Созданы файлы .gitignore and README.md

This commit is contained in:
Виктор Пичугин 2025-04-04 18:08:08 +03:00
commit 97366df035
1692 changed files with 320055 additions and 0 deletions

BIN
.gitignore vendored Normal file

Binary file not shown.

BIN
README.md Normal file

Binary file not shown.

View File

@ -0,0 +1,222 @@
# don't import any costly modules
import sys
import os
is_pypy = '__pypy__' in sys.builtin_module_names
def warn_distutils_present():
if 'distutils' not in sys.modules:
return
if is_pypy and sys.version_info < (3, 7):
# PyPy for 3.6 unconditionally imports distutils, so bypass the warning
# https://foss.heptapod.net/pypy/pypy/-/blob/be829135bc0d758997b3566062999ee8b23872b4/lib-python/3/site.py#L250
return
import warnings
warnings.warn(
"Distutils was imported before Setuptools, but importing Setuptools "
"also replaces the `distutils` module in `sys.modules`. This may lead "
"to undesirable behaviors or errors. To avoid these issues, avoid "
"using distutils directly, ensure that setuptools is installed in the "
"traditional way (e.g. not an editable install), and/or make sure "
"that setuptools is always imported before distutils."
)
def clear_distutils():
if 'distutils' not in sys.modules:
return
import warnings
warnings.warn("Setuptools is replacing distutils.")
mods = [
name
for name in sys.modules
if name == "distutils" or name.startswith("distutils.")
]
for name in mods:
del sys.modules[name]
def enabled():
"""
Allow selection of distutils by environment variable.
"""
which = os.environ.get('SETUPTOOLS_USE_DISTUTILS', 'local')
return which == 'local'
def ensure_local_distutils():
import importlib
clear_distutils()
# With the DistutilsMetaFinder in place,
# perform an import to cause distutils to be
# loaded from setuptools._distutils. Ref #2906.
with shim():
importlib.import_module('distutils')
# check that submodules load as expected
core = importlib.import_module('distutils.core')
assert '_distutils' in core.__file__, core.__file__
assert 'setuptools._distutils.log' not in sys.modules
def do_override():
"""
Ensure that the local copy of distutils is preferred over stdlib.
See https://github.com/pypa/setuptools/issues/417#issuecomment-392298401
for more motivation.
"""
if enabled():
warn_distutils_present()
ensure_local_distutils()
class _TrivialRe:
def __init__(self, *patterns):
self._patterns = patterns
def match(self, string):
return all(pat in string for pat in self._patterns)
class DistutilsMetaFinder:
def find_spec(self, fullname, path, target=None):
# optimization: only consider top level modules and those
# found in the CPython test suite.
if path is not None and not fullname.startswith('test.'):
return
method_name = 'spec_for_{fullname}'.format(**locals())
method = getattr(self, method_name, lambda: None)
return method()
def spec_for_distutils(self):
if self.is_cpython():
return
import importlib
import importlib.abc
import importlib.util
try:
mod = importlib.import_module('setuptools._distutils')
except Exception:
# There are a couple of cases where setuptools._distutils
# may not be present:
# - An older Setuptools without a local distutils is
# taking precedence. Ref #2957.
# - Path manipulation during sitecustomize removes
# setuptools from the path but only after the hook
# has been loaded. Ref #2980.
# In either case, fall back to stdlib behavior.
return
class DistutilsLoader(importlib.abc.Loader):
def create_module(self, spec):
mod.__name__ = 'distutils'
return mod
def exec_module(self, module):
pass
return importlib.util.spec_from_loader(
'distutils', DistutilsLoader(), origin=mod.__file__
)
@staticmethod
def is_cpython():
"""
Suppress supplying distutils for CPython (build and tests).
Ref #2965 and #3007.
"""
return os.path.isfile('pybuilddir.txt')
def spec_for_pip(self):
"""
Ensure stdlib distutils when running under pip.
See pypa/pip#8761 for rationale.
"""
if self.pip_imported_during_build():
return
clear_distutils()
self.spec_for_distutils = lambda: None
@classmethod
def pip_imported_during_build(cls):
"""
Detect if pip is being imported in a build script. Ref #2355.
"""
import traceback
return any(
cls.frame_file_is_setup(frame) for frame, line in traceback.walk_stack(None)
)
@staticmethod
def frame_file_is_setup(frame):
"""
Return True if the indicated frame suggests a setup.py file.
"""
# some frames may not have __file__ (#2940)
return frame.f_globals.get('__file__', '').endswith('setup.py')
def spec_for_sensitive_tests(self):
"""
Ensure stdlib distutils when running select tests under CPython.
python/cpython#91169
"""
clear_distutils()
self.spec_for_distutils = lambda: None
sensitive_tests = (
[
'test.test_distutils',
'test.test_peg_generator',
'test.test_importlib',
]
if sys.version_info < (3, 10)
else [
'test.test_distutils',
]
)
for name in DistutilsMetaFinder.sensitive_tests:
setattr(
DistutilsMetaFinder,
f'spec_for_{name}',
DistutilsMetaFinder.spec_for_sensitive_tests,
)
DISTUTILS_FINDER = DistutilsMetaFinder()
def add_shim():
DISTUTILS_FINDER in sys.meta_path or insert_shim()
class shim:
def __enter__(self):
insert_shim()
def __exit__(self, exc, value, tb):
remove_shim()
def insert_shim():
sys.meta_path.insert(0, DISTUTILS_FINDER)
def remove_shim():
try:
sys.meta_path.remove(DISTUTILS_FINDER)
except ValueError:
pass

View File

@ -0,0 +1 @@
__import__('_distutils_hack').do_override()

View File

@ -0,0 +1 @@
pip

View File

@ -0,0 +1,20 @@
This package contains a modified version of ca-bundle.crt:
ca-bundle.crt -- Bundle of CA Root Certificates
This is a bundle of X.509 certificates of public Certificate Authorities
(CA). These were automatically extracted from Mozilla's root certificates
file (certdata.txt). This file can be found in the mozilla source tree:
https://hg.mozilla.org/mozilla-central/file/tip/security/nss/lib/ckfw/builtins/certdata.txt
It contains the certificates in PEM format and therefore
can be directly used with curl / libcurl / php_curl, or with
an Apache+mod_ssl webserver for SSL client authentication.
Just configure this file as the SSLCACertificateFile.#
***** BEGIN LICENSE BLOCK *****
This Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can obtain
one at http://mozilla.org/MPL/2.0/.
***** END LICENSE BLOCK *****
@(#) $RCSfile: certdata.txt,v $ $Revision: 1.80 $ $Date: 2011/11/03 15:11:58 $

View File

@ -0,0 +1,77 @@
Metadata-Version: 2.2
Name: certifi
Version: 2025.1.31
Summary: Python package for providing Mozilla's CA Bundle.
Home-page: https://github.com/certifi/python-certifi
Author: Kenneth Reitz
Author-email: me@kennethreitz.com
License: MPL-2.0
Project-URL: Source, https://github.com/certifi/python-certifi
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: Mozilla Public License 2.0 (MPL 2.0)
Classifier: Natural Language :: English
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Programming Language :: Python :: 3.13
Requires-Python: >=3.6
License-File: LICENSE
Dynamic: author
Dynamic: author-email
Dynamic: classifier
Dynamic: description
Dynamic: home-page
Dynamic: license
Dynamic: project-url
Dynamic: requires-python
Dynamic: summary
Certifi: Python SSL Certificates
================================
Certifi provides Mozilla's carefully curated collection of Root Certificates for
validating the trustworthiness of SSL certificates while verifying the identity
of TLS hosts. It has been extracted from the `Requests`_ project.
Installation
------------
``certifi`` is available on PyPI. Simply install it with ``pip``::
$ pip install certifi
Usage
-----
To reference the installed certificate authority (CA) bundle, you can use the
built-in function::
>>> import certifi
>>> certifi.where()
'/usr/local/lib/python3.7/site-packages/certifi/cacert.pem'
Or from the command line::
$ python -m certifi
/usr/local/lib/python3.7/site-packages/certifi/cacert.pem
Enjoy!
.. _`Requests`: https://requests.readthedocs.io/en/master/
Addition/Removal of Certificates
--------------------------------
Certifi does not support any addition/removal or other modification of the
CA trust store content. This project is intended to provide a reliable and
highly portable root of trust to python deployments. Look to upstream projects
for methods to use alternate trust.

View File

@ -0,0 +1,14 @@
certifi-2025.1.31.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
certifi-2025.1.31.dist-info/LICENSE,sha256=6TcW2mucDVpKHfYP5pWzcPBpVgPSH2-D8FPkLPwQyvc,989
certifi-2025.1.31.dist-info/METADATA,sha256=t5kcT5aGu0dQ6_psUNZYTqnC0uCRnponewm3uYjeHbg,2451
certifi-2025.1.31.dist-info/RECORD,,
certifi-2025.1.31.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
certifi-2025.1.31.dist-info/top_level.txt,sha256=KMu4vUCfsjLrkPbSNdgdekS-pVJzBAJFO__nI8NF6-U,8
certifi/__init__.py,sha256=neIaAf7BM36ygmQCmy-ZsSyjnvjWghFeu13wwEAnjj0,94
certifi/__main__.py,sha256=xBBoj905TUWBLRGANOcf7oi6e-3dMP4cEoG9OyMs11g,243
certifi/__pycache__/__init__.cpython-311.pyc,,
certifi/__pycache__/__main__.cpython-311.pyc,,
certifi/__pycache__/core.cpython-311.pyc,,
certifi/cacert.pem,sha256=xVsh-Qf3-G1IrdCTVS-1ZRdJ_1-GBQjMu0I9bB-9gMc,297255
certifi/core.py,sha256=qRDDFyXVJwTB_EmoGppaXU_R9qCZvhl-EzxPMuV3nTA,4426
certifi/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0

View File

@ -0,0 +1,5 @@
Wheel-Version: 1.0
Generator: setuptools (75.8.0)
Root-Is-Purelib: true
Tag: py3-none-any

View File

@ -0,0 +1 @@
certifi

View File

@ -0,0 +1,4 @@
from .core import contents, where
__all__ = ["contents", "where"]
__version__ = "2025.01.31"

View File

@ -0,0 +1,12 @@
import argparse
from certifi import contents, where
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--contents", action="store_true")
args = parser.parse_args()
if args.contents:
print(contents())
else:
print(where())

