547 lines
174 KiB
Plaintext
547 lines
174 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "f15e49c6-b7bd-4929-9de4-8451b1edbce1",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Искусственные нейронные сети: первые шаги"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "ea17dc86-a0a9-4b81-af20-42fb94ae1158",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Базовая нейросеть"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"id": "57c4f848-b22a-457e-91e5-65094a784417",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
" precision recall f1-score support\n",
|
||
"\n",
|
||
" 0 1.00 1.00 1.00 14\n",
|
||
" 1 0.57 1.00 0.73 4\n",
|
||
" 2 1.00 0.75 0.86 12\n",
|
||
"\n",
|
||
" accuracy 0.90 30\n",
|
||
" macro avg 0.86 0.92 0.86 30\n",
|
||
"weighted avg 0.94 0.90 0.91 30\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"C:\\Users\\ilyam\\AppData\\Local\\Programs\\Python\\Python313\\Lib\\site-packages\\sklearn\\neural_network\\_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.\n",
|
||
" warnings.warn(\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"from sklearn.datasets import load_iris\n",
|
||
"from sklearn.model_selection import train_test_split\n",
|
||
"from sklearn.neural_network import MLPClassifier\n",
|
||
"from sklearn.metrics import classification_report\n",
|
||
"\n",
|
||
"# Загрузка и разбиение данных\n",
|
||
"X, y = load_iris(return_X_y=True)\n",
|
||
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)\n",
|
||
"\n",
|
||
"# Модель MLP — многослойный перцептрон\n",
|
||
"clf = MLPClassifier(hidden_layer_sizes=(10,), activation='relu', max_iter=500)\n",
|
||
"clf.fit(X_train, y_train)\n",
|
||
"\n",
|
||
"# Отчёт о точности\n",
|
||
"print(classification_report(y_test, clf.predict(X_test)))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "dfbdbf90-023d-4d7d-a4d2-8e6c13a72d7f",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
" precision recall f1-score support\n",
|
||
"\n",
|
||
" 0 1.00 1.00 1.00 7\n",
|
||
" 1 1.00 0.36 0.53 11\n",
|
||
" 2 0.63 1.00 0.77 12\n",
|
||
"\n",
|
||
" accuracy 0.77 30\n",
|
||
" macro avg 0.88 0.79 0.77 30\n",
|
||
"weighted avg 0.85 0.77 0.74 30\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"C:\\Users\\ilyam\\AppData\\Local\\Programs\\Python\\Python313\\Lib\\site-packages\\sklearn\\neural_network\\_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (100) reached and the optimization hasn't converged yet.\n",
|
||
" warnings.warn(\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"from sklearn.datasets import load_iris\n",
|
||
"from sklearn.model_selection import train_test_split\n",
|
||
"from sklearn.neural_network import MLPClassifier\n",
|
||
"from sklearn.metrics import classification_report\n",
|
||
"\n",
|
||
"# Загрузка и разбиение данных\n",
|
||
"X, y = load_iris(return_X_y=True)\n",
|
||
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)\n",
|
||
"\n",
|
||
"# Модель MLP — многослойный перцептрон\n",
|
||
"clf = MLPClassifier(hidden_layer_sizes=(10,), activation='relu', max_iter=100)\n",
|
||
"clf.fit(X_train, y_train)\n",
|
||
"\n",
|
||
"# Отчёт о точности\n",
|
||
"print(classification_report(y_test, clf.predict(X_test)))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"id": "5f6b8889-4fe2-44b8-a4f5-6d8b9858d516",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
" precision recall f1-score support\n",
|
||
"\n",
|
||
" 0 1.00 1.00 1.00 11\n",
|
||
" 1 1.00 1.00 1.00 9\n",
|
||
" 2 1.00 1.00 1.00 10\n",
|
||
"\n",
|
||
" accuracy 1.00 30\n",
|
||
" macro avg 1.00 1.00 1.00 30\n",
|
||
"weighted avg 1.00 1.00 1.00 30\n",
|
||
"\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"from sklearn.datasets import load_iris\n",
|
||
"from sklearn.model_selection import train_test_split\n",
|
||
"from sklearn.neural_network import MLPClassifier\n",
|
||
"from sklearn.metrics import classification_report\n",
|
||
"\n",
|
||
"# Загрузка и разбиение данных\n",
|
||
"X, y = load_iris(return_X_y=True)\n",
|
||
