2W8laRY3aVAKDCIJKhTKRyWBMgZpPAoMIgkq/60kZQzSmBQYRBJU9AoZg+5lkAajwCCSoEoZwwllDNJgFBhEEhT0MZRGJYXzPquPQRqMAoNIgsrvYwjnfVbGIA1GgUEkQaNncAP1MUjjUWAQSVD0Poa2lhRm6PeSpOEoMIgkpFh0is5wxmBmtLfoF1al8SgwiCSk4MFUIpnID+adNruNXQf76tUkkUlRYBBJSKEYBIbSqCSAN5/RyRO7DuFecf4pkWlJgUEkIfniyRlDrruTw31DPH+gt17NEpkwBQaRhBQKpYwhGhjmAdCzU9OMSONIJDCY2Uoze9bMtpvZLRW2f9TMnjazJ83sYTM7I7KtYGabw8f60fuKNIp8sQgwfB8DwJkLOpjXkaVn1+F6NUtkwmLPHmJmaeAu4CqCOZw3mdl6d386Uu1nQM7d+8zsvwB/A7w/3HbC3S+O2w6RehvpYxgJDGZG7oxOZQzSUJLIGC4Dtrv7DncfBO4FVkUruPsj7l4amrERWJLA+4pMK5X6GCDoZ9h5sI/9x/rr0SyRCUsiMCwGdkfW94Rl1dwEfC+y3mZmPWa20cyuT6A9InVRaVQSjPQzPLFTl5OkMSQRGCrNcl5xbJ6Z/T6QAz4TKV7m7jng94C/N7M3Vtl3TRhAeg4cOBC3zSKJq5YxXPiGObRmUupnkIaRRGDYAyyNrC8B9o6uZGZXArcB17n7QKnc3feGzzuAHwCXVHoTd1/r7jl3zy1cuDCBZoskqxB2PqdHBYZsJsUvLZ2rfgZpGEkEhk3ACjNbbmZZ4AagbHSRmV0CfIEgKOyPlHeaWWu4vAB4GxDttBZpGNUyBoC3dHeyde9R/dKqNITYgcHd88DNwP3AM8C33f0pM7vDzK4Lq30GmAn8y6hhqecBPWb2c+AR4M5Ro5lEGka+wn0MJbnueRSKzuYXX6t1s0QmLPZwVQB33wBsGFX28cjylVX2ewy4KIk2iNRbqfM5eh9DyaXLOjGDnl2H+dWzFtS6aSITojufRRKSrzIqCWDOjBbetHgO9/3sJYYKxVo3TWRCFBhEElIYo48B4MNXrOCFV3u5d9PuittFpgsFBpGE5KuMSiq5/NxFXLZ8Hv/w0HMc1+Q9Mo0pMIgkZLyMwcy49ZpzefX4IF98dEctmyYyIQoMIgnJV/itpNEuWdbJb13UxRf/Y4d+IkOmLQUGkYSUfnY7U6HzOeov3nkOg/ki/2PDLzSBj0xLCgwiCTmVjAGge0EHH/rNs7jvZy9xx789reAg004i9zGIyNj3MYz2Z1eu4Fh/nnU/eoGWdIpbrzkXs/H3E6kFBQaRhIw3KinKzPird51Hvlhk7aM7GMwXufXac2nNpKe6mSLjUmAQSch4o5JGMzNuf/cFpMy4+7Gd/L/tr/Lp33kTbz6jcyqbKTIu9TGIJORU+xiiUinj9usu4O4/egsnBgu89/OPcdt9W9h9qG/8nUWmiAKDSEJGMoaJ/7f6jXMWcf9H3s7qX+nm2z27ecdnHuG/fv0JNu08RLGozmmpLV1KEknIZDKGqJmtGW6/7gL+5B1v5O7HdvKNx3exYcvLdM1p45oLu3jnBadxybJOshl9n5OppcAgkpBC+ON4p9rHUM3pc9q45Zpz+dPLz+L+p15mw5aX+drGXaz70QvMaEmT6+7kl5fP401L5nLR4jl0dmSTaL7IMAUGkYQMZwynMFz1VHS0ZnjPpUt4z6VLONY/xI+2v8rGHYfYuOMg//OB54brLZ47gxWnzeSshTM5a9FMzpjfwbL57Zw+u23S2Yu8vikwiCRkoqOSJmJWWwsrL+xi5YVdABw5McRTLx1hy0tHeGrvUbbtP86Pnz/IQH7kJ71b0sZps9vomtNG15wZLJrVyqLZrSyc1cr8jlbmdWSZPzNLZ3uWthYNk5URiQQGM1sJ/AOQBr7k7neO2t4KfAV4M3AQeL+77wy33QrcBBSAD7v7/Um0SaTW4vYxTMScGS386lkLyib9KRSdva+d4MVDfcOPfa+dYN+Rfjbvfo39x/rpH6o8F0RbS4rO9ixzZrQwu62F2TMyzGprYWZrhpltGWa2ZujIpulozdDRmqE9m6Y9GzzPyKaZ0ZKmrSV4bs2kSClTaWixA4OZpYG7gKuAPcAmM1s/aorOm4DD7n6Wmd0AfBp4v5mdTzBH9AXAG4CHzOxsdy/EbZdIrcUZlZSEdMpYOq+dpfPaeVuF7e7O8YE8+48NcKh3kIPHBznUO8jhvkGOnBjicO8gR/uHOHoiz97X+jk+cJzjA3mO9Q8xVJjYyKhsJkVbJkVrS5q2lhStmSBgZDMpsunguTWTJpsxsukULWHZyLORSQXLmZTRkg7L0iPrmbSRSQX10mmjJZUinTIyaQueU6XnoLxUlio9mw2Xp1NG2oxUCtJh+ev5TvQkMobLgO3uvgPAzO4FVgHRwLAKuD1c/g7wvyw46quAe919AHjBzLaHr/fjBNolUlOljGG6flk2M2a1tTCrrYU3Ljz1/dydwUKR3oECvQN5egfz9A0W6Bso0DuYp3+oQP9Qgb7BAv1DxeH1gXyRgXxQNhguB2VFjvbnGcwPMlQItg3mi+SL4XKhSL7gw8ezXswIg4VFgkUQgFNWCiwML5eCSsrK61lYzzBSFnwOKRvZz0rL4WuVbw/qGwzX/cS7L+D0OW1T+m9PIjAsBqJTUu0BfrlaHXfPm9kRYH5YvnHUvosTaJNIzRWKRTJN+E3TzMJv/Gnm1XAEVLHoDBXDIFEIglM+XB8qFCkUnaGCB2VFp1D0MKAE20rbi+7h9iKFYvA55YtOsbRPMahTKBI+B4/hZQ/qFp3h8uH6w+sMlxc9Wh7U83DZGcksS6/v4esOFjysF2xzH6kDDK/XYmrYJAJDpf8Fo0N9tTqnsm/wAmZrgDUAy5Ytm0j7ht31yHa2vnSElBlEInJZ1LbqUXt4e6py/XRk+0nfJkrfIErbSt9EwjojqezIt5NKKW8pPT4pVU5H10dS7tJ6s/2xmo7yRdcooASlUkZrKk2rhsjUXBKHfA+wNLK+BNhbpc4eM8sAc4BDp7gvAO6+FlgLkMvlJpVj7jtygu37j+OMRORShD4pigfvObxc+sYwXN8dShE9fK3pLBNee21JBddmW8LruqXrti3pFNloeXgtuDW83jtyTTgoa82kaW0JltvCDsdSB2Rby0iHZKlzsiOboa0l1dQBqlDwKRmRJFJrSQSGTcAKM1sOvETQmfx7o+qsB1YT9B28F/i+u7uZrQe+YWZ/R9D5vAL4SQJtquiT1180VS+Nh8GhUEoniyPLHi4HaaMPLxcj5RVT2OJIKhvdNlQI02APUufhtLlYDNLvaHpdcIaKTr4QrA8NX78tBvUKwfNAeI23dM2370QhvPZbYKjgw9eIB8NrxJO5/msGHdkMHa3B6JZZ4YiXWa3BKJhgNEwLc9tbmDOjhbntWeZ3ZOnsCJ6n+5BKZQzSLGIHhrDP4GbgfoLhquvc/SkzuwPocff1wJeBr4ady4cIggdhvW8TdFTngQ816ogkK12Oqnh1rPkUih50Jg4V6c+XdzqeKD0PFukbzHNiqEDvQIG+wfxwB+bxwTzH+/McH8hz4NhxjvXnOXpiiN7B6h//rNYMC2cF4/BPD8fmd81pY0nnDJbNa2dJZzszsvULHoWik0nr5yqk8SVy9c7dNwAbRpV9PLLcD/xulX0/BXwqiXZI7aRTFo5jT/Z1hwpFjp4Y4nDfEK/1BcMpD/UOcrB3kAPHBjhwbID9x/r56YuHefnIvpOGUXbNaeOsRTN548KZnHv6LC5cPIezT5tVk98XUsYgzULdOjKttKRTzJ/ZyvyZrePWLRadg72D7Dkc3tB1sI8XXu1l2/7jfLtnN31h9pFNp7hg8WzeeuZ83nrmfN7S3Ul7NvlTvzQqSaTRKTBIw0qlbPjS0iXLyie3KRadFw/1seWlI2x96Qg9uw7zxUd38LkfPE9rJsU7zl7ItRd1ccV5i5jV1pJIe/JFD0a8iTQ4BQZpSqmU0b2gg+4FHbz7l94AQO9Anp5dh3nkF/v53tZ9PPD0K8xoSfO7uSXc9GvLOWN+R6z3DPoYFBik8SkwyOtGR2uGd5y9kHecvZCPv+t8fvriYe7dtJtv/uRFvrpxF9de2MVtv3Ueb5g7Y1Kvrz4GaRYKDPK6lEoZue555Lrn8ZfvPIe7H9vJP/9oJz987gAfu+Zc/tNlyyb8Q3C6j0GahcbWyeveotlt/OXKc3ngI2/nkmVz+av/s5UbvriRw72DE3qdIGPQfylpfDqLRUJL57XzlT++jL9575v4+e7X+P0vP86RvqFT3l+jkqRZKDCIRJgZ78st5Qt/8Ga2vXKcP1j3OEf7Ty04qI9BmoUCg0gFv3HOIj73+5fyzL6jrF73E06McUd2SdHVxyDNQYFBpIorzjuNf7rxEn724mt86T92jFs/X1DGIM1BgUFkDCsv7OLq80/jC4/u4ODxgTHr6j4GaRYKDCLj+MuV53JiqMA/fX/7mPU0Kkmahc5ikXGctWgm78st5Wsbd7Hz1d6q9QpF9TFIc1BgEDkFH7lyBS3pFJ954NmqdTQqSZqFAoPIKVg0u43//OvL+fcn9/HMvqMV6+g+BmkWCgwip+gDv9oNwA+fO1BxuzIGaRaxAoOZzTOzB81sW/jcWaHOxWb2YzN7ysyeNLP3R7bdbWYvmNnm8HFxnPaITKUFM1s5c0EHPTsPVdyuPgZpFnEzhluAh919BfBwuD5aH/ABd78AWAn8vZnNjWz/C3e/OHxsjtkekSmV6+7kiV2HKVaY8zq4j0FJuDS+uGfxKuCecPke4PrRFdz9OXffFi7vBfYDC2O+r0hd5M6Yx+G+IXa8evykbcoYpFnEDQynufs+gPB50ViVzewyIAs8Hyn+VHiJ6bNmNv58jiJ1lOsOrpZu2nn4pG35opPWDW7SBMYNDGb2kJltrfBYNZE3MrMu4KvAH7l7MSy+FTgXeAswD/jYGPuvMbMeM+s5cKBy55/IVFu+oIP5HVl6KgQGjUqSZjHuRD3ufmW1bWb2ipl1ufu+8A///ir1ZgP/Dvx3d98Yee194eKAmf0z8OdjtGMtsBYgl8udfIFXpAbMjFx3Jz27Tu6A1qgkaRZxLyWtB1aHy6uB746uYGZZ4D7gK+7+L6O2dYXPRtA/sTVme0SmXO6Meew62Mf+o/1l5epjkGYRNzDcCVxlZtuAq8J1zCxnZl8K67wPeDvwhxWGpX7dzLYAW4AFwCdjtkdkypX6GXp2lV9O0m8lSbOINeezux8ErqhQ3gN8MFz+GvC1KvtfHuf9RerhgjfMoa0lRc/Ow1x7UddwuTIGaRb6eiMyQdlMil9aMresn8HdKaiPQZqEAoPIJLylex5P7T1K70AeCLIFQBmDNAUFBpFJyHV3Uig6m3e/BgT9C4DuY5CmoMAgMglnLZoJwJ7DfYAyBmkuCgwikzCzNRi30TtQACIZg0YlSRPQWSwyCe3ZIDCcGAoCgzIGaSYKDCKTkM2kaEnbcOdzvhj8yotGJUkzUGAQmaT2bIa+QWUM0nwUGEQmqSObHskYCqU+BgUGaXwKDCKT1N5aIWPQcFVpAgoMIpPUnk3TO1jqY9CoJGkeOotFJqk9m6ZvQH0M0nwUGEQmqSObiWQMGpUkzUOBQWSSKvYxKDBIE1BgEJmkslFJRY1KkuahwCAySZXvY9B/KWl8sc5iM5tnZg+a2bbwubNKvUJk9rb1kfLlZvZ4uP+3wmlARRpCR2swKsnddR+DNJW4X29uAR529xXAw+F6JSfc/eLwcV2k/NPAZ8P9DwM3xWyPSM20ZzO4Q/9QUfcxSFOJGxhWAfeEy/cA15/qjmZmwOXAdyazv0i9dbSmAegdzGtUkjSVuIHhNHffBxA+L6pSr83Mesxso5mV/vjPB15z93y4vgdYHLM9IjVT+oXVvoGCRiVJU8mMV8HMHgJOr7Dptgm8zzJ332tmZwLfN7MtwNEK9XyMdqwB1gAsW7ZsAm8tMjU6stGMQX0M0jzGDQzufmW1bWb2ipl1ufs+M+sC9ld5jb3h8w4z+wFwCfCvwFwzy4RZwxJg7xjtWAusBcjlclUDiEittIeT9fQNFjQqSZpK3LN4PbA6XF4NfHd0BTPrNLPWcHkB8DbgaXd34BHgvWPtLzJdlTKGPmUM0mTiBoY7gavMbBtwVbiOmeXM7EthnfOAHjP7OUEguNPdnw63fQz4qJltJ+hz+HLM9ojUTKmPoXegQCHsfFYfgzSDcS8ljcXdDwJXVCjvAT4YLj8GXFRl/x3AZXHaIFIvpVFJfYP54UtJyhikGeiCqMgkDWcM0T4G3ccgTUCBQWSShjOGAfUxSHNRYBCZpLZMabiqRiVJc9FZLDJJqZSFk/UoY5DmosAgEkN7NhNmDBqVJM1DgUEkho7WtO5jkKajwCASQ3s2E9zHoJ/dliaiwCASQ0d2VMZgCgzS+BQYRGJob80Mj0pKWdAhLdLoFBhEYuiIjErSUFVpFjqTRWIozftcKBbVvyBNQ4FBJIbSvM9BxqDAIM1BgUEkhvZshr6BAsWik9bvJEmTUGAQiaEjm2awUKR/qKiMQZqGAoNIDKVZ3I4NDKmPQZqGAoNIDKVZ3I6eyGtUkjSNWGeymc0zswfNbFv43Fmhzm+a2ebIo9/Mrg+33W1mL0S2XRynPSK1VsoYjvYrY5DmEfcrzi3Aw+6+Ang4XC/j7o+4+8XufjFwOdAHPBCp8hel7e6+OWZ7RGpqJGMYUh+DNI24gWEVcE+4fA9w/Tj13wt8z937Yr6vyLRQmsXtaH9eGYM0jbiB4TR33wcQPi8ap/4NwDdHlX3KzJ40s8+aWWvM9ojUVHskY1BgkGaRGa+CmT0EnF5h020TeSMz6wIuAu6PFN8KvAxkgbXAx4A7quy/BlgDsGzZsom8tciUKU3vmS+65nuWpjFuYHD3K6ttM7NXzKzL3feFf/j3j/FS7wPuc/ehyGvvCxcHzOyfgT8fox1rCYIHuVzOx2u3SC2ULiUBpDUqSZpE3DN5PbA6XF4NfHeMujcy6jJSGEwwMyPon9gasz0iNdURCQzqfJZmETcw3AlcZWbbgKvCdcwsZ2ZfKlUys25gKfDDUft/3cy2AFuABcAnY7ZHpKZmhH0MoEl6pHmMeylpLO5+ELiiQnkP8MHI+k5gcYV6l8d5f5F6y2ZSZNMpBgv6SQxpHrooKhJTe9gBrYxBmoUCg0hMpX4GZQzSLBQYRGIq3cugUUnSLHQmi8RU+r0kZQzSLBQYRGIq/V6SJuqRZqHAIBJTu/oYpMkoMIjE1KFRSdJkFBhEYlLGIM1GgUEkpg6NSpImozNZJCaNSpJmo8AgEtNIxqDAIM1BgUEkptINbsoYpFkoMIjEVOp81n0M0iwUGERiKg1XVcYgzUKBQSSm4YxBo5KkSehMFolJGYM0m1iBwcx+18yeMrOimeXGqLfSzJ41s+1mdkukfLmZPW5m28zsW2aWjdMekXoYyRgUGKQ5xM0YtgLvAR6tVsHM0sBdwDXA+cCNZnZ+uPnTwGfdfQVwGLgpZntEak7zMUiziRUY3P0Zd392nGqXAdvdfYe7DwL3AqvMzIDLge+E9e4Bro/THpF60Axu0mxq0cewGNgdWd8Tls0HXnP3/KhykYYyvyPLR686m6vPP73eTRFJRGa8Cmb2EFDpjL/N3b97Cu9R6WuUj1FerR1rgDUAy5YtO4W3FakNM+PDV6yodzNEEjNuYHD3K2O+xx5gaWR9CbAXeBWYa2aZMGsolVdrx1pgLUAul6saQEREJJ5aXEraBKwIRyBlgRuA9e7uwCPAe8N6q4FTyUBERGQKxR2u+ttmtgf4FeDfzez+sPwNZrYBIMwGbgbuB54Bvu3uT4Uv8THgo2a2naDP4ctx2iMiIvFZ8MW9seRyOe/p6al3M0REGoqZPeHuVe85K9GdzyIiUkaBQUREyigwiIhIGQUGEREp05Cdz2Z2ANg1yd0XENxDMd2oXROjdk2M2jUxzdquM9x94XiVGjIwxGFmPafSK19ratfEqF0To3ZNzOu9XbqUJCIiZRQYRESkzOsxMKytdwOqULsmRu2aGLVrYl7X7Xrd9TGIiMjYXo8Zg4iIjKGpA8NYc1Kb2a3hHNTPmtk7I+UV56eewjZ+y8w2h4+dZrY5LO82sxORbZ+f6raMatftZvZS5P2vjWyreOxq1K7PmNkvzOxJM7vPzOaG5XU9XmEbanrujNGOpWb2iJk9E57//y0sr/qZ1rBtO81sS/j+PWHZPDN7MJw/fXGPAAAEBklEQVT7/UEz66xxm86JHJPNZnbUzP6sHsfLzNaZ2X4z2xopq3h8LPCP4fn2pJldmlhD3L1pH8B5wDnAD4BcpPx84OdAK7AceB5Ih4/ngTOBbFjn/Bq292+Bj4fL3cDWOh6724E/r1Be8djVsF1XA5lw+dPAp6fJ8arruTOqLV3ApeHyLOC58HOr+JnWuG07gQWjyv4GuCVcvqX0mdbxc3wZOKMexwt4O3Bp9FyudnyAa4HvEUx69lbg8aTa0dQZg1efk3oVcK+7D7j7C8B2grmpK85PXYu2hnNgvw/4Zi3eL4Zqx64m3P0BH5kOdiPBBE/TQd3OndHcfZ+7/zRcPkbwc/fTedrcVQRzvkP9536/Anje3Sd7A20s7v4ocGhUcbXjswr4igc2Ekx81pVEO5o6MIyh2jzU1cpr4deBV9x9W6RsuZn9zMx+aGa/XqN2RN0cpqjrIul9PY/RaH9M8I2ppJ7Hazodl2Fm1g1cAjweFlX6TGvJgQfM7AkLpusFOM3d90EQ1IBFdWhXyQ2Ufzmr9/GC6sdnys65hg8MZvaQmW2t8Bjr21oi81An3MYbKT8h9wHL3P0S4KPAN8xsdty2TKBdnwPeCFwctuVvS7tVeKlEh7adyvEys9uAPPD1sGjKj9d4za5QVtchf2Y2E/hX4M/c/SjVP9Naepu7XwpcA3zIzN5ehzZUZMEMk9cB/xIWTYfjNZYpO+fGnfN5uvPJzUldbR5qxiiftPHaaGYZ4D3AmyP7DAAD4fITZvY8cDaQ2AxFp3rszOyLwL+Fq2Mdu5q0y8xWA+8CrvDwYmstjtc4pvy4TISZtRAEha+7+/8GcPdXItujn2nNuPve8Hm/md1HcAnuFTPrcvd94aWQ/bVuV+ga4Kel4zQdjleo2vGZsnOu4TOGSVoP3GBmrWa2HFgB/IQq81PXoD1XAr9w9z2lAjNbaGbpcPnMsI07atCW0vtHr1X+NlAaJVHt2NWqXSsJpoS9zt37IuV1PV7U79w5Sdhf9WXgGXf/u0h5tc+0Vu3qMLNZpWWCgQRbCY7T6rBaPed+L8va6328Iqodn/XAB8LRSW8FjpQuOcVWyx73Wj8IPsw9BN8kXwHuj2y7jWAUybPANZHyawlGcTwP3Fajdt4N/Mmost8BniIY3fJT4N01PnZfBbYAT4YnYNd4x65G7dpOcF11c/j4/HQ4XvU6d6q049cILik8GTlO1471mdaoXWeGn8/Pw8/qtrB8PvAwsC18nleHY9YOHATmRMpqfrwIAtM+YCj823VTteNDcCnprvB820Jk5GXch+58FhGRMq/XS0kiIlKFAoOIiJRRYBARkTIKDCIiUkaBQUREyigwiIhIGQUGEREpo8AgIiJl/j8I15oI/QxFPgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"x = np.linspace(-100, 100, 100)\n",
"y = 1/x\n",
"plt.plot(x, y)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Полученный график не совсем похож на гиперболу! Как известно, в точке $x=0$ график уходит на бесконечность, линия при $x=0$ отсутствует. А здесь она есть! Избавимся от нее, построив график \"по кусочкам\"."
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:2: RuntimeWarning: divide by zero encountered in true_divide\n",
" \n",
"/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:5: RuntimeWarning: divide by zero encountered in true_divide\n",
" \"\"\"\n"
]
},
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x1188bccf8>]"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHaxJREFUeJzt3X+UHXV9//HnKz+XyK+ELCQkLEn4pghW3cB+U61SLRBE65ek4g/wWGO/0FQr9qvWHsLBI5RqD9hTrD1fqqYSRYuCokD8FosJoLangFkwkABifgBlTUgCgUAhWUjy/v4xc7uzy737a+be2XvzepwzZ2Y+M7P3nbl78tr5+VFEYGZmVjGu7ALMzGxscTCYmVk/DgYzM+vHwWBmZv04GMzMrB8Hg5mZ9eNgMDOzfhwMZmbWj4PBzMz6mVB2AaMxffr0mDNnTtllmJk1lfvuu+/piGgfar2mDIY5c+bQ3d1ddhlmZk1F0hPDWc+nkszMrB8Hg5mZ9eNgMDOzfhwMZmbWTyHBIGmlpB2SNtRYLkn/IGmTpAclnZJZtlTSxnRYWkQ9ZmY2ekUdMXwTOHuQ5e8E5qfDMuArAJKmAZcBvwMsBC6TNLWgmszMbBQKCYaI+Dmwa5BVFgPfisQ9wJGSZgLvAFZHxK6IeBZYzeABY2ZmddaoawyzgCcz8z1pW632V5G0TFK3pO6dO3fWrVCzPCLgssvgjjvKrsRs9BoVDKrSFoO0v7oxYkVEdEVEV3v7kA/umZVCgi98Ae68s+xKzEavUcHQAxyXmZ8NbB2k3axptbXB3r1lV2E2eo0KhlXAh9O7k94E7I6IbcDtwFmSpqYXnc9K28yaloPBml0h70qS9F3g7cB0ST0kdxpNBIiIrwK3Ae8CNgEvAX+cLtsl6a+BtemPuiIiBruIbTbmORis2RUSDBFx/hDLA/h4jWUrgZVF1GE2FjgYrNn5yWezgjkYrNk5GMwK1tYGvb1lV2E2eg4Gs4L5iMGanYPBrGAOBmt2DgazgjkYrNk5GMwK5mCwZudgMCuYg8GanYPBrGAOBmt2DgazgjkYrNk5GMwK5mCwZudgMCuYg8GanYPBrGBtbbB/P+zbV3YlZqPjYDArWFtbMvZRgzUrB4NZwRwM1uwcDGYFczBYs3MwmBXMwWDNrpBgkHS2pEclbZK0vMryL0lalw6/lvRcZtn+zLJVRdRjViYHgzW73D24SRoPXAMsAnqAtZJWRcTDlXUi4lOZ9T8BLMj8iD0R0Zm3DrOxwsFgza6II4aFwKaI2BIRLwM3AIsHWf984LsFfK7ZmORgsGZXRDDMAp7MzPekba8i6XhgLnBnprlNUrekeyQtqfUhkpal63Xv3LmzgLLN6sPBYM2uiGBQlbaose55wE0RsT/T1hERXcAHgb+XdEK1DSNiRUR0RURXe3t7vorN6sjBYM2uiGDoAY7LzM8GttZY9zwGnEaKiK3peAvwU/pffzBrOg4Ga3ZFBMNaYL6kuZImkfzn/6q7iySdCEwF7s60TZU0OZ2eDrwFeHjgtmbNxMFgzS73XUkRsU/SRcDtwHhgZUQ8JOkKoDsiKiFxPnBDRGRPM50EfE3SAZKQujJ7N5NZM5o8ORk7GKxZ5Q4GgIi4DbhtQNvnBsxfXmW7/wBeX0QNZmNF5Yiht7fcOsxGy08+mxXMp5Ks2TkYzArmYLBm52AwK9iECTBunIPBmpeDwaxgkntxs+bmYDCrAweDNTMHg1kdOBismTkYzOrAwWDNzMFgVgcOBmtmDgazOnAwWDNzMJjVgYPBmpmDwawOHAzWzBwMZnXgYLBm5mAwqwMHgzUzB4NZHTgYrJk5GMzqwMFgzczBYFYHDgZrZoUEg6SzJT0qaZOk5VWWf0TSTknr0uHCzLKlkjamw9Ii6jErm4PBmlnuHtwkjQeuARYBPcBaSauqdNF5Y0RcNGDbacBlQBcQwH3pts/mrcusTA4Ga2ZFHDEsBDZFxJaIeBm4AVg8zG3fAayOiF1pGKwGzi6gJrNStbXBvn3JYNZsigiGWcCTmfmetG2gcyU9KOkmSceNcFskLZPULal7586dBZRtVj+VXtz27Cm3DrPRKCIYVKUtBsz/CJgTEW8A1gDXjWDbpDFiRUR0RURXe3v7qIs1a4Tp05Px00+XW4fZaBQRDD3AcZn52cDW7AoR8UxE9Kaz/wScOtxtzZrRjBnJ+Kmnyq3DbDSKCIa1wHxJcyVNAs4DVmVXkDQzM3sO8Eg6fTtwlqSpkqYCZ6VtZk3NwWDNLPddSRGxT9JFJP+hjwdWRsRDkq4AuiNiFfDnks4B9gG7gI+k2+6S9Nck4QJwRUTsyluTWdkqwbB9e7l1mI1G7mAAiIjbgNsGtH0uM30JcEmNbVcCK4uow2ysaG8HyUcM1pz85LNZHUyYkISDg8GakYPBrE5mzHAwWHNyMJjViYPBmpWDwaxOjjnGwWDNycFgVieVI4ao+sim2djlYDCrkxkzoLcXdu8uuxKzkXEwmNWJH3KzZuVgMKsTB4M1KweDWZ04GKxZORjM6sTBYM3KwWBWJ1OnwsSJDgZrPg4GszqRoKMDNm0quxKzkXEwmNXRG98IDzxQdhVmI+NgMKujzk7YvBleeKHsSsyGz8FgVkedncmTz+vXl12J2fAVEgySzpb0qKRNkpZXWf5pSQ9LelDSHZKOzyzbL2ldOqwauK1ZM+vsTMbr1pVbh9lI5O6oR9J44BpgEUkfzmslrYqIhzOr/RLoioiXJH0M+CLwgXTZnojozFuH2Vg0ezZMm+brDNZcijhiWAhsiogtEfEycAOwOLtCRNwVES+ls/cAswv4XLMxT0ouQPuIwZpJEcEwC3gyM9+TttVyAfDjzHybpG5J90haUkA9ZmNKZ2dyjWH//rIrMRueIvp8VpW2qi8alvQhoAt4W6a5IyK2SpoH3ClpfURsrrLtMmAZQEdHR/6qzRrk1FNhz57kqOHUU8uuxmxoRRwx9ADHZeZnA1sHriTpTOBS4JyI6K20R8TWdLwF+CmwoNqHRMSKiOiKiK729vYCyjZrjHe8A8aNg1tvLbsSs+EpIhjWAvMlzZU0CTgP6Hd3kaQFwNdIQmFHpn2qpMnp9HTgLUD2orVZ05s+Hd76VrjllrIrMRue3MEQEfuAi4DbgUeA70XEQ5KukHROutrfAocC3x9wW+pJQLekB4C7gCsH3M1k1hKWLEmuM2zZUnYlZkNTNGG/g11dXdHd3V12GWbDtmULnHACXH01fOpTZVdjBytJ90VE11Dr+clnswaYNw8WLICVK90HtI19DgazBvnkJ2HDBrjttrIrMRucg8GsQc4/H447Dq66quxKzAbnYDBrkIkT4S/+Av7t3+Bf/7XsasxqczCYNdCf/im89rXJ2K/itrHKwWDWQG1tyQXoJ59M7k7yhWgbixwMZg325jfD8uVw7bXJ7atmY00R70oysxH6/OeTvqA/8xmYMgU+9rGyKzLr42AwK8G4cXDddcnL9f7sz+Dxx5OwmDix7MrMfCrJrDSHHAI33wwf/Sh88Ytw2mnwsF8IY2OAg8GsRBMmwFe+AjfeCL/+NbzhDfCJT8BvflN2ZXYwczCYjQHvf38SDBdemATFvHmwdCncfbfvXLLGczCYjRHTp8NXvwobN8Kf/An88Ifwu78L8+fDxRfDv/87vPJK2VXawcBvVzUbo154AX7wA/jOd+Cuu2DfPjjssKRvh7e+FRYuTHqEmzq17EqtWQz37aoOBrMmsHs3rFmTDD/7GTzySN+y44+H3/5tOOkkOPHE5Ahj3jw49lgYP768mm3sGW4w+HZVsyZwxBFw7rnJALBrF3R3wy9/mfQl/dBDsHo1vPxy3zYTJ8Ls2X3DscfCzJlwzDFw9NHJ0N4ORx2VPJFtVlFIMEg6G/gyMB74ekRcOWD5ZOBbwKnAM8AHIuLxdNklwAXAfuDPI+L2Imoya2XTpsFZZyVDxf798MQTsHlz0jHQ44/Df/5n8vqNe++FbduS5yaqmTIl+ZlTp8KRRybDEUckw+GHJ6ewDjsMDj00Gb/mNf2HKVOS4ZBDkpAZ56uXTS13MEgaD1wDLAJ6gLWSVg3oovMC4NmI+B+SzgOuAj4g6WSSPqJfBxwLrJH0WxGxP29dZgeb8eOTU0jz5lVfHgHPPw9PPQU7dsDOnfD00/DMM8n42WeT4bnnkjDZsCE5hfX888n1jZGYPDkJira2/sPkyX1Ddn7SpFcPEyf2n642TJjQNx44PXAYPz4Zqs1Xpivz48aBlP87aVZFHDEsBDZFxBYASTcAi4FsMCwGLk+nbwL+rySl7TdERC/wmKRN6c+7u4C6zCxD6jsKOPHE4W8