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,114 @@
"""
certifi.py
~~~~~~~~~~
This module returns the installation location of cacert.pem or its contents.
"""
import sys
import atexit
def exit_cacert_ctx() -> None:
_CACERT_CTX.__exit__(None, None, None) # type: ignore[union-attr]
if sys.version_info >= (3, 11):
from importlib.resources import as_file, files
_CACERT_CTX = None
_CACERT_PATH = None
def where() -> str:
# This is slightly terrible, but we want to delay extracting the file
# in cases where we're inside of a zipimport situation until someone
# actually calls where(), but we don't want to re-extract the file
# on every call of where(), so we'll do it once then store it in a
# global variable.
global _CACERT_CTX
global _CACERT_PATH
if _CACERT_PATH is None:
# This is slightly janky, the importlib.resources API wants you to
# manage the cleanup of this file, so it doesn't actually return a
# path, it returns a context manager that will give you the path
# when you enter it and will do any cleanup when you leave it. In
# the common case of not needing a temporary file, it will just
# return the file system location and the __exit__() is a no-op.
#
# We also have to hold onto the actual context manager, because
# it will do the cleanup whenever it gets garbage collected, so
# we will also store that at the global level as well.
_CACERT_CTX = as_file(files("certifi").joinpath("cacert.pem"))
_CACERT_PATH = str(_CACERT_CTX.__enter__())
atexit.register(exit_cacert_ctx)
return _CACERT_PATH
def contents() -> str:
return files("certifi").joinpath("cacert.pem").read_text(encoding="ascii")
elif sys.version_info >= (3, 7):
from importlib.resources import path as get_path, read_text
_CACERT_CTX = None
_CACERT_PATH = None
def where() -> str:
# This is slightly terrible, but we want to delay extracting the
# file in cases where we're inside of a zipimport situation until
# someone actually calls where(), but we don't want to re-extract
# the file on every call of where(), so we'll do it once then store
# it in a global variable.
global _CACERT_CTX
global _CACERT_PATH
if _CACERT_PATH is None:
# This is slightly janky, the importlib.resources API wants you
# to manage the cleanup of this file, so it doesn't actually
# return a path, it returns a context manager that will give
# you the path when you enter it and will do any cleanup when
# you leave it. In the common case of not needing a temporary
# file, it will just return the file system location and the
# __exit__() is a no-op.
#
# We also have to hold onto the actual context manager, because
# it will do the cleanup whenever it gets garbage collected, so
# we will also store that at the global level as well.
_CACERT_CTX = get_path("certifi", "cacert.pem")
_CACERT_PATH = str(_CACERT_CTX.__enter__())
atexit.register(exit_cacert_ctx)
return _CACERT_PATH
def contents() -> str:
return read_text("certifi", "cacert.pem", encoding="ascii")
else:
import os
import types
from typing import Union
Package = Union[types.ModuleType, str]
Resource = Union[str, "os.PathLike"]
# This fallback will work for Python versions prior to 3.7 that lack the
# importlib.resources module but relies on the existing `where` function
# so won't address issues with environments like PyOxidizer that don't set
# __file__ on modules.
def read_text(
package: Package,
resource: Resource,
encoding: str = 'utf-8',
errors: str = 'strict'
) -> str:
with open(where(), encoding=encoding) as data:
return data.read()
# If we don't have importlib.resources, then we will just do the old logic
# of assuming we're on the filesystem and munge the path directly.
def where() -> str:
f = os.path.dirname(__file__)
return os.path.join(f, "cacert.pem")
def contents() -> str:
return read_text("certifi", "cacert.pem", encoding="ascii")

View File

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2025 TAHRI Ahmed R.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,721 @@
Metadata-Version: 2.1
Name: charset-normalizer
Version: 3.4.1
Summary: The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet.
Author-email: "Ahmed R. TAHRI" <tahri.ahmed@proton.me>
Maintainer-email: "Ahmed R. TAHRI" <tahri.ahmed@proton.me>
License: MIT
Project-URL: Changelog, https://github.com/jawah/charset_normalizer/blob/master/CHANGELOG.md
Project-URL: Documentation, https://charset-normalizer.readthedocs.io/
Project-URL: Code, https://github.com/jawah/charset_normalizer
Project-URL: Issue tracker, https://github.com/jawah/charset_normalizer/issues
Keywords: encoding,charset,charset-detector,detector,normalization,unicode,chardet,detect
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Programming Language :: Python :: 3.13
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Programming Language :: Python :: Implementation :: CPython
Classifier: Programming Language :: Python :: Implementation :: PyPy
Classifier: Topic :: Text Processing :: Linguistic
Classifier: Topic :: Utilities
Classifier: Typing :: Typed
Requires-Python: >=3.7
Description-Content-Type: text/markdown
License-File: LICENSE
Provides-Extra: unicode-backport
<h1 align="center">Charset Detection, for Everyone 👋</h1>
<p align="center">
<sup>The Real First Universal Charset Detector</sup><br>
<a href="https://pypi.org/project/charset-normalizer">
<img src="https://img.shields.io/pypi/pyversions/charset_normalizer.svg?orange=blue" />
</a>
<a href="https://pepy.tech/project/charset-normalizer/">
<img alt="Download Count Total" src="https://static.pepy.tech/badge/charset-normalizer/month" />
</a>
<a href="https://bestpractices.coreinfrastructure.org/projects/7297">
<img src="https://bestpractices.coreinfrastructure.org/projects/7297/badge">
</a>
</p>
<p align="center">
<sup><i>Featured Packages</i></sup><br>
<a href="https://github.com/jawah/niquests">
<img alt="Static Badge" src="https://img.shields.io/badge/Niquests-Best_HTTP_Client-cyan">
</a>
<a href="https://github.com/jawah/wassima">
<img alt="Static Badge" src="https://img.shields.io/badge/Wassima-Certifi_Killer-cyan">
</a>
</p>
<p align="center">
<sup><i>In other language (unofficial port - by the community)</i></sup><br>
<a href="https://github.com/nickspring/charset-normalizer-rs">
<img alt="Static Badge" src="https://img.shields.io/badge/Rust-red">
</a>
</p>
> A library that helps you read text from an unknown charset encoding.<br /> Motivated by `chardet`,
> I'm trying to resolve the issue by taking a new approach.
> All IANA character set names for which the Python core library provides codecs are supported.
<p align="center">
>>>>> <a href="https://charsetnormalizerweb.ousret.now.sh" target="_blank">👉 Try Me Online Now, Then Adopt Me 👈 </a> <<<<<
</p>
This project offers you an alternative to **Universal Charset Encoding Detector**, also known as **Chardet**.
| Feature | [Chardet](https://github.com/chardet/chardet) | Charset Normalizer | [cChardet](https://github.com/PyYoshi/cChardet) |
|--------------------------------------------------|:---------------------------------------------:|:--------------------------------------------------------------------------------------------------:|:-----------------------------------------------:|
| `Fast` | ❌ | ✅ | ✅ |
| `Universal**` | ❌ | ✅ | ❌ |
| `Reliable` **without** distinguishable standards | ❌ | ✅ | ✅ |
| `Reliable` **with** distinguishable standards | ✅ | ✅ | ✅ |
| `License` | LGPL-2.1<br>_restrictive_ | MIT | MPL-1.1<br>_restrictive_ |
| `Native Python` | ✅ | ✅ | ❌ |
| `Detect spoken language` | ❌ | ✅ | N/A |
| `UnicodeDecodeError Safety` | ❌ | ✅ | ❌ |
| `Whl Size (min)` | 193.6 kB | 42 kB | ~200 kB |
| `Supported Encoding` | 33 | 🎉 [99](https://charset-normalizer.readthedocs.io/en/latest/user/support.html#supported-encodings) | 40 |
<p align="center">
<img src="https://i.imgflip.com/373iay.gif" alt="Reading Normalized Text" width="226"/><img src="https://media.tenor.com/images/c0180f70732a18b4965448d33adba3d0/tenor.gif" alt="Cat Reading Text" width="200"/>
</p>
*\*\* : They are clearly using specific code for a specific encoding even if covering most of used one*<br>
## ⚡ Performance
This package offer better performance than its counterpart Chardet. Here are some numbers.
| Package | Accuracy | Mean per file (ms) | File per sec (est) |
|-----------------------------------------------|:--------:|:------------------:|:------------------:|
| [chardet](https://github.com/chardet/chardet) | 86 % | 63 ms | 16 file/sec |
| charset-normalizer | **98 %** | **10 ms** | 100 file/sec |
| Package | 99th percentile | 95th percentile | 50th percentile |
|-----------------------------------------------|:---------------:|:---------------:|:---------------:|
| [chardet](https://github.com/chardet/chardet) | 265 ms | 71 ms | 7 ms |
| charset-normalizer | 100 ms | 50 ms | 5 ms |
_updated as of december 2024 using CPython 3.12_
Chardet's performance on larger file (1MB+) are very poor. Expect huge difference on large payload.
> Stats are generated using 400+ files using default parameters. More details on used files, see GHA workflows.
> And yes, these results might change at any time. The dataset can be updated to include more files.
> The actual delays heavily depends on your CPU capabilities. The factors should remain the same.
> Keep in mind that the stats are generous and that Chardet accuracy vs our is measured using Chardet initial capability
> (e.g. Supported Encoding) Challenge-them if you want.
## ✨ Installation
Using pip:
```sh
pip install charset-normalizer -U
```
## 🚀 Basic Usage
### CLI
This package comes with a CLI.
```
usage: normalizer [-h] [-v] [-a] [-n] [-m] [-r] [-f] [-t THRESHOLD]
file [file ...]
The Real First Universal Charset Detector. Discover originating encoding used
on text file. Normalize text to unicode.
positional arguments:
files File(s) to be analysed
optional arguments:
-h, --help show this help message and exit
-v, --verbose Display complementary information about file if any.
Stdout will contain logs about the detection process.
-a, --with-alternative
Output complementary possibilities if any. Top-level
JSON WILL be a list.
-n, --normalize Permit to normalize input file. If not set, program
does not write anything.
-m, --minimal Only output the charset detected to STDOUT. Disabling
JSON output.
-r, --replace Replace file when trying to normalize it instead of
creating a new one.
-f, --force Replace file without asking if you are sure, use this
flag with caution.
-t THRESHOLD, --threshold THRESHOLD
Define a custom maximum amount of chaos allowed in
decoded content. 0. <= chaos <= 1.
--version Show version information and exit.
```
```bash
normalizer ./data/sample.1.fr.srt
```
or
```bash
python -m charset_normalizer ./data/sample.1.fr.srt
```
🎉 Since version 1.4.0 the CLI produce easily usable stdout result in JSON format.
```json
{
"path": "/home/default/projects/charset_normalizer/data/sample.1.fr.srt",
"encoding": "cp1252",
"encoding_aliases": [
"1252",
"windows_1252"
],
"alternative_encodings": [
"cp1254",
"cp1256",
"cp1258",
"iso8859_14",
"iso8859_15",
"iso8859_16",
"iso8859_3",
"iso8859_9",
"latin_1",
"mbcs"
],
"language": "French",
"alphabets": [
"Basic Latin",
"Latin-1 Supplement"
],
"has_sig_or_bom": false,
"chaos": 0.149,
"coherence": 97.152,
"unicode_path": null,
"is_preferred": true
}
```
### Python
*Just print out normalized text*
```python
from charset_normalizer import from_path
results = from_path('./my_subtitle.srt')
print(str(results.best()))
```
*Upgrade your code without effort*
```python
from charset_normalizer import detect
```
The above code will behave the same as **chardet**. We ensure that we offer the best (reasonable) BC result possible.
See the docs for advanced usage : [readthedocs.io](https://charset-normalizer.readthedocs.io/en/latest/)
## 😇 Why
When I started using Chardet, I noticed that it was not suited to my expectations, and I wanted to propose a
reliable alternative using a completely different method. Also! I never back down on a good challenge!
I **don't care** about the **originating charset** encoding, because **two different tables** can
produce **two identical rendered string.**
What I want is to get readable text, the best I can.
In a way, **I'm brute forcing text decoding.** How cool is that ? 😎
Don't confuse package **ftfy** with charset-normalizer or chardet. ftfy goal is to repair Unicode string whereas charset-normalizer to convert raw file in unknown encoding to unicode.
## 🍰 How
- Discard all charset encoding table that could not fit the binary content.
- Measure noise, or the mess once opened (by chunks) with a corresponding charset encoding.
- Extract matches with the lowest mess detected.
- Additionally, we measure coherence / probe for a language.
**Wait a minute**, what is noise/mess and coherence according to **YOU ?**
*Noise :* I opened hundred of text files, **written by humans**, with the wrong encoding table. **I observed**, then
**I established** some ground rules about **what is obvious** when **it seems like** a mess (aka. defining noise in rendered text).
I know that my interpretation of what is noise is probably incomplete, feel free to contribute in order to
improve or rewrite it.
*Coherence :* For each language there is on earth, we have computed ranked letter appearance occurrences (the best we can). So I thought
that intel is worth something here. So I use those records against decoded text to check if I can detect intelligent design.
## ⚡ Known limitations
- Language detection is unreliable when text contains two or more languages sharing identical letters. (eg. HTML (english tags) + Turkish content (Sharing Latin characters))
- Every charset detector heavily depends on sufficient content. In common cases, do not bother run detection on very tiny content.
## ⚠️ About Python EOLs
**If you are running:**
- Python >=2.7,<3.5: Unsupported
- Python 3.5: charset-normalizer < 2.1
- Python 3.6: charset-normalizer < 3.1
- Python 3.7: charset-normalizer < 4.0
Upgrade your Python interpreter as soon as possible.
## 👤 Contributing
Contributions, issues and feature requests are very much welcome.<br />
Feel free to check [issues page](https://github.com/ousret/charset_normalizer/issues) if you want to contribute.
## 📝 License
Copyright © [Ahmed TAHRI @Ousret](https://github.com/Ousret).<br />
This project is [MIT](https://github.com/Ousret/charset_normalizer/blob/master/LICENSE) licensed.
Characters frequencies used in this project © 2012 [Denny Vrandečić](http://simia.net/letters/)
## 💼 For Enterprise
Professional support for charset-normalizer is available as part of the [Tidelift
Subscription][1]. Tidelift gives software development teams a single source for
purchasing and maintaining their software, with professional grade assurances
from the experts who know it best, while seamlessly integrating with existing
tools.
[1]: https://tidelift.com/subscription/pkg/pypi-charset-normalizer?utm_source=pypi-charset-normalizer&utm_medium=readme
[![OpenSSF Best Practices](https://www.bestpractices.dev/projects/7297/badge)](https://www.bestpractices.dev/projects/7297)
# Changelog
All notable changes to charset-normalizer will be documented in this file. This project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/).
## [3.4.1](https://github.com/Ousret/charset_normalizer/compare/3.4.0...3.4.1) (2024-12-24)
### Changed
- Project metadata are now stored using `pyproject.toml` instead of `setup.cfg` using setuptools as the build backend.
- Enforce annotation delayed loading for a simpler and consistent types in the project.
- Optional mypyc compilation upgraded to version 1.14 for Python >= 3.8
### Added
- pre-commit configuration.
- noxfile.
### Removed
- `build-requirements.txt` as per using `pyproject.toml` native build configuration.
- `bin/integration.py` and `bin/serve.py` in favor of downstream integration test (see noxfile).
- `setup.cfg` in favor of `pyproject.toml` metadata configuration.
- Unused `utils.range_scan` function.
### Fixed
- Converting content to Unicode bytes may insert `utf_8` instead of preferred `utf-8`. (#572)
- Deprecation warning "'count' is passed as positional argument" when converting to Unicode bytes on Python 3.13+
## [3.4.0](https://github.com/Ousret/charset_normalizer/compare/3.3.2...3.4.0) (2024-10-08)
### Added
- Argument `--no-preemptive` in the CLI to prevent the detector to search for hints.
- Support for Python 3.13 (#512)
### Fixed
- Relax the TypeError exception thrown when trying to compare a CharsetMatch with anything else than a CharsetMatch.
- Improved the general reliability of the detector based on user feedbacks. (#520) (#509) (#498) (#407) (#537)
- Declared charset in content (preemptive detection) not changed when converting to utf-8 bytes. (#381)
## [3.3.2](https://github.com/Ousret/charset_normalizer/compare/3.3.1...3.3.2) (2023-10-31)
### Fixed
- Unintentional memory usage regression when using large payload that match several encoding (#376)
- Regression on some detection case showcased in the documentation (#371)
### Added
- Noise (md) probe that identify malformed arabic representation due to the presence of letters in isolated form (credit to my wife)
## [3.3.1](https://github.com/Ousret/charset_normalizer/compare/3.3.0...3.3.1) (2023-10-22)
### Changed
- Optional mypyc compilation upgraded to version 1.6.1 for Python >= 3.8
- Improved the general detection reliability based on reports from the community
## [3.3.0](https://github.com/Ousret/charset_normalizer/compare/3.2.0...3.3.0) (2023-09-30)
### Added
- Allow to execute the CLI (e.g. normalizer) through `python -m charset_normalizer.cli` or `python -m charset_normalizer`
- Support for 9 forgotten encoding that are supported by Python but unlisted in `encoding.aliases` as they have no alias (#323)
### Removed
- (internal) Redundant utils.is_ascii function and unused function is_private_use_only
- (internal) charset_normalizer.assets is moved inside charset_normalizer.constant
### Changed
- (internal) Unicode code blocks in constants are updated using the latest v15.0.0 definition to improve detection
- Optional mypyc compilation upgraded to version 1.5.1 for Python >= 3.8
### Fixed
- Unable to properly sort CharsetMatch when both chaos/noise and coherence were close due to an unreachable condition in \_\_lt\_\_ (#350)
## [3.2.0](https://github.com/Ousret/charset_normalizer/compare/3.1.0...3.2.0) (2023-06-07)
### Changed
- Typehint for function `from_path` no longer enforce `PathLike` as its first argument
- Minor improvement over the global detection reliability
### Added
- Introduce function `is_binary` that relies on main capabilities, and optimized to detect binaries
- Propagate `enable_fallback` argument throughout `from_bytes`, `from_path`, and `from_fp` that allow a deeper control over the detection (default True)
- Explicit support for Python 3.12
### Fixed
- Edge case detection failure where a file would contain 'very-long' camel cased word (Issue #289)
## [3.1.0](https://github.com/Ousret/charset_normalizer/compare/3.0.1...3.1.0) (2023-03-06)
### Added
- Argument `should_rename_legacy` for legacy function `detect` and disregard any new arguments without errors (PR #262)
### Removed
- Support for Python 3.6 (PR #260)
### Changed
- Optional speedup provided by mypy/c 1.0.1
## [3.0.1](https://github.com/Ousret/charset_normalizer/compare/3.0.0...3.0.1) (2022-11-18)
### Fixed
- Multi-bytes cutter/chunk generator did not always cut correctly (PR #233)
### Changed
- Speedup provided by mypy/c 0.990 on Python >= 3.7
## [3.0.0](https://github.com/Ousret/charset_normalizer/compare/2.1.1...3.0.0) (2022-10-20)
### Added
- Extend the capability of explain=True when cp_isolation contains at most two entries (min one), will log in details of the Mess-detector results
- Support for alternative language frequency set in charset_normalizer.assets.FREQUENCIES
- Add parameter `language_threshold` in `from_bytes`, `from_path` and `from_fp` to adjust the minimum expected coherence ratio
- `normalizer --version` now specify if current version provide extra speedup (meaning mypyc compilation whl)
### Changed
- Build with static metadata using 'build' frontend
- Make the language detection stricter
- Optional: Module `md.py` can be compiled using Mypyc to provide an extra speedup up to 4x faster than v2.1
### Fixed
- CLI with opt --normalize fail when using full path for files
- TooManyAccentuatedPlugin induce false positive on the mess detection when too few alpha character have been fed to it
- Sphinx warnings when generating the documentation
### Removed
- Coherence detector no longer return 'Simple English' instead return 'English'
- Coherence detector no longer return 'Classical Chinese' instead return 'Chinese'
- Breaking: Method `first()` and `best()` from CharsetMatch
- UTF-7 will no longer appear as "detected" without a recognized SIG/mark (is unreliable/conflict with ASCII)
- Breaking: Class aliases CharsetDetector, CharsetDoctor, CharsetNormalizerMatch and CharsetNormalizerMatches
- Breaking: Top-level function `normalize`
- Breaking: Properties `chaos_secondary_pass`, `coherence_non_latin` and `w_counter` from CharsetMatch
- Support for the backport `unicodedata2`
## [3.0.0rc1](https://github.com/Ousret/charset_normalizer/compare/3.0.0b2...3.0.0rc1) (2022-10-18)
### Added
- Extend the capability of explain=True when cp_isolation contains at most two entries (min one), will log in details of the Mess-detector results
- Support for alternative language frequency set in charset_normalizer.assets.FREQUENCIES
- Add parameter `language_threshold` in `from_bytes`, `from_path` and `from_fp` to adjust the minimum expected coherence ratio
### Changed
- Build with static metadata using 'build' frontend
- Make the language detection stricter
### Fixed
- CLI with opt --normalize fail when using full path for files
- TooManyAccentuatedPlugin induce false positive on the mess detection when too few alpha character have been fed to it
### Removed
- Coherence detector no longer return 'Simple English' instead return 'English'
- Coherence detector no longer return 'Classical Chinese' instead return 'Chinese'
## [3.0.0b2](https://github.com/Ousret/charset_normalizer/compare/3.0.0b1...3.0.0b2) (2022-08-21)
### Added
- `normalizer --version` now specify if current version provide extra speedup (meaning mypyc compilation whl)
### Removed
- Breaking: Method `first()` and `best()` from CharsetMatch
- UTF-7 will no longer appear as "detected" without a recognized SIG/mark (is unreliable/conflict with ASCII)
### Fixed
- Sphinx warnings when generating the documentation
## [3.0.0b1](https://github.com/Ousret/charset_normalizer/compare/2.1.0...3.0.0b1) (2022-08-15)
### Changed
- Optional: Module `md.py` can be compiled using Mypyc to provide an extra speedup up to 4x faster than v2.1
### Removed
- Breaking: Class aliases CharsetDetector, CharsetDoctor, CharsetNormalizerMatch and CharsetNormalizerMatches
- Breaking: Top-level function `normalize`
- Breaking: Properties `chaos_secondary_pass`, `coherence_non_latin` and `w_counter` from CharsetMatch
- Support for the backport `unicodedata2`
## [2.1.1](https://github.com/Ousret/charset_normalizer/compare/2.1.0...2.1.1) (2022-08-19)
### Deprecated
- Function `normalize` scheduled for removal in 3.0
### Changed
- Removed useless call to decode in fn is_unprintable (#206)
### Fixed
- Third-party library (i18n xgettext) crashing not recognizing utf_8 (PEP 263) with underscore from [@aleksandernovikov](https://github.com/aleksandernovikov) (#204)
## [2.1.0](https://github.com/Ousret/charset_normalizer/compare/2.0.12...2.1.0) (2022-06-19)
### Added
- Output the Unicode table version when running the CLI with `--version` (PR #194)
### Changed
- Re-use decoded buffer for single byte character sets from [@nijel](https://github.com/nijel) (PR #175)
- Fixing some performance bottlenecks from [@deedy5](https://github.com/deedy5) (PR #183)
### Fixed
- Workaround potential bug in cpython with Zero Width No-Break Space located in Arabic Presentation Forms-B, Unicode 1.1 not acknowledged as space (PR #175)
- CLI default threshold aligned with the API threshold from [@oleksandr-kuzmenko](https://github.com/oleksandr-kuzmenko) (PR #181)
### Removed
- Support for Python 3.5 (PR #192)
### Deprecated
- Use of backport unicodedata from `unicodedata2` as Python is quickly catching up, scheduled for removal in 3.0 (PR #194)
## [2.0.12](https://github.com/Ousret/charset_normalizer/compare/2.0.11...2.0.12) (2022-02-12)
### Fixed
- ASCII miss-detection on rare cases (PR #170)
## [2.0.11](https://github.com/Ousret/charset_normalizer/compare/2.0.10...2.0.11) (2022-01-30)
### Added
- Explicit support for Python 3.11 (PR #164)
### Changed
- The logging behavior have been completely reviewed, now using only TRACE and DEBUG levels (PR #163 #165)
## [2.0.10](https://github.com/Ousret/charset_normalizer/compare/2.0.9...2.0.10) (2022-01-04)
### Fixed
- Fallback match entries might lead to UnicodeDecodeError for large bytes sequence (PR #154)
### Changed
- Skipping the language-detection (CD) on ASCII (PR #155)
## [2.0.9](https://github.com/Ousret/charset_normalizer/compare/2.0.8...2.0.9) (2021-12-03)
### Changed
- Moderating the logging impact (since 2.0.8) for specific environments (PR #147)
### Fixed
- Wrong logging level applied when setting kwarg `explain` to True (PR #146)
## [2.0.8](https://github.com/Ousret/charset_normalizer/compare/2.0.7...2.0.8) (2021-11-24)
### Changed
- Improvement over Vietnamese detection (PR #126)
- MD improvement on trailing data and long foreign (non-pure latin) data (PR #124)
- Efficiency improvements in cd/alphabet_languages from [@adbar](https://github.com/adbar) (PR #122)
- call sum() without an intermediary list following PEP 289 recommendations from [@adbar](https://github.com/adbar) (PR #129)
- Code style as refactored by Sourcery-AI (PR #131)
- Minor adjustment on the MD around european words (PR #133)
- Remove and replace SRTs from assets / tests (PR #139)
- Initialize the library logger with a `NullHandler` by default from [@nmaynes](https://github.com/nmaynes) (PR #135)
- Setting kwarg `explain` to True will add provisionally (bounded to function lifespan) a specific stream handler (PR #135)
### Fixed
- Fix large (misleading) sequence giving UnicodeDecodeError (PR #137)
- Avoid using too insignificant chunk (PR #137)
### Added
- Add and expose function `set_logging_handler` to configure a specific StreamHandler from [@nmaynes](https://github.com/nmaynes) (PR #135)
- Add `CHANGELOG.md` entries, format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/) (PR #141)
## [2.0.7](https://github.com/Ousret/charset_normalizer/compare/2.0.6...2.0.7) (2021-10-11)
### Added
- Add support for Kazakh (Cyrillic) language detection (PR #109)
### Changed
- Further, improve inferring the language from a given single-byte code page (PR #112)
- Vainly trying to leverage PEP263 when PEP3120 is not supported (PR #116)
- Refactoring for potential performance improvements in loops from [@adbar](https://github.com/adbar) (PR #113)
- Various detection improvement (MD+CD) (PR #117)
### Removed
- Remove redundant logging entry about detected language(s) (PR #115)
### Fixed
- Fix a minor inconsistency between Python 3.5 and other versions regarding language detection (PR #117 #102)
## [2.0.6](https://github.com/Ousret/charset_normalizer/compare/2.0.5...2.0.6) (2021-09-18)
### Fixed
- Unforeseen regression with the loss of the backward-compatibility with some older minor of Python 3.5.x (PR #100)
- Fix CLI crash when using --minimal output in certain cases (PR #103)
### Changed
- Minor improvement to the detection efficiency (less than 1%) (PR #106 #101)
## [2.0.5](https://github.com/Ousret/charset_normalizer/compare/2.0.4...2.0.5) (2021-09-14)
### Changed
- The project now comply with: flake8, mypy, isort and black to ensure a better overall quality (PR #81)
- The BC-support with v1.x was improved, the old staticmethods are restored (PR #82)
- The Unicode detection is slightly improved (PR #93)
- Add syntax sugar \_\_bool\_\_ for results CharsetMatches list-container (PR #91)
### Removed
- The project no longer raise warning on tiny content given for detection, will be simply logged as warning instead (PR #92)
### Fixed
- In some rare case, the chunks extractor could cut in the middle of a multi-byte character and could mislead the mess detection (PR #95)
- Some rare 'space' characters could trip up the UnprintablePlugin/Mess detection (PR #96)
- The MANIFEST.in was not exhaustive (PR #78)
## [2.0.4](https://github.com/Ousret/charset_normalizer/compare/2.0.3...2.0.4) (2021-07-30)
### Fixed
- The CLI no longer raise an unexpected exception when no encoding has been found (PR #70)
- Fix accessing the 'alphabets' property when the payload contains surrogate characters (PR #68)
- The logger could mislead (explain=True) on detected languages and the impact of one MBCS match (PR #72)
- Submatch factoring could be wrong in rare edge cases (PR #72)
- Multiple files given to the CLI were ignored when publishing results to STDOUT. (After the first path) (PR #72)
- Fix line endings from CRLF to LF for certain project files (PR #67)
### Changed
- Adjust the MD to lower the sensitivity, thus improving the global detection reliability (PR #69 #76)
- Allow fallback on specified encoding if any (PR #71)
## [2.0.3](https://github.com/Ousret/charset_normalizer/compare/2.0.2...2.0.3) (2021-07-16)
### Changed
- Part of the detection mechanism has been improved to be less sensitive, resulting in more accurate detection results. Especially ASCII. (PR #63)
- According to the community wishes, the detection will fall back on ASCII or UTF-8 in a last-resort case. (PR #64)
## [2.0.2](https://github.com/Ousret/charset_normalizer/compare/2.0.1...2.0.2) (2021-07-15)
### Fixed
- Empty/Too small JSON payload miss-detection fixed. Report from [@tseaver](https://github.com/tseaver) (PR #59)
### Changed
- Don't inject unicodedata2 into sys.modules from [@akx](https://github.com/akx) (PR #57)
## [2.0.1](https://github.com/Ousret/charset_normalizer/compare/2.0.0...2.0.1) (2021-07-13)
### Fixed
- Make it work where there isn't a filesystem available, dropping assets frequencies.json. Report from [@sethmlarson](https://github.com/sethmlarson). (PR #55)
- Using explain=False permanently disable the verbose output in the current runtime (PR #47)
- One log entry (language target preemptive) was not show in logs when using explain=True (PR #47)
- Fix undesired exception (ValueError) on getitem of instance CharsetMatches (PR #52)
### Changed
- Public function normalize default args values were not aligned with from_bytes (PR #53)
### Added
- You may now use charset aliases in cp_isolation and cp_exclusion arguments (PR #47)
## [2.0.0](https://github.com/Ousret/charset_normalizer/compare/1.4.1...2.0.0) (2021-07-02)
### Changed
- 4x to 5 times faster than the previous 1.4.0 release. At least 2x faster than Chardet.
- Accent has been made on UTF-8 detection, should perform rather instantaneous.
- The backward compatibility with Chardet has been greatly improved. The legacy detect function returns an identical charset name whenever possible.
- The detection mechanism has been slightly improved, now Turkish content is detected correctly (most of the time)
- The program has been rewritten to ease the readability and maintainability. (+Using static typing)+
- utf_7 detection has been reinstated.
### Removed
- This package no longer require anything when used with Python 3.5 (Dropped cached_property)
- Removed support for these languages: Catalan, Esperanto, Kazakh, Baque, Volapük, Azeri, Galician, Nynorsk, Macedonian, and Serbocroatian.
- The exception hook on UnicodeDecodeError has been removed.
### Deprecated
- Methods coherence_non_latin, w_counter, chaos_secondary_pass of the class CharsetMatch are now deprecated and scheduled for removal in v3.0
### Fixed
- The CLI output used the relative path of the file(s). Should be absolute.
## [1.4.1](https://github.com/Ousret/charset_normalizer/compare/1.4.0...1.4.1) (2021-05-28)
### Fixed
- Logger configuration/usage no longer conflict with others (PR #44)
## [1.4.0](https://github.com/Ousret/charset_normalizer/compare/1.3.9...1.4.0) (2021-05-21)
### Removed
- Using standard logging instead of using the package loguru.
- Dropping nose test framework in favor of the maintained pytest.
- Choose to not use dragonmapper package to help with gibberish Chinese/CJK text.
- Require cached_property only for Python 3.5 due to constraint. Dropping for every other interpreter version.
- Stop support for UTF-7 that does not contain a SIG.
- Dropping PrettyTable, replaced with pure JSON output in CLI.
### Fixed
- BOM marker in a CharsetNormalizerMatch instance could be False in rare cases even if obviously present. Due to the sub-match factoring process.
- Not searching properly for the BOM when trying utf32/16 parent codec.
### Changed
- Improving the package final size by compressing frequencies.json.
- Huge improvement over the larges payload.
### Added
- CLI now produces JSON consumable output.
- Return ASCII if given sequences fit. Given reasonable confidence.
## [1.3.9](https://github.com/Ousret/charset_normalizer/compare/1.3.8...1.3.9) (2021-05-13)
### Fixed
- In some very rare cases, you may end up getting encode/decode errors due to a bad bytes payload (PR #40)
## [1.3.8](https://github.com/Ousret/charset_normalizer/compare/1.3.7...1.3.8) (2021-05-12)
### Fixed
- Empty given payload for detection may cause an exception if trying to access the `alphabets` property. (PR #39)
## [1.3.7](https://github.com/Ousret/charset_normalizer/compare/1.3.6...1.3.7) (2021-05-12)
### Fixed
- The legacy detect function should return UTF-8-SIG if sig is present in the payload. (PR #38)
## [1.3.6](https://github.com/Ousret/charset_normalizer/compare/1.3.5...1.3.6) (2021-02-09)
### Changed
- Amend the previous release to allow prettytable 2.0 (PR #35)
## [1.3.5](https://github.com/Ousret/charset_normalizer/compare/1.3.4...1.3.5) (2021-02-08)
### Fixed
- Fix error while using the package with a python pre-release interpreter (PR #33)
### Changed
- Dependencies refactoring, constraints revised.
### Added
- Add python 3.9 and 3.10 to the supported interpreters
MIT License
Copyright (c) 2025 TAHRI Ahmed R.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,35 @@
../../Scripts/normalizer.exe,sha256=6LURIbN-kdHqv8hSJYrmFW0FHL93qqY-KGxccr1dRNo,108413
charset_normalizer-3.4.1.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
charset_normalizer-3.4.1.dist-info/LICENSE,sha256=GFd0hdNwTxpHne2OVzwJds_tMV_S_ReYP6mI2kwvcNE,1092
charset_normalizer-3.4.1.dist-info/METADATA,sha256=0_fAC3DknimRZusm6kkP4ylPD0JVzBq5mKHWLNBJM6w,36034
charset_normalizer-3.4.1.dist-info/RECORD,,
charset_normalizer-3.4.1.dist-info/WHEEL,sha256=nkBcd8Ko0v5sEcSagm2-x_RVrb8gBSkTa8VFFZ0Mr1o,101
charset_normalizer-3.4.1.dist-info/entry_points.txt,sha256=8C-Y3iXIfyXQ83Tpir2B8t-XLJYpxF5xbb38d_js-h4,65
charset_normalizer-3.4.1.dist-info/top_level.txt,sha256=7ASyzePr8_xuZWJsnqJjIBtyV8vhEo0wBCv1MPRRi3Q,19
charset_normalizer/__init__.py,sha256=0NT8MHi7SKq3juMqYfOdrkzjisK0L73lneNHH4qaUAs,1638
charset_normalizer/__main__.py,sha256=2sj_BS6H0sU25C1bMqz9DVwa6kOK9lchSEbSU-_iu7M,115
charset_normalizer/__pycache__/__init__.cpython-311.pyc,,
charset_normalizer/__pycache__/__main__.cpython-311.pyc,,
charset_normalizer/__pycache__/api.cpython-311.pyc,,
charset_normalizer/__pycache__/cd.cpython-311.pyc,,
charset_normalizer/__pycache__/constant.cpython-311.pyc,,
charset_normalizer/__pycache__/legacy.cpython-311.pyc,,
charset_normalizer/__pycache__/md.cpython-311.pyc,,
charset_normalizer/__pycache__/models.cpython-311.pyc,,
charset_normalizer/__pycache__/utils.cpython-311.pyc,,
charset_normalizer/__pycache__/version.cpython-311.pyc,,
charset_normalizer/api.py,sha256=2a0p2Gnhbdo9O6C04CNxTSN23fIbgOF20nxb0pWPNFM,23285
charset_normalizer/cd.py,sha256=uq8nVxRpR6Guc16ACvOWtL8KO3w7vYaCh8hHisuOyTg,12917
charset_normalizer/cli/__init__.py,sha256=d9MUx-1V_qD3x9igIy4JT4oC5CU0yjulk7QyZWeRFhg,144
charset_normalizer/cli/__main__.py,sha256=lZ89qRWun7FRxX0qm1GhK-m0DH0i048yiMAX1mVIuRg,10731
charset_normalizer/cli/__pycache__/__init__.cpython-311.pyc,,
charset_normalizer/cli/__pycache__/__main__.cpython-311.pyc,,
charset_normalizer/constant.py,sha256=7OKYi28cJjZxIcX3lQCwfK9ijoOgaVEbERww7SqqNSY,42475
charset_normalizer/legacy.py,sha256=v8An1aAQHUu036UWOhyIaDGkirZ0t4hfNVlyje5KInU,2394
charset_normalizer/md.cp311-win_amd64.pyd,sha256=4h9MQMKb4LEVRj57uKNllGpK_BUrn_9gKr1BxuDOaKI,10752
charset_normalizer/md.py,sha256=e452fhwIAguEUr3FJzG7QZvFgXI-dVLOh_M1ZUiFI6U,20666
charset_normalizer/md__mypyc.cp311-win_amd64.pyd,sha256=81AevOJCBfPcVBks2RfquaiZ_pNlcGUCU9TBRmOD7_E,121344
charset_normalizer/models.py,sha256=ZR2PE-fqf6dASZfqdE5Uhkmr0o1MciSdXOjuNqwkmvg,12754
charset_normalizer/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
charset_normalizer/utils.py,sha256=oH9Q3WcAMwmsSB7uM8uDozz9DXnkYecbkTNbdnMbgzI,12410
charset_normalizer/version.py,sha256=7_thI7FzRQxEsbtUYwrJs3FCFWF666mw74H8mggPRR0,123

View File

@ -0,0 +1,5 @@
Wheel-Version: 1.0
Generator: setuptools (75.6.0)
Root-Is-Purelib: false
Tag: cp311-cp311-win_amd64

View File

@ -0,0 +1,2 @@
[console_scripts]
normalizer = charset_normalizer:cli.cli_detect

View File

@ -0,0 +1 @@
charset_normalizer

View File

@ -0,0 +1,48 @@
"""
Charset-Normalizer
~~~~~~~~~~~~~~
The Real First Universal Charset Detector.
A library that helps you read text from an unknown charset encoding.
Motivated by chardet, This package is trying to resolve the issue by taking a new approach.
All IANA character set names for which the Python core library provides codecs are supported.
Basic usage:
>>> from charset_normalizer import from_bytes
>>> results = from_bytes('Bсеки човек има право на образование. Oбразованието!'.encode('utf_8'))
>>> best_guess = results.best()
>>> str(best_guess)
'Bсеки човек има право на образование. Oбразованието!'
Others methods and usages are available - see the full documentation
at <https://github.com/Ousret/charset_normalizer>.
:copyright: (c) 2021 by Ahmed TAHRI
:license: MIT, see LICENSE for more details.
"""
from __future__ import annotations
import logging
from .api import from_bytes, from_fp, from_path, is_binary
from .legacy import detect
from .models import CharsetMatch, CharsetMatches
from .utils import set_logging_handler
from .version import VERSION, __version__
__all__ = (
"from_fp",
"from_path",
"from_bytes",
"is_binary",
"detect",
"CharsetMatch",
"CharsetMatches",
"__version__",
"VERSION",
"set_logging_handler",
)
# Attach a NullHandler to the top level logger by default
# https://docs.python.org/3.3/howto/logging.html#configuring-logging-for-a-library
logging.getLogger("charset_normalizer").addHandler(logging.NullHandler())