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)\n",
|
||
"\n",
|
||
"# Модель MLP — многослойный перцептрон\n",
|
||
"clf = MLPClassifier(hidden_layer_sizes=(10,), activation='relu', max_iter=2500)\n",
|
||
"clf.fit(X_train, y_train)\n",
|
||
"\n",
|
||
"# Отчёт о точности\n",
|
||
"print(classification_report(y_test, clf.predict(X_test)))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "03636823-bfc7-484d-a785-93340d678315",
|
||
"metadata": {},
|
||
"source": [
|
||
"# **Самостоятельное задание.** Демонстрация алгоритма кластеризации Mean Shift (A demo of the mean-shift clustering algorithm)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "58dc55b0-c0a5-49fd-bd00-3fbef8e16009",
|
||
"metadata": {},
|
||
"source": [
|
||
"## **Цель:** Исследовать работу алгоритма Mean Shift на синтетических и реальных данных."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "c6b16766-9f63-40fe-b934-48a325612186",
|
||
"metadata": {},
|
||
"source": [
|
||
"## **Часть 1: Синтетические данные (make_blobs)**"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "e4661ed0-4633-4564-81ec-ca24b994cb45",
|
||
"metadata": {},
|
||
"source": [
|
||
"## **Цель задачи:** Продемонстрировать автоматическое определение кластеров алгоритмом Mean Shift на данных с известной структурой."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "73f1467a-3c03-4d3c-a211-549d63a153bd",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 1. Импорт библиотек"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"id": "09102daf-8273-455f-96f0-97b58f85f296",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import numpy as np\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"from sklearn.cluster import MeanShift, estimate_bandwidth\n",
|
||
"from sklearn.datasets import make_blobs\n",
|
||
"from sklearn.preprocessing import StandardScaler"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "48e11d4d-141a-4a97-a109-a27bf4d3452b",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 2. Генерация данных"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"id": "a64a639e-6c89-4750-8dab-8b8a0626b0b0",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"centers = [[1, 1], [-1, -1], [1, -1]]\n",
|
||
"X, _ = make_blobs(\n",
|
||
" n_samples=1000, # Количество точек\n",
|
||
" centers=centers, # Координаты центров кластеров\n",
|
||
" cluster_std=0.6, # Разброс точек\n",
|
||
" random_state=42 # Для воспроизводимости\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "6d1e70f1-3e26-4eda-9321-7e57fc18e0cb",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 3. Масштабирование данных"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"id": "be6228d0-c938-42e9-955a-74bfc6ee909a",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"scaler = StandardScaler()\n",
|
||
"X_scaled = scaler.fit_transform(X) # Приведение данных к нулевому среднему и единичной дисперсии"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "44c763e2-e6e2-4749-9bc6-4d52607f5b37",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 4. Обучение модели"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"id": "7147b3dc-565e-4f01-a282-a0816d93d036",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Число кластеров: 3\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"bandwidth = estimate_bandwidth(\n",
|
||
" X_scaled, \n",
|
||
" quantile=0.2, # Чем меньше quantile, тем чувствительнее к шуму\n",
|
||
" n_samples=500 # Количество точек для оценки bandwidth\n",
|
||
")\n",
|
||
"\n",
|
||
"ms = MeanShift(\n",
|
||
" bandwidth=bandwidth, \n",
|
||
" bin_seeding=True # Ускорение алгоритма через дисковое квантование\n",
|
||
")\n",
|
||
"ms.fit(X_scaled) # Обучение модели\n",
|
||
"\n",
|
||
"labels = ms.labels_ # Метки кластеров\n",
|
||
"cluster_centers = ms.cluster_centers_ # Координаты центров\n",
|
||
"\n",
|
||
"n_clusters = len(np.unique(labels)) # Число кластеров\n",
|
||
