Работа завершена
This commit is contained in:
		
							parent
							
								
									8198c0ab0d
								
							
						
					
					
						commit
						499760f2e6
					
				
							
								
								
									
										6
									
								
								.ipynb_checkpoints/Untitled-checkpoint.ipynb
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										6
									
								
								.ipynb_checkpoints/Untitled-checkpoint.ipynb
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,6 @@
 | 
				
			|||||||
 | 
					{
 | 
				
			||||||
 | 
					 "cells": [],
 | 
				
			||||||
 | 
					 "metadata": {},
 | 
				
			||||||
 | 
					 "nbformat": 4,
 | 
				
			||||||
 | 
					 "nbformat_minor": 5
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
							
								
								
									
										502
									
								
								.ipynb_checkpoints/week4_scikit_learn-checkpoint.ipynb
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										502
									
								
								.ipynb_checkpoints/week4_scikit_learn-checkpoint.ipynb
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
							
								
								
									
										198
									
								
								Untitled.ipynb
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										198
									
								
								Untitled.ipynb
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,198 @@
 | 
				
			|||||||
 | 
					{
 | 
				
			||||||
 | 
					 "cells": [
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					   "cell_type": "code",
 | 
				
			||||||
 | 
					   "execution_count": 1,
 | 
				
			||||||
 | 
					   "id": "b90a9f64-8f6c-4766-949c-2d2b5b2f5cfb",
 | 
				
			||||||
 | 
					   "metadata": {},
 | 
				
			||||||
 | 
					   "outputs": [
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					     "name": "stdout",
 | 
				
			||||||
 | 
					     "output_type": "stream",
 | 
				
			||||||
 | 
					     "text": [
 | 
				
			||||||
 | 
					      "              precision    recall  f1-score   support\n",
 | 
				
			||||||
 | 
					      "\n",
 | 
				
			||||||
 | 
					      "           0       1.00      1.00      1.00        11\n",
 | 
				
			||||||
 | 
					      "           1       1.00      0.50      0.67        12\n",
 | 
				
			||||||
 | 
					      "           2       0.54      1.00      0.70         7\n",
 | 
				
			||||||
 | 
					      "\n",
 | 
				
			||||||
 | 
					      "    accuracy                           0.80        30\n",
 | 
				
			||||||
 | 
					      "   macro avg       0.85      0.83      0.79        30\n",
 | 
				
			||||||
 | 
					      "weighted avg       0.89      0.80      0.80        30\n",
 | 
				
			||||||
 | 
					      "\n"
 | 
				
			||||||
 | 
					     ]
 | 
				
			||||||
 | 
					    },
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					     "name": "stderr",
 | 
				
			||||||
 | 
					     "output_type": "stream",
 | 
				
			||||||
 | 
					     "text": [
 | 
				
			||||||
 | 
					      "D:\\Practice4\\.venv\\Lib\\site-packages\\sklearn\\neural_network\\_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.\n",
 | 
				
			||||||
 | 
					      "  warnings.warn(\n"
 | 
				
			||||||
 | 
					     ]
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					   ],
 | 
				
			||||||
 | 
					   "source": [
 | 
				
			||||||
 | 
					    "from sklearn.datasets import load_iris\n",
 | 
				
			||||||
 | 
					    "from sklearn.model_selection import train_test_split\n",
 | 
				
			||||||
 | 
					    "from sklearn.neural_network import MLPClassifier\n",
 | 
				
			||||||
 | 
					    "from sklearn.metrics import classification_report\n",
 | 
				
			||||||
 | 
					    "\n",
 | 
				
			||||||
 | 
					    "# Загрузка и разбиение данных\n",
 | 
				
			||||||
 | 
					    "X, y = load_iris(return_X_y=True)\n",
 | 
				
			||||||
 | 
					    "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)\n",
 | 
				
			||||||
 | 
					    "\n",
 | 
				
			||||||
 | 
					    "# Модель MLP — многослойный перцептрон\n",
 | 
				
			||||||
 | 
					    "clf = MLPClassifier(hidden_layer_sizes=(10,), activation='relu', max_iter=500)\n",
 | 
				
			||||||
 | 
					    "clf.fit(X_train, y_train)\n",
 | 
				
			||||||
 | 
					    "\n",
 | 
				
			||||||
 | 
					    "# Отчёт о точности\n",
 | 
				
			||||||
 | 
					    "print(classification_report(y_test, clf.predict(X_test)))"
 | 
				
			||||||
 | 
					   ]
 | 
				
			||||||
 | 
					  },
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					   "cell_type": "code",
 | 
				
			||||||
 | 
					   "execution_count": 2,
 | 
				
			||||||
 | 
					   "id": "31c17449-d620-449b-ad0d-12375f567a70",
 | 
				
			||||||
 | 
					   "metadata": {},
 | 
				
			||||||
 | 
					   "outputs": [
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					     "name": "stdout",
 | 
				