View File

@ -0,0 +1,6 @@
from __future__ import annotations
from .cli import cli_detect
if __name__ == "__main__":
cli_detect()

View File

@ -0,0 +1,668 @@
from __future__ import annotations
import logging
from os import PathLike
from typing import BinaryIO
from .cd import (
coherence_ratio,
encoding_languages,
mb_encoding_languages,
merge_coherence_ratios,
)
from .constant import IANA_SUPPORTED, TOO_BIG_SEQUENCE, TOO_SMALL_SEQUENCE, TRACE
from .md import mess_ratio
from .models import CharsetMatch, CharsetMatches
from .utils import (
any_specified_encoding,
cut_sequence_chunks,
iana_name,
identify_sig_or_bom,
is_cp_similar,
is_multi_byte_encoding,
should_strip_sig_or_bom,
)
logger = logging.getLogger("charset_normalizer")
explain_handler = logging.StreamHandler()
explain_handler.setFormatter(
logging.Formatter("%(asctime)s | %(levelname)s | %(message)s")
)
def from_bytes(
sequences: bytes | bytearray,
steps: int = 5,
chunk_size: int = 512,
threshold: float = 0.2,
cp_isolation: list[str] | None = None,
cp_exclusion: list[str] | None = None,
preemptive_behaviour: bool = True,
explain: bool = False,
language_threshold: float = 0.1,
enable_fallback: bool = True,
) -> CharsetMatches:
"""
Given a raw bytes sequence, return the best possibles charset usable to render str objects.
If there is no results, it is a strong indicator that the source is binary/not text.
By default, the process will extract 5 blocks of 512o each to assess the mess and coherence of a given sequence.
And will give up a particular code page after 20% of measured mess. Those criteria are customizable at will.
The preemptive behavior DOES NOT replace the traditional detection workflow, it prioritize a particular code page
but never take it for granted. Can improve the performance.
You may want to focus your attention to some code page or/and not others, use cp_isolation and cp_exclusion for that
purpose.
This function will strip the SIG in the payload/sequence every time except on UTF-16, UTF-32.
By default the library does not setup any handler other than the NullHandler, if you choose to set the 'explain'
toggle to True it will alter the logger configuration to add a StreamHandler that is suitable for debugging.
Custom logging format and handler can be set manually.
"""
if not isinstance(sequences, (bytearray, bytes)):
raise TypeError(
"Expected object of type bytes or bytearray, got: {}".format(
type(sequences)
)
)
if explain:
previous_logger_level: int = logger.level
logger.addHandler(explain_handler)
logger.setLevel(TRACE)
length: int = len(sequences)
if length == 0:
logger.debug("Encoding detection on empty bytes, assuming utf_8 intention.")
if explain: # Defensive: ensure exit path clean handler
logger.removeHandler(explain_handler)
logger.setLevel(previous_logger_level or logging.WARNING)
return CharsetMatches([CharsetMatch(sequences, "utf_8", 0.0, False, [], "")])
if cp_isolation is not None:
logger.log(
TRACE,
"cp_isolation is set. use this flag for debugging purpose. "
"limited list of encoding allowed : %s.",
", ".join(cp_isolation),
)
cp_isolation = [iana_name(cp, False) for cp in cp_isolation]
else:
cp_isolation = []
if cp_exclusion is not None:
logger.log(
TRACE,
"cp_exclusion is set. use this flag for debugging purpose. "
"limited list of encoding excluded : %s.",
", ".join(cp_exclusion),
)
cp_exclusion = [iana_name(cp, False) for cp in cp_exclusion]
else:
cp_exclusion = []
if length <= (chunk_size * steps):
logger.log(
TRACE,
"override steps (%i) and chunk_size (%i) as content does not fit (%i byte(s) given) parameters.",
steps,
chunk_size,
length,
)
steps = 1
chunk_size = length
if steps > 1 and length / steps < chunk_size:
chunk_size = int(length / steps)
is_too_small_sequence: bool = len(sequences) < TOO_SMALL_SEQUENCE
is_too_large_sequence: bool = len(sequences) >= TOO_BIG_SEQUENCE
if is_too_small_sequence:
logger.log(
TRACE,
"Trying to detect encoding from a tiny portion of ({}) byte(s).".format(
length
),
)
elif is_too_large_sequence:
logger.log(
TRACE,
"Using lazy str decoding because the payload is quite large, ({}) byte(s).".format(
length
),
)
prioritized_encodings: list[str] = []
specified_encoding: str | None = (
any_specified_encoding(sequences) if preemptive_behaviour else None
)
if specified_encoding is not None:
prioritized_encodings.append(specified_encoding)
logger.log(
TRACE,
"Detected declarative mark in sequence. Priority +1 given for %s.",
specified_encoding,
)
tested: set[str] = set()
tested_but_hard_failure: list[str] = []
tested_but_soft_failure: list[str] = []
fallback_ascii: CharsetMatch | None = None
fallback_u8: CharsetMatch | None = None
fallback_specified: CharsetMatch | None = None
results: CharsetMatches = CharsetMatches()
early_stop_results: CharsetMatches = CharsetMatches()
sig_encoding, sig_payload = identify_sig_or_bom(sequences)
if sig_encoding is not None:
prioritized_encodings.append(sig_encoding)
logger.log(
TRACE,
"Detected a SIG or BOM mark on first %i byte(s). Priority +1 given for %s.",
len(sig_payload),
sig_encoding,
)
prioritized_encodings.append("ascii")
if "utf_8" not in prioritized_encodings:
prioritized_encodings.append("utf_8")
for encoding_iana in prioritized_encodings + IANA_SUPPORTED:
if cp_isolation and encoding_iana not in cp_isolation:
continue
if cp_exclusion and encoding_iana in cp_exclusion:
continue
if encoding_iana in tested:
continue
tested.add(encoding_iana)
decoded_payload: str | None = None
bom_or_sig_available: bool = sig_encoding == encoding_iana
strip_sig_or_bom: bool = bom_or_sig_available and should_strip_sig_or_bom(
encoding_iana
)
if encoding_iana in {"utf_16", "utf_32"} and not bom_or_sig_available:
logger.log(
TRACE,
"Encoding %s won't be tested as-is because it require a BOM. Will try some sub-encoder LE/BE.",
encoding_iana,
)
continue
if encoding_iana in {"utf_7"} and not bom_or_sig_available:
logger.log(
TRACE,
"Encoding %s won't be tested as-is because detection is unreliable without BOM/SIG.",
encoding_iana,
)
continue
try:
is_multi_byte_decoder: bool = is_multi_byte_encoding(encoding_iana)
except (ModuleNotFoundError, ImportError):
logger.log(
TRACE,
"Encoding %s does not provide an IncrementalDecoder",
encoding_iana,
)
continue
try:
if is_too_large_sequence and is_multi_byte_decoder is False:
str(
(
sequences[: int(50e4)]
if strip_sig_or_bom is False
else sequences[len(sig_payload) : int(50e4)]
),
encoding=encoding_iana,
)
else:
decoded_payload = str(
(
sequences
if strip_sig_or_bom is False
else sequences[len(sig_payload) :]
),
encoding=encoding_iana,
)
except (UnicodeDecodeError, LookupError) as e:
if not isinstance(e, LookupError):
logger.log(
TRACE,
"Code page %s does not fit given bytes sequence at ALL. %s",
encoding_iana,
str(e),
)
tested_but_hard_failure.append(encoding_iana)
continue
similar_soft_failure_test: bool = False
for encoding_soft_failed in tested_but_soft_failure:
if is_cp_similar(encoding_iana, encoding_soft_failed):
similar_soft_failure_test = True
break
if similar_soft_failure_test:
logger.log(
TRACE,
"%s is deemed too similar to code page %s and was consider unsuited already. Continuing!",
encoding_iana,
encoding_soft_failed,
)
continue
r_ = range(
0 if not bom_or_sig_available else len(sig_payload),
length,
int(length / steps),
)
multi_byte_bonus: bool = (
is_multi_byte_decoder
and decoded_payload is not None
and len(decoded_payload) < length
)
if multi_byte_bonus:
logger.log(
TRACE,
"Code page %s is a multi byte encoding table and it appear that at least one character "
"was encoded using n-bytes.",
encoding_iana,
)
max_chunk_gave_up: int = int(len(r_) / 4)
max_chunk_gave_up = max(max_chunk_gave_up, 2)
early_stop_count: int = 0
lazy_str_hard_failure = False
md_chunks: list[str] = []
md_ratios = []
try:
for chunk in cut_sequence_chunks(
sequences,
encoding_iana,
r_,
chunk_size,
bom_or_sig_available,
strip_sig_or_bom,
sig_payload,
is_multi_byte_decoder,
decoded_payload,
):
md_chunks.append(chunk)
md_ratios.append(
mess_ratio(
chunk,
threshold,
explain is True and 1 <= len(cp_isolation) <= 2,
)
)
if md_ratios[-1] >= threshold:
early_stop_count += 1
if (early_stop_count >= max_chunk_gave_up) or (
bom_or_sig_available and strip_sig_or_bom is False
):
break
except (
UnicodeDecodeError
) as e: # Lazy str loading may have missed something there
logger.log(
TRACE,
"LazyStr Loading: After MD chunk decode, code page %s does not fit given bytes sequence at ALL. %s",
encoding_iana,
str(e),
)
early_stop_count = max_chunk_gave_up
lazy_str_hard_failure = True
# We might want to check the sequence again with the whole content
# Only if initial MD tests passes
if (
not lazy_str_hard_failure
and is_too_large_sequence
and not is_multi_byte_decoder
):
try:
sequences[int(50e3) :].decode(encoding_iana, errors="strict")
except UnicodeDecodeError as e:
logger.log(
TRACE,
"LazyStr Loading: After final lookup, code page %s does not fit given bytes sequence at ALL. %s",
encoding_iana,
str(e),
)
tested_but_hard_failure.append(encoding_iana)
continue
mean_mess_ratio: float = sum(md_ratios) / len(md_ratios) if md_ratios else 0.0
if mean_mess_ratio >= threshold or early_stop_count >= max_chunk_gave_up:
tested_but_soft_failure.append(encoding_iana)
logger.log(
TRACE,
"%s was excluded because of initial chaos probing. Gave up %i time(s). "
"Computed mean chaos is %f %%.",
encoding_iana,
early_stop_count,
round(mean_mess_ratio * 100, ndigits=3),
)
# Preparing those fallbacks in case we got nothing.
if (
enable_fallback
and encoding_iana in ["ascii", "utf_8", specified_encoding]
and not lazy_str_hard_failure
):
fallback_entry = CharsetMatch(
sequences,
encoding_iana,
threshold,
False,
[],
decoded_payload,
preemptive_declaration=specified_encoding,
)
if encoding_iana == specified_encoding:
fallback_specified = fallback_entry
elif encoding_iana == "ascii":
fallback_ascii = fallback_entry
else:
fallback_u8 = fallback_entry
continue
logger.log(
TRACE,
"%s passed initial chaos probing. Mean measured chaos is %f %%",
encoding_iana,
round(mean_mess_ratio * 100, ndigits=3),
)
if not is_multi_byte_decoder:
target_languages: list[str] = encoding_languages(encoding_iana)
else:
target_languages = mb_encoding_languages(encoding_iana)
if target_languages:
logger.log(
TRACE,
"{} should target any language(s) of {}".format(
encoding_iana, str(target_languages)
),
)
cd_ratios = []
# We shall skip the CD when its about ASCII
# Most of the time its not relevant to run "language-detection" on it.
if encoding_iana != "ascii":
for chunk in md_chunks:
chunk_languages = coherence_ratio(
chunk,
language_threshold,
",".join(target_languages) if target_languages else None,
)
cd_ratios.append(chunk_languages)
cd_ratios_merged = merge_coherence_ratios(cd_ratios)
if cd_ratios_merged:
logger.log(
TRACE,
"We detected language {} using {}".format(
cd_ratios_merged, encoding_iana
),
)
current_match = CharsetMatch(
sequences,
encoding_iana,
mean_mess_ratio,
bom_or_sig_available,
cd_ratios_merged,
(
decoded_payload
if (
is_too_large_sequence is False
or encoding_iana in [specified_encoding, "ascii", "utf_8"]
)
else None
),
preemptive_declaration=specified_encoding,
)
results.append(current_match)
if (
encoding_iana in [specified_encoding, "ascii", "utf_8"]
and mean_mess_ratio < 0.1
):
# If md says nothing to worry about, then... stop immediately!
if mean_mess_ratio == 0.0:
logger.debug(
"Encoding detection: %s is most likely the one.",
current_match.encoding,
)
if explain: # Defensive: ensure exit path clean handler
logger.removeHandler(explain_handler)
logger.setLevel(previous_logger_level)
return CharsetMatches([current_match])
early_stop_results.append(current_match)
if (
len(early_stop_results)
and (specified_encoding is None or specified_encoding in tested)
and "ascii" in tested
and "utf_8" in tested
):
probable_result: CharsetMatch = early_stop_results.best() # type: ignore[assignment]
logger.debug(
"Encoding detection: %s is most likely the one.",
probable_result.encoding,
)
if explain: # Defensive: ensure exit path clean handler
logger.removeHandler(explain_handler)
logger.setLevel(previous_logger_level)
return CharsetMatches([probable_result])
if encoding_iana == sig_encoding:
logger.debug(
"Encoding detection: %s is most likely the one as we detected a BOM or SIG within "
"the beginning of the sequence.",
encoding_iana,
)
if explain: # Defensive: ensure exit path clean handler
logger.removeHandler(explain_handler)
logger.setLevel(previous_logger_level)
return CharsetMatches([results[encoding_iana]])
if len(results) == 0:
if fallback_u8 or fallback_ascii or fallback_specified:
logger.log(
TRACE,
"Nothing got out of the detection process. Using ASCII/UTF-8/Specified fallback.",
)
if fallback_specified:
logger.debug(
"Encoding detection: %s will be used as a fallback match",
fallback_specified.encoding,
)
results.append(fallback_specified)
elif (
(fallback_u8 and fallback_ascii is None)
or (
fallback_u8
and fallback_ascii
and fallback_u8.fingerprint != fallback_ascii.fingerprint
)
or (fallback_u8 is not None)
):
logger.debug("Encoding detection: utf_8 will be used as a fallback match")
results.append(fallback_u8)
elif fallback_ascii:
logger.debug("Encoding detection: ascii will be used as a fallback match")
results.append(fallback_ascii)
if results:
logger.debug(
"Encoding detection: Found %s as plausible (best-candidate) for content. With %i alternatives.",
results.best().encoding, # type: ignore
len(results) - 1,
)
else:
logger.debug("Encoding detection: Unable to determine any suitable charset.")
if explain:
logger.removeHandler(explain_handler)
logger.setLevel(previous_logger_level)
return results
def from_fp(
fp: BinaryIO,
steps: int = 5,
chunk_size: int = 512,
threshold: float = 0.20,
cp_isolation: list[str] | None = None,
cp_exclusion: list[str] | None = None,
preemptive_behaviour: bool = True,
explain: bool = False,
language_threshold: float = 0.1,
enable_fallback: bool = True,
) -> CharsetMatches:
"""
Same thing than the function from_bytes but using a file pointer that is already ready.
Will not close the file pointer.
"""
return from_bytes(
fp.read(),
steps,
chunk_size,
threshold,
cp_isolation,
cp_exclusion,
preemptive_behaviour,
explain,
language_threshold,
enable_fallback,
)
def from_path(
path: str | bytes | PathLike, # type: ignore[type-arg]
steps: int = 5,
chunk_size: int = 512,
threshold: float = 0.20,
cp_isolation: list[str] | None = None,
cp_exclusion: list[str] | None = None,
preemptive_behaviour: bool = True,
explain: bool = False,
language_threshold: float = 0.1,
enable_fallback: bool = True,
) -> CharsetMatches:
"""
Same thing than the function from_bytes but with one extra step. Opening and reading given file path in binary mode.
Can raise IOError.
"""
with open(path, "rb") as fp:
return from_fp(
fp,
steps,
chunk_size,
threshold,
cp_isolation,
cp_exclusion,
preemptive_behaviour,
explain,
language_threshold,
enable_fallback,
)
def is_binary(
fp_or_path_or_payload: PathLike | str | BinaryIO | bytes, # type: ignore[type-arg]
steps: int = 5,
chunk_size: int = 512,
threshold: float = 0.20,
cp_isolation: list[str] | None = None,
cp_exclusion: list[str] | None = None,
preemptive_behaviour: bool = True,
explain: bool = False,
language_threshold: float = 0.1,
enable_fallback: bool = False,
) -> bool:
"""
Detect if the given input (file, bytes, or path) points to a binary file. aka. not a string.
Based on the same main heuristic algorithms and default kwargs at the sole exception that fallbacks match
are disabled to be stricter around ASCII-compatible but unlikely to be a string.
"""
if isinstance(fp_or_path_or_payload, (str, PathLike)):
guesses = from_path(
fp_or_path_or_payload,
steps=steps,
chunk_size=chunk_size,
threshold=threshold,
cp_isolation=cp_isolation,
cp_exclusion=cp_exclusion,
preemptive_behaviour=preemptive_behaviour,
explain=explain,
language_threshold=language_threshold,
enable_fallback=enable_fallback,
)
elif isinstance(
fp_or_path_or_payload,
(
bytes,
bytearray,
),
):
guesses = from_bytes(
fp_or_path_or_payload,
steps=steps,
chunk_size=chunk_size,
threshold=threshold,
cp_isolation=cp_isolation,
cp_exclusion=cp_exclusion,
preemptive_behaviour=preemptive_behaviour,
explain=explain,
language_threshold=language_threshold,
enable_fallback=enable_fallback,
)
else:
guesses = from_fp(
fp_or_path_or_payload,
steps=steps,
chunk_size=chunk_size,
threshold=threshold,
cp_isolation=cp_isolation,
cp_exclusion=cp_exclusion,
preemptive_behaviour=preemptive_behaviour,
explain=explain,
language_threshold=language_threshold,
enable_fallback=enable_fallback,
)
return not guesses