"print(f\"Число кластеров: {n_clusters}\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "ff157bf6-eb1d-4864-9965-6a3a03104735",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 5. Визуализация"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"id": "69889356-a98a-4d20-97b9-8ee9b0d57623",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAzkAAAIQCAYAAACixqBTAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAz0hJREFUeJztnQm4HUWZ/r+bhNWQYEhCQhIIKKgsOkDYVCRxAxWRQWCEYXMYFBWHMIIaHLzgCLggi6iAjGxhXwccFyCQoGETRBQQ8I8kEPZNEtZAkv4/bx8qqVu3uruqu3o75/3d53BzzunTXV1d5/K9/W19URRFQgghhBBCCCFdwpC6B0AIIYQQQgghIaHIIYQQQgghhHQVFDmEEEIIIYSQroIihxBCCCGEENJVUOQQQgghhBBCugqKHEIIIYQQQkhXQZFDCCGEEEII6SoocgghhBBCCCFdBUUOIYQQQgghpKugyCGEkIYwd+5cmTNnzvLn+PfNN99c65gIIYSQNkKRQwghjpxzzjnS19cnd955p/X9qVOnyqabbpp7/wsWLJAvf/nLcs8998QP/BuvEVI2Z555puywww6y9tpryyqrrCLrr7++fP7zn5f58+fXPTRCCMkFRQ4hhDSE3XbbTdZYYw1573vfGz/WXHPN+DVCyuZPf/pTLGy+/vWvy2mnnSb77LOP/OY3v5GtttpKnnjiibqHRwgh3gzz/wghhJAywB30W265Re699974ObxCQ4cOrXtYpAf42c9+Nui1XXfdVaZMmSLnnXeefPOb36xlXIQQkhd6cgghpETOPvts+fCHPyxjx46NRczGG28c3yk3mTx5shxwwAGxqHnf+94XP6688so4PA7vJYXOmQ/btg888IDsvvvuMmrUKFl11VVjw/Waa65xCsV77rnn4tePPvroQXf+P/GJT8iIESNk+PDh8pGPfERuu+22zPlA+BP2h+MpXnrpJdlyyy1jT8KTTz45YHsc13aemCvFI488Eof2vetd75LVVltN1lprLdljjz2soVYvvviiHHbYYfE84XpMnDhR9ttvv/g8kQNlO5b+0Ofh8ccfl3/7t39bHuK1ySabyFlnnTXgeGqfl1xyiRx55JEybtw4edvb3ia77LKLNRTxsssui+cC5zF69OjYo4Lj6ODc9TG9/e1vj0Mlf//73w/YbuHChfG1x+88qLWEOSOEkLZBTw4hhHgCoxFGscmbb7456DUIGhi/MGqHDRsmv/zlL2ODfNmyZfKVr3wl8RhLliyRb33rW5lj+c53vhOLA/CjH/1I/vGPfwx4/7777pMPfOADMmHChPhuPAzsSy+9NL5Lf8UVV8g///M/O571wH1uv/32scBBeNNKK60kZ5xxRmxo33TTTbLNNts47wtz9tnPflYeffTRuMjC+PHjrdvNnDlz+b8hUnTuuOOO2AP2uc99LhYtEDeYd4znr3/9q6y++urxdi+//HI87vvvvz8WJ1tssUV8HSH4HnvsMXnPe94z4Dg///nP421POumk5a8hjBA8/fTTsu2228Yi45BDDpExY8bE4V0HHnigLFq0SKZPnz5gjMcee2y87Te+8Q155pln5OSTT5aPfvSjcvfdd8eCBkD4IQ8GIWLHH398fIxTTjklnheISoQvKiCA1Lgwdmz3yU9+MhZOarurrroq3h+Eti4K03j++edl6dKl8fXA2gIQsIQQ0joiQgghTpx99tkR/mymPTbZZJMBn3n11VcH7WfHHXeMNthggwGvrbfeetH++++//PnPfvazaJVVVommTZsWv2fy85//PD7enXfeufy1T33qU4O2/chHPhJtttlm0euvv778tWXLlkXvf//7ow033HDQud1xxx0DPv/ss8/Gr/f39y9/bdddd41WXnnl6O9///vy15544olojTXWiD70oQ+lzGAUzZs3L94fjodx/Ou//mu0+uqrR7fffrt1+29961tRX19f6lzZ5vjWW2+Nj3Peeectf+3b3/52/NqVV145aHuMxQTHsM09OPDAA6Px48dHzz333IDXP/e5z0UjR45cPqbZs2fHx5wwYUK0aNGi5dtdeuml8eunnHJK/PyNN96Ixo4dG2266abRa6+9tny7//u//4u3w9jTxqXWwx/+8IdB1xS/XcGaU2t5rbXWin784x87f5YQQpoEw9UIIcSTn/70p3L99dcPeqi7/DrqLr3uAUIVq4cffjgxjOjVV1+N76LDQ7Duuutat3n99dfj3wg/S+KFF16QG2+8Ufbcc884JAzHxgN363fccUf5f//v/w0KhVJjVA/sQwd3+a+77rrYE7TBBhssfx0emL333jsugw1PhgtHHHGEXHDBBbFnaeutt7Zu88Ybb8ShYGnocwzPEM7vne98Z+zRuOuuu5a/B88VwgBt3it4WVyJoije16c//en43/p8YV4xh/pxAULiUFRCgfBBzNmvf/3r+DnCBOHhgZdPv6af+tSn5N3vfrf86le/GrA/eALVMeENQt4M9gdvlALeG4zP1YsD4I3CmOAVxNp75ZVXnD9LCCFNguFqhBDiCQxy5LWYIDfCDGNDqFF/f7/ceuutsXjRgTE8cuTIQfs58cQTYxGDHI7//M//tI5BHcf2ecVDDz0UG7lHHXVU/LABwxqhbAqEUKXx7LPPxueB/BcTGNgwvhEyhRC9NBDepnJ4zBA7HeSDIOcnjddeey0O70JYFkQbzlmhC8m///3vcWhcUTAHGBfC2fBImledDTfccJCoghBTeUPIKwK2eYXIgXjUwRwjRE4BgQPhlTVXWUybNi3+jXyrz3zmM3HxC+wTgpsQQtoERQ4hhJQEjGrkM8BIhXCZNGmSrLzyyvGdcuRTQBDYxMsPf/hDmTFjRlwoIAkYx8iFWWeddRK3Ufs//PDDYw+DDRjappdqo402Wv4cXpkQwsAEAgd5KsinQY7NTjvtFOeZmDz11FNxsn4aX/3qV2OBgzyY7bbbLhZ+EBHI0bHNcVHUPlEUYP/997duY/PqhQTFDs4///zlQg4FDzCHEEObbbZZkGO84x3vkM033zz2tlHkEELaBkUOIYSUBIoMLF68OE5s18POZs+enfiZ7373u3FY06GHHpq6b4Q3IXF+yJDkqGMVTgYxlOWhSfJSmZ4peA+QyP/ggw8O+iwqeWE8EHNZIPEfnir0YEHFOQgdPelfgcIBOM80Lr/88lhsIMRKAU+YWRUMRrsqz10EzAGuEUL3XOcVoYE68DbB06bE0HrrrRf/xryiGp8OXlPvKxDSph8bhS0gin/yk5/EXrJQwEuGNUwIIW2DOTmEEFISqseNGT4Fr4MNVRUMZYr1PBOb4Y8HwonSQNlqVBiD0WuWZlZhV3nO6eMf/7hcffXVA0o0oxLYhRdeKB/84AfjqmtZoMoZgCfq+9//fuyVQK6PKeTgDTONftuY9DkGp556aixCdOCR+vOf/xxXHTMxP591POwL4WE20WSbV+TMIC9KF2a4JggLAxCWuF6nn376AFGBHBlUeENuThrIXUJFPv2zriWk8TlbyOAf/vAHueeee6yhmYQQ0nToySGEkJKAGEB4GhLUv/jFL8YljM8888zYmLWJDpRfRl4Lyv4mce2118bhZwBCSIUsAeSjIFEcryGUSoWfQXgghOmggw6KvTsQJMgRQulhGP2+wNuEQgvYLxLlURobQgoG9g9+8APv/X3hC1+IBdLBBx8ciwZ4ilB4AWWRMV4k7aex8847x14ghKnBK4RzmzVrVtwvxyx0AHGBHjrwJKEfDQorwNMGcYGiBK5873vfiz1yKJeNecVxsS8UHMCxzYIN8LJgvnBtMf8oIY1QQXxWedsg9vA+ClPstddey0tIo1+NWTZbXWcAEYPzh/dKL6rgWkIa6xLet3/5l3+Jc6lQZhziBp/DnCblcxFCSKOpu7wbIYS0haQyy4oddthhUAnpa665Jnrve98brbrqqtHkyZOj73//+9FZZ50V7wfllBUoCYzXrrrqqgGfN8sF4xhZZazNP+0o9bzffvtF48aNi1ZaaaW4nPHOO+8cXX755blKSIO77rorLoU9fPjwuAQ0Sl3fcsstmXOol5DWefDBB+M5Ouyww+LnEydOjP7t3/4tLk1tYpaQ/sc//hF9/vOfj0aPHh2PB+N64IEHBm0Hnn/++eiQQw6J5wBlsHEcbGOWgrbNvcnTTz8dfeUrX4kmTZoUzyvmFyW7Uc5ZoUpIX3TRRdGMGTPiMtGrrbZaXO77kUceGbTPSy65JNp8883jUs6jRo2KS2w/9thjg8alX2uc8xZbbBHNnDlzwHauJaQXL14cHXroofE6HTFiRHwuOG+UydbXKCGEtIm4+UDdQosQQogbCD/DAyFtNhBChuag/NPeDObMmRNXLLvsssvistGEEEKqgTk5hBBCCCGEkK6COTmEENIiPvaxjw1o+GiCnib/+q//WumYCCGEkKZBkUMIIS3iW9/6Vur76DWjFyMghBBCehHm5BBCCCGEEEK6CubkEEIIIYQQQroKihxCCCGEEEJIV9HonJxly5bJE088IWussYb09fXVPRxCCCGEEEJITSDL5qWXXpJ11llHhgwZ0l6RA4GDLsyEEEIIIYQQAhYsWCATJ06U1ooceHDUiYwYMaLu4RBCCCGEEEJqYtGiRbEDRGmE1oocFaIGgUORQwghhBBCCOlzSGNh4QFCCCGEEEJIV0GRQwghhBBCCOkqKHIIIYQQQgghXUWjc3IIIYQQQgjR24u88cYbdQ+DlMRKK60kQ4cODbIvihxCCCGEENJ4IG7mzZsXCx3Svay55poybty4wj0yKXIIIYQQQkjjm0A++eST8V1+lBDOagRJ2nmNX331VXnmmWfi5+PHjy+0P4ocQgghhBDSaJYsWRIbwOh0v/rqq9c9HFISq622WvwbQmfs2LGFQtcogwkhhBBCSKNZunRp/HvllVeueyikZJSIffPNNwvthyKHEEIIIYS0gqJ5GqR3rjFFDiGEEEIIIaSroMghhBBCCCGEdBUUOYQQQgghhJTAAQccILvuuuuA15599lnZdNNNZZtttpGFCxdKt/Pzn/9cpk6dKiNGjIhD0V588cVKjkuRQwghhBBCuhuIicces7+H1ysSGxA4H/7wh+MqYtddd52MHDlSup1XX31VdtppJznyyCMrPS5FDiGEEEJ6k4YYvqRkcB132klkhx1EFiwY+B6e43W8X/L1fu655+QjH/mIrLLKKnL99dcPEjjw+sDToT+mT5++/P0TTzxRNttsM3nb294W9wr68pe/LC+//PKAfdx8882x12T11VeXt7/97bLjjjvKP/7xD+u+1QPvATRZPf7442X99dePRdj73vc+ufzyy5fve86cOfH2v/rVr+S9732vrLrqqrLtttvKvffem3reOIdvfvOb8bZVQpFDCCGEkN6jIYYvqYCXXkLjFZGHHxaZOnXF9cZvPMfreB/blcTzzz8vH/3oR2XYsGGxwFlzzTWtzTDh8UDTUzy22267Ae+jAeqPf/xjue++++Tcc8+VG2+8Ub7+9a8vf//uu++ORdTGG28st956q8ydO1c+/elPx+W3TznllOX73XPPPeOHeo73AATOeeedJ6effnp8jMMOO0z22WcfuemmmwaM44gjjpAf/ehHcscdd8iYMWPiYxQt91wGbAZKCCGEkN7DNHznzBGZNGmg4au264GQoq5m4sTO9VXXFb9nzhTZd9/O8w026LyP7UoAnhQInL/+9a+y5ZZbxrkpNiAUhg8fLuPGjbP2BNK9OpMnT5bvfve7cvDBB8vPfvaz+LUf/OAHMmXKlOXPwSabbCIK5TlSDTfVccDixYvluOOOk1mzZi0XVxtssEEslM444wzZAaL/Lfr7++VjH/tY/G+IrYkTJ8pVV10VC6cmQU8OIYQQQnrX8IWBqwzfW25ZYQiXbPiSioGA1a/3Bz4w8Drj/ZL43e9+F4eCwdPy0EMPxWLExqJFi+JQtCQgQOCpmTBhgqyxxhqy7777xh4i5Lzonpw8PPTQQ/F+IF4gtNQDnp2///3vA7bVPUyjRo2Sd73rXXL//fdL06AnhxBCCCG9bfgqYQPDF1Rg+JIawPWEB0ddZ4DnJV9neERuuOEGGT16dOxlQQjYpz71qTivReeJJ54Y9Jpi/vz5svPOO8uXvvQlOfbYY2NxAS/LgQceKG+88Uacg6M8NHl4+a3cHuTbQETpIIeojdCTQwghhJDeRRm+OhUYvqQGEIqIEDUdPDdzsgKDYgEQOGCPPfaQ3XbbTfbbb79YnCheeeWV2Buy+eabW/fxxz/+MfYGIRcGCfwbbbRRLIp0IJAgpvKw8cYbx2Lm0UcflXe+850DHihyoHPbbbcNCMX729/+Ju95z3ukaVDkEEIIIaR3qcnwJRWj51rBU3fzzQNDFSu83j/96U/lmWeekWOOOSZ+/sADD8hee+0VFyP4xCc+Yf0MxAZydk499VR5+OGHZebMmXGBAJ0ZM2bExQBQde0vf/lLvN/TTjstruqWBcLfDj/88LjYAPJsEKJ21113xcfDc53vfOc7sZhCVTVUZoOAM3sB6Tz11FPLQ/XAPffcEz9/4YUXpEwocgghhBDSmzTI8CUlgnLgZq7V+98/OCcrqZx4YBBqduaZZ8r3v/99uf322+Xoo4+WJUuWxDk3yIOxgXLOKCGNz6CR6AUXXBBXQ9OBdwe9d/785z/L1ltvHefOXH311XFFNxf++7//W4466qh4v/DMoNIbwtdQUlrne9/7nhx66KFxEQUImF/+8peDiiToQIzBQ3XQQQfFzz/0oQ/Fz6+55hopk74I9eoaChKwUAkC3WCTKlEQQgghhHgDgxYVo8zkc1P4oHwuiw/Uzuuvvy7z5s2LDW70Z8lVLhzV9MxcK3W9x44V+e1vWUkvBfTJmTZtWhyiZiuBXcW19tEGLDxACCGEkN5jjTU6hi3QDV+9GAHex3ak3UC4QMCgHLgpWHG9IWRxnSlwugqKHEIIIYT0HjR8ewtcx6RrSU9dV0KRQwghhJDehIYvIc5MnTpVGpzlMggWHiCEEEIIIYR0FRQ5hBBCCCGEkK6CIocQQgghhBDSVVDkEEIIIYQQQroKihxCCCGEEEJIV0GRQwghhBBCCOkqKHIIIYQQQgghXQVFDiGEEEIIISVwwAEHyK677jrgtWeffVY23XRT2WabbWThwoXSzbzwwgvy1a9+Vd71rnfJaqutJuuuu678x3/8RyXnzWaghBBCCCGkJ1gqS+X38nt5Up6U8TJetpftZagMrez4EDgf/vCHY4P/uuuuk5FJzWi7hCeeeCJ+nHDCCbLxxhvLI488IgcffHD82uWXX17qsenJIYQQQgghXc+VcqVMlskyTabJ3rJ3/BvP8XoVPPfcc/KRj3xEVlllFbn++usHCRx4ffr6+gY8pk+fvvz9E088UTbbbDN529veJpMmTZIvf/nL8vLLLw/Yx8033yxTp06V1VdfXd7+9rfLjjvuKP/4xz+s+1YPvAeWLVsmxx9/vKy//vqxCHvf+943QIjMmTMn3v5Xv/qVvPe975VVV11Vtt12W7n33nsTzxkeqyuuuEI+/elPyzve8Y5Y4B177LHyy1/+UpYsWSKtFTmnnXZaPAkjRoyIH9ttt5385je/KfOQhBBCCCGEDABCZnfZXR6Txwa8/rg8Hr9ettB5/vnn5aMf/agMGzYsFjhrrrnmoG2iKJKddtpJnnzyyfgBu1lnyJAh8uMf/1juu+8+Offcc+XGG2+Ur3/968vfv/vuu2MRBY/JrbfeKnPnzo3FxdKlS+WUU05Zvt8999wzfqjneA9A4Jx33nly+umnx8c47LDDZJ999pGbbrppwDiOOOII+dGPfiR33HGHjBkzJj7Gm2++6TwXCFWDLsBclEmpe584caJ873vfkw033DC+cLggn/nMZ+RPf/qTbLLJJmUemhBCCCGEkDhE7VA5VCKJBr2H1/qkT6bLdPmMfKaU0DV4UiBw/vrXv8qWW24ZG/g2IBSGDx8u48aNi5+vvPLKA97XvTqTJ0+W7373u3Ho189+9rP4tR/84AcyZcqU5c+Bbm8rzxG8NEAdByxevFiOO+44mTVr1nJxtcEGG8RC6YwzzpAddthh+bb9/f3ysY99LP43bHvY+1dddVUsnFy8Wf/93/8tX/jCF6RsSvXkQNl98pOfjEXORhttFLuncPFuu+22Mg9LCCGEEEJIDHJwTA+OKXQWyIJ4uzL43e9+F4eCwdPy0EMPxWLExqJFi+JQtCQgQOCpmTBhgqyxxhqy7777xh6iV199dYAnJw8PPfRQvB+IF9jq6gHPzt///vcB2+oeplGjRsVFBe6///7MY+D8PvWpT8WepqOPPlq6pvAAXGWXXXaZvPLKK4Pcb7qKxEOfDEIIIYQQQvKCIgMht/MFHpEbbrhBRo8eHXtZEAIGYx8pHTpIxjdfU8yfP1923nln+dKXvhQ7DSAu4GU58MAD5Y033ohzcJSHJg8vv5Xbg3wbiCgd5BAV5aWXXopD8SDO4PVZaaWVpGxKLzxwzz33xEoQEwSXGk4MCs4GYgHhSlMPJFURQgghhBCSF1RRC7mdLygWAIED9thjD9ltt91kv/32i8WJAk4AeEM233xz6z7++Mc/xt4g5MIg2R8RUhBFOhBIEFN52HjjjWNb/dFHH5V3vvOdAx6mPa5HZCEU729/+5u85z3vSdw3nBYf//jH4/C7a665Ji5YUAWlixy4sOA+u/3222P1uf/++8cxiTZmzJgRJyOpx4IFC8oeHiGEEEII6WJQJnqiTIxzb2zg9UkyKd6uCn7605/KM888I8ccc0z8/IEHHpC99torLkbwiU98wvoZiA3k7Jx66qny8MMPy8yZM+MCAaYdjWIAqLr2l7/8Jd4vioAhDyYLeFgOP/zwuNgA8mwQonbXXXfFx8Nzne985zuxmEJVNVRmg4AzewGZAgci7he/+EX8/KmnnoofiPJqtciBasOFQaIVPDUoR6eqOJhAQapKbOpBCCGEEEJIXlBM4BTp2J6m0FHPT5aTK+uXg1CzM888U77//e/HTgDkp6CcMnJuEP1kA/YzSkjjMyjLfMEFF8R2tQ68O+i98+c//1m23nrrOD3k6quvdq5ihoIARx11VLxfeGYQXobwNZSU1kFRsUMPPTS27SFWUA7aLJKggFDCOSKyC3pg/Pjxyx9lOzP6IpQ9qxDUx0a303POOSdzW6g9hK2pUnOEEEIIIaT3eP3112XevHmxwZ033AllolFlTS9CAA8OBM5uslvA0XYnc+bMkWnTpsUharYS2FVcax9tUGrhAbjN4HaDqEHC0YUXXhhP0LXXXlvmYQkhhBBCCBkAhAzKRKOKGooMIAcHIWpVeXBItZQqchBviMQqNBqC6kJCFASOqq1NCCGEEEJIVUDQTJWpdQ+DtF3kIMGIEEIIIYQQ0m6mTp0qFWe5NLvwACGEEEIIIYRUCUUOIYQQQgghpKugyCGEEEIIIYR0FRQ5hBBCCCGEkK6CIocQQgghhBDSVVDkEEIIIYQQQroKihxCCCGEEEJIV0GRQwghhBBCSAkccMABsuuuuw547dlnn5VNN91UttlmG1m4cKF0O1/84hflHe94h6y22moyZswY+cxnPiMPPPBA6celyCGEEEIIIT0D+lnecUfnd9VA4Hz4wx+ODf7rrrtORo4cKd3OlltuKWeffbbcf//9cu2118YNRT/+8Y/L0qVLSz0uRQ4hhBBCCOkZzj9fZOutRS64oNrjPvfcc/KRj3xEVlllFbn++usHCRx4ffr6+gY8pk+fvvz9E088UTbbbDN529veJpMmTZIvf/nL8vLLLw/Yx8033yxTp06V1VdfXd7+9rfLjjvuKP/4xz+s+1YPvAeWLVsmxx9/vKy//vqxCHvf+94nl19++fJ9z5kzJ97+V7/6lbz3ve+VVVddVbbddlu59957U8/7C1/4gnzoQx+SyZMnyxZbbCHf/e53ZcGCBTJ//nwpE4ocQgghhBDSEyxZItLf3/k3fuN5FTz//PPy0Y9+VIYNGxYLnDXXXHPQNvBw7LTTTvLkk0/Gj+22227A+0OGDJEf//jHct9998m5554rN954o3z9619f/v7dd98di6iNN95Ybr31Vpk7d658+tOfjj0mp5xyyvL97rnnnvFDPcd7AALnvPPOk9NPPz0+xmGHHSb77LOP3HTTTQPGccQRR8iPfvQjueOOO+LwMxzjzTffdJqHV155JfbqQEhBqJXJsFL3TgghhBBCSEO46CKRefM6/374YZGLLxbZZ59yjwlPCgTOX//61zh0a8SIEdbtIBSGDx8u48aNi5+vvPLKA97XvTrwisAjcvDBB8vPfvaz+LUf/OAHMmXKlOXPwSabbCIK5TmClwao44DFixfLcccdJ7NmzVourjbYYINYKJ1xxhmyww47LN+2v79fPvaxj8X/htiaOHGiXHXVVbFwSgJjgiCDyHnXu94VCz3z/EJDTw4hhBBCCOkZL05fX+f5kCHVeHN+97vfxaFg8LQ89NBDsRixsWjRojgULQkIEHhqJkyYIGussYbsu+++sYfo1VdfHeDJycNDDz0U7wfiBUJLPeDZ+fvf/z5gW93DNGrUqFi0IN8mjX/913+VP/3pT7FXaKONNooF0euvvy5lQk8OIYQQQgjpKS8OWLasGm8OPCI33HCDjB49OvZoIATsU5/6VJzXovPEE08Mek2B/JWdd95ZvvSlL8mxxx4biwt4WQ488EB544034hwc5aHJw8tv5fYg3wYiSgc5REWBFwmPDTfcMM7jQb4QvD977bWXlAU9OYQQQggRQSnbxx6zv4fXe6DULekdL46iCm8OigVA4IA99thDdtttN9lvv/1icaJAGBe8IZtvvrl1H3/84x9jbxByYSAS4A2BKNKBQIKYysPGG28ci5lHH31U3vnOdw54mLkzt91224BQvL/97W/ynve8x/lYyD3CAyFyZUKRQwghhPQ6EDA77SSCuPsFCwa+h+d4He9T6JCWe3HMstG6N6cqfvrTn8ozzzwjxxxzTPwcPWPg0UAxgk984hPWz0BsIGfn1FNPlYcfflhmzpwZFwjQmTFjRlwMAFXX/vKXv8T7Pe200+Kqblkg/O3www+Piw0gzwYhanfddVd8PDzX+c53vhOLKVRVQ2U2CDizF5ACY0VBA4g0CKhbbrklFnrwOn3yk5+UMqHIIYQQQnqdl14SeeaZjrU3deoKoYPfeI7X8T62I6RLvDiKqnJzFAg1O/PMM+X73/++3H777XL00UfLkiVL4pwb5MHYQDlnlJDGZ9BI9IILLojFgw68O+i98+c//1m23nrrOHfm6quvjiu6ufDf//3fctRRR8X7hWcGld4QvoZKaDrf+9735NBDD42LKDz11FPyy1/+MrGIAMpM//73v48FDYTav/zLv8SCCmJn7NixUiZ9EfxFDQUJWIjfQzfYpEoUhBBCCAmALmg22EBk5kyRffdd8XzOHJGSS74SkgSS1OfNmxcb3DCcfcDSnTYte7vZsztfAWIHfXKmTZsWh6jZSmBXca19tAELDxBCCCGkI2BgDSqh84EPdF6nwCEtB8XALr0UZZKTt0FuvdGWhrQcihxCCCGEdICQgQdHCRyA5xQ4pMVAwOyxR92jIFXDnBxCCCGErAhZQ4iaDp6bxQgIIT3H1KlT46poZYaqhYQihxBCCCGDc3Juvrnz2yxGQEhLgEH+yCOPeH0G2zc4XZ14QJFDCCGE9Drog6MLHOTgvP/9nd+60Enqo0NIw4BQ+da3viWTJ0+Oq5e5gO2wPT5HodN+mJNDCCGE9DprrCGiyrnqRQb0YgR4H9sR0hKBo0osq340aWIH76nt1OeOPfZY6UuqO00aD0UOIYQQ0uuMHCny2992+uBMnDjwPQidm27qCBxsR0iLBI4iTejoAkdBodN+KHIIIYQQ0hEwSSLGFD55WbjQLqQAQuEopEgJAidN6NgEjoJCp90wJ4cQQggh5QOBs9NOIjvsMLiIAZ7jdbyP7QgJLHAUEDRK5KQJHAX2xxyddkJPDiGEEELKBx6cZ55ZUcRA5f7oVd3UdvTmkBIEjgLC5qabbpI5WIMO0KPTTujJIYQQQkj5IETNrNZ2yy2Dq7qFCo0jPcOjjz7qLHAUrgJHgf3jOL4ccMABsuuuu1qPD8H04osveu+TuEGRQwghhJBqUNXalND5wAcGChxV1Y0QD9Zbbz3p7+8v9RjYP45D2gNFDiGEEEKqA0Jm5syBr+E5BQ4pAPJryhI62K9rr528wKPz7//+7zJmzBgZMWKEfPjDH5Y///nPy9/H8f/pn/4p0Ruk/p30AOecc46sueaa8r//+7+y4YYbyqqrrio77rijLNBy5GzHUeBzbQrXo8ghhBBCSHXAoNp334Gv4blZjICQBgidKgQO2GOPPeSZZ56R3/zmN/LHP/5RtthiC/nIRz4iL7zwgtPn3//+98uTTz4ZP6644or4NfUcD8Wrr74a5xadd955cvPNN8cC6XOf+5x0IxQ5hBBCCKkGvcgAQtRuvnlgjg6FDmmQ0KlK4MydO1f+8Ic/yGWXXSZTpkyJvSwnnHBC7HW5/PLLnfax8sory7hx4+LHqFGj4tfUczwUb775pvzkJz+R7bbbTrbccks599xz5ZZbbomP321Q5BBCCCGkfNAHxywy8P73Dy5GgO2aBEpaJ40Jr7PkdVcKnaoEDkBY2ssvvyxrrbWWDB8+fPlj3rx58ve//335dvfcc8+A9z/xiU94H2vYsGGy1VZbLX/+7ne/OxZT999//6DjjBw5Ut7znvfI9773PWkjLCFNCCGEkPJBo8+xYzv/1osMqGIEEDh4H9s1rbcPSl+bhRGUVwpj/u1vWfa6YUCg+JSJ1pk6dWplAgdA4IwfP946VggQxbve9S655pprlj+//fbbZZ999gk+nne9dZylS5fKbbfdJgcddJC8853vjAVSm2jXaAkhhBDSTiACIAbQB8csEw3xcNNNHYHTJLHA3j6tBSIlj8AB+Bw+X5XQQf7NU089FYuIyZMnp4akQWwoHsvh9VyyZInceeedsvXWW8fPH3zwwTgvBx4b23EgeBDedvfdd8ehdG2C4WqEEEIIqQYIgaQ+OHi9CUJBD08ze/t88IMi113H3j4NB+IEDT+LgM+HEjkLFy6MRYL+eOihh5aHhm277bZxjgz66Vx33XUyf/78OE8GDU4hSEKy0koryVe/+tXYC4QCB+jjg+Mr0aOaq77++uvyyiuvyI033ih//etfZdNNN5W2QU8OIYQQQkhSeJoKp4PAQTPIHXfsbMvePl0rcBRqP0XFDjxDm2++ufW9D33oQzJ79mz59a9/HYuaz3/+8/Lss8/GxQLw3tprry0hWX311eUb3/iG7L333vL444/L9ttvL7/4xS8GbPOXv/xFVlttNRkyZIhMmDBBvva1r8UV2FBCuk30RZBrDWXRokVx0hMUMGqGE0IIIYSUBjw4O+wwuEEpwtO23VbkiSdWbIvKcCicQCoBngUk4q+//vpxf5eyBU5VRQgQnob+NcgDKptzzjlHpk+fHoentfVa+2gDhqsRQgghhNjC02B43nJLx4ujCxzA3j6NoiyBEzp0zWTjjTeOK5mR8FDkEEIIIWXB8sPtQ4WnKaHzgQ90wtTAuuuyt08DeeSRR0oTOArsH8cJDcLU2pbQ3xYocgghhJAy8zsQ/mQawniO1/E+hU7zxCOEzsyZA19bZx10bWxHb58eY91115UZM2Z4fcY3PAz7x3HazAEHHND4ULWQUOQQQgghVZQfVkJHLz+M97EdaZZ4xH4Qjqaj9wjRvT1N6+3Tg/T19cmxxx7rLHSQY4Nkf9eGodgv9o/jkPZAkUMIIYRUmd/B8sPNFo/6fnCNrr22E6aGkDX9eKq3DxuBVkpSvSxXoaMXEcDvLKFDgVM9oWqiUeQQQgghVeZ3mJW7SHPEI8LOzP18/OOdMDVbeFpTevv0AEOHDo1/v/HGG4nbZAkdW5W0NKFDgVMPr7766vKePkVgnxxCCCGkTFR+BwSOAs8pcIqLRyVI1NwWFY8IO0P4GdD3ox+P4Wm1MGzYsLjHC3rIwPhFD5ckjjrqKFmyZIn88Ic/XP4aetB885vfjMsTm+B1bA9BozjiiCPi/SxevLiEsyFJHhwInGeeeUbWXHPN5cI2L+yTQwghhJSJHv6koCcnDPDg6OIxRO8a5PIg1M3mCYIHBwKH3ptagBcH/VOWLVuWuS3M25NPPlnOPPNM+fKXvyyHHHJI5md+8pOfyM9+9jM56KCD4n4y9ODUAwQOmqHa5t9HG1DkEEIIIWVh5nfAg4OEdoasFYfisSeBwEkLWdOBifvoo4/Keuut57x/lIlGFTUKnHqAly7Ng0ORQwghhNQN7vqj0pcpaEzhg+R1Fh/oTvGY5RWCRwJhV/QaERJcG7DwACGEEFIGKr/DNLpZfrgYtuIAm2wictFFg4sDQGTccYe9nHTZzVizSl1vv31n3PjNPkqEBIcihxBCCCkD3IFHeWF4akyvgk/54bIbX7ZdPOJuLsTAXnuJXHjhCvEIL8mHP9zJ0Zk2beA8VSEiskpdz58vgiR4/GYfJUKCQ5FDCCGk3TRZBEDAJIWiuZQfrqLxZdvFoy4m9t6749HB+089JfKXv4gsWSJyzz0iDz5YrYhwKXVtlqZmHyVCgkGRQwghpL10uwgou/FlW9HFoykm4NG5777ObwicYcM6v/G8ahGR1Sdpm23YR4mQkqDIIYQQ0l66XQSU2fiym0gTE7q3pA4Rofok6eh9krLeJ4TkgiKHEEJIe+kFEZDlDaAxnC4W4C2pU0RAcKPymw6e64I87X3SnaGspHQocgghhLSbXhABvNufTZJYuP32+kSEWeoazUp1QY6xpb1PoZOfbg9lJZlQ5BBCCGk/3S4CeLc/v5j44AfrERG2Uteo9KYLcn1stvdVKWziT7eHspJMKHIIIYS0n24WAVnegG44xzLEBKqsqaID+I3nVYqIrD5JkyeLrLpq5zf7KIWnF0JZSSp9URRF0gVdTQkhhPQopgiABwcCpxtC1mCAI6zGPBfznFFO2cdYQ4gO7mDbPoNjwrDOKm/dlGOpsCTcldevNV5HnxyUkd5sM5HZs1ccR80fRIRLr6Kyzh29fIYMqeY69Cr6d0XR9r8LPcwiD21AkUMIIaS9lCUCmkKSAV/EUC9jn3UfK0lM4PW//U1ko40G758ioneABwe5egp4Q+HVI63DRxswXI0QQkh7yQoJanvIj9n4UgfP8bqvQKgyV6GqYyU1XcXrW21lnx+XZqyk/XRzKCtJhZ4cQggh7abK0KtuocoQv24OJyTNhmuv62C4GiGEEELqyVWwiU7mRZCq6fZQ1h5lEcPVCCGEkApoc7PBMspuJ/UmwT5POCHssbrtepCwdHsoK8mEIocQQkg4esnIbHuzwTJyFZJycND0cs89wx4rxPVwXa+9tK67hTLy2UirKFXkHH/88bLVVlvJGmusIWPHjpVdd91VHnzwwTIPSQghpGySDD5Vsnf77dtp9PdSs8Gs5pk28eFizNt6k1x1VWefql/NlVeW0+fH93q4iqJHH223mO1lkgpSABae6HpKFTk33XSTfOUrX5HbbrtNrr/+ennzzTfl4x//uLzyyitlHpYQQkhZpBmGuImFniTz54t86EPtMvp7qdlgUvPMa64RWWWVjlEPUaILWR9jXm92iWPsttsKgTN3rsg//3OnMad6v0hDTl1wm9cD53DddcnXw1UUPf10e8UsIb1MVCHPPPMMihxEN910k9P2CxcujLfHb0IIIQ1gwYIo2mADVKzp/H700c7r+K1eHzZsxfs332zfvpvQz109mnyuL74YRdtuO3iMuLbrrtsZ/yqrRNG99w4