			||||||
 | 
					     "output_type": "stream",
 | 
				
			||||||
 | 
					     "text": [
 | 
				
			||||||
 | 
					      "              precision    recall  f1-score   support\n",
 | 
				
			||||||
 | 
					      "\n",
 | 
				
			||||||
 | 
					      "           0       0.89      1.00      0.94         8\n",
 | 
				
			||||||
 | 
					      "           1       0.38      0.89      0.53         9\n",
 | 
				
			||||||
 | 
					      "           2       0.00      0.00      0.00        13\n",
 | 
				
			||||||
 | 
					      "\n",
 | 
				
			||||||
 | 
					      "    accuracy                           0.53        30\n",
 | 
				
			||||||
 | 
					      "   macro avg       0.42      0.63      0.49        30\n",
 | 
				
			||||||
 | 
					      "weighted avg       0.35      0.53      0.41        30\n",
 | 
				
			||||||
 | 
					      "\n"
 | 
				
			||||||
 | 
					     ]
 | 
				
			||||||
 | 
					    },
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					     "name": "stderr",
 | 
				
			||||||
 | 
					     "output_type": "stream",
 | 
				
			||||||
 | 
					     "text": [
 | 
				
			||||||
 | 
					      "D:\\Practice4\\.venv\\Lib\\site-packages\\sklearn\\neural_network\\_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.\n",
 | 
				
			||||||
 | 
					      "  warnings.warn(\n",
 | 
				
			||||||
 | 
					      "D:\\Practice4\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
 | 
				
			||||||
 | 
					      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
 | 
				
			||||||
 | 
					      "D:\\Practice4\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
 | 
				
			||||||
 | 
					      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n",
 | 
				
			||||||
 | 
					      "D:\\Practice4\\.venv\\Lib\\site-packages\\sklearn\\metrics\\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
 | 
				
			||||||
 | 
					      "  _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"
 | 
				
			||||||
 | 
					     ]
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					   ],
 | 
				
			||||||
 | 
					   "source": [
 | 
				
			||||||
 | 
					    "from sklearn.datasets import load_iris\n",
 | 
				
			||||||
 | 
					    "from sklearn.model_selection import train_test_split\n",
 | 
				
			||||||
 | 
					    "from sklearn.neural_network import MLPClassifier\n",
 | 
				
			||||||
 | 
					    "from sklearn.metrics import classification_report\n",
 | 
				
			||||||
 | 
					    "\n",
 | 
				
			||||||
 | 
					    "# Загрузка и разбиение данных\n",
 | 
				
			||||||
 | 
					    "X, y = load_iris(return_X_y=True)\n",
 | 
				
			||||||
 | 
					    "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)\n",
 | 
				
			||||||
 | 
					    "\n",
 | 
				
			||||||
 | 
					    "# Модель MLP — многослойный перцептрон\n",
 | 
				
			||||||
 | 
					    "clf = MLPClassifier(hidden_layer_sizes=(10,), activation='relu', max_iter=100)\n",
 | 
				
			||||||
 | 
					    "clf.fit(X_train, y_train)\n",
 | 
				
			||||||
 | 
					    "\n",
 | 
				
			||||||
 | 
					    "# Отчёт о точности\n",
 | 
				
			||||||
 | 
					    "print(classification_report(y_test, clf.predict(X_test)))"
 | 
				
			||||||
 | 
					   ]
 | 
				
			||||||
 | 
					  },
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					   "cell_type": "code",
 | 
				
			||||||
 | 
					   "execution_count": 3,
 | 
				
			||||||
 | 
					   "id": "5642dd14-042f-4895-ad2c-e04c919db0ed",
 | 
				
			||||||
 | 
					   "metadata": {},
 | 
				
			||||||
 | 
					   "outputs": [
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					     "name": "stdout",
 | 
				
			||||||
 | 
					     "output_type": "stream",
 | 
				
			||||||
 | 
					     "text": [
 | 
				
			||||||
 | 
					      "              precision    recall  f1-score   support\n",
 | 
				
			||||||
 | 
					      "\n",
 | 
				
			||||||
 | 
					      "           0       1.00      1.00      1.00        10\n",
 | 
				
			||||||
 | 
					      "           1       1.00      1.00      1.00         7\n",
 | 
				
			||||||
 | 
					      "           2       1.00      1.00      1.00        13\n",
 | 
				
			||||||
 | 
					      "\n",
 | 
				
			||||||
 | 
					      "    accuracy                           1.00        30\n",
 | 
				
			||||||
 | 
					      "   macro avg       1.00      1.00      1.00        30\n",
 | 
				
			||||||
 | 
					      "weighted avg       1.00      1.00      1.00        30\n",
 | 
				
			||||||
 | 
					      "\n"
 | 
				
			||||||
 | 
					     ]
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					   ],
 | 
				