View File

@ -0,0 +1,395 @@
from __future__ import annotations
import importlib
from codecs import IncrementalDecoder
from collections import Counter
from functools import lru_cache
from typing import Counter as TypeCounter
from .constant import (
FREQUENCIES,
KO_NAMES,
LANGUAGE_SUPPORTED_COUNT,
TOO_SMALL_SEQUENCE,
ZH_NAMES,
)
from .md import is_suspiciously_successive_range
from .models import CoherenceMatches
from .utils import (
is_accentuated,
is_latin,
is_multi_byte_encoding,
is_unicode_range_secondary,
unicode_range,
)
def encoding_unicode_range(iana_name: str) -> list[str]:
"""
Return associated unicode ranges in a single byte code page.
"""
if is_multi_byte_encoding(iana_name):
raise OSError("Function not supported on multi-byte code page")
decoder = importlib.import_module(f"encodings.{iana_name}").IncrementalDecoder
p: IncrementalDecoder = decoder(errors="ignore")
seen_ranges: dict[str, int] = {}
character_count: int = 0
for i in range(0x40, 0xFF):
chunk: str = p.decode(bytes([i]))
if chunk:
character_range: str | None = unicode_range(chunk)
if character_range is None:
continue
if is_unicode_range_secondary(character_range) is False:
if character_range not in seen_ranges:
seen_ranges[character_range] = 0
seen_ranges[character_range] += 1
character_count += 1
return sorted(
[
character_range
for character_range in seen_ranges
if seen_ranges[character_range] / character_count >= 0.15
]
)
def unicode_range_languages(primary_range: str) -> list[str]:
"""
Return inferred languages used with a unicode range.
"""
languages: list[str] = []
for language, characters in FREQUENCIES.items():
for character in characters:
if unicode_range(character) == primary_range:
languages.append(language)
break
return languages
@lru_cache()
def encoding_languages(iana_name: str) -> list[str]:
"""
Single-byte encoding language association. Some code page are heavily linked to particular language(s).
This function does the correspondence.
"""
unicode_ranges: list[str] = encoding_unicode_range(iana_name)
primary_range: str | None = None
for specified_range in unicode_ranges:
if "Latin" not in specified_range:
primary_range = specified_range
break
if primary_range is None:
return ["Latin Based"]
return unicode_range_languages(primary_range)
@lru_cache()
def mb_encoding_languages(iana_name: str) -> list[str]:
"""
Multi-byte encoding language association. Some code page are heavily linked to particular language(s).
This function does the correspondence.
"""
if (
iana_name.startswith("shift_")
or iana_name.startswith("iso2022_jp")
or iana_name.startswith("euc_j")
or iana_name == "cp932"
):
return ["Japanese"]
if iana_name.startswith("gb") or iana_name in ZH_NAMES:
return ["Chinese"]
if iana_name.startswith("iso2022_kr") or iana_name in KO_NAMES:
return ["Korean"]
return []
@lru_cache(maxsize=LANGUAGE_SUPPORTED_COUNT)
def get_target_features(language: str) -> tuple[bool, bool]:
"""
Determine main aspects from a supported language if it contains accents and if is pure Latin.
"""
target_have_accents: bool = False
target_pure_latin: bool = True
for character in FREQUENCIES[language]:
if not target_have_accents and is_accentuated(character):
target_have_accents = True
if target_pure_latin and is_latin(character) is False:
target_pure_latin = False
return target_have_accents, target_pure_latin
def alphabet_languages(
characters: list[str], ignore_non_latin: bool = False
) -> list[str]:
"""
Return associated languages associated to given characters.
"""
languages: list[tuple[str, float]] = []
source_have_accents = any(is_accentuated(character) for character in characters)
for language, language_characters in FREQUENCIES.items():
target_have_accents, target_pure_latin = get_target_features(language)
if ignore_non_latin and target_pure_latin is False:
continue
if target_have_accents is False and source_have_accents:
continue
character_count: int = len(language_characters)
character_match_count: int = len(
[c for c in language_characters if c in characters]
)
ratio: float = character_match_count / character_count
if ratio >= 0.2:
languages.append((language, ratio))
languages = sorted(languages, key=lambda x: x[1], reverse=True)
return [compatible_language[0] for compatible_language in languages]
def characters_popularity_compare(
language: str, ordered_characters: list[str]
) -> float:
"""
Determine if a ordered characters list (by occurrence from most appearance to rarest) match a particular language.
The result is a ratio between 0. (absolutely no correspondence) and 1. (near perfect fit).
Beware that is function is not strict on the match in order to ease the detection. (Meaning close match is 1.)
"""
if language not in FREQUENCIES:
raise ValueError(f"{language} not available")
character_approved_count: int = 0
FREQUENCIES_language_set = set(FREQUENCIES[language])
ordered_characters_count: int = len(ordered_characters)
target_language_characters_count: int = len(FREQUENCIES[language])
large_alphabet: bool = target_language_characters_count > 26
for character, character_rank in zip(
ordered_characters, range(0, ordered_characters_count)
):
if character not in FREQUENCIES_language_set:
continue
character_rank_in_language: int = FREQUENCIES[language].index(character)
expected_projection_ratio: float = (
target_language_characters_count / ordered_characters_count
)
character_rank_projection: int = int(character_rank * expected_projection_ratio)
if (
large_alphabet is False
and abs(character_rank_projection - character_rank_in_language) > 4
):
continue
if (
large_alphabet is True
and abs(character_rank_projection - character_rank_in_language)
< target_language_characters_count / 3
):
character_approved_count += 1
continue
characters_before_source: list[str] = FREQUENCIES[language][
0:character_rank_in_language
]
characters_after_source: list[str] = FREQUENCIES[language][
character_rank_in_language:
]
characters_before: list[str] = ordered_characters[0:character_rank]
characters_after: list[str] = ordered_characters[character_rank:]
before_match_count: int = len(
set(characters_before) & set(characters_before_source)
)
after_match_count: int = len(
set(characters_after) & set(characters_after_source)
)
if len(characters_before_source) == 0 and before_match_count <= 4:
character_approved_count += 1
continue
if len(characters_after_source) == 0 and after_match_count <= 4:
character_approved_count += 1
continue
if (
before_match_count / len(characters_before_source) >= 0.4
or after_match_count / len(characters_after_source) >= 0.4
):
character_approved_count += 1
continue
return character_approved_count / len(ordered_characters)
def alpha_unicode_split(decoded_sequence: str) -> list[str]:
"""
Given a decoded text sequence, return a list of str. Unicode range / alphabet separation.
Ex. a text containing English/Latin with a bit a Hebrew will return two items in the resulting list;
One containing the latin letters and the other hebrew.
"""
layers: dict[str, str] = {}
for character in decoded_sequence:
if character.isalpha() is False:
continue
character_range: str | None = unicode_range(character)
if character_range is None:
continue
layer_target_range: str | None = None
for discovered_range in layers:
if (
is_suspiciously_successive_range(discovered_range, character_range)
is False
):
layer_target_range = discovered_range
break
if layer_target_range is None:
layer_target_range = character_range
if layer_target_range not in layers:
layers[layer_target_range] = character.lower()
continue
layers[layer_target_range] += character.lower()
return list(layers.values())
def merge_coherence_ratios(results: list[CoherenceMatches]) -> CoherenceMatches:
"""
This function merge results previously given by the function coherence_ratio.
The return type is the same as coherence_ratio.
"""
per_language_ratios: dict[str, list[float]] = {}
for result in results:
for sub_result in result:
language, ratio = sub_result
if language not in per_language_ratios:
per_language_ratios[language] = [ratio]
continue
per_language_ratios[language].append(ratio)
merge = [
(
language,
round(
sum(per_language_ratios[language]) / len(per_language_ratios[language]),
4,
),
)
for language in per_language_ratios
]
return sorted(merge, key=lambda x: x[1], reverse=True)
def filter_alt_coherence_matches(results: CoherenceMatches) -> CoherenceMatches:
"""
We shall NOT return "English—" in CoherenceMatches because it is an alternative
of "English". This function only keeps the best match and remove the em-dash in it.
"""
index_results: dict[str, list[float]] = dict()
for result in results:
language, ratio = result
no_em_name: str = language.replace("", "")
if no_em_name not in index_results:
index_results[no_em_name] = []
index_results[no_em_name].append(ratio)
if any(len(index_results[e]) > 1 for e in index_results):
filtered_results: CoherenceMatches = []
for language in index_results:
filtered_results.append((language, max(index_results[language])))
return filtered_results
return results
@lru_cache(maxsize=2048)
def coherence_ratio(
decoded_sequence: str, threshold: float = 0.1, lg_inclusion: str | None = None
) -> CoherenceMatches:
"""
Detect ANY language that can be identified in given sequence. The sequence will be analysed by layers.
A layer = Character extraction by alphabets/ranges.
"""
results: list[tuple[str, float]] = []
ignore_non_latin: bool = False
sufficient_match_count: int = 0
lg_inclusion_list = lg_inclusion.split(",") if lg_inclusion is not None else []
if "Latin Based" in lg_inclusion_list:
ignore_non_latin = True
lg_inclusion_list.remove("Latin Based")
for layer in alpha_unicode_split(decoded_sequence):
sequence_frequencies: TypeCounter[str] = Counter(layer)
most_common = sequence_frequencies.most_common()
character_count: int = sum(o for c, o in most_common)
if character_count <= TOO_SMALL_SEQUENCE:
continue
popular_character_ordered: list[str] = [c for c, o in most_common]
for language in lg_inclusion_list or alphabet_languages(
popular_character_ordered, ignore_non_latin
):
ratio: float = characters_popularity_compare(
language, popular_character_ordered
)
if ratio < threshold:
continue
elif ratio >= 0.8:
sufficient_match_count += 1
results.append((language, round(ratio, 4)))
if sufficient_match_count >= 3:
break
return sorted(
filter_alt_coherence_matches(results), key=lambda x: x[1], reverse=True
)

View File

@ -0,0 +1,8 @@
from __future__ import annotations
from .__main__ import cli_detect, query_yes_no
__all__ = (
"cli_detect",
"query_yes_no",
)

View File

@ -0,0 +1,321 @@
from __future__ import annotations
import argparse
import sys
from json import dumps
from os.path import abspath, basename, dirname, join, realpath
from platform import python_version
from unicodedata import unidata_version
import charset_normalizer.md as md_module
from charset_normalizer import from_fp
from charset_normalizer.models import CliDetectionResult
from charset_normalizer.version import __version__
def query_yes_no(question: str, default: str = "yes") -> bool:
"""Ask a yes/no question via input() and return their answer.
"question" is a string that is presented to the user.
"default" is the presumed answer if the user just hits <Enter>.
It must be "yes" (the default), "no" or None (meaning
an answer is required of the user).
The "answer" return value is True for "yes" or False for "no".
Credit goes to (c) https://stackoverflow.com/questions/3041986/apt-command-line-interface-like-yes-no-input
"""
valid = {"yes": True, "y": True, "ye": True, "no": False, "n": False}
if default is None:
prompt = " [y/n] "
elif default == "yes":
prompt = " [Y/n] "
elif default == "no":
prompt = " [y/N] "
else:
raise ValueError("invalid default answer: '%s'" % default)
while True:
sys.stdout.write(question + prompt)
choice = input().lower()
if default is not None and choice == "":
return valid[default]
elif choice in valid:
return valid[choice]
else:
sys.stdout.write("Please respond with 'yes' or 'no' " "(or 'y' or 'n').\n")
def cli_detect(argv: list[str] | None = None) -> int:
"""
CLI assistant using ARGV and ArgumentParser
:param argv:
:return: 0 if everything is fine, anything else equal trouble
"""
parser = argparse.ArgumentParser(
description="The Real First Universal Charset Detector. "
"Discover originating encoding used on text file. "
"Normalize text to unicode."
)
parser.add_argument(
"files", type=argparse.FileType("rb"), nargs="+", help="File(s) to be analysed"
)
parser.add_argument(
"-v",
"--verbose",
action="store_true",
default=False,
dest="verbose",
help="Display complementary information about file if any. "
"Stdout will contain logs about the detection process.",
)
parser.add_argument(
"-a",
"--with-alternative",
action="store_true",
default=False,
dest="alternatives",
help="Output complementary possibilities if any. Top-level JSON WILL be a list.",
)
parser.add_argument(
"-n",
"--normalize",
action="store_true",
default=False,
dest="normalize",
help="Permit to normalize input file. If not set, program does not write anything.",
)
parser.add_argument(
"-m",
"--minimal",
action="store_true",
default=False,
dest="minimal",
help="Only output the charset detected to STDOUT. Disabling JSON output.",
)
parser.add_argument(
"-r",
"--replace",
action="store_true",
default=False,
dest="replace",
help="Replace file when trying to normalize it instead of creating a new one.",
)
parser.add_argument(
"-f",
"--force",
action="store_true",
default=False,
dest="force",
help="Replace file without asking if you are sure, use this flag with caution.",
)
parser.add_argument(
"-i",
"--no-preemptive",
action="store_true",
default=False,
dest="no_preemptive",
help="Disable looking at a charset declaration to hint the detector.",
)
parser.add_argument(
"-t",
"--threshold",
action="store",
default=0.2,
type=float,
dest="threshold",
help="Define a custom maximum amount of noise allowed in decoded content. 0. <= noise <= 1.",
)
parser.add_argument(
"--version",
action="version",
version="Charset-Normalizer {} - Python {} - Unicode {} - SpeedUp {}".format(
__version__,
python_version(),
unidata_version,
"OFF" if md_module.__file__.lower().endswith(".py") else "ON",
),
help="Show version information and exit.",
)
args = parser.parse_args(argv)
if args.replace is True and args.normalize is False:
if args.files:
for my_file in args.files:
my_file.close()
print("Use --replace in addition of --normalize only.", file=sys.stderr)
return 1
if args.force is True and args.replace is False:
if args.files:
for my_file in args.files:
my_file.close()
print("Use --force in addition of --replace only.", file=sys.stderr)
return 1
if args.threshold < 0.0 or args.threshold > 1.0:
if args.files:
for my_file in args.files:
my_file.close()
print("--threshold VALUE should be between 0. AND 1.", file=sys.stderr)
return 1
x_ = []
for my_file in args.files:
matches = from_fp(
my_file,
threshold=args.threshold,
explain=args.verbose,
preemptive_behaviour=args.no_preemptive is False,
)
best_guess = matches.best()
if best_guess is None:
print(
'Unable to identify originating encoding for "{}". {}'.format(
my_file.name,
(
"Maybe try increasing maximum amount of chaos."
if args.threshold < 1.0
else ""
),
),
file=sys.stderr,
)
x_.append(
CliDetectionResult(
abspath(my_file.name),
None,
[],
[],
"Unknown",
[],
False,
1.0,
0.0,
None,
True,
)
)
else:
x_.append(
CliDetectionResult(
abspath(my_file.name),
best_guess.encoding,
best_guess.encoding_aliases,
[
cp
for cp in best_guess.could_be_from_charset
if cp != best_guess.encoding
],
best_guess.language,
best_guess.alphabets,
best_guess.bom,
best_guess.percent_chaos,
best_guess.percent_coherence,
None,
True,
)
)
if len(matches) > 1 and args.alternatives:
for el in matches:
if el != best_guess:
x_.append(
CliDetectionResult(
abspath(my_file.name),
el.encoding,
el.encoding_aliases,
[
cp
for cp in el.could_be_from_charset
if cp != el.encoding
],
el.language,
el.alphabets,
el.bom,
el.percent_chaos,
el.percent_coherence,
None,
False,
)
)
if args.normalize is True:
if best_guess.encoding.startswith("utf") is True:
print(
'"{}" file does not need to be normalized, as it already came from unicode.'.format(
my_file.name
),
file=sys.stderr,
)
if my_file.closed is False:
my_file.close()
continue
dir_path = dirname(realpath(my_file.name))
file_name = basename(realpath(my_file.name))
o_: list[str] = file_name.split(".")
if args.replace is False:
o_.insert(-1, best_guess.encoding)
if my_file.closed is False:
my_file.close()
elif (
args.force is False
and query_yes_no(
'Are you sure to normalize "{}" by replacing it ?'.format(
my_file.name
),
"no",
)
is False
):
if my_file.closed is False:
my_file.close()
continue
try:
x_[0].unicode_path = join(dir_path, ".".join(o_))
with open(x_[0].unicode_path, "wb") as fp:
fp.write(best_guess.output())
except OSError as e:
print(str(e), file=sys.stderr)
if my_file.closed is False:
my_file.close()
return 2
if my_file.closed is False:
my_file.close()
if args.minimal is False:
print(
dumps(
[el.__dict__ for el in x_] if len(x_) > 1 else x_[0].__dict__,
ensure_ascii=True,
indent=4,
)
)
else:
for my_file in args.files:
print(
", ".join(
[
el.encoding or "undefined"
for el in x_
if el.path == abspath(my_file.name)
]
)
)
return 0
if __name__ == "__main__":
cli_detect()

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,66 @@
from __future__ import annotations
from typing import TYPE_CHECKING, Any
from warnings import warn
from .api import from_bytes
from .constant import CHARDET_CORRESPONDENCE
# TODO: remove this check when dropping Python 3.7 support
if TYPE_CHECKING:
from typing_extensions import TypedDict
class ResultDict(TypedDict):
encoding: str | None
language: str
confidence: float | None
def detect(
byte_str: bytes, should_rename_legacy: bool = False, **kwargs: Any
) -> ResultDict:
"""
chardet legacy method
Detect the encoding of the given byte string. It should be mostly backward-compatible.
Encoding name will match Chardet own writing whenever possible. (Not on encoding name unsupported by it)
This function is deprecated and should be used to migrate your project easily, consult the documentation for
further information. Not planned for removal.
:param byte_str: The byte sequence to examine.
:param should_rename_legacy: Should we rename legacy encodings
to their more modern equivalents?
"""
if len(kwargs):
warn(
f"charset-normalizer disregard arguments '{','.join(list(kwargs.keys()))}' in legacy function detect()"
)
if not isinstance(byte_str, (bytearray, bytes)):
raise TypeError( # pragma: nocover
"Expected object of type bytes or bytearray, got: " "{}".format(
type(byte_str)
)
)
if isinstance(byte_str, bytearray):
byte_str = bytes(byte_str)
r = from_bytes(byte_str).best()
encoding = r.encoding if r is not None else None
language = r.language if r is not None and r.language != "Unknown" else ""
confidence = 1.0 - r.chaos if r is not None else None
# Note: CharsetNormalizer does not return 'UTF-8-SIG' as the sig get stripped in the detection/normalization process
# but chardet does return 'utf-8-sig' and it is a valid codec name.
if r is not None and encoding == "utf_8" and r.bom:
encoding += "_sig"
if should_rename_legacy is False and encoding in CHARDET_CORRESPONDENCE:
encoding = CHARDET_CORRESPONDENCE[encoding]
return {
"encoding": encoding,
"language": language,
"confidence": confidence,
}