+P/zGdi7H2GSTgXNy5ZUD97fFFlE0cWIUTZnS2T7UeeDf6jyyrgdemzw5eb3efnvnOOYc9MK6JqSB+GiDSnNyUAkBjBo1qsrDEkIIqdJ7gbv16n004Ov2cq1lJPDXkauAa4trt+66IosXi+yyS37PFLx6Znj69Omd3By1v+ee60iQvr5855HkiQHwHLlcD1Rngk0CL5O5Xi+8UGSvvTreK2ynr/teWNeEtJzKSkgvW7ZMdtllF3nxxRdlLv6IWli8eHH80MvETZo0iSWkCSGkaWSVBO6lDuPdVh656Pnonx86VGTp0hXvqecQUgChcUXK+Nr6oECYYL86SePXywzrIG/o8MMHlxnupXVNSANpZAlp5Obce++9cvHFF6cWKsDA1QMChxBCSMu8F3mqdrW1elVaAn/IpPq2eKbMfB/MhxI0AAJHCR0lcIrkLenlgJWHRQkcHDfreuC48NjAk6ODSnC6pwZlhv/wB/u6xutNXZ+E9DJVxM995StfiSZOnBg9/PDDqdu9/vrrcYydeixYsIA5OYQQ0pY8FORB3Hbb4NwFlR+RlLuQlFuhHwfv58nbqDs/yTWHpVtyjGzXEmtA31cZeUvmMdZZx+162HLJ1APPsZ5xTsgfSso1w+t431yfeK4fS3+O3/r25nOSPpc6nLueYqFHTk6pImfZsmWxwFlnnXWiv/3tb96fZ+EBQghpIKbReO21nUR1PB86dKABq5LA1fs2o7+tYqGt4iyNEAn2ukFqE0zqgX2XKbjNYgTm9TDXHQoj2ITYL3+5QuAo4QPwW3/9D39IXhv6c3UjQI2lrWulKrrxe0baL3K+9KUvRSNHjozmzJkTPfnkk8sfr776qtPnKXIIIaRh2ASJXpVLCR1UpdKNT7yPR5Ix0tbqVd10hzm02DSvP7wraUIkzxxjnenV0SC4kzyH5vWwCQ/Tk7P55lH0yCOd32meHLxvembMKm226oP6600U8k2grTdBSHeLHAzC9jj77LOdPk+RQwghDcOlbO/KK3eMTZsYSgvpsd2RhwHbVIHTbYS8Y64bpkrg2sROltBJGxMEghIM+jrxMX6xf1No6AJG7dfcTvf0qDLTJuY44CnSPT943gYh3wTaehOEBMdHG1RWXa3sCgqEEEIqAknWKN9rJosjqRsNGPXKVmlVuVRjUZQBTqrKtskmneRxdiav99qqogJIwHe5FuraPvFE57leZABgnaDJJiqqplVX06uf6WsJaw0NZ9F4FkUDsEa23npwQYixYzvlspPGnLZ/vYBC3upqtkp1GK9e4rrNlfiqpNuqGJLuqa5GCCGkS4DBaDNIYWigk71rVS6zzwl6qJjVq2z9Vkj11xbgdV0spFXEw7W95BKR3/xGZJ11BhqjeEAc/PGPndchRCCefPsyQeBMnjxY4AAcA8IkTeAAHBfHN41lvWqbGl+eqoG2SnU/+Ul7eio1ibb1oyK1Q08OIYSQ+u606p9Rd7jN37xb2zxsXrgkLwoo6h0q8y6+i/dq0aLB/XggcLIagtKTEw56cojQk0MIIaQt/WKU90c3/JSwQeNofR9JXgNSPaYXTl1ffR3gfWzn4x2q4y5+1vhwDvrahlGNEDXTw2SuT/M7gQajuoDH87b3VKqKbuxHRUqHIocQQkgxzAaQrkag4l3v6jxMA3abbQaHDJFmkBZGpq+DvE0+TfKEioXCJ6Qt6TsBIX/44QM9lHiO1ynky/37QnoWihxCCCHVG4E6CAV65ZWBr+21V8eANXMrYMiwu3wz0K8vDE0k5GeFbzX9Lr4tzwjrDuvv4otFzPCYpNwf8zsBEa+eKw8lnuN1Cvn0a2H7+4LXcS04dyQF5uQQQgipryqXacCedprILrt0qm6tu27HIFTGsmvFLFLtNfWtOOaDb/WzqvKMXCvM6fOnPze/Ez6V63oB81rABlRzZ14LvM65a26lxcAwJ4cQQki15Mm7sIWhbLyxyNprryg7jFLD2M6W60EGklbtzNcDpoxMCAzTU4LneB3v33efXxiZ7xiLegnLyjPK853Qn5vfCdfcpF7BvBbw9uoCR78WnLvwLHT8/jfcq06RQwghpB5sBiwMFnhv4MUB6KXy17+Wl+vRbUbJ9tuL/OEPdqNk2rSBPYyKGvzogfPJT7qHkeUxnFSoGDw1Zviba5nopuYZ1S1km0wbrkU381JgwV8XUZd0NSWEENJC0Cne1pEeHczXXXdwd3l2NreDOZw8uTNPw4ZF0W23De4Uj9e32KIz50W7zOPaqOujXxfzM/q1xb9tXerTPlMH+niatPZw3bbd1j4WNWa873p920AZ1yLpbw7A6900f0VI+/7X+H3w0Qb05BBCCGl/Y9FeB3OI5puqchfC/K66anAPohdfdL/7mlZY4Ne/HtjkE7Hx8CTYwsiUh6Etd+eb2nSyW+6u13ktuiQMq6sKi5QICw8QQghpHmz8l4/bb+8IHL3ZZNGmqkmFBVRiMoSMmbBvNtHUE/abfm2bPD6z4IJrU9K2EvpaVFnIolu4pcTCIjlg4QFCCCHthY3/8oPeQpdeOvA1H4Fj5nyk9adRXjjdwwCBhffwuhI4Kn/n8cfd78775JeEzFNp+tqr+u56nTlAZVyLtngTm8KCGvtThSBqMMzJIYSQHqMteRttymHA48or/XM+9H0h/2addaJolVXsMfn33rviPWxry99R+SL4nMofsuVZ+OSXhMxTaeLaS8ofwfzq84fn3ZQDVPa1aGreVZN4lDk5hBBCSDhClQzulSpUSXe+EaKms+eenVC2NEyPDB74t6p0B28MynvjudllHl4dvfS38jCoz+I17PvBBzufmz9/xRjxW+0PY/TJLwmZp1Jlueoi+SP4N5rlln13vc4coLKvRVPzrprCY5by/ghRM71gSX9jm0LUYOjJIYSQHqRo9aNerEKl3/lGFTV1txUeHPUcv2+/3f3uLTwz8N6YVdSS5hCvY3v97rh6ju1xbP1OMCrAmWPWx+56pzjkHecmVd6yeTPMqoO269Mtd/PLvBb05LT2b6iPNqDIIYQQ0l00MeyobGBsbL65XSRATKjXESaWdd4uBqDNyLSV/VbhanjPZjjZjoUx+hqbeYzWJgmaJGwhg+a8lr2uQwmCpsx3Q8OwGseLDbleBhQ5hBBCepu2GjJJhgVe/8Mf7IaFMjgeeaTTBwciwfTY4DlehxDCdln45nzo823z5qj5tp1fqPwSn/00+E61k8hQAqeqMRe9Rk2Z7168AdJlUOQQQkiP3d0iXRCSkmQI4nWIF3hjIFLMEDHdQFRCx3aeSuhkGZO+86YbjnqTUNMoT2r6GsIDU2TMZRq7of5euIiMsv7+hPgeNUVcNEVskdxQ5BBCSBnwf5DtI3QVqjJFbpIhCHFiy6uxGYhFjck8HjD1vdAFjvqseo78HlRgC3WspHPD/GyyyYrqbWnGeNnevlB/L1xERlnrMuQcNcW7yhtVrYYihxBCyqApdyNJPZ6cKkRumiGo59ukGYh5jcki6/u+++wJ8Hqejv5Z32Mpw9Q8DgSfeq7Pj1nkAJ9L8iSZnqdQBneIvxcu17Ksdekzflfh0DbvKmkcFDmEEFIWTbkbSaq/TlWJ3CRD8Prrkw1y8w50nrv/urEMkZAWFmfia2jj95Qpg3NL1PZ4He9jO7VveGcQiqd7jCZOjKKVVlpxjrrHSB13q606+0oam5lDpLx9Ie74F1mHLusNc/LLXyZ7AHWPlu+6dL2mCJH0ufZV9PghXQtFDiGElAnvRjabMsVIVSLXNASvvbZjKNoM8iQBkmZM2gxYvAaPh16kQO1PeVGU4Z8kdFxFAf4N8TFp0uAiCUrkvO99HQPaVh4b70+YkJ37o8adtB5s+UPYBkIplHck79+LLJGBazR8eOe3Xo7bLB2ep1qdzzX1+b7xbycpCEUOIYSUDe9GNpeyw8rKNtRs+zfLB+uv28LBssZoGqbKqMe+4B3B60OHdgSIPmfYTvey5AXHV14GGOMw0s1x64UWzNfV+JKquLmIU13