XAb29ycXw//qvvuHFF5PxSy/1H/bsSYa9e5OhMt3b29f23HPJ/MsvJ+Ps9CuvJMNIw6hoUv/AGD8+CYzsuFrbuHHVp6W++ZEMle0q4y9/GWbNqu+/vYhgmAU8mZnvAX6n1joRsU/SbuCotP2eAdvW+Z9sZiMh9f3F397euM89cKAvJF5+uW86GxzZ6cpQmd+/v/90ZXllev/+V09X5g8c6N+2f3//tmrTBw4MPn3gQBKylbbsdKWGautkt43ofx2pXooIhmoHXANvdaq1znC2TX6AtAxYBtDR0TGS+v7b3/wN3H9///Qtasj+dTDYXxMD2yqHsZW2aoe1tca1hmqH0wfzYbE1p3Hj+k41WWMVEQw9wHGZ+dnA1hrr9EiaABwB7BrmtgBExApgBSS3q46q0J7kNr9qSVwtobOJXy3pB7aNZZXAyA4Dz+MOHCrnfgeeEx543rhywbFy8bFyIXLKlL6Lk4cemixzQJmNfUUEw1pgvqS5wG9ILiZ/cMA6q4ClJNcO3gvcGREhaRXwHUlXk1x8ng/8ooCaqvrHf6zXT64eKAMPM7NtlfmBh621DnFrHQZXO2zOHk5nD7drDZXzu9npF1/sf/63co64Mj2a879S310tleHww/vugKncDTNtWjIcdVTyNHB7ezIcckjx35uZvVruYEivGVwE3E5yu+rKiHhI0hVAd0SsAq4Fvp1eXN5FEh6k632P5EL1PuDjzXpHUvZC1cFg//6+C4l79/a/6Ji9EPnii31D9uLl88/3DY8+mlyM3L07WVbL4YfDjBnJvfjHHpvcm9/RkTzgNWcOnHBCcpRiZvn4yWcbU155JQmJZ57pG3bsSIbt25NbLbduTYaenldfiJs1K+lT+eST4fWvhwULkrHPU5v5yWdrUhMn9p06GsqBA8m9+E88kTzQtXlz8obSX/0KvvGNvqOPiROTgDjtNDj9dHjb25LrHmZWnY8YrCUdOJA8+Xv//bB2bfL66l/8IrlGMnlyEhDvex+85z3J9Q2zg4Ffomc2wJ49yaurf/xjuOUWeOyx5IL2+efDpz6VvIjOrJUNNxj8RhM7aBxyCCxaBFdfnZx2uvtu+KM/ghtuSK5DnHsubNpUdpVm5XMw2EFJgje9Cb72teS9QJddBj/5CbzudfBXf1X+6xjMyuRgsIPetGlw+eXJhetzz02m3/725C4os4ORg8EsNXNm0lva9dcn/Ry8+c1JN5tmBxsHg9kAH/xg0pXmCy/AGWckz0yYHUwcDGZVLFyYXHPYtQve/e7kyW2zg4WDwayGBQvgxhuT00qf/WzZ1Zg1joPBbBB/8AfwsY8lnaPc7e6j7CDhYDAbwlVXJS/su+iisf96dbMiOBjMhnDYYclzDvffD2vWlF2NWf05GMyG4UMfSl71feWVZVdiVn8OBrNhmDw5eZ/SnXcmF6PNWpmDwWyYLrgg6SL1+98vuxKz+soVDJKmSVotaWM6nlplnU5Jd0t6SNKDkj6QWfZNSY9JWpcOnXnqMaunqVOTvhxuuaXsSszqK+8Rw3LgjoiYD9yRzg/0EvDhiHgdcDbw95KOzCz/y4joTId1Oesxq6slS+CRR5LuSM1aVd5gWAxcl05fBywZuEJE/DoiNqbTW4EdwDD65zIbe845Jxnfemu5dZjVU95gOCYitgGk46MHW1nSQmASsDnT/IX0FNOXJLlnXhvTOjrglFPgRz8quxKz+hkyGCStkbShyrB4JB8kaSbwbeCPI+JA2nwJ8FrgfwLTgIsH2X6ZpG5J3Tt37hzJR5sV6m1vg/vug/37y67ErD4mDLVCRJxZa5mk7ZJmRsS29D/+HTXWOxz4F+CzEXFP5mdvSyd7JX0D+MwgdawAVkDStedQdZvVS2dn0k3oxo3w2teWXY1Z8fKeSloFLE2nlwKvOvMqaRJwM/CtiPj+gGUz07FIrk9syFmPWd298Y3JeJ1vlbAWlTcYrgQWSdoILErnkdQl6evpOu8Hfg/4SJXbUq+XtB5YD0wHPp+zHrO6O+kkmDjRwWCta8hTSYOJiGeAM6q0dwMXptP/DPxzje1Pz/P5ZmWYNCnpG9rBYK3KTz6bjUJnJzzwQNlVmNWHg8FsFDo74amnksGs1TgYzEbBF6CtlTkYzEbhxBOT8WOPlVuHWT04GMxGob0dJNi+vexKzIrnYDAbhQkTknDwNQZrRQ4Gs1GaMcPBYK3JwWA2Sg4Ga1UOBrNRcjBYq3IwmI1SJRjCr3S0FuNgMBulY46B3l7YvbvsSsyK5WAwG6UZM5KxTydZq3EwmI1SJRj8LIO1GgeD2Sj5iMFalYPBbJQcDNaqHAxmozR1atJhj4PBWk2uYJA0TdJqSRvT8dQa6+3P9N62KtM+V9K96fY3pt2AmjUFyc8yWGvKe8SwHLgjIuYDd6Tz1eyJiM50OCfTfhXwpXT7Z4ELctZj1lAOBmtFeYNhMXBdOn0dsGS4G0oScDpw02i2NxsLHAzWivIGwzERsQ0gHR9dY702Sd2S7pFU+c//KOC5iNiXzvcAs3LWY9ZQRx8NO3aUXYVZsSYMtYKkNcCMKosuHcHndETEVknzgDslrQeer7JezZcLSFoGLAPo6OgYwUeb1c+UKbBnT9lVmBVryGCIiDNrLZO0XdLMiNgmaSZQ9W+niNiajrdI+imwAPgBcKSkCelRw2xg6yB1rABWAHR1dfntNDYmtLXB3r1lV2FWrLynklYBS9PppcCtA1eQNFXS5HR6OvAW4OGICOAu4L2DbW82llWCwS/Ss1aSNxiuBBZJ2ggsSueR1CXp6+k6JwHdkh4gCYIrI+LhdNnFwKclbSK55nBtznrMGqqtLQmFV14puxKz4gx5KmkwEfEMcEaV9m7gwnT6P4DX19h+C7AwTw1mZWprS8Z798IkP4VjLcJPPpvlkA0Gs1bhYDDLwcFgrcjBYJaDg8FakYPBLAcHg7UiB4NZDg4Ga0UOBrMcHAzWihwMZjk4GKwVORjMcqgEQ29vuXWYFcnBYJaDjxisFTkYzHKYPDkZOxislTgYzHLwEYO1IgeDWQ4OBmtFDgazHBwM1oocDGY5+BqDtSIHg1kOEyYkg4PBWomDwSwnd+9prSZXMEiaJmm1pI3peGqVdX5f0rrMsFfSknTZNyU9llnWmaceszI4GKzV5D1iWA7cERHzgTvS+X4i4q6I6IyITuB04CXgJ5lV/rKyPCLW5azHrOEcDNZq8gbDYuC6dPo6YMkQ678X+HFEvJTzc83GDAeDtZq8wXBMRGwDSMdHD7H+ecB3B7R9QdKDkr4kaXLOeswazsFgrWbCUCtIWgPMqLLo0pF8kKSZwOuB2zPNlwBPAZOAFcDFwBU1tl8GLAPo6OgYyUeb1ZWDwVrNkMEQEWfWWiZpu6SZEbEt/Y9/xyA/6v3AzRHxSuZnb0sneyV9A/jMIHWsIAkPurq6Yqi6zRrFwWCtJu+ppFXA0nR6KXDrIOuez4DTSGmYIEkk1yc25KzHrOEcDNZq8gbDlcAiSRuBRek8krokfb2ykqQ5wHHAzwZsf72k9cB6YDrw+Zz1mDWcg8FazZCnkgYTEc8AZ1Rp7wYuzMw/Dsyqst7peT7fbCxwMFir8ZPPZjk5GKzVOBjMcnIwWKtxMJjl5GCwVuNgMMvJwWCtxsFgllMlGMJP11iLcDCY5dTWBgcOwL59ZVdiVgwHg1lO7t7TWo2DwSwnB4O1GgeDWU7u99lajYPBLCcfMVircTCY5eRgsFbjYDDLycFgrcbBYJaTg8FajYPBLCcHg7UaB4NZTg4GazUOBrOcKsHQ21tuHWZFyRUMkt4n6SFJByR1DbLe2ZIelbRJ0vJM+1xJ90raKOlGSZPy1GNWBh8xWKvJe8SwAXgP8PNaK0gaD1wDvBM4GThf0snp4quAL0XEfOBZ4IKc9Zg1nIPBWk2uYIiIRyLi0SFWWwhsiogtEfEycAOwWJKA04Gb0vWuA5bkqcesDA4GazWNuMYwC3gyM9+Tth0FPBcR+wa0mzWV17wGzj0X5s4tuxKzYkwYagVJa4AZVRZdGhG3DuMzVKUtBmmvVccyYBlAR0fHMD7WrDEOOQRuumno9cyaxZDBEBFn5vyMHuC4zPxsYCvwNHCkpAnpUUOlvVYdK4AVAF1dXe4SxcysThpxKmktMD+9A2kScB6wKiICuAt4b7reUmA4RyBmZlZHeW9X/UNJPcCbgX+RdHvafqyk2wDSo4GLgNuBR4DvRcRD6Y+4GPi0pE0k1xyuzVOPmZnlp2jCjmq7urqiu7u77DLMzJqKpPsiouYzZxV+8tnMzPpxMJiZWT8OBjMz68fBYGZm/TTlxWdJO4EnRrn5dJJnKMYa1zUyrmtkXNfItGpdx0dE+1ArNWUw5CGpezhX5RvNdY2M6xoZ1zUyB3tdPpVkZmb9OBjMzKyfgzEYVpRdQA2ua2Rc18i4rpE5qOs66K4xmJnZ4A7GIwYzMxtESwfDYH1SS7ok7YP6UUnvyLRX7Z+6jjXeKGldOjwuaV3aPkfSnsyyr9a7lgF1XS7pN5nPf1dmWdV916C6/lbSryQ9KOlmSUem7aXur7SGhv7uDFLHcZLukvRI+vv/f9L2mt9pA2t7XNL69PO707Zpklanfb+vljS1wTWdmNkn6yQ9L+mTZewvSSsl7ZC0IdNWdf8o8Q/p79uDkk4prJCIaNkBOAk4Efgp0JVpPxl4AJgMzAU2A+PTYTMwD5iUrnNyA+v9O+Bz6fQcYEOJ++5y4DNV2qvuuwbWdRYwIZ2+CrhqjOyvUn93BtQyEzglnT4M+HX6vVX9Thtc2+PA9AFtXwSWp9PLK99pid/jU8DxZewv4PeAU7K/y7X2D/Au4McknZ69Cbi3qDpa+oghavdJvRi4ISJ6I+IxYBNJ39RV+6duRK1pH9jvB77biM/Loda+a4iI+En0dQd7D0kHT2NBab87A0XEtoi4P51+geR192O529zFJH2+Q/l9v58BbI6I0T5Am0tE/BzYNaC51v5ZDHwrEveQdHw2s4g6WjoYBlGrH+pa7Y1wGrA9IjZm2uZK+qWkn0k6rUF1ZF2UHqKuzBzel7mPBvrfJH8xVZS5v8bSfvlvkuYAC4B706Zq32kjBfATSfcp6a4X4JiI2AZJqAFHl1BXxXn0/+Os7P0FtfdP3X7nmj4YJK2RtKHKMNhfa4X0Q11wjefT/xdyG9AREQuATwPfkXR43lpGUNdXgBOAzrSWv6tsVuVHFXpr23D2l6RLgX3A9WlT3ffXUGVXaSv1lj9JhwI/AD4ZEc9T+zttpLdExCnAO4GPS/q9EmqoSkkPk+cA30+bxsL+GkzdfueG7PN5rIvR9Uldqx9qBmkftaFqlDQBeA9wamabXqA3nb5P0mbgt4DCeiga7r6T9E/A/0tnB9t3DalL0lLg3cAZkZ5sbcT+GkLd98tISJpIEgrXR8QPASJie2Z59jttmIjYmo53SLqZ5BTcdkkzI2JbeipkR6PrSr0TuL+yn8bC/krV2j91+51r+iOGUVoFnCdpsqS5wHzgF9Ton7oB9ZwJ/CoieioNktoljU+n56U1bmlALZXPz56r/EOgcpdErX3XqLrOJukS9pyIeCnTXur+orzfnVdJr1ddCzwSEVdn2mt9p42q6zWSDqtMk9xIsIFkPy1NVyuz7/d+R+1l76+MWvtnFfDh9O6kNwG7K6eccmvkFfdGDyRfZg/JX5Lbgdszyy4luYvkUeCdmfZ3kdzFsRm4tEF1fhP46IC2c4GHSO5uuR/4Xw3ed98G1gMPpr+AM4fadw2qaxPJedV16fDVsbC/yvrdqVHHW0lOKTyY2U/vGuw7bVBd89Lv54H0u7o0bT8KuAPYmI6nlbDPpgDPAEdk2hq+v0iCaRvwSvp/1wW19g/JqaRr0t+39WTuvMw7+MlnMzPr52A9lWRmZjU4GMzMrB8Hg5mZ9eNgMDOzfhwMZmbWj4PBzMz6cTCYmVk/DgYzM+vn/wNmbCA2fUa9FAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"x1 = np.linspace(-100, 0, 100) # x < 0\n",
"y1 = 1/x1\n",
"\n",
"x2 = np.linspace(0, 100, 100) # x > 0\n",
"y2 = 1/x2\n",
"\n",
"plt.plot(x1, y1, 'blue')\n",
"plt.plot(x2, y2, 'blue')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"В завершение попробуем построить целый рисунок (*figure*), состоящий сразу из нескольких графиков (подграфиков). Построим разные типы функций: $y=x^2$, $y=x^3$, $y=e^x$ и $y=|x|$. Сначала создадим соответствующие массивы значений:"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"x = np.linspace(-100, 100, 100)\n",
"y = x ** 2\n",
"z = x ** 3\n",
"r = np.exp(x)\n",
"m = abs(x)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Создадим рисунок (*figure*):"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<Figure size 432x288 with 0 Axes>"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"text/plain": [
"<Figure size 432x288 with 0 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"А теперь будем добавлять в него графики, указывая их расположение. В функции `subplot()` указывается число. Первые две цифры это число графиков в строке и столбце (здесь 2 на 2, поэтому `22`). Последняя цифра это положение графика: левый верхний угол (`1`), правый верхний угол (`2`), левый нижний угол (`3`), правый нижний угол (`4`)."