View File

@ -0,0 +1,630 @@
from __future__ import annotations
from functools import lru_cache
from logging import getLogger
from .constant import (
COMMON_SAFE_ASCII_CHARACTERS,
TRACE,
UNICODE_SECONDARY_RANGE_KEYWORD,
)
from .utils import (
is_accentuated,
is_arabic,
is_arabic_isolated_form,
is_case_variable,
is_cjk,
is_emoticon,
is_hangul,
is_hiragana,
is_katakana,
is_latin,
is_punctuation,
is_separator,
is_symbol,
is_thai,
is_unprintable,
remove_accent,
unicode_range,
)
class MessDetectorPlugin:
"""
Base abstract class used for mess detection plugins.
All detectors MUST extend and implement given methods.
"""
def eligible(self, character: str) -> bool:
"""
Determine if given character should be fed in.
"""
raise NotImplementedError # pragma: nocover
def feed(self, character: str) -> None:
"""
The main routine to be executed upon character.
Insert the logic in witch the text would be considered chaotic.
"""
raise NotImplementedError # pragma: nocover
def reset(self) -> None: # pragma: no cover
"""
Permit to reset the plugin to the initial state.
"""
raise NotImplementedError
@property
def ratio(self) -> float:
"""
Compute the chaos ratio based on what your feed() has seen.
Must NOT be lower than 0.; No restriction gt 0.
"""
raise NotImplementedError # pragma: nocover
class TooManySymbolOrPunctuationPlugin(MessDetectorPlugin):
def __init__(self) -> None:
self._punctuation_count: int = 0
self._symbol_count: int = 0
self._character_count: int = 0
self._last_printable_char: str | None = None
self._frenzy_symbol_in_word: bool = False
def eligible(self, character: str) -> bool:
return character.isprintable()
def feed(self, character: str) -> None:
self._character_count += 1
if (
character != self._last_printable_char
and character not in COMMON_SAFE_ASCII_CHARACTERS
):
if is_punctuation(character):
self._punctuation_count += 1
elif (
character.isdigit() is False
and is_symbol(character)
and is_emoticon(character) is False
):
self._symbol_count += 2
self._last_printable_char = character
def reset(self) -> None: # Abstract
self._punctuation_count = 0
self._character_count = 0
self._symbol_count = 0
@property
def ratio(self) -> float:
if self._character_count == 0:
return 0.0
ratio_of_punctuation: float = (
self._punctuation_count + self._symbol_count
) / self._character_count
return ratio_of_punctuation if ratio_of_punctuation >= 0.3 else 0.0
class TooManyAccentuatedPlugin(MessDetectorPlugin):
def __init__(self) -> None:
self._character_count: int = 0
self._accentuated_count: int = 0
def eligible(self, character: str) -> bool:
return character.isalpha()
def feed(self, character: str) -> None:
self._character_count += 1
if is_accentuated(character):
self._accentuated_count += 1
def reset(self) -> None: # Abstract
self._character_count = 0
self._accentuated_count = 0
@property
def ratio(self) -> float:
if self._character_count < 8:
return 0.0
ratio_of_accentuation: float = self._accentuated_count / self._character_count
return ratio_of_accentuation if ratio_of_accentuation >= 0.35 else 0.0
class UnprintablePlugin(MessDetectorPlugin):
def __init__(self) -> None:
self._unprintable_count: int = 0
self._character_count: int = 0
def eligible(self, character: str) -> bool:
return True
def feed(self, character: str) -> None:
if is_unprintable(character):
self._unprintable_count += 1
self._character_count += 1
def reset(self) -> None: # Abstract
self._unprintable_count = 0
@property
def ratio(self) -> float:
if self._character_count == 0:
return 0.0
return (self._unprintable_count * 8) / self._character_count
class SuspiciousDuplicateAccentPlugin(MessDetectorPlugin):
def __init__(self) -> None:
self._successive_count: int = 0
self._character_count: int = 0
self._last_latin_character: str | None = None
def eligible(self, character: str) -> bool:
return character.isalpha() and is_latin(character)
def feed(self, character: str) -> None:
self._character_count += 1
if (
self._last_latin_character is not None
and is_accentuated(character)
and is_accentuated(self._last_latin_character)
):
if character.isupper() and self._last_latin_character.isupper():
self._successive_count += 1
# Worse if its the same char duplicated with different accent.
if remove_accent(character) == remove_accent(self._last_latin_character):
self._successive_count += 1
self._last_latin_character = character
def reset(self) -> None: # Abstract
self._successive_count = 0
self._character_count = 0
self._last_latin_character = None
@property
def ratio(self) -> float:
if self._character_count == 0:
return 0.0
return (self._successive_count * 2) / self._character_count
class SuspiciousRange(MessDetectorPlugin):
def __init__(self) -> None:
self._suspicious_successive_range_count: int = 0
self._character_count: int = 0
self._last_printable_seen: str | None = None
def eligible(self, character: str) -> bool:
return character.isprintable()
def feed(self, character: str) -> None:
self._character_count += 1
if (
character.isspace()
or is_punctuation(character)
or character in COMMON_SAFE_ASCII_CHARACTERS
):
self._last_printable_seen = None
return
if self._last_printable_seen is None:
self._last_printable_seen = character
return
unicode_range_a: str | None = unicode_range(self._last_printable_seen)
unicode_range_b: str | None = unicode_range(character)
if is_suspiciously_successive_range(unicode_range_a, unicode_range_b):
self._suspicious_successive_range_count += 1
self._last_printable_seen = character
def reset(self) -> None: # Abstract
self._character_count = 0
self._suspicious_successive_range_count = 0
self._last_printable_seen = None
@property
def ratio(self) -> float:
if self._character_count <= 13:
return 0.0
ratio_of_suspicious_range_usage: float = (
self._suspicious_successive_range_count * 2
) / self._character_count
return ratio_of_suspicious_range_usage
class SuperWeirdWordPlugin(MessDetectorPlugin):
def __init__(self) -> None:
self._word_count: int = 0
self._bad_word_count: int = 0
self._foreign_long_count: int = 0
self._is_current_word_bad: bool = False
self._foreign_long_watch: bool = False
self._character_count: int = 0
self._bad_character_count: int = 0
self._buffer: str = ""
self._buffer_accent_count: int = 0
self._buffer_glyph_count: int = 0
def eligible(self, character: str) -> bool:
return True
def feed(self, character: str) -> None:
if character.isalpha():
self._buffer += character
if is_accentuated(character):
self._buffer_accent_count += 1
if (
self._foreign_long_watch is False
and (is_latin(character) is False or is_accentuated(character))
and is_cjk(character) is False
and is_hangul(character) is False
and is_katakana(character) is False
and is_hiragana(character) is False
and is_thai(character) is False
):
self._foreign_long_watch = True
if (
is_cjk(character)
or is_hangul(character)
or is_katakana(character)
or is_hiragana(character)
or is_thai(character)
):
self._buffer_glyph_count += 1
return
if not self._buffer:
return
if (
character.isspace() or is_punctuation(character) or is_separator(character)
) and self._buffer:
self._word_count += 1
buffer_length: int = len(self._buffer)
self._character_count += buffer_length
if buffer_length >= 4:
if self._buffer_accent_count / buffer_length >= 0.5:
self._is_current_word_bad = True
# Word/Buffer ending with an upper case accentuated letter are so rare,
# that we will consider them all as suspicious. Same weight as foreign_long suspicious.
elif (
is_accentuated(self._buffer[-1])
and self._buffer[-1].isupper()
and all(_.isupper() for _ in self._buffer) is False
):
self._foreign_long_count += 1
self._is_current_word_bad = True
elif self._buffer_glyph_count == 1:
self._is_current_word_bad = True
self._foreign_long_count += 1
if buffer_length >= 24 and self._foreign_long_watch:
camel_case_dst = [
i
for c, i in zip(self._buffer, range(0, buffer_length))
if c.isupper()
]
probable_camel_cased: bool = False
if camel_case_dst and (len(camel_case_dst) / buffer_length <= 0.3):
probable_camel_cased = True
if not probable_camel_cased:
self._foreign_long_count += 1
self._is_current_word_bad = True
if self._is_current_word_bad:
self._bad_word_count += 1
self._bad_character_count += len(self._buffer)
self._is_current_word_bad = False
self._foreign_long_watch = False
self._buffer = ""
self._buffer_accent_count = 0
self._buffer_glyph_count = 0
elif (
character not in {"<", ">", "-", "=", "~", "|", "_"}
and character.isdigit() is False
and is_symbol(character)
):
self._is_current_word_bad = True
self._buffer += character
def reset(self) -> None: # Abstract
self._buffer = ""
self._is_current_word_bad = False
self._foreign_long_watch = False
self._bad_word_count = 0
self._word_count = 0
self._character_count = 0
self._bad_character_count = 0
self._foreign_long_count = 0
@property
def ratio(self) -> float:
if self._word_count <= 10 and self._foreign_long_count == 0:
return 0.0
return self._bad_character_count / self._character_count
class CjkInvalidStopPlugin(MessDetectorPlugin):
"""
GB(Chinese) based encoding often render the stop incorrectly when the content does not fit and
can be easily detected. Searching for the overuse of '' and ''.
"""
def __init__(self) -> None:
self._wrong_stop_count: int = 0
self._cjk_character_count: int = 0
def eligible(self, character: str) -> bool:
return True
def feed(self, character: str) -> None:
if character in {"", ""}:
self._wrong_stop_count += 1
return
if is_cjk(character):
self._cjk_character_count += 1
def reset(self) -> None: # Abstract
self._wrong_stop_count = 0
self._cjk_character_count = 0
@property
def ratio(self) -> float:
if self._cjk_character_count < 16:
return 0.0
return self._wrong_stop_count / self._cjk_character_count
class ArchaicUpperLowerPlugin(MessDetectorPlugin):
def __init__(self) -> None:
self._buf: bool = False
self._character_count_since_last_sep: int = 0
self._successive_upper_lower_count: int = 0
self._successive_upper_lower_count_final: int = 0
self._character_count: int = 0
self._last_alpha_seen: str | None = None
self._current_ascii_only: bool = True
def eligible(self, character: str) -> bool:
return True
def feed(self, character: str) -> None:
is_concerned = character.isalpha() and is_case_variable(character)
chunk_sep = is_concerned is False
if chunk_sep and self._character_count_since_last_sep > 0:
if (
self._character_count_since_last_sep <= 64
and character.isdigit() is False
and self._current_ascii_only is False
):
self._successive_upper_lower_count_final += (
self._successive_upper_lower_count
)
self._successive_upper_lower_count = 0
self._character_count_since_last_sep = 0
self._last_alpha_seen = None
self._buf = False
self._character_count += 1
self._current_ascii_only = True
return
if self._current_ascii_only is True and character.isascii() is False:
self._current_ascii_only = False
if self._last_alpha_seen is not None:
if (character.isupper() and self._last_alpha_seen.islower()) or (
character.islower() and self._last_alpha_seen.isupper()
):
if self._buf is True:
self._successive_upper_lower_count += 2
self._buf = False
else:
self._buf = True
else:
self._buf = False
self._character_count += 1
self._character_count_since_last_sep += 1
self._last_alpha_seen = character
def reset(self) -> None: # Abstract
self._character_count = 0
self._character_count_since_last_sep = 0
self._successive_upper_lower_count = 0
self._successive_upper_lower_count_final = 0
self._last_alpha_seen = None
self._buf = False
self._current_ascii_only = True
@property
def ratio(self) -> float:
if self._character_count == 0:
return 0.0
return self._successive_upper_lower_count_final / self._character_count
class ArabicIsolatedFormPlugin(MessDetectorPlugin):
def __init__(self) -> None:
self._character_count: int = 0
self._isolated_form_count: int = 0
def reset(self) -> None: # Abstract
self._character_count = 0
self._isolated_form_count = 0
def eligible(self, character: str) -> bool:
return is_arabic(character)
def feed(self, character: str) -> None:
self._character_count += 1
if is_arabic_isolated_form(character):
self._isolated_form_count += 1
@property
def ratio(self) -> float:
if self._character_count < 8:
return 0.0
isolated_form_usage: float = self._isolated_form_count / self._character_count
return isolated_form_usage
@lru_cache(maxsize=1024)
def is_suspiciously_successive_range(
unicode_range_a: str | None, unicode_range_b: str | None
) -> bool:
"""
Determine if two Unicode range seen next to each other can be considered as suspicious.
"""
if unicode_range_a is None or unicode_range_b is None:
return True
if unicode_range_a == unicode_range_b:
return False
if "Latin" in unicode_range_a and "Latin" in unicode_range_b:
return False
if "Emoticons" in unicode_range_a or "Emoticons" in unicode_range_b:
return False
# Latin characters can be accompanied with a combining diacritical mark
# eg. Vietnamese.
if ("Latin" in unicode_range_a or "Latin" in unicode_range_b) and (
"Combining" in unicode_range_a or "Combining" in unicode_range_b
):
return False
keywords_range_a, keywords_range_b = (
unicode_range_a.split(" "),
unicode_range_b.split(" "),
)
for el in keywords_range_a:
if el in UNICODE_SECONDARY_RANGE_KEYWORD:
continue
if el in keywords_range_b:
return False
# Japanese Exception
range_a_jp_chars, range_b_jp_chars = (
unicode_range_a
in (
"Hiragana",
"Katakana",
),
unicode_range_b in ("Hiragana", "Katakana"),
)
if (range_a_jp_chars or range_b_jp_chars) and (
"CJK" in unicode_range_a or "CJK" in unicode_range_b
):
return False
if range_a_jp_chars and range_b_jp_chars:
return False
if "Hangul" in unicode_range_a or "Hangul" in unicode_range_b:
if "CJK" in unicode_range_a or "CJK" in unicode_range_b:
return False
if unicode_range_a == "Basic Latin" or unicode_range_b == "Basic Latin":
return False
# Chinese/Japanese use dedicated range for punctuation and/or separators.
if ("CJK" in unicode_range_a or "CJK" in unicode_range_b) or (
unicode_range_a in ["Katakana", "Hiragana"]
and unicode_range_b in ["Katakana", "Hiragana"]
):
if "Punctuation" in unicode_range_a or "Punctuation" in unicode_range_b:
return False
if "Forms" in unicode_range_a or "Forms" in unicode_range_b:
return False
if unicode_range_a == "Basic Latin" or unicode_range_b == "Basic Latin":
return False
return True
@lru_cache(maxsize=2048)
def mess_ratio(
decoded_sequence: str, maximum_threshold: float = 0.2, debug: bool = False
) -> float:
"""
Compute a mess ratio given a decoded bytes sequence. The maximum threshold does stop the computation earlier.
"""
detectors: list[MessDetectorPlugin] = [
md_class() for md_class in MessDetectorPlugin.__subclasses__()
]
length: int = len(decoded_sequence) + 1
mean_mess_ratio: float = 0.0
if length < 512:
intermediary_mean_mess_ratio_calc: int = 32
elif length <= 1024:
intermediary_mean_mess_ratio_calc = 64
else:
intermediary_mean_mess_ratio_calc = 128
for character, index in zip(decoded_sequence + "\n", range(length)):
for detector in detectors:
if detector.eligible(character):
detector.feed(character)
if (
index > 0 and index % intermediary_mean_mess_ratio_calc == 0
) or index == length - 1:
mean_mess_ratio = sum(dt.ratio for dt in detectors)
if mean_mess_ratio >= maximum_threshold:
break
if debug:
logger = getLogger("charset_normalizer")
logger.log(
TRACE,
"Mess-detector extended-analysis start. "
f"intermediary_mean_mess_ratio_calc={intermediary_mean_mess_ratio_calc} mean_mess_ratio={mean_mess_ratio} "
f"maximum_threshold={maximum_threshold}",
)
if len(decoded_sequence) > 16:
logger.log(TRACE, f"Starting with: {decoded_sequence[:16]}")
logger.log(TRACE, f"Ending with: {decoded_sequence[-16::]}")
for dt in detectors:
logger.log(TRACE, f"{dt.__class__}: {dt.ratio}")
return round(mean_mess_ratio, 3)

View File

@ -0,0 +1,360 @@
from __future__ import annotations
from encodings.aliases import aliases
from hashlib import sha256
from json import dumps
from re import sub
from typing import Any, Iterator, List, Tuple
from .constant import RE_POSSIBLE_ENCODING_INDICATION, TOO_BIG_SEQUENCE
from .utils import iana_name, is_multi_byte_encoding, unicode_range
class CharsetMatch:
def __init__(
self,
payload: bytes,
guessed_encoding: str,
mean_mess_ratio: float,
has_sig_or_bom: bool,
languages: CoherenceMatches,
decoded_payload: str | None = None,
preemptive_declaration: str | None = None,
):
self._payload: bytes = payload
self._encoding: str = guessed_encoding
self._mean_mess_ratio: float = mean_mess_ratio
self._languages: CoherenceMatches = languages
self._has_sig_or_bom: bool = has_sig_or_bom
self._unicode_ranges: list[str] | None = None
self._leaves: list[CharsetMatch] = []
self._mean_coherence_ratio: float = 0.0
self._output_payload: bytes | None = None
self._output_encoding: str | None = None
self._string: str | None = decoded_payload
self._preemptive_declaration: str | None = preemptive_declaration
def __eq__(self, other: object) -> bool:
if not isinstance(other, CharsetMatch):
if isinstance(other, str):
return iana_name(other) == self.encoding
return False
return self.encoding == other.encoding and self.fingerprint == other.fingerprint
def __lt__(self, other: object) -> bool:
"""
Implemented to make sorted available upon CharsetMatches items.
"""
if not isinstance(other, CharsetMatch):
raise ValueError
chaos_difference: float = abs(self.chaos - other.chaos)
coherence_difference: float = abs(self.coherence - other.coherence)
# Below 1% difference --> Use Coherence
if chaos_difference < 0.01 and coherence_difference > 0.02:
return self.coherence > other.coherence
elif chaos_difference < 0.01 and coherence_difference <= 0.02:
# When having a difficult decision, use the result that decoded as many multi-byte as possible.
# preserve RAM usage!
if len(self._payload) >= TOO_BIG_SEQUENCE:
return self.chaos < other.chaos
return self.multi_byte_usage > other.multi_byte_usage
return self.chaos < other.chaos
@property
def multi_byte_usage(self) -> float:
return 1.0 - (len(str(self)) / len(self.raw))
def __str__(self) -> str:
# Lazy Str Loading
if self._string is None:
self._string = str(self._payload, self._encoding, "strict")
return self._string
def __repr__(self) -> str:
return f"<CharsetMatch '{self.encoding}' bytes({self.fingerprint})>"
def add_submatch(self, other: CharsetMatch) -> None:
if not isinstance(other, CharsetMatch) or other == self:
raise ValueError(
"Unable to add instance <{}> as a submatch of a CharsetMatch".format(
other.__class__
)
)
other._string = None # Unload RAM usage; dirty trick.
self._leaves.append(other)
@property
def encoding(self) -> str:
return self._encoding
@property
def encoding_aliases(self) -> list[str]:
"""
Encoding name are known by many name, using this could help when searching for IBM855 when it's listed as CP855.
"""
also_known_as: list[str] = []
for u, p in aliases.items():
if self.encoding == u:
also_known_as.append(p)
elif self.encoding == p:
also_known_as.append(u)
return also_known_as
@property
def bom(self) -> bool:
return self._has_sig_or_bom
@property
def byte_order_mark(self) -> bool:
return self._has_sig_or_bom
@property
def languages(self) -> list[str]:
"""
Return the complete list of possible languages found in decoded sequence.
Usually not really useful. Returned list may be empty even if 'language' property return something != 'Unknown'.
"""
return [e[0] for e in self._languages]
@property
def language(self) -> str:
"""
Most probable language found in decoded sequence. If none were detected or inferred, the property will return
"Unknown".
"""
if not self._languages:
# Trying to infer the language based on the given encoding
# Its either English or we should not pronounce ourselves in certain cases.
if "ascii" in self.could_be_from_charset:
return "English"
# doing it there to avoid circular import
from charset_normalizer.cd import encoding_languages, mb_encoding_languages
languages = (
mb_encoding_languages(self.encoding)
if is_multi_byte_encoding(self.encoding)
else encoding_languages(self.encoding)
)
if len(languages) == 0 or "Latin Based" in languages:
return "Unknown"
return languages[0]
return self._languages[0][0]
@property
def chaos(self) -> float:
return self._mean_mess_ratio
@property
def coherence(self) -> float:
if not self._languages:
return 0.0
return self._languages[0][1]
@property
def percent_chaos(self) -> float:
return round(self.chaos * 100, ndigits=3)
@property
def percent_coherence(self) -> float:
return round(self.coherence * 100, ndigits=3)
@property
def raw(self) -> bytes:
"""
Original untouched bytes.
"""
return self._payload
@property
def submatch(self) -> list[CharsetMatch]:
return self._leaves
@property
def has_submatch(self) -> bool:
return len(self._leaves) > 0
@property
def alphabets(self) -> list[str]:
if self._unicode_ranges is not None:
return self._unicode_ranges
# list detected ranges
detected_ranges: list[str | None] = [unicode_range(char) for char in str(self)]
# filter and sort
self._unicode_ranges = sorted(list({r for r in detected_ranges if r}))
return self._unicode_ranges
@property
def could_be_from_charset(self) -> list[str]:
"""
The complete list of encoding that output the exact SAME str result and therefore could be the originating
encoding.
This list does include the encoding available in property 'encoding'.
"""
return [self._encoding] + [m.encoding for m in self._leaves]
def output(self, encoding: str = "utf_8") -> bytes:
"""
Method to get re-encoded bytes payload using given target encoding. Default to UTF-8.
Any errors will be simply ignored by the encoder NOT replaced.
"""
if self._output_encoding is None or self._output_encoding != encoding:
self._output_encoding = encoding
decoded_string = str(self)
if (
self._preemptive_declaration is not None
and self._preemptive_declaration.lower()
not in ["utf-8", "utf8", "utf_8"]
):
patched_header = sub(
RE_POSSIBLE_ENCODING_INDICATION,
lambda m: m.string[m.span()[0] : m.span()[1]].replace(
m.groups()[0],
iana_name(self._output_encoding).replace("_", "-"), # type: ignore[arg-type]
),
decoded_string[:8192],
count=1,
)
decoded_string = patched_header + decoded_string[8192:]
self._output_payload = decoded_string.encode(encoding, "replace")
return self._output_payload # type: ignore
@property
def fingerprint(self) -> str:
"""
Retrieve the unique SHA256 computed using the transformed (re-encoded) payload. Not the original one.
"""
return sha256(self.output()).hexdigest()
class CharsetMatches:
"""
Container with every CharsetMatch items ordered by default from most probable to the less one.
Act like a list(iterable) but does not implements all related methods.
"""
def __init__(self, results: list[CharsetMatch] | None = None):
self._results: list[CharsetMatch] = sorted(results) if results else []
def __iter__(self) -> Iterator[CharsetMatch]:
yield from self._results
def __getitem__(self, item: int | str) -> CharsetMatch:
"""
Retrieve a single item either by its position or encoding name (alias may be used here).
Raise KeyError upon invalid index or encoding not present in results.
"""
if isinstance(item, int):
return self._results[item]
if isinstance(item, str):
item = iana_name(item, False)
for result in self._results:
if item in result.could_be_from_charset:
return result
raise KeyError
def __len__(self) -> int:
return len(self._results)
def __bool__(self) -> bool:
return len(self._results) > 0
def append(self, item: CharsetMatch) -> None:
"""
Insert a single match. Will be inserted accordingly to preserve sort.
Can be inserted as a submatch.
"""
if not isinstance(item, CharsetMatch):
raise ValueError(
"Cannot append instance '{}' to CharsetMatches".format(
str(item.__class__)
)
)
# We should disable the submatch factoring when the input file is too heavy (conserve RAM usage)
if len(item.raw) < TOO_BIG_SEQUENCE:
for match in self._results:
if match.fingerprint == item.fingerprint and match.chaos == item.chaos:
match.add_submatch(item)
return
self._results.append(item)
self._results = sorted(self._results)
def best(self) -> CharsetMatch | None:
"""
Simply return the first match. Strict equivalent to matches[0].
"""
if not self._results:
return None
return self._results[0]
def first(self) -> CharsetMatch | None:
"""
Redundant method, call the method best(). Kept for BC reasons.
"""
return self.best()
CoherenceMatch = Tuple[str, float]
CoherenceMatches = List[CoherenceMatch]
class CliDetectionResult:
def __init__(
self,
path: str,
encoding: str | None,
encoding_aliases: list[str],
alternative_encodings: list[str],
language: str,
alphabets: list[str],
has_sig_or_bom: bool,
chaos: float,
coherence: float,
unicode_path: str | None,
is_preferred: bool,
):
self.path: str = path
self.unicode_path: str | None = unicode_path
self.encoding: str | None = encoding
self.encoding_aliases: list[str] = encoding_aliases
self.alternative_encodings: list[str] = alternative_encodings
self.language: str = language
self.alphabets: list[str] = alphabets
self.has_sig_or_bom: bool = has_sig_or_bom
self.chaos: float = chaos
self.coherence: float = coherence
self.is_preferred: bool = is_preferred
@property
def __dict__(self) -> dict[str, Any]: # type: ignore
return {
"path": self.path,
"encoding": self.encoding,
"encoding_aliases": self.encoding_aliases,
"alternative_encodings": self.alternative_encodings,
"language": self.language,
"alphabets": self.alphabets,
"has_sig_or_bom": self.has_sig_or_bom,
"chaos": self.chaos,
"coherence": self.coherence,
"unicode_path": self.unicode_path,
"is_preferred": self.is_preferred,
}
def to_json(self) -> str:
return dumps(self.__dict__, ensure_ascii=True, indent=4)