			||||||
 | 
					   "source": [
 | 
				
			||||||
 | 
					    "from sklearn.datasets import load_iris\n",
 | 
				
			||||||
 | 
					    "from sklearn.model_selection import train_test_split\n",
 | 
				
			||||||
 | 
					    "from sklearn.neural_network import MLPClassifier\n",
 | 
				
			||||||
 | 
					    "from sklearn.metrics import classification_report\n",
 | 
				
			||||||
 | 
					    "\n",
 | 
				
			||||||
 | 
					    "# Загрузка и разбиение данных\n",
 | 
				
			||||||
 | 
					    "X, y = load_iris(return_X_y=True)\n",
 | 
				
			||||||
 | 
					    "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)\n",
 | 
				
			||||||
 | 
					    "\n",
 | 
				
			||||||
 | 
					    "# Модель MLP — многослойный перцептрон\n",
 | 
				
			||||||
 | 
					    "clf = MLPClassifier(hidden_layer_sizes=(10,), activation='relu', max_iter=2500)\n",
 | 
				
			||||||
 | 
					    "clf.fit(X_train, y_train)\n",
 | 
				
			||||||
 | 
					    "\n",
 | 
				
			||||||
 | 
					    "# Отчёт о точности\n",
 | 
				
			||||||
 | 
					    "print(classification_report(y_test, clf.predict(X_test)))"
 | 
				
			||||||
 | 
					   ]
 | 
				
			||||||
 | 
					  },
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					   "cell_type": "code",
 | 
				
			||||||
 | 
					   "execution_count": 1,
 | 
				
			||||||
 | 
					   "id": "60f55406-d189-4b57-90d0-f0393235e99b",
 | 
				
			||||||
 | 
					   "metadata": {},
 | 
				
			||||||
 | 
					   "outputs": [],
 | 
				
			||||||
 | 
					   "source": [
 | 
				
			||||||
 | 
					    "import numpy as np\n",
 | 
				
			||||||
 | 
					    "import matplotlib.pyplot as plt\n",
 | 
				
			||||||
 | 
					    "import pandas as pd\n",
 | 
				
			||||||
 | 
					    "import openml\n",
 | 
				
			||||||
 | 
					    "from sklearn.datasets import load_iris\n",
 | 
				
			||||||
 | 
					    "from sklearn.model_selection import train_test_split\n",
 | 
				
			||||||
 | 
					    "from sklearn.neural_network import MLPClassifier\n",
 | 
				
			||||||
 | 
					    "from sklearn.metrics import classification_report, accuracy_score\n",
 | 
				
			||||||
 | 
					    "from sklearn.preprocessing import StandardScaler\n",
 | 
				
			||||||
 | 
					    "from sklearn.pipeline import make_pipeline\n",
 | 
				
			||||||
 | 
					    "from sklearn.inspection import PartialDependenceDisplay"
 | 
				
			||||||
 | 
					   ]
 | 
				
			||||||
 | 
					  },
 | 
				
			||||||
 | 
					  {
 | 
				
			||||||
 | 
					   "cell_type": "code",
 | 
				
			||||||
 | 
					   "execution_count": null,
 | 
				
			||||||
 | 
					   "id": "662ac0f8-7b50-42f3-b372-7c41aea3619e",
 | 
				
			||||||
 | 
					   "metadata": {},
 | 
				
			||||||
 | 
					   "outputs": [],
 | 
				
			||||||
 | 
					   "source": []
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					 ],
 | 
				
			||||||
 | 
					 "metadata": {
 | 
				
			||||||
 | 
					  "kernelspec": {
 | 
				
			||||||
 | 
					   "display_name": "Python 3 (ipykernel)",
 | 
				
			||||||
 | 
					   "language": "python",
 | 
				
			||||||
 | 
					   "name": "python3"
 | 
				
			||||||
 | 
					  },
 | 
				
			||||||
 | 
					  "language_info": {
 | 
				
			||||||
 | 
					   "codemirror_mode": {
 | 
				
			||||||
 | 
					    "name": "ipython",
 | 
				
			||||||
 | 
					    "version": 3
 | 
				
			||||||
 | 
					   },
 | 
				
			||||||
 | 
					   "file_extension": ".py",
 | 
				
			||||||
 | 
					   "mimetype": "text/x-python",
 | 
				
			||||||
 | 
					   "name": "python",
 | 
				
			||||||
 | 
					   "nbconvert_exporter": "python",
 | 
				
			||||||
 | 
					   "pygments_lexer": "ipython3",
 | 
				
			||||||
 | 
					   "version": "3.13.3"
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					 },
 | 
				
			||||||
 | 
					 "nbformat": 4,
 | 
				
			||||||
 | 
					 "nbformat_minor": 5
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
							
								
								
									
										502
									
								
								week4_scikit_learn.ipynb
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										502
									
								
								week4_scikit_learn.ipynb
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							
		Loading…
	
		Reference in New Issue
	
	Block a user