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEICAYAAAC0+DhzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXd4VFX6xz9vOgQIhEAgBAhIgNAJoSioIKDgiqgrSlNRV/wJinVXdtey7tp21bXjyq4oKkWsoKI0iaggAqGXBAKBhAABkkAKKZM5vz/uDY4pkITJ3Cnn8zzzzMy595zznZn3zntPe48opdBoNBqNxhE/qwVoNBqNxv3QzkGj0Wg0ldDOQaPRaDSV0M5Bo9FoNJXQzkGj0Wg0ldDOQaPRaDSV0M7BRxCRoSKSUce8U0TkR2dr0ngXIpImIiMs1hAjIkpEAuqQt87XiDeinYNGo9FoKqGdgxcgBvq31Pg0dWktaKpH/6FYjNkU/7OI7BKRHBF5V0RCRKSZiHwlIsfN9K9EJNohX6KIPCMiPwGFQEcRuV1EdotInojsF5G7q6jvLyJywqx3kkN6mIi8b9Z3UEQeq87hiMirIpIuIqdFZJOIXFof343GI+kjIttE5JSIfGTa8g4RGVN+gogEmjbYx6EbaKqIZIrIERF52OFcPxGZKSKpInJSRBaJSLh5rDzvnSJyCPjOQccd1ZQXLCKvmMcyzdfBVX0Qh3rzzOvzeud/Xe6Ldg7uwSTgKuAioDPwGMZv8y7QHmgHnAHeqJDvFmAq0Bg4CGQB1wBNgNuBl0Uk3uH8VkAE0Aa4DZgtIl3MY68DYUBH4HLgVrOMqtgA9AHCgfnAxyISUofPrfE+bgJGAR2AXsAU4H1gssM5VwNHlFJbHNKGAbHAlcBMh7GLGcB1GDYZBeQAb1ao83IgDuMaOl95fwUGYdhvb2AAxvVWFanApRjXxVPAhyLS+pyf3ptQSumHhQ8gDfg/h/dXA6lVnNcHyHF4nwj8/TxlfwHcb74eCtiAUIfji4DHAX+gGOjmcOxuINF8PQX48Rz15AC9rf4u9cPah2nLkx3e/wv4D8afeh7QxEz/BPiT+ToGUEDXCvneMV/vBoY7HGsNlAIBDnk7Ohw/X3mpwNUOx64C0szXQ4GMc3y+LcBYq79nVz10y8E9SHd4fRCIEpGGIvK22cVzGlgDNBUR/2ryISKjReRnEckWkVwMRxPhcEqOUqqgYl3mOUHme8djbaoSKyIPm91Xp8x6wirUo/Fdjjq8LgQaKaUygZ+A34tIU2A0MK9CvkrXgPm6PfC5iOSatrYbKAMiq8l7vvKiqGznUVSBiNwqIlsc6u6BD9m5dg7uQVuH1+2ATOBhoAswUCnVBLjMPC4O554NqWv2m34KvAhEKqWaAksrnN9MREKrqOsExt1Y+wrHDlcUao4vPIrRfdDMrOdUhXo0morMxehaGgesU0pVtK2qrgEw/uRHK6WaOjxCKuSvKrR0deVlUtnOM6mAiLQH/gvcCzQ37XwHPmTn2jm4B9NFJNocaPsL8BHGOMIZINdMf/I8ZQQBwcBxwCYiozH6WyvylIgEmX/y1wAfK6XKMLqYnhGRxuaF8RDwYRX5G2N0Tx0HAkTkCYwxDo3mXHwBxAP3Y4xBVORxs7XcHWOs6yMz/T8YdtkeQERaiMjYGtRXXXkLgMfMciKAJ6jazkMxnM5xs97bMVoOPoN2Du7BfGA5sN98PA28AjTAuKv/Gfj2XAUopfIwBu8WYYwBTASWVDjtqHksE6NZ/39KqT3msfuAArP+H01Nc6qoahnwDZCC0SQvoupmvUZzFqXUGYyWbQfgsypO+R7YB6wCXlRKLTfTX8Ww4+UikodxLQysQZXVlfc0sBHYBmwHksy0inp3AS8B64BjQE+MrjGfQcyBFo1FiEga8Ael1EqrtWg09YnZyuyslJrskBYDHAAClVI2i6RpqkAvGtFoNPWO2TV6J8b0a40HoLuVNBpNvSIid2F0PX6jlFpjtR5NzdDdShqNRqOphG45aDQajaYSHjvmEBERoWJiYiqlFxQUEBoaWjmDBWgt7qsDzq1l06ZNJ5RSLVwsqVq7Bs/57nxRB7iPFqfZtdVLtOv66Nevn6qK1atXV5luBVpLZdxFh1Ln1gJsVG5k1+fT62rcRYu76FDKfbQ4y67P260kInNEJEtEdjikhYvIChHZaz43M9NFRF4TkX1mZMZ4hzy3mefvFZHbHNL7ich2M89rIuIzKxA1zuOOO+6gZcuW9Ojx6zql7OxsRo4cSWxsLCNHjiQnJwcwbohmzJjBpEmT6NWrF0lJSWfzzJ07l9jYWIAeNbHTulwLGo0nUJMxh/cwoiw6MhNYpZSKxVhkMtNMH40RCTEWI1roW3B2GtuTGItXBgBPll9E5jlTHfJVrKtW2Ox6gN0XmTJlCt9++9t1gs8//zzDhw9n7969DB8+nOeffx6Ab775huSUFD788ENmz57NPffcAxjO5KmnnmL9+vVgxPCpiZ3W6lrQaOqbkjLn/Aee1zkoY+pZdoXksRixUjCfr3NIf99swfyMESiuNUbkwxVKqWylVA6wAhhlHmuilFpnNnnedyir1qzdd4L7VxeyLyuvrkVoPJTLLruM8PDw36QtXryY224zbv5vu+02vvjiCwC++OILjrYcyCcppQwaNIjc3FyOHDnCsmXLGDlyZHk5ZdTMTmt7LWg09caW9FweTiwk6VDOBZdV1wHpSKXUEQCl1BERaWmmt+G3oRQyzLRzpWdUkV4lIjIV4y6MyMhIEhMTf3P8dLHijE3x4mdrGd+1yv07XEp+fn4ljVbhLlrqU8fRo0cpKCg4W/7hw4dJTk4mOTkZgMzMTBITE/k5aRtZXTsR5l9CYmIioaGhLFmyhC1btmCz2Rz11cROa3stHKmo+3x2XY67/IbgPlrcRQe4h5YXNpxBoTiWsoXE/RfWQ+/s2UpVqVF1SK8SpdRsYDZAQkKCGjp0aKVz5u76lg3H/XjtD5cRFGDtTN3ExESq0mgF7qKlPnWkpaURGhp6tvyAgIDf1FX+vsAeREiAH5fGGOc2a9aMhIQETp8+TXFxcUV9tbZTkxrnqYldg/v8huA+WtxFB1ivZe2+E+z8dj0TugYzesSwCy6vrv+ex8qbyOZzlpmewW9D5UZjBHk7V3p0Fel15vLoAE4WlLBq97ELKUbjBURGRnLkiHGjfuTIEVq2bEl+sY1saUTPpjYaBBj/3xkZGURFRREdHU16+m9iCNbETmt7LWg0TkcpxT+XJdOqSQjD2jrnnr+uzmEJxjaTmM+LHdJvNWdqDAJOmU3uZcCVYuyL3AwjlPQy81ieiAwyZ3/c6lBWnegR4U/rsBAWbNCBQn2da6+9lrlzjeGAuXPnMnbsWL7amklgxwFkb1mJUoqff/6ZsLAwWrduzVVXXcXy5cvLZzX5UzM7re21oNE4naXbj7I1PZeHruxMkL9zJnye18WIyAKM7fMiRCQDY9bR88AiEbkTOISxgQcYm8tcjREqtxBzD2KlVLaI/ANj72EwtrcsH+S+B2NGVAOMUNDfXMgH8hNhXEJbXv9uL+nZhbQNb3ghxWk8hAkTJpCYmMiJEyeIjo7mqaeeYubMmdx000288847tGvXjo8//pjb5++i16ChdE7NYvLkyYSHh/Puu+8CEB4ezuOPP07//v3B2JP4nhrYaa2uBY3G2ZTY7Pxr2R66RDbm9/HR/LAm1Snlntc5KKUmVHNoeBXnKmB6NeXMoYr9AZRSG3HyJho39zecw6KN6Tx8ZRdnFq1xUxYsWFBl+qpVq86+3pl5iq0Zp3jimm7c8fAsbrrppkp9xHfccQd33HEHIrJDKfVueXp1dqqUOkktrwWNxpm8vy6NgycLeff2/vj7OW+ZmFfGVmrTtAGXd27Boo3p2MrsVsvRuAkLf0knKMCPG+KrnRCn0XgU2QUlvLpqL5d3bsGwLi3Pn6EWeKVzAJg4oB3HThezak/W+U/WeD0FxTY+33yYq3u0omnDIKvlaDRO4d8rkiksKeOx38U5vWyvdQ5XdG1JqyYhzFt/yGopGjfgy62Z5BfbmDyo/flP1mg8gB2HTzFv/SFuvbg9sZGNnV6+1zqHAH8/xg9oyw97j3PoZKHVcjQWM/+XQ3SJbEy/9s3Of7JG4+bY7YrHF++geWgQD4zoXC91eK1zABjfvx1+Isz75aDVUjQWsi0jl20Zp5g4sB06rqPGG1iw4RCbD+Uyc3QcYQ0C66UOr3YOrcJCGBHXko83ZlBUWma1HI1FfLDuIA2D/LleD0RrvIDjecX885s9DOoYzu/r0aa92jkA3DIohuyCEr7Zodcf+SK5hSUs2ZrJdX3b0CSkfu6wNBpX8rclOykqtfP0dT3rtSXs9c7hkoua0zEilPfX6a4lX+STTRkU2+xMHqgHojWez7KdR/l6+xFmDO9Ep5aN6rUur3cOfn7C5EHt2Xwol+0Zp6yWo3Ehdrvi/XUHSWjfjG5RTayWo9FcENkFJfz18x3EtW7C3ZdfVO/1eb1zALgxIZqGQf7MXZdmtRSNC0lMyeJQdiG3XRJjtRSN5oJQSvH4Fzs4daaEl8b1JtC//v+6fcI5NAkJ5Ib4NizZmkl2QYnVcjQuYu7ag7RsHMyoHq2slqLRXBBfbDnM19uPcP/wWJe1gn3COQDcdnEMJTY7C37Ri+J8gdTj+XyfcpxJA9u75C5Lo6kv0rMLefyLnfSPacY9Qzu5rF6fuWpiIxszpFMEH6w7SKmOt+T1zF2bRpC/HxMHtrNaikZTZ0psdu6dn4QIvHxzH6cG1jsfPuMcAG4fHMPR00V8u+Oo1VI09cipM6V8simDMb2jaNHY+u1iNZq68vw3e9iacYoXbuxFdDPXbj/gU85hWJeWxDRvyJyfDlgtRVOPLNqQTmFJGbcPjrFaikZTZ77cmsmcnw4w5ZIYRvVo7fL6fco5+PkJtw/uwOZDuWw6mGO1HE09YCuz897aNAZ2CKdHmzCr5Wg0dSL5aB6PfrqNfu2b8ZernR9xtSb4lHMAuLFfNE1CApjzo249eCPf7jzK4dwz3Dmkg9VSNJo6kV1Qwp1zN9AoOIBZk+IJCrDmb9rnnENocAATBrbjmx1HSM/W0Vq9CaUU//3hAO2bN2R4XKTVcjSaWlNUWsbdH2zkeF4xs29NILJJiGVafM45AEy5JAY/ET324GVsSMtha3oufxjSwaWzOjQaZ2C3Kx75eCsb0nJ46abe9Gnb1FI9PukcWoc14No+UXy0IZ1ThaVWy9E4idlr9tOsYSA39mtrtRSNplYopfj7V7v4atsRZo7uyjW9oqyW5JvOAeCuSztSWFLGh+t1QD5vYF9WPit3H+OWQe1pEORvtRyNpla8snIv761N484hHbj7so5WywF82DnEtW7C5Z1b8O5PaXqvBy9g9ppUggP8dBwljcfx5up9vLpqL+P6RfPXq+PcZkMqn3UOAHdf3pET+cV8mpRhtRTNBXD0VBGfbz7MTQltad5IL3rTeA6vrdrLC8uSGdsniud/3ws/Nxor82nncHHH5vSODmP2mv3YdEgNj+WdH/dTZlfcdal7NMc1mvOhlOK5pbv594oUbohvw79vcm1ojJrg085BRLhnaCcOnixkqQ6p4ZHkFpYwb/0hxvSOol1z14YX0GjqQonNziMfb+PtNfu5ZVB7Xryxt9s5BvBx5wBwZbdIYls2YtbqfSilrJajqSXvrU2jsKSMaS6MVqnR1JXcwhKmvPsLnyZl8MCIWP4+trtbdSU54vPOwc9PmDbsIvYczWPl7iyr5WhqQX6xjffWpjEiLpIurRpbLUejOSfJR/MY++ZPbEzL4aVxvXlgRGe3GXyuCp93DgBjekXRLrwhr3+3V7cePIgP1h0kt7CU+67QrQaN+6KU4uON6Yx980cKS8pYMHUQv+8XbbWs86KdAxDg78e0oRexLeMU36cct1qOpgYUltj43w/7uaxzC3pbvJJUo6mOU4Wl3L9wC3/8ZBt92jbl6xlD6Ne+mdWyaoR2DiY3xEfTpmkDXl2lWw+ewPz1hzhZUMIM3WrQuCkrdh1j5Mvf8/X2IzxyZWfm/WEQLRtbFyuptmjnYBIU4Me0YRex+VAua/aesFqO5hwUltj4z/epDOkUQUJMuNVyNJrfkJ5dyN0fbOSu9zcSHhrE4umDufeKWLeckXQuAqwW4E6M69eWWatTeXlFCpfFRrj1YJEvM+/nQ5zIL+GBEbFWS9FozlJQqnj+mz3M+ekA/iL88aouTL2so8fuYa6dgwNBAX5MH9aJv3y+ncTk4wzr2tJqSZoKFBTbeOv7VC6N1a0GjXuQU1DCe2vTmP19IUVlqVzXpw1/GtWF1mENrJZ2QWjnUIFxCdH85/tUXlyezNAuLXTrwc14b20a2QUlPDSys9VSND5OyrE8Plh3kE82ZXCmtIx+kf48Pf4S4lo3sVqaU9DOoQKB/n7cPzyWhz/eyrc