View File

@ -0,0 +1,408 @@
from __future__ import annotations
import importlib
import logging
import unicodedata
from codecs import IncrementalDecoder
from encodings.aliases import aliases
from functools import lru_cache
from re import findall
from typing import Generator
from _multibytecodec import ( # type: ignore[import-not-found,import]
MultibyteIncrementalDecoder,
)
from .constant import (
ENCODING_MARKS,
IANA_SUPPORTED_SIMILAR,
RE_POSSIBLE_ENCODING_INDICATION,
UNICODE_RANGES_COMBINED,
UNICODE_SECONDARY_RANGE_KEYWORD,
UTF8_MAXIMAL_ALLOCATION,
)
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_accentuated(character: str) -> bool:
try:
description: str = unicodedata.name(character)
except ValueError: # Defensive: unicode database outdated?
return False
return (
"WITH GRAVE" in description
or "WITH ACUTE" in description
or "WITH CEDILLA" in description
or "WITH DIAERESIS" in description
or "WITH CIRCUMFLEX" in description
or "WITH TILDE" in description
or "WITH MACRON" in description
or "WITH RING ABOVE" in description
)
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def remove_accent(character: str) -> str:
decomposed: str = unicodedata.decomposition(character)
if not decomposed:
return character
codes: list[str] = decomposed.split(" ")
return chr(int(codes[0], 16))
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def unicode_range(character: str) -> str | None:
"""
Retrieve the Unicode range official name from a single character.
"""
character_ord: int = ord(character)
for range_name, ord_range in UNICODE_RANGES_COMBINED.items():
if character_ord in ord_range:
return range_name
return None
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_latin(character: str) -> bool:
try:
description: str = unicodedata.name(character)
except ValueError: # Defensive: unicode database outdated?
return False
return "LATIN" in description
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_punctuation(character: str) -> bool:
character_category: str = unicodedata.category(character)
if "P" in character_category:
return True
character_range: str | None = unicode_range(character)
if character_range is None:
return False
return "Punctuation" in character_range
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_symbol(character: str) -> bool:
character_category: str = unicodedata.category(character)
if "S" in character_category or "N" in character_category:
return True
character_range: str | None = unicode_range(character)
if character_range is None:
return False
return "Forms" in character_range and character_category != "Lo"
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_emoticon(character: str) -> bool:
character_range: str | None = unicode_range(character)
if character_range is None:
return False
return "Emoticons" in character_range or "Pictographs" in character_range
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_separator(character: str) -> bool:
if character.isspace() or character in {"", "+", "<", ">"}:
return True
character_category: str = unicodedata.category(character)
return "Z" in character_category or character_category in {"Po", "Pd", "Pc"}
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_case_variable(character: str) -> bool:
return character.islower() != character.isupper()
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_cjk(character: str) -> bool:
try:
character_name = unicodedata.name(character)
except ValueError: # Defensive: unicode database outdated?
return False
return "CJK" in character_name
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_hiragana(character: str) -> bool:
try:
character_name = unicodedata.name(character)
except ValueError: # Defensive: unicode database outdated?
return False
return "HIRAGANA" in character_name
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_katakana(character: str) -> bool:
try:
character_name = unicodedata.name(character)
except ValueError: # Defensive: unicode database outdated?
return False
return "KATAKANA" in character_name
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_hangul(character: str) -> bool:
try:
character_name = unicodedata.name(character)
except ValueError: # Defensive: unicode database outdated?
return False
return "HANGUL" in character_name
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_thai(character: str) -> bool:
try:
character_name = unicodedata.name(character)
except ValueError: # Defensive: unicode database outdated?
return False
return "THAI" in character_name
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_arabic(character: str) -> bool:
try:
character_name = unicodedata.name(character)
except ValueError: # Defensive: unicode database outdated?
return False
return "ARABIC" in character_name
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_arabic_isolated_form(character: str) -> bool:
try:
character_name = unicodedata.name(character)
except ValueError: # Defensive: unicode database outdated?
return False
return "ARABIC" in character_name and "ISOLATED FORM" in character_name
@lru_cache(maxsize=len(UNICODE_RANGES_COMBINED))
def is_unicode_range_secondary(range_name: str) -> bool:
return any(keyword in range_name for keyword in UNICODE_SECONDARY_RANGE_KEYWORD)
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
def is_unprintable(character: str) -> bool:
return (
character.isspace() is False # includes \n \t \r \v
and character.isprintable() is False
and character != "\x1a" # Why? Its the ASCII substitute character.
and character != "\ufeff" # bug discovered in Python,
# Zero Width No-Break Space located in Arabic Presentation Forms-B, Unicode 1.1 not acknowledged as space.
)
def any_specified_encoding(sequence: bytes, search_zone: int = 8192) -> str | None:
"""
Extract using ASCII-only decoder any specified encoding in the first n-bytes.
"""
if not isinstance(sequence, bytes):
raise TypeError
seq_len: int = len(sequence)
results: list[str] = findall(
RE_POSSIBLE_ENCODING_INDICATION,
sequence[: min(seq_len, search_zone)].decode("ascii", errors="ignore"),
)
if len(results) == 0:
return None
for specified_encoding in results:
specified_encoding = specified_encoding.lower().replace("-", "_")
encoding_alias: str
encoding_iana: str
for encoding_alias, encoding_iana in aliases.items():
if encoding_alias == specified_encoding:
return encoding_iana
if encoding_iana == specified_encoding:
return encoding_iana
return None
@lru_cache(maxsize=128)
def is_multi_byte_encoding(name: str) -> bool:
"""
Verify is a specific encoding is a multi byte one based on it IANA name
"""
return name in {
"utf_8",
"utf_8_sig",
"utf_16",
"utf_16_be",
"utf_16_le",
"utf_32",
"utf_32_le",
"utf_32_be",
"utf_7",
} or issubclass(
importlib.import_module(f"encodings.{name}").IncrementalDecoder,
MultibyteIncrementalDecoder,
)
def identify_sig_or_bom(sequence: bytes) -> tuple[str | None, bytes]:
"""
Identify and extract SIG/BOM in given sequence.
"""
for iana_encoding in ENCODING_MARKS:
marks: bytes | list[bytes] = ENCODING_MARKS[iana_encoding]
if isinstance(marks, bytes):
marks = [marks]
for mark in marks:
if sequence.startswith(mark):
return iana_encoding, mark
return None, b""
def should_strip_sig_or_bom(iana_encoding: str) -> bool:
return iana_encoding not in {"utf_16", "utf_32"}
def iana_name(cp_name: str, strict: bool = True) -> str:
"""Returns the Python normalized encoding name (Not the IANA official name)."""
cp_name = cp_name.lower().replace("-", "_")
encoding_alias: str
encoding_iana: str
for encoding_alias, encoding_iana in aliases.items():
if cp_name in [encoding_alias, encoding_iana]:
return encoding_iana
if strict:
raise ValueError(f"Unable to retrieve IANA for '{cp_name}'")
return cp_name
def cp_similarity(iana_name_a: str, iana_name_b: str) -> float:
if is_multi_byte_encoding(iana_name_a) or is_multi_byte_encoding(iana_name_b):
return 0.0
decoder_a = importlib.import_module(f"encodings.{iana_name_a}").IncrementalDecoder
decoder_b = importlib.import_module(f"encodings.{iana_name_b}").IncrementalDecoder
id_a: IncrementalDecoder = decoder_a(errors="ignore")
id_b: IncrementalDecoder = decoder_b(errors="ignore")
character_match_count: int = 0
for i in range(255):
to_be_decoded: bytes = bytes([i])
if id_a.decode(to_be_decoded) == id_b.decode(to_be_decoded):
character_match_count += 1
return character_match_count / 254
def is_cp_similar(iana_name_a: str, iana_name_b: str) -> bool:
"""
Determine if two code page are at least 80% similar. IANA_SUPPORTED_SIMILAR dict was generated using
the function cp_similarity.
"""
return (
iana_name_a in IANA_SUPPORTED_SIMILAR
and iana_name_b in IANA_SUPPORTED_SIMILAR[iana_name_a]
)
def set_logging_handler(
name: str = "charset_normalizer",
level: int = logging.INFO,
format_string: str = "%(asctime)s | %(levelname)s | %(message)s",
) -> None:
logger = logging.getLogger(name)
logger.setLevel(level)
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter(format_string))
logger.addHandler(handler)
def cut_sequence_chunks(
sequences: bytes,
encoding_iana: str,
offsets: range,
chunk_size: int,
bom_or_sig_available: bool,
strip_sig_or_bom: bool,
sig_payload: bytes,
is_multi_byte_decoder: bool,
decoded_payload: str | None = None,
) -> Generator[str, None, None]:
if decoded_payload and is_multi_byte_decoder is False:
for i in offsets:
chunk = decoded_payload[i : i + chunk_size]
if not chunk:
break
yield chunk
else:
for i in offsets:
chunk_end = i + chunk_size
if chunk_end > len(sequences) + 8:
continue
cut_sequence = sequences[i : i + chunk_size]
if bom_or_sig_available and strip_sig_or_bom is False:
cut_sequence = sig_payload + cut_sequence
chunk = cut_sequence.decode(
encoding_iana,
errors="ignore" if is_multi_byte_decoder else "strict",
)
# multi-byte bad cutting detector and adjustment
# not the cleanest way to perform that fix but clever enough for now.
if is_multi_byte_decoder and i > 0:
chunk_partial_size_chk: int = min(chunk_size, 16)
if (
decoded_payload
and chunk[:chunk_partial_size_chk] not in decoded_payload
):
for j in range(i, i - 4, -1):
cut_sequence = sequences[j:chunk_end]
if bom_or_sig_available and strip_sig_or_bom is False:
cut_sequence = sig_payload + cut_sequence
chunk = cut_sequence.decode(encoding_iana, errors="ignore")
if chunk[:chunk_partial_size_chk] in decoded_payload:
break
yield chunk

View File

@ -0,0 +1,8 @@
"""
Expose version
"""
from __future__ import annotations
__version__ = "3.4.1"
VERSION = __version__.split(".")

View File

@ -0,0 +1 @@
import os; var = 'SETUPTOOLS_USE_DISTUTILS'; enabled = os.environ.get(var, 'local') == 'local'; enabled and __import__('_distutils_hack').add_shim();

View File

@ -0,0 +1 @@
pip

View File

@ -0,0 +1,31 @@
BSD 3-Clause License
Copyright (c) 2013-2024, Kim Davies and contributors.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -0,0 +1,250 @@
Metadata-Version: 2.1
Name: idna
Version: 3.10
Summary: Internationalized Domain Names in Applications (IDNA)
Author-email: Kim Davies <kim+pypi@gumleaf.org>
Requires-Python: >=3.6
Description-Content-Type: text/x-rst
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: System Administrators
Classifier: License :: OSI Approved :: BSD License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Programming Language :: Python :: 3.13
Classifier: Programming Language :: Python :: Implementation :: CPython
Classifier: Programming Language :: Python :: Implementation :: PyPy
Classifier: Topic :: Internet :: Name Service (DNS)
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Classifier: Topic :: Utilities
Requires-Dist: ruff >= 0.6.2 ; extra == "all"
Requires-Dist: mypy >= 1.11.2 ; extra == "all"
Requires-Dist: pytest >= 8.3.2 ; extra == "all"
Requires-Dist: flake8 >= 7.1.1 ; extra == "all"
Project-URL: Changelog, https://github.com/kjd/idna/blob/master/HISTORY.rst
Project-URL: Issue tracker, https://github.com/kjd/idna/issues
Project-URL: Source, https://github.com/kjd/idna
Provides-Extra: all
Internationalized Domain Names in Applications (IDNA)
=====================================================
Support for the Internationalized Domain Names in
Applications (IDNA) protocol as specified in `RFC 5891
<https://tools.ietf.org/html/rfc5891>`_. This is the latest version of
the protocol and is sometimes referred to as “IDNA 2008”.
This library also provides support for Unicode Technical
Standard 46, `Unicode IDNA Compatibility Processing
<https://unicode.org/reports/tr46/>`_.
This acts as a suitable replacement for the “encodings.idna”
module that comes with the Python standard library, but which
only supports the older superseded IDNA specification (`RFC 3490
<https://tools.ietf.org/html/rfc3490>`_).
Basic functions are simply executed:
.. code-block:: pycon
>>> import idna
>>> idna.encode('ドメイン.テスト')
b'xn--eckwd4c7c.xn--zckzah'
>>> print(idna.decode('xn--eckwd4c7c.xn--zckzah'))
ドメイン.テスト
Installation
------------
This package is available for installation from PyPI:
.. code-block:: bash
$ python3 -m pip install idna
Usage
-----
For typical usage, the ``encode`` and ``decode`` functions will take a
domain name argument and perform a conversion to A-labels or U-labels
respectively.
.. code-block:: pycon
>>> import idna
>>> idna.encode('ドメイン.テスト')
b'xn--eckwd4c7c.xn--zckzah'
>>> print(idna.decode('xn--eckwd4c7c.xn--zckzah'))
ドメイン.テスト
You may use the codec encoding and decoding methods using the
``idna.codec`` module:
.. code-block:: pycon
>>> import idna.codec
>>> print('домен.испытание'.encode('idna2008'))
b'xn--d1acufc.xn--80akhbyknj4f'
>>> print(b'xn--d1acufc.xn--80akhbyknj4f'.decode('idna2008'))
домен.испытание
Conversions can be applied at a per-label basis using the ``ulabel`` or
``alabel`` functions if necessary:
.. code-block:: pycon
>>> idna.alabel('测试')
b'xn--0zwm56d'
Compatibility Mapping (UTS #46)
+++++++++++++++++++++++++++++++
As described in `RFC 5895 <https://tools.ietf.org/html/rfc5895>`_, the
IDNA specification does not normalize input from different potential
ways a user may input a domain name. This functionality, known as
a “mapping”, is considered by the specification to be a local
user-interface issue distinct from IDNA conversion functionality.
This library provides one such mapping that was developed by the
Unicode Consortium. Known as `Unicode IDNA Compatibility Processing
<https://unicode.org/reports/tr46/>`_, it provides for both a regular
mapping for typical applications, as well as a transitional mapping to
help migrate from older IDNA 2003 applications. Strings are
preprocessed according to Section 4.4 “Preprocessing for IDNA2008”
prior to the IDNA operations.
For example, “Königsgäßchen” is not a permissible label as *LATIN
CAPITAL LETTER K* is not allowed (nor are capital letters in general).
UTS 46 will convert this into lower case prior to applying the IDNA
conversion.
.. code-block:: pycon
>>> import idna
>>> idna.encode('Königsgäßchen')
...
idna.core.InvalidCodepoint: Codepoint U+004B at position 1 of 'Königsgäßchen' not allowed
>>> idna.encode('Königsgäßchen', uts46=True)
b'xn--knigsgchen-b4a3dun'
>>> print(idna.decode('xn--knigsgchen-b4a3dun'))
königsgäßchen
Transitional processing provides conversions to help transition from
the older 2003 standard to the current standard. For example, in the
original IDNA specification, the *LATIN SMALL LETTER SHARP S* (ß) was
converted into two *LATIN SMALL LETTER S* (ss), whereas in the current
IDNA specification this conversion is not performed.
.. code-block:: pycon
>>> idna.encode('Königsgäßchen', uts46=True, transitional=True)
'xn--knigsgsschen-lcb0w'
Implementers should use transitional processing with caution, only in
rare cases where conversion from legacy labels to current labels must be
performed (i.e. IDNA implementations that pre-date 2008). For typical
applications that just need to convert labels, transitional processing
is unlikely to be beneficial and could produce unexpected incompatible
results.
``encodings.idna`` Compatibility
++++++++++++++++++++++++++++++++
Function calls from the Python built-in ``encodings.idna`` module are
mapped to their IDNA 2008 equivalents using the ``idna.compat`` module.
Simply substitute the ``import`` clause in your code to refer to the new
module name.
Exceptions
----------
All errors raised during the conversion following the specification
should raise an exception derived from the ``idna.IDNAError`` base
class.
More specific exceptions that may be generated as ``idna.IDNABidiError``
when the error reflects an illegal combination of left-to-right and
right-to-left characters in a label; ``idna.InvalidCodepoint`` when
a specific codepoint is an illegal character in an IDN label (i.e.
INVALID); and ``idna.InvalidCodepointContext`` when the codepoint is
illegal based on its positional context (i.e. it is CONTEXTO or CONTEXTJ
but the contextual requirements are not satisfied.)
Building and Diagnostics
------------------------
The IDNA and UTS 46 functionality relies upon pre-calculated lookup
tables for performance. These tables are derived from computing against
eligibility criteria in the respective standards. These tables are
computed using the command-line script ``tools/idna-data``.
This tool will fetch relevant codepoint data from the Unicode repository
and perform the required calculations to identify eligibility. There are
three main modes:
* ``idna-data make-libdata``. Generates ``idnadata.py`` and
``uts46data.py``, the pre-calculated lookup tables used for IDNA and
UTS 46 conversions. Implementers who wish to track this library against
a different Unicode version may use this tool to manually generate a
different version of the ``idnadata.py`` and ``uts46data.py`` files.
* ``idna-data make-table``. Generate a table of the IDNA disposition
(e.g. PVALID, CONTEXTJ, CONTEXTO) in the format found in Appendix
B.1 of RFC 5892 and the pre-computed tables published by `IANA
<https://www.iana.org/>`_.
* ``idna-data U+0061``. Prints debugging output on the various
properties associated with an individual Unicode codepoint (in this
case, U+0061), that are used to assess the IDNA and UTS 46 status of a
codepoint. This is helpful in debugging or analysis.
The tool accepts a number of arguments, described using ``idna-data
-h``. Most notably, the ``--version`` argument allows the specification
of the version of Unicode to be used in computing the table data. For
example, ``idna-data --version 9.0.0 make-libdata`` will generate
library data against Unicode 9.0.0.
Additional Notes
----------------
* **Packages**. The latest tagged release version is published in the
`Python Package Index <https://pypi.org/project/idna/>`_.
* **Version support**. This library supports Python 3.6 and higher.
As this library serves as a low-level toolkit for a variety of
applications, many of which strive for broad compatibility with older
Python versions, there is no rush to remove older interpreter support.
Removing support for older versions should be well justified in that the
maintenance burden has become too high.
* **Python 2**. Python 2 is supported by version 2.x of this library.
Use "idna<3" in your requirements file if you need this library for
a Python 2 application. Be advised that these versions are no longer
actively developed.
* **Testing**. The library has a test suite based on each rule of the
IDNA specification, as well as tests that are provided as part of the
Unicode Technical Standard 46, `Unicode IDNA Compatibility Processing
<https://unicode.org/reports/tr46/>`_.
* **Emoji**. It is an occasional request to support emoji domains in
this library. Encoding of symbols like emoji is expressly prohibited by
the technical standard IDNA 2008 and emoji domains are broadly phased
out across the domain industry due to associated security risks. For
now, applications that need to support these non-compliant labels
may wish to consider trying the encode/decode operation in this library
first, and then falling back to using `encodings.idna`. See `the Github
project <https://github.com/kjd/idna/issues/18>`_ for more discussion.

View File

@ -0,0 +1,22 @@
idna-3.10.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
idna-3.10.dist-info/LICENSE.md,sha256=pZ8LDvNjWHQQmkRhykT_enDVBpboFHZ7-vch1Mmw2w8,1541
idna-3.10.dist-info/METADATA,sha256=URR5ZyDfQ1PCEGhkYoojqfi2Ra0tau2--lhwG4XSfjI,10158
idna-3.10.dist-info/RECORD,,
idna-3.10.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
idna/__init__.py,sha256=MPqNDLZbXqGaNdXxAFhiqFPKEQXju2jNQhCey6-5eJM,868
idna/__pycache__/__init__.cpython-311.pyc,,
idna/__pycache__/codec.cpython-311.pyc,,
idna/__pycache__/compat.cpython-311.pyc,,
idna/__pycache__/core.cpython-311.pyc,,
idna/__pycache__/idnadata.cpython-311.pyc,,
idna/__pycache__/intranges.cpython-311.pyc,,
idna/__pycache__/package_data.cpython-311.pyc,,
idna/__pycache__/uts46data.cpython-311.pyc,,
idna/codec.py,sha256=PEew3ItwzjW4hymbasnty2N2OXvNcgHB-JjrBuxHPYY,3422
idna/compat.py,sha256=RzLy6QQCdl9784aFhb2EX9EKGCJjg0P3PilGdeXXcx8,316
idna/core.py,sha256=YJYyAMnwiQEPjVC4-Fqu_p4CJ6yKKuDGmppBNQNQpFs,13239
idna/idnadata.py,sha256=W30GcIGvtOWYwAjZj4ZjuouUutC6ffgNuyjJy7fZ-lo,78306
idna/intranges.py,sha256=amUtkdhYcQG8Zr-CoMM_kVRacxkivC1WgxN1b63KKdU,1898
idna/package_data.py,sha256=q59S3OXsc5VI8j6vSD0sGBMyk6zZ4vWFREE88yCJYKs,21
idna/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
idna/uts46data.py,sha256=rt90K9J40gUSwppDPCrhjgi5AA6pWM65dEGRSf6rIhM,239289

View File

@ -0,0 +1,4 @@
Wheel-Version: 1.0
Generator: flit 3.9.0
Root-Is-Purelib: true
Tag: py3-none-any

View File

@ -0,0 +1,45 @@
from .core import (
IDNABidiError,
IDNAError,
InvalidCodepoint,
InvalidCodepointContext,
alabel,
check_bidi,
check_hyphen_ok,
check_initial_combiner,
check_label,
check_nfc,
decode,
encode,
ulabel,
uts46_remap,
valid_contextj,
valid_contexto,
valid_label_length,
valid_string_length,
)
from .intranges import intranges_contain
from .package_data import __version__
__all__ = [
"__version__",
"IDNABidiError",
"IDNAError",
"InvalidCodepoint",
"InvalidCodepointContext",
"alabel",
"check_bidi",
"check_hyphen_ok",
"check_initial_combiner",
"check_label",
"check_nfc",
"decode",
"encode",
"intranges_contain",
"ulabel",
"uts46_remap",
"valid_contextj",
"valid_contexto",
"valid_label_length",
"valid_string_length",
]

View File

@ -0,0 +1,122 @@
import codecs
import re
from typing import Any, Optional, Tuple
from .core import IDNAError, alabel, decode, encode, ulabel
_unicode_dots_re = re.compile("[\u002e\u3002\uff0e\uff61]")
class Codec(codecs.Codec):
def encode(self, data: str, errors: str = "strict") -> Tuple[bytes, int]:
if errors != "strict":
raise IDNAError('Unsupported error handling "{}"'.format(errors))
if not data:
return b"", 0
return encode(data), len(data)
def decode(self, data: bytes, errors: str = "strict") -> Tuple[str, int]:
if errors != "strict":
raise IDNAError('Unsupported error handling "{}"'.format(errors))
if not data:
return "", 0
return decode(data), len(data)
class IncrementalEncoder(codecs.BufferedIncrementalEncoder):
def _buffer_encode(self, data: str, errors: str, final: bool) -> Tuple[bytes, int]:
if errors != "strict":
raise IDNAError('Unsupported error handling "{}"'.format(errors))
if not data:
return b"", 0
labels = _unicode_dots_re.split(data)
trailing_dot = b""
if labels:
if not labels[-1]:
trailing_dot = b"."
del labels[-1]
elif not final:
# Keep potentially unfinished label until the next call
del labels[-1]
if labels:
trailing_dot = b"."
result = []
size = 0
for label in labels:
result.append(alabel(label))
if size:
size += 1
size += len(label)
# Join with U+002E
result_bytes = b".".join(result) + trailing_dot
size += len(trailing_dot)
return result_bytes, size
class IncrementalDecoder(codecs.BufferedIncrementalDecoder):
def _buffer_decode(self, data: Any, errors: str, final: bool) -> Tuple[str, int]:
if errors != "strict":
raise IDNAError('Unsupported error handling "{}"'.format(errors))
if not data:
return ("", 0)
if not isinstance(data, str):
data = str(data, "ascii")
labels = _unicode_dots_re.split(data)
trailing_dot = ""
if labels:
if not labels[-1]:
trailing_dot = "."
del labels[-1]
elif not final:
# Keep potentially unfinished label until the next call
del labels[-1]
if labels:
trailing_dot = "."
result = []
size = 0
for label in labels:
result.append(ulabel(label))
if size:
size += 1
size += len(label)
result_str = ".".join(result) + trailing_dot
size += len(trailing_dot)
return (result_str, size)
class StreamWriter(Codec, codecs.StreamWriter):
pass
class StreamReader(Codec, codecs.StreamReader):
pass
def search_function(name: str) -> Optional[codecs.CodecInfo]:
if name != "idna2008":
return None
return codecs.CodecInfo(
name=name,
encode=Codec().encode,
decode=Codec().decode,
incrementalencoder=IncrementalEncoder,
incrementaldecoder=IncrementalDecoder,
streamwriter=StreamWriter,
streamreader=StreamReader,
)
codecs.register(search_function)

View File

@ -0,0 +1,15 @@
from typing import Any, Union
from .core import decode, encode
def ToASCII(label: str) -> bytes:
return encode(label)
def ToUnicode(label: Union[bytes, bytearray]) -> str:
return decode(label)
def nameprep(s: Any) -> None:
raise NotImplementedError("IDNA 2008 does not utilise nameprep protocol")

View File

@ -0,0 +1,437 @@
import bisect
import re
import unicodedata
from typing import Optional, Union
from . import idnadata
from .intranges import intranges_contain
_virama_combining_class = 9
_alabel_prefix = b"xn--"
_unicode_dots_re = re.compile("[\u002e\u3002\uff0e\uff61]")
class IDNAError(UnicodeError):
"""Base exception for all IDNA-encoding related problems"""
pass
class IDNABidiError(IDNAError):
"""Exception when bidirectional requirements are not satisfied"""
pass
class InvalidCodepoint(IDNAError):
"""Exception when a disallowed or unallocated codepoint is used"""
pass
class InvalidCodepointContext(IDNAError):
"""Exception when the codepoint is not valid in the context it is used"""
pass
def _combining_class(cp: int) -> int:
v = unicodedata.combining(chr(cp))
if v == 0:
if not unicodedata.name(chr(cp)):
raise ValueError("Unknown character in unicodedata")
return v
def _is_script(cp: str, script: str) -> bool:
return intranges_contain(ord(cp), idnadata.scripts[script])
def _punycode(s: str) -> bytes:
return s.encode("punycode")
def _unot(s: int) -> str:
return "U+{:04X}".format(s)
def valid_label_length(label: Union[bytes, str]) -> bool:
if len(label) > 63:
return False
return True
def valid_string_length(label: Union[bytes, str], trailing_dot: bool) -> bool:
if len(label) > (254 if trailing_dot else 253):
return False
return True
def check_bidi(label: str, check_ltr: bool = False) -> bool:
# Bidi rules should only be applied if string contains RTL characters
bidi_label = False
for idx, cp in enumerate(label, 1):
direction = unicodedata.bidirectional(cp)
if direction == "":
# String likely comes from a newer version of Unicode
raise IDNABidiError("Unknown directionality in label {} at position {}".format(repr(label), idx))
if direction in ["R", "AL", "AN"]:
bidi_label = True
if not bidi_label and not check_ltr:
return True
# Bidi rule 1
direction = unicodedata.bidirectional(label[0])
if direction in ["R", "AL"]:
rtl = True
elif direction == "L":
rtl = False
else:
raise IDNABidiError("First codepoint in label {} must be directionality L, R or AL".format(repr(label)))
valid_ending = False
number_type: Optional[str] = None
for idx, cp in enumerate(label, 1):
direction = unicodedata.bidirectional(cp)
if rtl:
# Bidi rule 2
if direction not in [
"R",
"AL",
"AN",
"EN",
"ES",
"CS",
"ET",
"ON",
"BN",
"NSM",
]:
raise IDNABidiError("Invalid direction for codepoint at position {} in a right-to-left label".format(idx))
# Bidi rule 3
if direction in ["R", "AL", "EN", "AN"]:
valid_ending = True
elif direction != "NSM":
valid_ending = False
# Bidi rule 4
if direction in ["AN", "EN"]:
if not number_type:
number_type = direction
else:
if number_type != direction:
raise IDNABidiError("Can not mix numeral types in a right-to-left label")
else:
# Bidi rule 5
if direction not in ["L", "EN", "ES", "CS", "ET", "ON", "BN", "NSM"]:
raise IDNABidiError("Invalid direction for codepoint at position {} in a left-to-right label".format(idx))
# Bidi rule 6
if direction in ["L", "EN"]:
valid_ending = True
elif direction != "NSM":
valid_ending = False
if not valid_ending:
raise IDNABidiError("Label ends with illegal codepoint directionality")
return True
def check_initial_combiner(label: str) -> bool:
if unicodedata.category(label[0])[0] == "M":
raise IDNAError("Label begins with an illegal combining character")
return True
def check_hyphen_ok(label: str) -> bool:
if label[2:4] == "--":
raise IDNAError("Label has disallowed hyphens in 3rd and 4th position")
if label[0] == "-" or label[-1] == "-":
raise IDNAError("Label must not start or end with a hyphen")
return True
def check_nfc(label: str) -> None:
if unicodedata.normalize("NFC", label) != label:
raise IDNAError("Label must be in Normalization Form C")
def valid_contextj(label: str, pos: int) -> bool:
cp_value = ord(label[pos])
if cp_value == 0x200C:
if pos > 0:
if _combining_class(ord(label[pos - 1])) == _virama_combining_class:
return True
ok = False
for i in range(pos - 1, -1, -1):
joining_type = idnadata.joining_types.get(ord(label[i]))
if joining_type == ord("T"):
continue
elif joining_type in [ord("L"), ord("D")]:
ok = True
break
else:
break
if not ok:
return False
ok = False
for i in range(pos + 1, len(label)):
joining_type = idnadata.joining_types.get(ord(label[i]))
if joining_type == ord("T"):
continue
elif joining_type in [ord("R"), ord("D")]:
ok = True
break
else:
break
return ok
if cp_value == 0x200D:
if pos > 0:
if _combining_class(ord(label[pos - 1])) == _virama_combining_class:
return True
return False
else:
return False
def valid_contexto(label: str, pos: int, exception: bool = False) -> bool:
cp_value = ord(label[pos])
if cp_value == 0x00B7:
if 0 < pos < len(label) - 1:
if ord(label[pos - 1]) == 0x006C and ord(label[pos + 1]) == 0x006C:
return True
return False
elif cp_value == 0x0375:
if pos < len(label) - 1 and len(label) > 1:
return _is_script(label[pos + 1], "Greek")
return False
elif cp_value == 0x05F3 or cp_value == 0x05F4:
if pos > 0:
return _is_script(label[pos - 1], "Hebrew")
return False
elif cp_value == 0x30FB:
for cp in label:
if cp == "\u30fb":
continue
if _is_script(cp, "Hiragana") or _is_script(cp, "Katakana") or _is_script(cp, "Han"):
return True
return False
elif 0x660 <= cp_value <= 0x669:
for cp in label:
if 0x6F0 <= ord(cp) <= 0x06F9:
return False
return True
elif 0x6F0 <= cp_value <= 0x6F9:
for cp in label:
if 0x660 <= ord(cp) <= 0x0669:
return False
return True
return False
def check_label(label: Union[str, bytes, bytearray]) -> None:
if isinstance(label, (bytes, bytearray)):
label = label.decode("utf-8")
if len(label) == 0:
raise IDNAError("Empty Label")
check_nfc(label)
check_hyphen_ok(label)
check_initial_combiner(label)
for pos, cp in enumerate(label):
cp_value = ord(cp)
if intranges_contain(cp_value, idnadata.codepoint_classes["PVALID"]):
continue
elif intranges_contain(cp_value, idnadata.codepoint_classes["CONTEXTJ"]):
try:
if not valid_contextj(label, pos):
raise InvalidCodepointContext(
"Joiner {} not allowed at position {} in {}".format(_unot(cp_value), pos + 1, repr(label))
)
except ValueError:
raise IDNAError(
"Unknown codepoint adjacent to joiner {} at position {} in {}".format(
_unot(cp_value), pos + 1, repr(label)
)
)
elif intranges_contain(cp_value, idnadata.codepoint_classes["CONTEXTO"]):
if not valid_contexto(label, pos):
raise InvalidCodepointContext(
"Codepoint {} not allowed at position {} in {}".format(_unot(cp_value), pos + 1, repr(label))
)
else:
raise InvalidCodepoint(
"Codepoint {} at position {} of {} not allowed".format(_unot(cp_value), pos + 1, repr(label))
)
check_bidi(label)
def alabel(label: str) -> bytes:
try:
label_bytes = label.encode("ascii")
ulabel(label_bytes)
if not valid_label_length(label_bytes):
raise IDNAError("Label too long")
return label_bytes
except UnicodeEncodeError:
pass
check_label(label)
label_bytes = _alabel_prefix + _punycode(label)
if not valid_label_length(label_bytes):
raise IDNAError("Label too long")
return label_bytes
def ulabel(label: Union[str, bytes, bytearray]) -> str:
if not isinstance(label, (bytes, bytearray)):
try:
label_bytes = label.encode("ascii")
except UnicodeEncodeError:
check_label(label)
return label
else:
label_bytes = label
label_bytes = label_bytes.lower()
if label_bytes.startswith(_alabel_prefix):
label_bytes = label_bytes[len(_alabel_prefix) :]
if not label_bytes:
raise IDNAError("Malformed A-label, no Punycode eligible content found")
if label_bytes.decode("ascii")[-1] == "-":
raise IDNAError("A-label must not end with a hyphen")
else:
check_label(label_bytes)
return label_bytes.decode("ascii")
try:
label = label_bytes.decode("punycode")
except UnicodeError:
raise IDNAError("Invalid A-label")
check_label(label)
return label
def uts46_remap(domain: str, std3_rules: bool = True, transitional: bool = False) -> str:
"""Re-map the characters in the string according to UTS46 processing."""
from .uts46data import uts46data
output = ""
for pos, char in enumerate(domain):
code_point = ord(char)
try:
uts46row = uts46data[code_point if code_point < 256 else bisect.bisect_left(uts46data, (code_point, "Z")) - 1]
status = uts46row[1]
replacement: Optional[str] = None
if len(uts46row) == 3:
replacement = uts46row[2]
if (
status == "V"
or (status == "D" and not transitional)
or (status == "3" and not std3_rules and replacement is None)
):
output += char
elif replacement is not None and (
status == "M" or (status == "3" and not std3_rules) or (status == "D" and transitional)
):
output += replacement
elif status != "I":
raise IndexError()
except IndexError:
raise InvalidCodepoint(
"Codepoint {} not allowed at position {} in {}".format(_unot(code_point), pos + 1, repr(domain))
)
return unicodedata.normalize("NFC", output)
def encode(
s: Union[str, bytes, bytearray],
strict: bool = False,
uts46: bool = False,
std3_rules: bool = False,
transitional: bool = False,
) -> bytes:
if not isinstance(s, str):
try:
s = str(s, "ascii")
except UnicodeDecodeError:
raise IDNAError("should pass a unicode string to the function rather than a byte string.")
if uts46:
s = uts46_remap(s, std3_rules, transitional)
trailing_dot = False
result = []
if strict:
labels = s.split(".")
else:
labels = _unicode_dots_re.split(s)
if not labels or labels == [""]:
raise IDNAError("Empty domain")
if labels[-1] == "":
del labels[-1]
trailing_dot = True
for label in labels:
s = alabel(label)
if s:
result.append(s)
else:
raise IDNAError("Empty label")
if trailing_dot:
result.append(b"")
s = b".".join(result)
if not valid_string_length(s, trailing_dot):
raise IDNAError("Domain too long")
return s
def decode(
s: Union[str, bytes, bytearray],
strict: bool = False,
uts46: bool = False,
std3_rules: bool = False,
) -> str:
try:
if not isinstance(s, str):
s = str(s, "ascii")
except UnicodeDecodeError:
raise IDNAError("Invalid ASCII in A-label")
if uts46:
s = uts46_remap(s, std3_rules, False)
trailing_dot = False
result = []
if not strict:
labels = _unicode_dots_re.split(s)
else:
labels = s.split(".")
if not labels or labels == [""]:
raise IDNAError("Empty domain")
if not labels[-1]:
del labels[-1]
trailing_dot = True
for label in labels:
s = ulabel(label)
if s:
result.append(s)
else:
raise IDNAError("Empty label")
if trailing_dot:
result.append("")
return ".".join(result)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,57 @@
"""
Given a list of integers, made up of (hopefully) a small number of long runs
of consecutive integers, compute a representation of the form
((start1, end1), (start2, end2) ...). Then answer the question "was x present
in the original list?" in time O(log(# runs)).
"""
import bisect
from typing import List, Tuple
def intranges_from_list(list_: List[int]) -> Tuple[int, ...]:
"""Represent a list of integers as a sequence of ranges:
((start_0, end_0), (start_1, end_1), ...), such that the original
integers are exactly those x such that start_i <= x < end_i for some i.
Ranges are encoded as single integers (start << 32 | end), not as tuples.
"""
sorted_list = sorted(list_)
ranges = []
last_write = -1
for i in range(len(sorted_list)):
if i + 1 < len(sorted_list):
if sorted_list[i] == sorted_list[i + 1] - 1:
continue
current_range = sorted_list[last_write + 1 : i + 1]
ranges.append(_encode_range(current_range[0], current_range[-1] + 1))
last_write = i
return tuple(ranges)
def _encode_range(start: int, end: int) -> int:
return (start << 32) | end
def _decode_range(r: int) -> Tuple[int, int]:
return (r >> 32), (r & ((1 << 32) - 1))
def intranges_contain(int_: int, ranges: Tuple[int, ...]) -> bool:
"""Determine if `int_` falls into one of the ranges in `ranges`."""
tuple_ = _encode_range(int_, 0)
pos = bisect.bisect_left(ranges, tuple_)
# we could be immediately ahead of a tuple (start, end)
# with start < int_ <= end
if pos > 0:
left, right = _decode_range(ranges[pos - 1])
if left <= int_ < right:
return True
# or we could be immediately behind a tuple (int_, end)
if pos < len(ranges):
left, _ = _decode_range(ranges[pos])
if left == int_:
return True
return False

View File

@ -0,0 +1 @@
__version__ = "3.10"