7jjK6p+v3btVUzakzpbz9fSoj4lrSt51nzPjQeBcn84tZuuMonyVlsPlQLkEBflzbO4q7Lu3IkT2bvMYxgHYOVXJd3za89X0qL61IYWS3SAI8tM/Q25i9JpXTRTYeGtnFaikaH8FuVyQfy+OHvcdZtTuLDWnZ2BXEtmzEX6+O44b4NmeDPR7ZY7FYJ3NBzkFE0oA8oAywKaUSRCQc+AiIAdKAm5RSOWL0z7wKXA0UAlOUUklmObcBj5nFPq2Umnshui4Ufz/hkSs7838fJvGZGe1TYy1ZeUXM+TGNa3tH0S3Ks+7ORGQUhu37A/9TSj1vsSRNFSilOHq6iD1H89h5+BRb0nPZdDCHHHNDsK6tGnPvsE6M7tmarq0ae32XszNaDsOUUo5zP2cCq5RSz4vITPP9o8BoINZ8DATeAgaazuRJIAFQwCYRWaKUynGCtjpzVfdW9I4O45UVKVzbO4qQQL2BjJW8tmovpWV2jxtrEBF/4E1gJJABbDDte5e1yrwbu11RardTYjMeZ0rLKCguI7+4lFNnSskuKOVEfjHHThdxJLeI9JxCDp4sJL/YdraMji1CGR4XyaCOzRncqbnHDzDXlvroVhoLDDVfzwUSMZzDWOB9Zaww+1lEmopIa/PcFUqpbAARWQGMAhbUg7YaIyI8OrorE/+7nrlr07j78ouslOPT7D+ez4Jf0pk4oB0xEaFWy6ktA4B9Sqn9ACKyEONa8EnnoJQiu6CEQ9mFHM49w9FTRRzPLyY7v4ScwlLyikrJL7ZxpqSMotIySsqMP/cyu6JMKZQy7iAx16na7Xb8VnyD4tdjZfaaL2JtGORP67AQ2oY3pH9MOB1bhNK1VRO6tm5Mk5DA+vgKPIYLdQ4KWC4iCnhbKTUbiFRKHQFQSh0RkfL5oG2AdIe8GWZademVEJGpwFSAyMhIEhMTK52Tn59fZXpd6RXhz6sr9tCm+BCNgmrXjHS2lgvBXbTURccbm4sIFEVCg+NO/Qwu+k6qsu+BjifUxK7BfX5DqJkWu1IcKVDszy3jwGk7GXl2DufbKaiwbXuAQJNgITRQaBgAIQFCRAAEBQsBfuAv4C+Cn/ghAuVXoQAlpWUEma368mMi4CdGvgA/IdAPgvwhxF8ICYDQQKFxkPFoEFBeWqHxKD5O4UFIqsPuwe7y+zhLx4U6h8FKqUzTAawQkXMNyVT1z6rOkV450XA+swESEhLU0KFDK52TmJhIVel1pVXX01z96g8kFUfyxJXdapXX2VouBHfRUlsdG9Ky2fjtOh4c0ZmxTl705qLv5Lz2XRO7Bvf5DaF6LcdOF7F6Txbfpxzn5/0nz/bXNwoOIK51GAmdG9MxIpSY5qFEhzegdZMGNGkQUOf+e0/4TjxVxwU5B6VUpvmcJSKfYzShj4lIa7PV0Booj4OdATiO7EYDmWb60ArpiReiy5l0bdWEm/u35YOf07jl4vZ08LxuDY/Fblc8/fVuWjUJ4a7LOlgtp65UZ/dew4n8Yr7cmsmXWzNJOpQLQOuwEIbHRTKgQzjx7ZrRMSLUbfct0FRNnZ2DiIQCfkqpPPP1lcDfgSXAbcDz5vNiM8sS4F6zz3UgcMp0IMuAZ0WkfOL6lcCf66qrPnhwZGeWbMnk2aW7+e+tCVbL8RkWbz3M1vRcXhzXm4ZBHjvregMQKyIdgMPAeGCitZIuHKUUa1NP8MG6g6zYdQybXRHXugmPXNmZkd1a0TmykdfP5vF2LuSKiwQ+Nw0gAJivlPpWRDYAi0TkTuAQMM48fynGNNZ9GB18twMopbJF5B8YFxHA38sHp92Flo1DmDasEy8sS+anfScY3CnCakleT2GJjX9+k0zPNmHc0LfKISiPQCllE5F7gWUYU1nnKKV2WiyrzpTZFV9vP8KLa4s4tGw9zRoGcvvgGMYltKVzpN5wyZuos3MwZ1/0riL9JDC8inQFTK+mrDnAnLpqcQV3DunAwg2H+PuXu/h6xhC9MK6eeSsxlaOni3hzUl+P745QSi3FuDnyWJRSLNt5jBeXJ7MvK5/WocI/f9+TsX3a6GneXor+h6shIYH+PPa7biQfy+P9dXWYyqCpMQdPFvD2mv2M7RNFv/Y6uJ7V7Dh8ipveXsf/fbgJpRRvToznmSENuLl/O+0YvBiP7ci1giu7RXJZ5xa8vCKFa3q39qiNOzyJp77cRaCf8Jer46yW4tMUFNt4aXkK7609QNOGQTx7fU9uSogmwN+PxMRkq+Vp6hndcqgFIsLfxnSjyFbGc0u9LJCKm7B851G+25PF/SNiiWyina9VrN9/klGvruHdtQeYOLAdqx8ZysSB7XR3qg+hf+la0rFFI+6+7CI+33yYtal6xzhnUlhi46kvd9ElsjG3D/bYqaseja3Mzr++3cP4//6MvwiL7r6Yp6/rSVgD314t7Ito51AH7r2iE23DG/DYFzsoKi2zWo7X8MrKvRzOPcPT1/fw2N2zPJms00VM/O96ZiWmMq5fNF/PuJT+ekMln0VfgXUgJNCfp6/ryf7jBcxKTLVajlew4/Ap/vfDfsb3b6v/kCxgS3ouY974ke2HT/Hyzb351429CQ3WQ5K+jHYOdeTyzi24rk8UbyXuI/lontVyPBpbmZ2Zn20jPDSYP4/Wg9CuZun2I9z09jqCAvz4fPolXN832mpJGjdAO4cL4PFrutE4JJA/fbIVW5ndajkey+wf9rPj8Gn+MbY7YQ1137Yree+nA0ybl0TPNmEsnj6Erq08a68MTf2hncMF0LxRME9d252tGaf4348HrJbjkezLyuOVlXu5umcrvSWrC1FK8crKFP725S6u6h7JvD8MJDw0yGpZGjdCO4cL5JperRnVvRX/Xp5CyjHdvVQbSsvsPLRoK42CA3jq2h5Wy/EZlFL8a1kyr6zcy7h+0bw5MV4vZtNUQjuHC0REePr6HjQOCeChRVsosenupZoya3Uq2zJO8fR1PWjRONhqOT6BUooXlyfzVmIqkwa245+/76XXLmiqRFuFE4hoFMwz1/dkx+HTvLIyxWo5HsHmQzm89t1exvaJ4mrdneQyZiWm8ubqVCYMaMfT1/Xw+LhVmvpDOwcnMapHK25KiOat71P5ef9Jq+W4NfnFNh78aAutmoTw97G6O8lVzF9/iBeWJXNdnyieua6HDqmtOSfaOTiRJ8d0p314Qx5YuIWcghKr5bgtT3yxg0PZhbx0U2+98tZFrNp9jMe+2M6wLi14YVxv3WLQnBftHJxIaHAAr0+I52RBMX/8ZCtGlHKNIz8dLuWzzYe574pYBnVsbrUcn2DH4VPcO38z3aPCeHNSvF59rqkR2kqcTM/oMP48Oo6Vu7P4Jq30/Bl8iOSjeczdWcLADuHcd0Unq+X4BFl5Rdz1/kaaNQzknSkJnryjnsbFaOdQD9w+OIbRPVrxSUqpHn8wySsq5Z55mwgJEF6f0FfPkHEBJTY793yYRG5hKbNvTdAh5jW1Ql+h9YCI8K8be9GyoTB9XhKZuWeslmQpdrvioUVbOXiykGl9gmmpQ3G7hGe+3sWmgzn868Ze9GgTZrUcjYehnUM90TgkkBl9Qyi22bn7g02cKfHd6K2vrNrLil3H+OvVcXQN14utXMGXWzOZu+4gfxjSgTG9o6yWo/FAtHOoR6Ia+fHKzX3YkXmKRz7eit3uewPUX27N5LVVxkrc2wfHWC3HJzhwooA/f7adfu2b8ejorlbL0Xgo2jnUMyO6RTJzVFe+3n6EF5f71taKG9OyefjjrfSPacbT1+t59a6gtMzO/Qs34+8nvDahr56ZpKkzeuqCC5h6WUfSThp7P7Rp1oBJA9tbLaneST2ez13vbyQqLIS3b0kgOEB3J7mCV1amsC3jFP+ZHE+bpg2slqPxYLRzcAEiwt/H9uDoqSIe/2IHzUODGNXDe0NGHDtdxK3v/IKfCO/dPkBH+3QRmw5m81ZiKjcntPVq+9K4Bt3mdBGB/n68OSme3m2bMmPBFtakHLdaUr1wMr+YSf9bT25hCe/dPoCYiFCrJfkEZ0rKeHjRVqKaNuDxMd2slqPxArRzcCENgwJ4b8oALmrZiKkfbGRt6gmrJTmVnIISbnnnF9KzC3lnSn96Ruvpk67ixeXJpJ0s5F839qKR3t5T4wS0c3AxYQ0D+eDOAbRt1pA73tvA2n3e4SCyC0qY9L/17Duez+xbE3RoDBeSdCiHOT8dYNLAdlxyUYTVcjRegnYOFhDRKJgFUwfRPjyUKe9tYOWuY1ZLuiCOnS7i5rfXkXo8n//emsDlnVtYLclnKC2z85fPttOqSQgz9bRVjRPRzsEiIhoFs3DqILq2aszdH25i0cZ0qyXViX1Z+dwway2ZuWeYe8cA7RhczDs/HmDP0TyeurY7jUN0hFuN89DOwUKahQYx/65BXNyxOX/6ZBv/XpHiUQvl1qWe5Mb/rKXYVsbCqRfrriQXczj3DK+u3MvIbpFc2b2V1XI0XoZ2DhbTKDiAOVP6c2O/aF5btZd7FyRRUGyzWtY5UUrx4c8HueWd9TQPDeKzewbrwWcLeObrXSgUT+rZSZp6QE9rcAOCAvx44cZedI5sxPPf7GHvsXxmTYonNrKx1dIqUVhi44nFO/lkUwZDu7TgtQl9aaK7M1zOT/tOsHRAjGEyAAAgAElEQVT7UR4e2ZnoZg2tlqPxQnTLwU0QEaZedhEf3DmQnMISxrzxIx/+fNCtNgzannGKMa//yKdJGcwYHsuc2/prx2ABtjI7f/9yF23DG3DXZR2tlqPxUrRzcDMGd4pg6f2X0j8mnMe+2MGtc4x1A1ZSVFrGv5cnc/2sn8gvtjHvzoE8NLKz3mrSIhZuSCf5WB5/GR1HSKAOS6KpH7RzcENaNg5h7u0D+MfY7iQdzGHky9/z+qq9FJW6Nuy3Uorv9hxj9Ks/8Np3+7i2dxTLH7icSzrpufRWkVdUyssrUhjYIZxRPfQgtKb+0GMOboqfn3DLxTEMj4vkH1/t4qUVKcz/5RAzhsfy+/hoggLq169vOpjNi8tSWLf/JB1bhPLBnQO4NFZPU7Wa2Wv2c7KghHd/F6ej3GrqFe0c3Jyopg14a3I/1qae4J/fJvPnz7bz+qq9TBkcw00JbWna0HlB7WxldlbtyWLOjwdYfyCb5qFBPDmmG5MGtq93Z6Q5P7lFdv730wHG9I6iV3RTq+VovBy3ueJFZJSIJIvIPhGZabUed+OSiyL4YtolvHt7f6LDG/Ls0j0MeGYV0+Zt4qttmeQVldapXFuZnQ1p2fzjq11c/Px33P3BJtKzC3nsd3Gs+dMwbh/cwe0dw8cff0z37t3x8/Nj48aNvzn23HPP0alTJ7p06cKyZcvOpn/77bfceuutdOrUieeff/5s+oEDBxg4cCBADxH5SESCAEQk2Hy/T0TWi0hMeR4R+bOZniwiVzmkO9Wml+wvpbTMziNXdr7QojSa8+IWLQcR8QfeBEYCGcAGEVmilNplrTL3QkQY1qUlw7q0ZPeR0yzamM6SLZks3X4Ufz+hZ5sw+rZrSlyrJrRv3pBWYSE0CQkkKMCPwlJFZu4ZjucVk5Fzhr1ZeWxNz2VjWg55xTYC/YWhXVpyY79ohndtSYAHbRLTo0cPPvvsM+6+++7fpO/atYuFCxeyc+dOMjMzGTFiBCkpKQBMnz6d559/nhtvvJH+/ftz7bXX0q1bNx599FEefPBBJkyYsAPIAe4E3jKfc5RSnURkPPBP4GYR6QaMB7oDUcBKESn/93aaTR86Wcj36TYmDGxH++Y60q2m/nEL5wAMAPYppfYDiMhCYCygnUM1xLVuwpNjuvPY77qx6WAOa1KOs/7ASRb+ks6Z6gauV3139qUIxLZsxDW9WzO4UwSXd27hseEX4uLiqkxfvHgx48ePJzg4mA4dOtCpUyd++eUXADp16kRUVBRBQUGMHz+exYsXExcXx3fffcf8+fOZMGECwFzgbxjOYaz5GuAT4A0xOv3HAguVUsXAARHZh2HP4ESbfmVlCv4C910RW5fsGk2tcRfn0AZwDC6UAQyseJKITAWmAkRGRpKYmFipoPz8/CrTrcCVWhKCIaEr2LsEc+KMIqvQTm6x4kwp2BSUlBQT1jCYsGAhPERoFepHsL8CsiE7m00/p7hEZ31+J7m5uWzatIn8/HwAfvnlF7p163a2Pn9/f5YvXw5AQEDAWS15eXns3r2bJUuWEBwczI8//lheZAaGbYKDjSqlbCJyCmhupv/sIMMxz3ltGmpm13FBZYR0VOxO+pndNf1C6hF3uc7cRQe4jxZn6XAX51DVtItKq7+UUrOB2QAJCQlq6NChlTIlJiZSVboVaC3O0zFixAiOHj1aKf2ZZ55h7NixADRt2pR+/fqRkJAAGGMRcXFxZ+v74IMP6NGjB3a7nfT0dBo1asTQoUNJT08nLy+PSy65hAYNGlTUV26H1dlodelV9ctVuaKxJnY9FPf5DcF9tLiLDnAfLc7S4S7OIQNo6/A+Gsi0SIvGDVm5cmWt80RHR5Oe/uvNe0ZGBlFRUQBVpkdERJCbm4vNdja2laMdlttohogEAGFANue2XW3TGo/FXUYdNwCxItLBnB0yHlhisSaNh3PttdeycOFCiouLOXDgAHv37mXAgAH079+fvXv3cuTIEUpKSli4cCHXXnutMeA/bBiffPJJeRG3AYvN10vM9wA3At8pI7bJEmC8OZupAxAL/IK2aY2HI+4Su0dErgZeAfyBOUqpZ85z/nHgYBWHIgB32V5Na6lMfehoCrTDaAmXAYXAXvNYK7NOgEPAafN1GBBjnn8CKO+zCgIuAkKAz4DJSqliEQkBPgD6YrQYxjsMNv8VuAOwAQ8opb4x02tl02ae6uwa3Oc3BPfR4i46wH20nEtHe6VUjVazuo1zcBYislEplWC1DtBa3FkHuJeWmuBOet1Fi7voAPfR4iwd7tKtpNFoNBo3QjsHjUaj0VTCG53DbKsFOKC1VMZddIB7aakJ7qTXXbS4iw5wHy1O0eF1Yw4ajca7EZEpwB+UUkOs1uLNeGPLQWMBIpImIiOs1qHRaJyDdg4ajUajqYRHOwcRGSciO0XELiIJFY65JIxyNbr+JiKHRWSL+bi6Gl0TRORTETkuIgdEZIZ5zlIReckhz0ciMsd8PUVEfhKR10XklIjsEZHhDudGicgSEck263nF4fOuFJFFIvK+iOSZ311ChbyV9Dh8pirzisgHGOsMvhSRfBH5k0O+NBHZbn4PG820cBFZISJ7zedm9fQ7zBGRLBHZ4ZBWZd1i8Jr5PW0Tkfj60FRT3NG2a2HXV52rnFrUN1NEUk172yUi1//2sCwWkTIRKRGR/zocmCIi+818B0RkkjP0VNDm/XatlPLYBxAHdAESgQSH9G7AViAY6ACkYixE8jdfd8RY7LQV6FYPuv4GPFJFuqOujkAx8KSppSOwH7gKY+FWFnAFMMlMb2yWMQVjsdWDQCBwM3AKCDePfw/MwljEFY+xyGuyWcdRs86rze/iOeBnM58fsAl4oqIeh89UVFVe83gaMKKKz5wGRFRI+xcw03w9E/hnPdnHZeZ3sON8dZuf6xuMWEmDgPXatutk12c1OaG+cRhh0P1MOy8AWjtcAyeAzsBE084vBkIxFjp2MctoDXSvh9/H6+3aMuN30pc0B+NPtKDCBfRn4M8O75eZhnMxsAUjAFqCed6bZtoW08Cvd4Ku6i6is7owInSeAS6ucPxd8/UNGFE9TwBDHM6ZghGjRxzSfgFuwYjlU8avjuRijD/498z3KzHCSJfn6waccdBzqAq97zp8ppVV5TXfp1Fz55AMtDZftwaS69FGYipcRFXWDbwNTKjqPIttPLEWtr2suvOcpOW8du2oqR6+iy0YYc+nAMcrfN50YBGGc8gFfg80qMffxevt2qO7lYD3gFFVpFcVArwNRliESGC9Q7o/xsXXxyzrbTECq10o95rNuDkOzUtHXe0x7rRWikiuiOQCfzH1AXxlaktWSv3IbzmszF/a5CDGHVYUkK2UynOoL5NfQ0ifxnAe5RQCIebnbQ9ElWupQg/8GmKiYt5zoYDlIrJJjNDUAJFKqSMA5nPL85ThTKqruzqbcTeq0+kq/eeza6fVLSK3mt025fbYg19DoZyqUGcmEK2UKsBoZfwfcEREvhaRrheqpQq83q7dJSprtYjISoxulor8VSm1WBy2azTPvwgYA/xORO4G7jIPKWACsA3jT7mcUqVUeRjOEKoJq1wbXRibw/zDLOsfwEsYsXccwzunA3nAHUqpT6so5xlgN9BBRCYopRY4HGsjIuLgINphBHXLBMJFpLHpIARoBOxzyFvd50sHDiil6rqbTHXlDlZKZYpIS2CFiOypY/n1TY3Cxju1wvPYdnXZqkirVYjwumqiZnZd57or6GgP/BcYDqxTSpWJyBaHusIrZGmO0UpGKbUMWCYiDYCnzXIuvRA9VeD1du32zkEpVdvpkbOBj4GTwHcY/e+lGH+SDYESh3OjgUwRGYjRRdUeuMXBWVywLnOg7CvzrWN451/M5ytEZKmpKw5oYD5uB3pj9OF+ISJrlFKHzTwtgRkiMgu4zsy3VCl1UkTWAs+JyCMYTjAO+KOZrwlGV1ZV/AKcFpFHgdcc9SilNtTgox7D6O/+DUqpTPM5S0Q+x9gl7ZiItFZKHRGR1hhdg66iurpdHja+DrYN9Rwi3Al2Xee6KxCK8Sd23KzvdoyWQzlNgMEiEohxDUQDC0QkEqOLdBWGrefz29ayU/AFu/b0bqXfICKNgEuAazAGVmdj3FXHYvzZ/sF8HYLhGMcDS5RS65VS3YH+wJ/FiMB5ITpaO7y9HiifVXA2vLOpKxfjjucAxtjC/zD6C98H7lVKHTa7lN4B3hWR8ruA9ebnOIHRwrhRKXXSPDYBoz8yE3gKoytpnxhho3tgGEsllFJlGC2uPhX0hNXwYz8HPGZ2ATxifg+hItK4/DVwpfldOIa/dgyL7Qqqq3sJcKs5u2MQcKq8me5mWBYivCZ2XUFTnVHGXtsvAeswbjx6Aj85nLIeoxv1JMY1cBhYiPGf9jCG/WcDlwPTLkRLRXzGrutrwMQVDwwDPQLYMQxoJXDEPPZXjFkTyRiDUycwBpGOmefbgFlVlLkahwHAOur6ANiO0YW1BIcBoAq6Rteh7CnAj7U4/2ogxazzry7+fTpiDPJvBXaW14/hEFdhhNVehTnTqh7qX2DaRymGU7yzuroxmt9vmt/T9gu1ASfZdgbG7LJj/HbwtUobqu/fuj7tuo56LLFtX7Frjw+fYY45fKWU6mG+Xwu8rJT62LzT7qWU2lohTyLGrIuN5p1OujL2BW6PcafSSynlDnHZKyE6dIBGo3EBHt2tJCILMP7Mu4hIhojcibEu4E4RKffqY89TzBBgqznY9TkwzV0dg0aj0bgKj285aDQajcb5eHTLQaPRaDT1g9tPZa2OiIgIFRMTUym9oKCA0NBQ1wuqAq3FfXXAubVs2rTphKrhXrvOpDq7Bs/57nxRB7iPFqfZtatG+J396Nevn6qK1atXV5luBVpLZdxFh1Ln1gJsVJVniZSHa3EMWxAOrMCYJbICaKZ+nSXyGsYCxG1AfMXyqnpUZ9fn0+tq3EWLu+hQyn201Nauq3vobiWNpua8R+VwLTOBVcpYWb7KfA8wGmO+fywwFWN1sUbjMWjnoPFJ1qQcJyPPXqs8Sqk1GAurHBkLzDVfz8VYrVue/r55w/Yz0LTCIrJaceTUGXaddPpCX42XYSuzsy7TVt6qvSA8dsxBo7kQHvhoC33C7Uy+8KJ+E/DMjLUD1Qc8q7Q61QzcNhUgMjKSxMTESpW8vKmI5Gwb4SHf0SrU+nu6/Pz8KnX6qg5wDy2fpJTw1f5SmgR9R/cI/wsqSzsHjU9iK7PjV1VIMudR44BnSqnZmJvCJyQkqKFDh1Y6J7bPGa586Tve2xvAF9MHExJ4YRf+hZKYmEhVOn1VB1ivZfWeLL76dgOXRQcw/cbh589wHqy/BdFoLMBmV/g7x/qPlXcX1WcgvzZNG3B3r2D2HM3jycU76yxW451k5BTywEdbiGvdhMlxQU4pUzsHjU9isyv8xSlNB5cF8uvVIoB7h3Xio43pfLwx/fwZND5Bic3O9PmbsdsVb02KJ8jfOU1i7Rw0PomtzE5tr6FqwrU8D4wUkb3ASPM9wFKM/QX2Yewn4JTIoA+O7MzFHZvz+OId7Dl62hlFajycZ5fuZmt6Li+M60VMhPPWWegxB43PYbcr7IpadysppSZUc6hSB685p3x67dWdG38/4dUJffjdaz8y7cMkltw3hEbB+jL2Vb7alsl7a9O4c0gHRvWo82S4KtEtB43PYbMb48L1PCBdb7RsHMIbE/pyMLuQRz/d5pRpixrPI/V4Po9+so2+7Zry6Cjn74SqnYPG57DZjfUNAR7qHAAGdmzOI1d24ettR3h/3UGr5WhczJmSMqbPSyIowI83J8YTFOD8v3LtHDQ+x68tBw/2DsDdl3VkeNeWPP31Lrak51otR+NCHl+8g+Rjebwyvi9RTRvUSx3aOWh8DluZ4RycNJXVMvz8hJdu6k3LxiFMn5dEbmHJ+TNpPJ5FG9P5ZFMG9w3rxOWd6y82pIdfHhpN7SnvVnLSjD9LadowiFmT4jmeV8xDi7Zit+vxB29m95HTPP7FDi65qDn3j+hcr3Vp56DxOc62HLzAOQD0btuUx66J47s9WfxnTarVcjT1RF5RKdPmJRHWIJBXx/fFv55nVGjnoPE5vKVbyZFbBrVnTO8oXlyWzLrUk1bL0TgZpRQzP93OoexC3pgYT4vGwfVepxddHhpNzSjvVvL0AWlHRITnbuhJTEQo9y3YTFZekdWSNE7kvbVpfL39CH+8qgsDOoS7pE7tHDQ+R/lsJU+eyloVjYIDeGtSP/KLS5mxYDO2stqFJNe4J5sP5fDs0t2MiGvJ1Es7uqxe7Rw0Poc3diuV06VVY56+ric/78/m5ZUpVsvRXCA5BSVMn5dEZJMQXhrXBz8Xrtz0wstDozk3v3YrWSyknrixXzQ3J7TlzdWprN6Tdf4MGrfEblc8tGgLJ/JLmDUpnrCGgS6tXzsHjc9R6mWzlariqbHdiWvdhAcXbSEjp9BqOZo68Nb3qaxOPs7jY7rRK7qpy+vXzkHjc5TZy52D93qHkEB/Zk2Kx1amuHf+ZkpsevzBk1ibeoKXlidzbe8oJg9sZ4kG7Rw0Pkf5QK03jjk40iEilBdu7MWW9FyeXbrbajmaGpJ1uogZC7bQISKU527oiVh0E+MWl4eItBWR1SKyW0R2isj9VmvSeC82u/d3K5Uzumdrbh8cY0yF3HZBew1pXICtzM59CzZTUGzjrcn9CLUwHLtbOAfABjyslIoDBgHTRaSbxZo0Xoo3hc+oCX8eHUd8u6Y8+uk29h/Pt1qO5hy8tCKF9Qeyeeb6HnSObGypFrdwDkqpI0qpJPN1HrAbaGOtKo234s1TWasiKMCPNybGE+gvTJuXxJmSMqslaarguz3HeCsxlQkD2nJDfLTVctxvJzgRiQH6AuurODYVmAoQGRlJYmJipfz5+flVpluB1uKeOrYetQFQdOaM5VpcRVTTBrx8cx+mvLuBJxbv4IVxva2WpHEgI6eQBz/aSrfWTXhyTHer5QBu5hxEpBHwKfCAUqrSBrlKqdnAbICEhAQ1dOjQSmUkJiZSVboVaC3uqePUlsOwZQuNQxtarsWVDO3SknuHdeKN1fvo3yGcmxLaWi1JAxTbjI177HbFW5PjCQn0t1oS4CbdSgAiEojhGOYppT6zWo/GeynzoQHpijw4sjOXXNScx7/Ywe4jle6/NBbw7Ne72ZpxihfG9aZ981Cr5ZzFLZyDGHO13gF2K6X+bbUejXfja2MOjvj7Ca+O70tYg0Cmz0sir6jUakk+zZdbM5m77iB/GNKBUT1aWS3nN7jL5TEYuAW4QkS2mI+rrRal8U58aSprVbRoHMzrE/pyMLuQmZ9uRym9QZAVpB7PZ+an24yZZKO7Wi2nEm4x5qCU+hHw0UtV42p+ncrquyY3sGNzHrmyC//8dg/91zZjyuAOVkvyKc6UlDHtwySHmWTucp/+K+6nSKOpZ0p9uFvJkbsv68iIuJY8s3Q3mw/lWC3Hp3h88Q5SsvJ4ZXxfopo2sFpOlfj45aHxRcq8PCprTfHzE14a14fIJiHcO38zOQUlVkvyCRZtSOeTTRncd0Usl3duYbWcatHOQeNz+EJU1poS1jCQWZPiOZ5XzEOLtmC36/GH+mRX5mkeX7yDIZ0iuH94rNVyzol2Dhqfo3wqa4C2fgB6RTfl8WviWJ18nLe+T7VajtdyuqiUafM20bRhIK+M74O/mzdd9eWh8TnKo7K696XpWiYPas+Y3lG8tDyZdaknrZbjdSilePSTbaTnnOGNifFENAq2WtJ50c5B43OU2hWB/mJZKGR3RER47oaexESEct+CzWTlFVktyat496c0vtlxlD9d1YX+MeFWy6kR2jlofI4yu3L7Jr0VNAoO4D+T+1FQbGPGgs1nW1iaCyPpUA7PLt3NiLhIpl7W0Wo5NUY7B43PUVpmJ9BPm35VdI5szNPX9eDn/dn8e0WK1XI8npyCEu6dl0SrsBBeGtfbo1qr+grR+BxldkWAnqpULb/vF834/m2ZlZjKd3uOWS3HY7HbFQ8u2sKJ/BJmTYonrGGg1ZJqhXYOGp+jtEzhr1sO5+Rv13anW+smPPjRVjJyCq2W45HMStxHYvJxnhjTjV7RTa2WU2v0FaLxOWxldgJ1y+GchAT6M2tSPHa7Yvr8zZTY9PhDbVibeoJ/r0hhbJ8oJg1sZ7WcOqGdg8bn0APSNSMmIpQXxvVia3ouzy7dbbUcjyHrdBEzFmyhY4tGPHt9T48aZ3BEOweNz2FMZdWmXxNG9WjNHYM78N7aNL7edsRqOW6PrczOvQs2U1BsY9akeEKD3SK2aZ3QV4jG5yiz23XLoRbMHN2V+HZN+dMnW9l/PN9qOW7Ni8tT+OVANs/e0IPOkY2tlnNBaOeg8TlKyxQBTnYOIpImItvNvUg2mmnhIrJCRPaaz82cWqmLKA8rHRTgx7R5SZwpKbNakluyJcvGf75PZcKAdlzfN9pqOReMdg4an6Os/rqVhiml+iilEsz3M4FVSqlYYJX53iOJatqAV8b3JflYHo8v3mG1HLcjPbuQ/24vpntUE54c081qOU5BOweNz1Fa5rJupbHAXPP1XOA6V1RaX1zeuQX3DuvEJ5syWJOhtxctp9hWxvT5SdgVzJoUT0igv9WSnILnjpZoNHXEVqbqYyqrApaLiALeVkrNBiKVUkcAlFJHRKRlVRlFZCowFSAyMpLExMQqK8jPz6/2mKvoG6iIC/fjg13FdPjyO9o2tvb+0h2+kw92FbMtw8ZdXRUHtm/ggKVqnPedaOeg8TnqaSrrYKVUpukAVojInppmNB3JbICEhAQ1dOjQKs9LTEykumOupGdCMSNfXMWcZD+W3DuYxiHWrfy1+jv5cmsmqw5t5q5LOzA4NMstfh9nfSe6W0njc5Ta7U4fc1BKZZrPWcDnwADgmIi0BjCfs5xaqUW0aBzMPb2DOZRdyMxPt6OUb24QtC8rn5mfbqNf+2b8aVRXq+U4He0cND5Hmd25s5VEJFREGpe/Bq4EdgBLgNvM024DFjutUovpEu7PH6/qwtfbj/De2jSr5bicwhIb0+ZtIjjQnzcm9vXKdTO6W0njc9RDbKVI4HNzJWwAMF8p9a2IbAAWicidwCFgnDMrtZqpl3ZkY1o2zy7dTZ+2TenbziNn6tYapRSPfbGDvVn5zL19AK3DGlgtqV7wPnen0ZwHZ8dWUkrtV0r1Nh/dlVLPmOknlVLDlVKx5nO20yp1A/z8hJfG9SGySQjT5yWRU1BitSSXsGhjOp8lHWbGFbFc1rmF1XLqDe0cND6Hjq3kPMIaBjJrUjwn8kt4cNEW7HbvHn/YlXmaJxbvZEinCGYMj7VaTr2inYPG56iPAWlfpld0Ux6/Jo7E5OO89X2q1XLqjdNFpUybt4mmDQN5ZXwfr7/BcIsrRETmiEiWiOill5p6p6wewmf4OpMHtWdM7yheWp7M2tQTVstxOkop/vTxNtJzzvDGxHgiGgVbLanecQvnALwHjLJahMY3KNU7wTkdEeH5G3rSISKUGQu2kHW6yGpJTmXOT2l8u/Moj47qQv+YcKvluAS3cA5KqTWAVw3WadwXW5mdAL0TnNMJDQ7grcn9KCi2cd+CzdjKvGODoE0Hc3hu6W6u7BbJXZd2tFqOy/Coqaw1CTPgDsvpy9Fa3FNHUUkpR48cJj+g1HIt3kbnyMY8c30PHlq0lX+vSPH4xWHZBSXcOz+J1k1DeGFcb4/duKcueJRzqEmYAauX0zuitbipjlXfEtOuLY3cJNyBt3FDfDQb0rKZlZhKv/bNGB4XabWkOmG3Kx78aAsn80v49J5LCGtgXZgQK9Bta43PYUxl1aZfnzw5pjvdWjfhoUVbSc8utFpOnXhz9T6+TznOE2O60TM6zGo5LkdfIRqfw5jK6jvdA1YQEujPW5PjsdsV0+cnUWzzrA2Cftp3gn+vTOG6PlFMGtjOajmW4BbOQUQWAOuALiKSYYYb0GicTpldoRR6QNoFtG8eygvjerMt4xTPfr3bajk15tjpIu5fuJmLWjTimet7+tQ4gyNuMeaglJpgtQaNb2CzGzNo9FRW1zCqRyvuHNKBd348QEJMOGN6R1kt6ZzYyuzcN38zBcVlLLgrntBgt/iLtAR9+6TxKWxlRngHvQjOdcwc3ZV+7Zsx89NtpB7Pt1rOOXlheTK/pGXz7A09iI1sbLUcS9HOQeNT2MzYP94e+sCdCPT3442JfQkO9Gfah0mcKXHP8YeVu47x9vf7mTiwHdf3jbZajuVo56DxKcoXZunYSq6ldVgDXrm5DylZeTy+2P2i5KRnF/LQoi10j2rCE9d0s1qOW6CvEI1PUWa2HPSYg+u5rHML7hvWiU82ZfDRhkNWyzlLsa2M6fOTUMBbk/oREuhvtSS3QDsHjU9RatdjDlZy/4jODO7UnCcW72Rn5imr5QDw9Fe72ZZxihfH9aZd84ZWy3EbtHPQ+BTl3Up6Kqs1+PsJr47vS9OGgUyfl8TpolJL9SzZmskHPx/krks7cFX3VpZqcTf0FaLxKWy6W8lyIhoF88bEeNJzzjDz020oZc0GQfuy8pn56Tb6xzTz+BhQ9YF2Dhqf4teprNr0raR/TDh/uqoLS7cf5b21aS6vv7DExrR5mwgJ9Of1CfF6gkIV6G9E41PoRXDuw9TLOjIiLpJnvt5N0qEcl9WrlOKxz3ewNyufV8f3oVVYiMvq9iS0c9D4FHoRnPsgIrw0rjetm4Zw77wksgtKXFLvwg3pfLb5MDOuiOXS2BYuqdMT0c5B41P82nLQpu8OhDUMZNbEfpzIL+GBj7Zgt9fv+MPOzFM8uWQnl8ZGMGN4bL3W5enoK0TjU+iWg/vRMzqMx8d0Y03Kcd5cva/e6jldVMq0eUmENwzilZv76FXy50E7B41PYdPrHNySyQPbcW3vKF5emcLafSecXr5Sij99vI2MnDO8McEiPUsAAAhaSURBVLEvzRsFO70Ob0M7B41PoaeyuiciwnM39KRji0bMWLiZrNNFTi3/nR8P8O3Oo8wc1ZWEmHCnlu2taOeg8Sn0Ijj3JTQ4gLcmxVNQXMa9Czaf/a0ulE0Hs3n+mz1c2S2SP1zawSll+gL6CtH4FIVmRFAdP8c9iY1szLM39OCXA9m8uDzlgsvLLijh3vmbiWragBfG9fbZjXvqgnYOGp8iPcfYz7hNswYWK9FUx/V9o5kwoB3/+T6VVbuP1bkcu13xwEdbOJlfwqxJ8YQ1CHSiSu9HOweNT3HoZCERjYJo5MM7fHkCT47pRveoJjz40RbSswvrVMYbq/exJuU4T17bjR5twpys0PvRzkHjUxzKLqRtuI686e6EBPoza1I8Cpg+P4liW+02CPpp3wleXpnCdX2imDigXf2I9HK0c9D4FAdPFtJeOwePoH3zUF64sTfbMk7xzNe7a5zv2Oki7l+4mU4tGvHsDT31OEMd0c5B4zOU2OwcOXWGdto5eAyjerTiD0M68P66g3y5NfO855eW2bl3fhKFJWW8NTmehkG6+7CuaOeg8RkO557BrqBd81CrpWhqwaOju9KvfTNmfrqNfVn55zz3xWXJbEjL4bkbetKpZWMXKfROtHPQ+AwHTxYA6JaDhxHo78cbE/sSHOjPtHmbKCyxVXne8p1HeXvNfiYObMfYPm1crNL70M5B4zOUz3ppr7eC9DhahzXg1fF92JuVz2Nf7Ki0QVB6diGPfLyVHm2a8MQ13SxS6V24jXMQkVEikiwi+0RkptV6NN7HwZOFBAf40ULH1fFILo1twYwrYvks6TAfbUg/m15UWsa0eUkoYNbEfnqBo5NwC+cgIv7Am8BooBswQUS0+9c4jfxiGz+lnqR984b4uTjonr7xcR4zhscypFMETyzZyc7MUwA8/fUuth8+xUvjetNOtwqdhrsM5Q8A9iml9gOIyEJgLLCrNoUczj3DsrRS9v2wvx4k1p5UrcVSHUpBmVIUFNv4bk8WKcfyeH1CX5fUXY7Djc9IIAPYICJLlFK1sm2Ngb+f8Mr4PvzutR+YNi+JuMalfJt2iLsv68iV3VtZLc+rcBfn0AZId3ifAQyseJKITAWmAkRGRpKYmPib47tOlrFgTwnsqfmc6HpHa6mMi3X4CUQ0EO7pFUTDk8kkJiYDkJ+fX8mG6gGn3PhofiWiUTBvTIxnypxf+PZkGZfGRvDIVV2sluV1uItzqKqdX2lLKKXUbGA2QEJCgho6dOhvjg8psxPT5HuGXDqkPjTWmh9/+FFrsVCHYNxpBvn7VbnzW2JiIhVtqB44743P+W56ynGRM6sR7qDl5cuDOZVXQERYIT/98P/tnU9oHGUYxn+P0VYURdtaCSqSQhF7LDkUBE+imEvsQejJgl579FDJpVA8KAhSEEEh0HpQvIhBkFoF6ck/FWzTUGMVK2hDIwgeq+LrYb8tS3Zmd0nmz7eb5wfDTL6Z3feZLw+888188+75VrVAHn1SpY5cksNvwCM9fz8MDH/jZQO3T93GXXeIe+/Mo8CWteSro0GGXvgMu+jp0lAyG4lctOSiA/LRUpWOLB5IA98C+yXNSNoBHAGWWtZkTBVUcuFjTNNkkRwi4l/gGHAWuAJ8GBEr7aoyphJ84WPGEm18mWRckPQH8GvBrj1A9T9CuzmspZ9cdMBgLY9GxANVBJE0B7wJTAGLEfHqgGPLfA3j03dNkosOyEdLJb4e2+RQhqQLETHbtg6wlpx1QF5aRiEnvbloyUUH5KOlKh1Z3FYyxhiTF04Oxhhj+pjE5PBO2wJ6sJZ+ctEBeWkZhZz05qIlFx2Qj5ZKdEzcMwdjjDFbZxJHDsYYY7aIk4Mxxpg+xjo5SHpe0oqk/yTNbtj3SiqRvCrpmZ722ssnSzoh6XdJ36dlbpiuumi7XLSka5KWUz9cSG27JJ2TdDWt768p9qKkdUmXe9oKY6vDqdRPlyQdrEPTqOTo7Zx8nWK25u1t4euIGNsFeBx4DPgSmO1pPwBcBHYCM8DPdF5Amkrb+4Ad6ZgDNeg6Abxc0F6oq8b+aeR8h2i4BuzZ0PY6cDxtHwdeqyn2k8BB4PKw2MAc8CmdWkiHgK+b7KcC7dl5Oxdfp5itens7+HqsRw4RcSUiVgt2zQMfRMTNiPgF+IlO6eRb5ZMj4m+gWz65Kcp01UXb51vGPHA6bZ8GnqsjSEScB/4cMfY8cCY6fAXcJ2m6Dl2jMGbebtrXkKe3J8rXY50cBlBUJvmhAe11cCwN4xZ7hpdNxm8jXhEBfCbpu1SaGuDBiFgDSOu9Deopi51DX41C297Owddtxexl4n2dS8nuUiR9DhT9xNNCRHxc9rGCtqA4GW5qLu8gXcDbwMn03SeBN4AXB+iqi6bjFfFERFyXtBc4J+mHhuOPSuN9laO3x8TXtBSzl4n3dfbJISKe2sTHBpVJrqR88qi6JL0LfDKCrjpovVx0RFxP63VJH9G5HXBD0nRErKUh7nqDkspiN95XOXp7THzdVsxbbAdfT+ptpSXgiKSdkmaA/cA3NFQ+ecM9vcNAd1ZBma66aLVctKS7Jd3T3QaeptMXS8DRdNhRoOwquQ7KYi8BL6TZHYeAv7rD9MxozdsZ+Rpa9Pa28XVTT/dremp/mE5mvAncAM727FugM5thFXi2p30O+DHtW6hJ13vAMnAp/XOmh+mqsY9qP98BsffRmUVyEVjpxgd2A18AV9N6V03x3wfWgH+ST14qi01n+P1W6qdlemYItbHk6O2cfN3E+Q6Iuy187fIZxhhj+pjU20rGGGO2gJODMcaYPpwcjDHG9OHkYIwxpg8nB2OMMX04ORhjjOnDycEYY0wf/wNU1Qb/zSUI7gAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.subplot(221)\n",
"plt.plot(x, y) # x^2\n",
"plt.title('parabola')\n",
"plt.grid(True)\n",
"\n",
"plt.subplot(222)\n",
"plt.plot(x, z) # x^3\n",
"plt.title('hyperbola')\n",
"plt.grid(True)\n",
"\n",
"plt.subplot(223)\n",
"plt.plot(x, r) # e^x\n",
"plt.title('exponent')\n",
"plt.grid(True)\n",
"\n",
"plt.subplot(224)\n",
"plt.plot(x, m) # |x|\n",
"plt.title('abs')\n",
"plt.grid(True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Строка `plt.grid(True)` нужна для того, чтобы на графиках были добавлены линии разметки, привычные нам \"клеточки\", которые позволяют удобным образом определять координаты точек на графике."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"И напоследок: как сохранить график в файл. Очень просто. Например, так."