View File

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,760 @@
@Switch01
A_Rog
Aakanksha Agrawal
Abhinav Sagar
ABHYUDAY PRATAP SINGH
abs51295
AceGentile
Adam Chainz
Adam Tse
Adam Wentz
admin
Adrien Morison
ahayrapetyan
Ahilya
AinsworthK
Akash Srivastava
Alan Yee
Albert Tugushev
Albert-Guan
albertg
Alberto Sottile
Aleks Bunin
Ales Erjavec
Alethea Flowers
Alex Gaynor
Alex Grönholm
Alex Hedges
Alex Loosley
Alex Morega
Alex Stachowiak
Alexander Shtyrov
Alexandre Conrad
Alexey Popravka
Aleš Erjavec
Alli
Ami Fischman
Ananya Maiti
Anatoly Techtonik
Anders Kaseorg
Andre Aguiar
Andreas Lutro
Andrei Geacar
Andrew Gaul
Andrew Shymanel
Andrey Bienkowski
Andrey Bulgakov
Andrés Delfino
Andy Freeland
Andy Kluger
Ani Hayrapetyan
Aniruddha Basak
Anish Tambe
Anrs Hu
Anthony Sottile
Antoine Musso
Anton Ovchinnikov
Anton Patrushev
Antonio Alvarado Hernandez
Antony Lee
Antti Kaihola
Anubhav Patel
Anudit Nagar
Anuj Godase
AQNOUCH Mohammed
AraHaan
Arindam Choudhury
Armin Ronacher
Artem
Arun Babu Neelicattu
Ashley Manton
Ashwin Ramaswami
atse
Atsushi Odagiri
Avinash Karhana
Avner Cohen
Awit (Ah-Wit) Ghirmai
Baptiste Mispelon
Barney Gale
barneygale
Bartek Ogryczak
Bastian Venthur
Ben Bodenmiller
Ben Darnell
Ben Hoyt
Ben Mares
Ben Rosser
Bence Nagy
Benjamin Peterson
Benjamin VanEvery
Benoit Pierre
Berker Peksag
Bernard
Bernard Tyers
Bernardo B. Marques
Bernhard M. Wiedemann
Bertil Hatt
Bhavam Vidyarthi
Blazej Michalik
Bogdan Opanchuk
BorisZZZ
Brad Erickson
Bradley Ayers
Brandon L. Reiss
Brandt Bucher
Brett Randall
Brett Rosen
Brian Cristante
Brian Rosner
briantracy
BrownTruck
Bruno Oliveira
Bruno Renié
Bruno S
Bstrdsmkr
Buck Golemon
burrows
Bussonnier Matthias
bwoodsend
c22
Caleb Martinez
Calvin Smith
Carl Meyer
Carlos Liam
Carol Willing
Carter Thayer
Cass
Chandrasekhar Atina
Chih-Hsuan Yen
Chris Brinker
Chris Hunt
Chris Jerdonek
Chris Kuehl
Chris McDonough
Chris Pawley
Chris Pryer
Chris Wolfe
Christian Clauss
Christian Heimes
Christian Oudard
Christoph Reiter
Christopher Hunt
Christopher Snyder
cjc7373
Clark Boylan
Claudio Jolowicz
Clay McClure
Cody
Cody Soyland
Colin Watson
Collin Anderson
Connor Osborn
Cooper Lees
Cooper Ry Lees
Cory Benfield
Cory Wright
Craig Kerstiens
Cristian Sorinel
Cristina
Cristina Muñoz
Curtis Doty
cytolentino
Daan De Meyer
Dale
Damian
Damian Quiroga
Damian Shaw
Dan Black
Dan Savilonis
Dan Sully
Dane Hillard
daniel
Daniel Collins
Daniel Hahler
Daniel Holth
Daniel Jost
Daniel Katz
Daniel Shaulov
Daniele Esposti
Daniele Nicolodi
Daniele Procida
Daniil Konovalenko
Danny Hermes
Danny McClanahan
Darren Kavanagh
Dav Clark
Dave Abrahams
Dave Jones
David Aguilar
David Black
David Bordeynik
David Caro
David D Lowe
David Evans
David Hewitt
David Linke
David Poggi
David Pursehouse
David Runge
David Tucker
David Wales
Davidovich
ddelange
Deepak Sharma
Deepyaman Datta
Denise Yu
dependabot[bot]
derwolfe
Desetude
Devesh Kumar Singh
Diego Caraballo
Diego Ramirez
DiegoCaraballo
Dimitri Merejkowsky
Dimitri Papadopoulos
Dirk Stolle
Dmitry Gladkov
Dmitry Volodin
Domen Kožar
Dominic Davis-Foster
Donald Stufft
Dongweiming
doron zarhi
Dos Moonen
Douglas Thor
DrFeathers
Dustin Ingram
Dwayne Bailey
Ed Morley
Edgar Ramírez
Edgar Ramírez Mondragón
Ee Durbin
Efflam Lemaillet
efflamlemaillet
Eitan Adler
ekristina
elainechan
Eli Schwartz
Elisha Hollander
Ellen Marie Dash
Emil Burzo
Emil Styrke
Emmanuel Arias
Endoh Takanao
enoch
Erdinc Mutlu
Eric Cousineau
Eric Gillingham
Eric Hanchrow
Eric Hopper
Erik M. Bray
Erik Rose
Erwin Janssen
Eugene Vereshchagin
everdimension
Federico
Felipe Peter
Felix Yan
fiber-space
Filip Kokosiński
Filipe Laíns
Finn Womack
finnagin
Flavio Amurrio
Florian Briand
Florian Rathgeber
Francesco
Francesco Montesano
Frost Ming
Gabriel Curio
Gabriel de Perthuis
Garry Polley
gavin
gdanielson
Geoffrey Sneddon
George Song
Georgi Valkov
Georgy Pchelkin
ghost
Giftlin Rajaiah
gizmoguy1
gkdoc
Godefroid Chapelle
Gopinath M
GOTO Hayato
gousaiyang
gpiks
Greg Roodt
Greg Ward
Guilherme Espada
Guillaume Seguin
gutsytechster
Guy Rozendorn
Guy Tuval
gzpan123
Hanjun Kim
Hari Charan
Harsh Vardhan
harupy
Harutaka Kawamura
hauntsaninja
Henrich Hartzer
Henry Schreiner
Herbert Pfennig
Holly Stotelmyer
Honnix
Hsiaoming Yang
Hugo Lopes Tavares
Hugo van Kemenade
Hugues Bruant
Hynek Schlawack
Ian Bicking
Ian Cordasco
Ian Lee
Ian Stapleton Cordasco
Ian Wienand
Igor Kuzmitshov
Igor Sobreira
Ilan Schnell
Illia Volochii
Ilya Baryshev
Inada Naoki
Ionel Cristian Mărieș
Ionel Maries Cristian
Itamar Turner-Trauring
Ivan Pozdeev
J. Nick Koston
Jacob Kim
Jacob Walls
Jaime Sanz
jakirkham
Jakub Kuczys
Jakub Stasiak
Jakub Vysoky
Jakub Wilk
James Cleveland
James Curtin
James Firth
James Gerity
James Polley
Jan Pokorný
Jannis Leidel
Jarek Potiuk
jarondl
Jason Curtis
Jason R. Coombs
JasonMo
JasonMo1
Jay Graves
Jean Abou Samra
Jean-Christophe Fillion-Robin
Jeff Barber
Jeff Dairiki
Jeff Widman
Jelmer Vernooij
jenix21
Jeremy Stanley
Jeremy Zafran
Jesse Rittner
Jiashuo Li
Jim Fisher
Jim Garrison
Jiun Bae
Jivan Amara
Joe Bylund
Joe Michelini
John Paton
John T. Wodder II
John-Scott Atlakson
johnthagen
Jon Banafato
Jon Dufresne
Jon Parise
Jonas Nockert
Jonathan Herbert
Joonatan Partanen
Joost Molenaar
Jorge Niedbalski
Joseph Bylund
Joseph Long
Josh Bronson
Josh Hansen
Josh Schneier
Joshua
Juan Luis Cano Rodríguez
Juanjo Bazán
Judah Rand
Julian Berman
Julian Gethmann
Julien Demoor
Jussi Kukkonen
jwg4
Jyrki Pulliainen
Kai Chen
Kai Mueller
Kamal Bin Mustafa
kasium
kaustav haldar
keanemind
Keith Maxwell
Kelsey Hightower
Kenneth Belitzky
Kenneth Reitz
Kevin Burke
Kevin Carter
Kevin Frommelt
Kevin R Patterson
Kexuan Sun
Kit Randel
Klaas van Schelven
KOLANICH
kpinc
Krishna Oza
Kumar McMillan
Kurt McKee
Kyle Persohn
lakshmanaram
Laszlo Kiss-Kollar
Laurent Bristiel
Laurent LAPORTE
Laurie O
Laurie Opperman
layday
Leon Sasson
Lev Givon
Lincoln de Sousa
Lipis
lorddavidiii
Loren Carvalho
Lucas Cimon
Ludovic Gasc
Lukas Geiger
Lukas Juhrich
Luke Macken
Luo Jiebin
luojiebin
luz.paz
László Kiss Kollár
M00nL1ght
Marc Abramowitz
Marc Tamlyn
Marcus Smith
Mariatta
Mark Kohler
Mark Williams
Markus Hametner
Martey Dodoo
Martin Fischer
Martin Häcker
Martin Pavlasek
Masaki
Masklinn
Matej Stuchlik
Mathew Jennings
Mathieu Bridon
Mathieu Kniewallner
Matt Bacchi
Matt Good
Matt Maker
Matt Robenolt
matthew
Matthew Einhorn
Matthew Feickert
Matthew Gilliard
Matthew Iversen
Matthew Treinish
Matthew Trumbell
Matthew Willson
Matthias Bussonnier
mattip
Maurits van Rees
Max W Chase
Maxim Kurnikov
Maxime Rouyrre
mayeut
mbaluna
mdebi
memoselyk
meowmeowcat
Michael
Michael Aquilina
Michael E. Karpeles
Michael Klich
Michael Mintz
Michael Williamson
michaelpacer
Michał Górny
Mickaël Schoentgen
Miguel Araujo Perez
Mihir Singh
Mike
Mike Hendricks
Min RK
MinRK
Miro Hrončok
Monica Baluna
montefra
Monty Taylor
Muha Ajjan
Nadav Wexler
Nahuel Ambrosini
Nate Coraor
Nate Prewitt
Nathan Houghton
Nathaniel J. Smith
Nehal J Wani
Neil Botelho
Nguyễn Gia Phong
Nicholas Serra
Nick Coghlan
Nick Stenning
Nick Timkovich
Nicolas Bock
Nicole Harris
Nikhil Benesch
Nikhil Ladha
Nikita Chepanov
Nikolay Korolev
Nipunn Koorapati
Nitesh Sharma
Niyas Sait
Noah
Noah Gorny
Nowell Strite
NtaleGrey
nvdv
OBITORASU
Ofek Lev
ofrinevo
Oliver Freund
Oliver Jeeves
Oliver Mannion
Oliver Tonnhofer
Olivier Girardot
Olivier Grisel
Ollie Rutherfurd
OMOTO Kenji
Omry Yadan
onlinejudge95
Oren Held
Oscar Benjamin
Oz N Tiram
Pachwenko
Patrick Dubroy
Patrick Jenkins
Patrick Lawson
patricktokeeffe
Patrik Kopkan
Paul Ganssle
Paul Kehrer
Paul Moore
Paul Nasrat
Paul Oswald
Paul van der Linden
Paulus Schoutsen
Pavel Safronov
Pavithra Eswaramoorthy
Pawel Jasinski
Paweł Szramowski
Pekka Klärck
Peter Gessler
Peter Lisák
Peter Waller
petr-tik
Phaneendra Chiruvella
Phil Elson
Phil Freo
Phil Pennock
Phil Whelan
Philip Jägenstedt
Philip Molloy
Philippe Ombredanne
Pi Delport
Pierre-Yves Rofes
Pieter Degroote
pip
Prabakaran Kumaresshan
Prabhjyotsing Surjit Singh Sodhi
Prabhu Marappan
Pradyun Gedam
Prashant Sharma
Pratik Mallya
pre-commit-ci[bot]
Preet Thakkar
Preston Holmes
Przemek Wrzos
Pulkit Goyal
q0w
Qiangning Hong
Qiming Xu
Quentin Lee
Quentin Pradet
R. David Murray
Rafael Caricio
Ralf Schmitt
Razzi Abuissa
rdb
Reece Dunham
Remi Rampin
Rene Dudfield
Riccardo Magliocchetti
Riccardo Schirone
Richard Jones
Richard Si
Ricky Ng-Adam
Rishi
RobberPhex
Robert Collins
Robert McGibbon
Robert Pollak
Robert T. McGibbon
robin elisha robinson
Roey Berman
Rohan Jain
Roman Bogorodskiy
Roman Donchenko
Romuald Brunet
ronaudinho
Ronny Pfannschmidt
Rory McCann
Ross Brattain
Roy Wellington Ⅳ
Ruairidh MacLeod
Russell Keith-Magee
Ryan Shepherd
Ryan Wooden
ryneeverett
Sachi King
Salvatore Rinchiera
sandeepkiran-js
Sander Van Balen
Savio Jomton
schlamar
Scott Kitterman
Sean
seanj
Sebastian Jordan
Sebastian Schaetz
Segev Finer
SeongSoo Cho
Sergey Vasilyev
Seth Michael Larson
Seth Woodworth
Shahar Epstein
Shantanu
shireenrao
Shivansh-007
Shlomi Fish
Shovan Maity
Simeon Visser
Simon Cross
Simon Pichugin
sinoroc
sinscary
snook92
socketubs
Sorin Sbarnea
Srinivas Nyayapati
Stavros Korokithakis
Stefan Scherfke
Stefano Rivera
Stephan Erb
Stephen Rosen
stepshal
Steve (Gadget) Barnes
Steve Barnes
Steve Dower
Steve Kowalik
Steven Myint
Steven Silvester
stonebig
studioj
Stéphane Bidoul
Stéphane Bidoul (ACSONE)
Stéphane Klein
Sumana Harihareswara
Surbhi Sharma
Sviatoslav Sydorenko
Swat009
Sylvain
Takayuki SHIMIZUKAWA
Taneli Hukkinen
tbeswick
Thiago
Thijs Triemstra
Thomas Fenzl
Thomas Grainger
Thomas Guettler
Thomas Johansson
Thomas Kluyver
Thomas Smith
Thomas VINCENT
Tim D. Smith
Tim Gates
Tim Harder
Tim Heap
tim smith
tinruufu
Tobias Hermann
Tom Forbes
Tom Freudenheim
Tom V
Tomas Hrnciar
Tomas Orsava
Tomer Chachamu
Tommi Enenkel | AnB
Tomáš Hrnčiar
Tony Beswick
Tony Narlock
Tony Zhaocheng Tan
TonyBeswick
toonarmycaptain
Toshio Kuratomi
toxinu
Travis Swicegood
Tushar Sadhwani
Tzu-ping Chung
Valentin Haenel
Victor Stinner
victorvpaulo
Vikram - Google
Viktor Szépe
Ville Skyttä
Vinay Sajip
Vincent Philippon
Vinicyus Macedo
Vipul Kumar
Vitaly Babiy
Vladimir Fokow
Vladimir Rutsky
W. Trevor King
Wil Tan
Wilfred Hughes
William Edwards
William ML Leslie
William T Olson
William Woodruff
Wilson Mo
wim glenn
Winson Luk
Wolfgang Maier
Wu Zhenyu
XAMES3
Xavier Fernandez
xoviat
xtreak
YAMAMOTO Takashi
Yen Chi Hsuan
Yeray Diaz Diaz
Yoval P
Yu Jian
Yuan Jing Vincent Yan
Yusuke Hayashi
Zearin
Zhiping Deng
ziebam
Zvezdan Petkovic
Łukasz Langa
Роман Донченко
Семён Марьясин
rekcäH nitraM

View File

@ -0,0 +1 @@
pip

View File

@ -0,0 +1,20 @@
Copyright (c) 2008-present The pip developers (see AUTHORS.txt file)
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

View File

@ -0,0 +1,88 @@
Metadata-Version: 2.1
Name: pip
Version: 24.0
Summary: The PyPA recommended tool for installing Python packages.
Author-email: The pip developers <distutils-sig@python.org>
License: MIT
Project-URL: Homepage, https://pip.pypa.io/
Project-URL: Documentation, https://pip.pypa.io
Project-URL: Source, https://github.com/pypa/pip
Project-URL: Changelog, https://pip.pypa.io/en/stable/news/
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: MIT License
Classifier: Topic :: Software Development :: Build Tools
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Programming Language :: Python :: Implementation :: CPython
Classifier: Programming Language :: Python :: Implementation :: PyPy
Requires-Python: >=3.7
Description-Content-Type: text/x-rst
License-File: LICENSE.txt
License-File: AUTHORS.txt
pip - The Python Package Installer
==================================
.. image:: https://img.shields.io/pypi/v/pip.svg
:target: https://pypi.org/project/pip/
:alt: PyPI
.. image:: https://img.shields.io/pypi/pyversions/pip
:target: https://pypi.org/project/pip
:alt: PyPI - Python Version
.. image:: https://readthedocs.org/projects/pip/badge/?version=latest
:target: https://pip.pypa.io/en/latest
:alt: Documentation
pip is the `package installer`_ for Python. You can use pip to install packages from the `Python Package Index`_ and other indexes.
Please take a look at our documentation for how to install and use pip:
* `Installation`_
* `Usage`_
We release updates regularly, with a new version every 3 months. Find more details in our documentation:
* `Release notes`_
* `Release process`_
If you find bugs, need help, or want to talk to the developers, please use our mailing lists or chat rooms:
* `Issue tracking`_
* `Discourse channel`_
* `User IRC`_
If you want to get involved head over to GitHub to get the source code, look at our development documentation and feel free to jump on the developer mailing lists and chat rooms:
* `GitHub page`_
* `Development documentation`_
* `Development IRC`_
Code of Conduct
---------------
Everyone interacting in the pip project's codebases, issue trackers, chat
rooms, and mailing lists is expected to follow the `PSF Code of Conduct`_.
.. _package installer: https://packaging.python.org/guides/tool-recommendations/
.. _Python Package Index: https://pypi.org
.. _Installation: https://pip.pypa.io/en/stable/installation/
.. _Usage: https://pip.pypa.io/en/stable/
.. _Release notes: https://pip.pypa.io/en/stable/news.html
.. _Release process: https://pip.pypa.io/en/latest/development/release-process/
.. _GitHub page: https://github.com/pypa/pip
.. _Development documentation: https://pip.pypa.io/en/latest/development
.. _Issue tracking: https://github.com/pypa/pip/issues
.. _Discourse channel: https://discuss.python.org/c/packaging
.. _User IRC: https://kiwiirc.com/nextclient/#ircs://irc.libera.chat:+6697/pypa
.. _Development IRC: https://kiwiirc.com/nextclient/#ircs://irc.libera.chat:+6697/pypa-dev
.. _PSF Code of Conduct: https://github.com/pypa/.github/blob/main/CODE_OF_CONDUCT.md

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,5 @@
Wheel-Version: 1.0
Generator: bdist_wheel (0.42.0)
Root-Is-Purelib: true
Tag: py3-none-any

View File

@ -0,0 +1,4 @@
[console_scripts]
pip = pip._internal.cli.main:main
pip3 = pip._internal.cli.main:main
pip3.10 = pip._internal.cli.main:main

View File

@ -0,0 +1 @@
pip

View File

@ -0,0 +1,13 @@
from typing import List, Optional
__version__ = "24.0"
def main(args: Optional[List[str]] = None) -> int:
"""This is an internal API only meant for use by pip's own console scripts.
For additional details, see https://github.com/pypa/pip/issues/7498.
"""
from pip._internal.utils.entrypoints import _wrapper
return _wrapper(args)

View File

@ -0,0 +1,24 @@
import os
import sys
# Remove '' and current working directory from the first entry
# of sys.path, if present to avoid using current directory
# in pip commands check, freeze, install, list and show,
# when invoked as python -m pip <command>
if sys.path[0] in ("", os.getcwd()):
sys.path.pop(0)
# If we are running from a wheel, add the wheel to sys.path
# This allows the usage python pip-*.whl/pip install pip-*.whl
if __package__ == "":
# __file__ is pip-*.whl/pip/__main__.py
# first dirname call strips of '/__main__.py', second strips off '/pip'
# Resulting path is the name of the wheel itself
# Add that to sys.path so we can import pip
path = os.path.dirname(os.path.dirname(__file__))
sys.path.insert(0, path)
if __name__ == "__main__":
from pip._internal.cli.main import main as _main
sys.exit(_main())

View File

@ -0,0 +1,50 @@
"""Execute exactly this copy of pip, within a different environment.
This file is named as it is, to ensure that this module can't be imported via
an import statement.
"""
# /!\ This version compatibility check section must be Python 2 compatible. /!\
import sys
# Copied from setup.py
PYTHON_REQUIRES = (3, 7)
def version_str(version): # type: ignore
return ".".join(str(v) for v in version)
if sys.version_info[:2] < PYTHON_REQUIRES:
raise SystemExit(
"This version of pip does not support python {} (requires >={}).".format(
version_str(sys.version_info[:2]), version_str(PYTHON_REQUIRES)
)
)
# From here on, we can use Python 3 features, but the syntax must remain
# Python 2 compatible.
import runpy # noqa: E402
from importlib.machinery import PathFinder # noqa: E402
from os.path import dirname # noqa: E402
PIP_SOURCES_ROOT = dirname(dirname(__file__))
class PipImportRedirectingFinder:
@classmethod
def find_spec(self, fullname, path=None, target=None): # type: ignore
if fullname != "pip":
return None
spec = PathFinder.find_spec(fullname, [PIP_SOURCES_ROOT], target)
assert spec, (PIP_SOURCES_ROOT, fullname)
return spec
sys.meta_path.insert(0, PipImportRedirectingFinder())
assert __name__ == "__main__", "Cannot run __pip-runner__.py as a non-main module"
runpy.run_module("pip", run_name="__main__", alter_sys=True)

View File

@ -0,0 +1,18 @@
from typing import List, Optional
from pip._internal.utils import _log
# init_logging() must be called before any call to logging.getLogger()
# which happens at import of most modules.
_log.init_logging()
def main(args: (Optional[List[str]]) = None) -> int:
"""This is preserved for old console scripts that may still be referencing
it.
For additional details, see https://github.com/pypa/pip/issues/7498.
"""
from pip._internal.utils.entrypoints import _wrapper
return _wrapper(args)

Some files were not shown because too many files have changed in this diff Show More