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEFxJREFUeJzt3W+IXXeZwPHvs53paidIWzsdatIkNQlqIyuViVQLIsYX9Q+mLyzU2ZjBLYQFV6uW0eq+KJOwoKxo3e4ihFbNYqlOYqXFZF27sSL7osFJW7RN7LbUNYmNzYh2FF0wxWdfnFMyxElm5p57c+b+8v3AcO45c+6c53Kb79yeOTM3MhNJUrn+qu0BJEm9ZeglqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKN9D2AABXXHFFrl27tu0xJKmvHDp06NeZObzQfssi9GvXrmV6errtMSSpr0TELxazn6duJKlwhl6SCmfoJalwhl6SCmfoJalwC4Y+Ir4aEScj4sk52y6PiIcj4pl6eVm9PSLiXyLi2Yj4SUS8uZfDS1Lfmp2FjRurZY8t5hX914Ebz9h2B3AgMzcAB+p1gHcDG+qP7cBXujOmJBVm3z44fBj27+/5oRYMfWb+CPjNGZu3ALvr27uBm+Zs//esPApcGhFXdWtYSep7Y2OwYgWMj1fr27ZV62NjPTtkp+foRzLzBEC9vLLevhI4Nme/4/W2vxAR2yNiOiKmZ2ZmOhxDkvrMjh2wejUMDlbrg4OwZg3s3NmzQ3b7h7Exz7Z53308M3dl5mhmjg4PL/gbvJJUhvXrq9ifOgVDQ9VychLWrevZITsN/Qsvn5Kplyfr7ceBq+fstwp4vvPxJKlAU1NV5Ccnq+WePT09XKehfwioTzAxDjw4Z/u2+uqb64HZl0/xSJJqExPw9NNw++3VcmKip4db8I+aRcT9wDuAKyLiOHAn8DlgKiJuBY4CN9e77wfeAzwL/BH4cA9mlqT+tmnT6dsjI9VHDy0Y+sz84Fk+tXmefRP4SNOhJEnd42/GSlLhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0kFc7QS1LhDL0knWl2FjZurJYFaBT6iPhERDwVEU9GxP0R8YqIuCYiDkbEMxHxrYi4uFvDStJ5sW8fHD4M+/e3PUlXdBz6iFgJfAwYzcw3AhcBtwCfB76UmRuA3wK3dmNQSeq5sTFYsQLGx6v1bduq9bGxdudqqOmpmwHglRExAFwCnADeCeytP78buKnhMSTp/NixA1avhsHBan1wENasgZ07252roY5Dn5m/BL4AHKUK/CxwCHgxM1+qdzsOrGw6pCSdF+vXV7E/dQqGhqrl5CSsW9f2ZI00OXVzGbAFuAZ4DTAEvHueXfMs998eEdMRMT0zM9PpGJLUXVNTVeQnJ6vlnj1tT9TYQIP7vgv4eWbOAETEA8DbgEsjYqB+Vb8KeH6+O2fmLmAXwOjo6LzfDCTpvJuYgLvvhpER2LoVjh1re6LGmoT+KHB9RFwC/B+wGZgGHgE+AHwTGAcebDqkJJ03mzadvj0yUn30uSbn6A9S/dD1MeCn9dfaBXwa+GREPAu8Gri3C3NKkjrU5BU9mXkncOcZm58D3tLk60qSusffjJWkwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6SSqcoZekwhl6Sf1ldhY2bqyWWhRDL6m/7NsHhw/D/v1tT9I3DL2k/jA2BitWwPh4tb5tW7U+NtbuXH3A0EvqDzt2wOrVMDhYrQ8Owpo1sHNnu3P1AUMvqT+sX1/F/tQpGBqqlpOTsG5d25Mte4ZeUv+YmqoiPzlZLffsaXuivjDQ9gCStGgTE3D33TAyAlu3wrFjbU/UFwy9pP6xadPp2yMj1YcW1OjUTURcGhF7I+JnEXEkIt4aEZdHxMMR8Uy9vKxbw0qSlq7pOfovA9/LzNcDbwKOAHcABzJzA3CgXpcktaTj0EfEq4C3A/cCZOafMvNFYAuwu95tN3BT0yElSZ1r8or+tcAM8LWIeDwi7omIIWAkM08A1Msr57tzRGyPiOmImJ6ZmWkwhiTpXJqEfgB4M/CVzLwO+ANLOE2TmbsyczQzR4eHhxuMIUk6lyahPw4cz8yD9fpeqvC/EBFXAdTLk81GlCQ10XHoM/NXwLGIeF29aTNwGHgIqP8YBePAg40mlCQ10vQ6+o8C90XExcBzwIepvnlMRcStwFHg5obHkCQ10Cj0mfkEMDrPpzY3+bqSpO7xb91IUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVztBLUuEMvSQVrnHoI+KiiHg8Ir5br18TEQcj4pmI+FZEXNx8TElSp7rxiv424Mic9c8DX8rMDcBvgVu7cAxJUocahT4iVgHvBe6p1wN4J7C33mU3cFOTY0iSmmn6iv4u4FPAn+v1VwMvZuZL9fpxYGXDY0iSGug49BHxPuBkZh6au3meXfMs998eEdMRMT0zM9PpGJKkBTR5RX8D8P6I+F/gm1SnbO4CLo2IgXqfVcDz8905M3dl5mhmjg4PDzcYQ5J0Lh2HPjM/k5mrMnMtcAvwg8z8W+AR4AP1buPAg42nlCR1rBfX0X8a+GREPEt1zv7eHhxDkrRIAwvvsrDM/CHww/r2c8BbuvF1JUnN+ZuxklQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy9JhTP0klQ4Qy+1bXYWNm6sllIPGHqpbfv2weHDsH9/25OoUIZeasvYGKxYAePj1fq2bdX62Fi7c6k4hl5qy44dsHo1DA5W64ODsGYN7NzZ7lwqjqGX2rJ+fRX7U6dgaKhaTk7CunVtT6bCGHqpTVNTVeQnJ6vlnj1tT6QCDbQ9gHRBm5iAu++GkRHYuhWOHWt7IhXI0Ett2rTp9O2RkepD6jJP3UhS4Qy9JBWu49BHxNUR8UhEHImIpyLitnr75RHxcEQ8Uy8v6964kqSlavKK/iXg9sx8A3A98JGIuBa4AziQmRuAA/W6JKklHYc+M09k5mP17d8DR4CVwBZgd73bbuCmpkNKkjrXlXP0EbEWuA44CIxk5gmovhkAV57lPtsjYjoipmdmZroxhiRpHo1DHxErgG8DH8/M3y32fpm5KzNHM3N0eHi46RiSpLNoFPqIGKSK/H2Z+UC9+YWIuKr+/FXAyWYjSpKaaHLVTQD3Akcy84tzPvUQUP85PsaBBzsfT5LUVJPfjL0B+BDw04h4ot72WeBzwFRE3AocBW5uNqIkqYmOQ5+Z/w3EWT69udOvK0nqLn8zVpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIK1/+hn52FjRurpZYHnxNpWen/0O/bB4cPw/79bU+il/mcSMtK/4Z+bAxWrIDx8Wp927ZqfWys3bkuZD4n0rLUv6HfsQNWr4bBwWp9cBDWrIGdO9ud60LmcyItS/0b+vXrq7CcOgVDQ9VychLWrWt7sguXz4m0LPVv6AGmpqqgTE5Wyz172p5IPifSshOZ2fYMjI6O5vT09NLv+OMfV6cKRkbghRfg2DEYHe3+gFo8nxPpvImIQ5m54D+wnryij4gbI+LpiHg2Iu7oxTEA2LSpCgpUy+UUlAv1EsPl/JxIF6iuhz4iLgL+DXg3cC3wwYi4ttvHWfaWeonhhfqNQVLP9eIV/VuAZzPzucz8E/BNYEsPjrM8dXqJodeeS+qRXoR+JXBszvrxetuFYamXGHrtuaQe60XoY55tf/ET34jYHhHTETE9MzPTgzFastRLDL32XFKP9SL0x4Gr56yvAp4/c6fM3JWZo5k5Ojw83IMxWrSUSwy99lxSj/Ui9D8GNkTENRFxMXAL8FAPjrN8TUzA00/D7bdXy4mJc+/vteeSeqgn19FHxHuAu4CLgK9m5j+da/+Or6MvhdeeS+rAYq+jH+jFwTNzP+DlI4u1adPp2yMjp69Dl6Qu6O8/gSBJWpChl6TCGXpJKpyhl6TCGXpJKtyy+DPFETED/KLBl7gC+HWXxmlTKY8DynkspTwO8LEsR00fx5rMXPA3TpdF6JuKiOnFXEu63JXyOKCcx1LK4wAfy3J0vh6Hp24kqXCGXpIKV0rod7U9QJeU8jignMdSyuMAH8tydF4eRxHn6CVJZ1fKK3pJ0lkUEfqI+OeI+FlE/CQivhMRl7Y901KdtzdU76GIuDoiHomIIxHxVETc1vZMTUXERRHxeER8t+1ZmoiISyNib/3v5EhEvLXtmToREZ+o/9t6MiLuj4hXtD3TYkXEVyPiZEQ8OWfb5RHxcEQ8Uy8v68Wxiwg98DDwxsz8G+B/gM+0PM+SFPSG6i8Bt2fmG4DrgY/06eOY6zbgSNtDdMGXge9l5uuBN9GHjykiVgIfA0Yz841Ufwb9lnanWpKvAzeese0O4EBmbgAO1OtdV0ToM/P7mflSvfoo1bta9ZMi3lA9M09k5mP17d9TxaRv3y84IlYB7wXuaXuWJiLiVcDbgXsBMvNPmfliu1N1bAB4ZUQMAJcwz7vXLVeZ+SPgN2ds3gLsrm/vBm7qxbGLCP0Z/g74j7aHWKLi3lA9ItYC1wEH252kkbuATwF/bnuQhl4LzABfq09D3RMRQ20PtVSZ+UvgC8BR4AQwm5nfb3eqxkYy8wRUL5SAK3txkL4JfUT8V31e7syPLXP2+Ueq0wf3tTdpRxb1hur9IiJWAN8GPp6Zv2t7nk5ExPuAk5l5qO1ZumAAeDPwlcy8DvgDPTpF0Ev1+estwDXAa4ChiNja7lT9oSfvMNULmfmuc30+IsaB9wGbs/+uGV3UG6r3g4gYpIr8fZn5QNvzNHAD8P76bTFfAbwqIr6Rmf0YluPA8cx8+f+u9tKHoQfeBfw8M2cAIuIB4G3AN1qdqpkXIuKqzDwREVcBJ3txkL55RX8uEXEj8Gng/Zn5x7bn6UARb6geEUF1HvhIZn6x7XmayMzPZOaqzFxL9Xz8oE8jT2b+CjgWEa+rN20GDrc4UqeOAtdHxCX1f2ub6cMfKp/hIWC8vj0OPNiLg/TNK/oF/Cvw18DD1fPPo5n59+2OtHiZ+VJE/APwn5x+Q/WnWh6rEzcAHwJ+GhFP1Ns+W7+HsNr1UeC++oXEc8CHW55nyTLzYETsBR6jOkX7OH30G7IRcT/wDuCKiDgO3Al8DpiKiFupvpHd3JNj999ZDknSUhRx6kaSdHaGXpIKZ+glqXCGXpIKZ+glqXCGXpIKZ+glqXCGXpIK9//iqiCxUV+OWgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure(1)\n",
"plt.scatter(X, Y, color ='red', marker = '*')\n",
"plt.savefig('MyScatter.png') # ищем файл в рабочей папке (рядом с текущим ipynb-файлом)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Мы достаточно кратко обсудили возможности библиотеки `matplotlib`, но на этом ее возможности не заканчиваются. Кому интересно, стоит посмотреть документацию по `matplotlib`, а также заглянуть в галерею с примерами графиков, которые можно адаптировать под свои задачи и данные.\n",
"\n",
"Если кто-то привык работать в R и полюбил вид графиков `ggplot2`, можно установить [библиотеку](http://ggplot.yhathq.com/install.html) `ggplot` для Python. Кроме того, можно поработать с библиотекой [seaborn](https://seaborn.pydata.org/), она предоставляет много возможностей для построения статистических графиков, и выглядят ти графики тоже очень симпатично.\n",
"\n",
"Если хочется более продвинутой интерактивной графики, связанной со статистическими моделями, стоит обратить внимание на библиотеку GraphLab. Она интересна не только графикой, но и другими вещами, но есть один минус: библиотека платная. Однако есть возможность получить доступ по учебной лицензии и даже продлевать ее, особенно, если учесть, что GraphLab используется в некоторых курсах на Coursera, что тоже облегачает получение доступа ([пример](https://www.coursera.org/learn/ml-foundations/home/welcome) такого курса)."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}