g4N+6YDXntahQzvv3Ik1koNqe7qnRhY56uPRGCoGL+KcXnASAIocQQsqEdyObhy30Ss//0A3yosnF+OxVV9mNVt99m+PW1xaMbHhwTONeGfS2ninmPtKMSfNYNhGlN5vUt0FYGDwkRTALKsD7YJ5rlnAzBV/adzDp80lzZyukkMcoL/PvhXmtTz994HEwp1WRdp7MZySBoMghhJCy4N3I5uGTO1A0x0Iv52wac+pOuquXyBy3rRQz3p81a6AYSPLo5KmulmT427wkpqgKYZAiz8icSz0kzazIZnpE9PG5fAfNz9u8P6bnqohAcf17UST/J038Vf03KcljxcqUJBAUOYQQUga8G9lMXBO0EfpU1Mjy9T74jFsPGdM9CPCY6H1y4N0xDXU1dpXrkpbQj/fTcndsIsrHY+KKMnzXXtt+DCXy9Mpcthwam9fFtSdP0rkoYVHEa+dacQ7bFRUAWIf6GOHRqfrmS5bHqkmlm5s0FuIFRQ4hhJQB70Y2l6w75mZJ4TwC1ZYAbyZ5++ZAmELs/PPthjEM4RtvtHsWdI+HT9Uy8/guIict78UXnFPSsUaPHnhNbONU3ibd82MKoyIeWB+vnS1cEvOMsD4USNA9Uuo64D0IzrTCCC5rUxfetjFWcfOlTR5u/h1vNRQ5hBBSFrwD2Fyy7iQXNcR04ygpyVuvSOYzbpVAnjbuTTfNzhHJW+lK7S/JU6Ie48Ylizif9Y/tMFemca4/UBoa4iCpupp+DfTXzVyhvB5YV6+dzROjHxNizFZAQR9r3rWprx1zjHlCKHvBw9228ZIBUOQQQgjpTYGZVcWqaBK4PgbzWAhrymtImiFRP/958nj1ksCu4sVFDJnhYEOG2MUHjHZVDc2cV1djGpXB0gSOelxzzeA+OTbDFCICY7eJTCWobKWUk8bt47VLMpoxR/q2uMZpwsV3berHxbkp8Wlef8x1mTdf2ugZaZPniQyAIocQQkh3ebxcDCkYwGkekZDlv0NWzEpKHIfQMQ1tWzic+jzCo2yeAZs4Sit6gBAyvfCArWSzKi+d9w44jg/PlL4/m8jBmPV+LLZ1hecoKqGuv219KIFkW3e29ejrtUszmm2hZEnrxGdt1ikuqqxmWBZlVr0jpUGRQwghpD7KML5cQkz0O+4uZZN9DRtlyKWFefkaSea+IGxMQ19v6qiEhWlkQtwgvwP7wDY2r9YmmwxuyKn2oV8zVHNbeeUVIVXKyIdRP378iv2hn47rHXCbOIEwwZhsHiOExWH/OCa2KysEKU2MY06VaHTx2iWtLbMoQJJwybM26wifbaPnJgn2O2sdFDmEEEK6L+bd5W552vHM4gM2Ax2GGQxbmzEMTwCMfNUsUw/zwmtKGJjnlmRsJs2TTejo79uMTDO8Cl4S06uVVRRB95aYFdrU63iORHokzbsa42lG8f/+7+BzVcUI8Bvz6mow+4YguRrrPmWkTaNZz5FJ+2ybwqeqzmkpS8jRk9NKKHIIIYTUS1lGW1IYVlZ5aD2ULckww/vve1/HgDerk0EcqJCqvr6O8a0Ejtov3tfLOSeFkplGtl4dLSl0TW/q6JIDYnqBbCKwiGFplrFOuwOeNF59TvWH2ZjUpyePj+HqYqz7NAS1HdvFu9jGRPiqRFlZXqM2iUoyAIocQggh9VPWnVJbiEmWUY6QJ5ecHuWlUQau7qnRjwlvhm4Y6SFcNsFiE04A26qyx7rHwCZW9GT/NCPN5gUKWU44z3W1jVefU7MctPqNeTMbgoYMQUqbR1Pg+BR7QDibfi7q2tk+29bwryo8IWUIwDaKSrIcihxCCCHdGfMeIqfGhh6OpVcYg0fB7OXi4i3xNZb1bVx78CR5tTbayD7nRQ1mfEYP+cOx9IphetK/LYwoyUuF+U1K7kd+UJUCTP+Mas6aJT5sfW7MHju60Wy7Dklhkmou8V7TRE6o73fW91IX/yG8Lm0VlSSGIocQQkj33ekNGWKSZljBkDc9N8oYT+ojY3pLzPPNGjsMOdMotoWhqWpjaTkg5hj1faGcsEsiv22+9PHp5ZyvvnpwcYQkQ9Ecr95cNKtQQlYORpH1kWSsuwjjJKNZF4W2EtVmEYi2Gd4hvt9l5EW5Hpf9zloJRQ4hhJB6CR3zHjLExMWwgoFtChmcQ1LeiwpHSruznWUUQnwk5RbBWIaAsOX7JHmVijaGNMsC600nf/GLgc/Vb8ybnvukXw/bePWQQFvony3nxTb+IusjlLFexGhuWwhVqO+3z3mzEhqJKHIIIYTUSRkGW8g73T7lqEN5chRZhpqrsZyWA5I0JlvolM9860UWsK8NNxwocH7wA3txh6yQIz1Uz1Z0wCzwYBu/XkI7a33oc2ybR9s5lIF5rc3wRRR3KHJjoC3fbxfBVEX+D2kFFDmEEELqo6zQm5AhJmmGlS4WYHCjZ4vNW2LznlRhqNmMTJw7vEC2seh5PbZmma7HyKrgZjsnleOkSk7b3rMJGjMvSoUPmgUYsirYpYWWmSXFsV/MT5I3KmQYU5LXDv9GUYsmG/NlfL/TvhuhvcKk1VDkEEIIqZc2xLynhXspo1vlypiljvGeLh7UQxcRSYUFihpqLjkgesls29h85wdjT6rg9u1v28tdu1aXw3tmFTVT6JjCLa/3QBdvqmS4aniqe6muuabzOoSTKkiRV5yb2IoS6CLSXGtNDMsq4/tt83K2LYyPlA5FDiGEEJLHsHr3uwca5LqRpR54//rrB3t+YJyazTazPBlFwveyjMwQOQxKhKR5bsyHLR8I+0kaL7wvNg9MWmNN/EY4l61qnT4HNkzxtfbagyvb4Tk8KgiBM0PtihrUZuNW3eNm6xvUC96KohXumnDThFQCRQ4hhBCSx7DC3XyULTZzJfSGnzNn2sOccHfeNLbw/IYb7Pkieq4KDDWEMBW5O56Ua5LXk6OOa5bQViIA4kAXNj//eXromg+qf5C5L8y1+brpIXIxfm2eIuXRMUPlkoRUEbLyv8w+TFnHboPnNAmXyoNtPTcSHIocQgghJA3fOH9d6NgMeJuxpYeVmYaa2h+EEQxrPPQ71mp/phBKMuj0Y5mNP/Pk5KSJAQg9U+CoY0Ho6Nsikb+I98gMkzPFlRIiPt4xNa+2ctYYr618eBneFJsQxQPn53s+bfV2MByNeEKRQwghpHl3euGpQJ8WG0X6t/ieV17Dyjf8K+04ev4HEt3NCmN4QADB4NZD3dLO1RYClbe6mjkfGMdKKw08/5VXXuH9CJUHhHG5FCOweZZcPB9KEOjzbXuMH+93rfOuVQhQ27n4eKbaLBTaLNBILVDkEEIIaZYhAQEzfLi9Opaq2IX3fYRO3vPK87m8ldFcqrjpeSB6aJien2FL2rcdSxdPRfrk2Axn5MDo54+qc0q0qj4+RUsx20SImje96hhEF16zCZW049lEFPZjeofM52n7zNsw1FapTl1znxwj0OYKZK7zV/dNGtIIKHIIIYQ0604vjGHdqFdCRzf08DvJ0xP6vHyMJlcDMmmfafkftuIFWXf208gTVmfDNMptIk9VRAu9vtQ8JoVz6U1C8dvMGUrzuthEjq1Knqt3yFUwo7CCvh9Ub3MpRe7zncwrxJtOE27SkMZAkUMIIaR5d3pNQXP66Xbh06TzcjXgYcSmGWKmIa7ySJIM+TSjPUugmSFQ+ud97nrbxIaaY93LYquAZX5WN0J9xmDLmzFDuWwFCtK8LknhahCYNu9ZmljzEXhpxQZsoYXoo+NruIeoqOdDFR6WJtyk8YWep9KgyCGEENLMO71JzSTzCJwqzivvnXrdEEvK/VB9eBDalSZyTPGQNh54Ofr67J/Pc9fbR+Qpo84co27U+YzBdl11r5b+Pl5HOJ2LwFUGqDnvqJqn8qB0EZck1vII7SxPm9oXxuGbo1b197tKD0sTbtK4Qs9TqVDkEEIIacadXhvw4OhjwPOidzvLPC/Xu7JpHg89/El/Dcn8thA15VlAcr9uyCWJDoglPWdFeT3UsWyGe1kGW4g771lGrWp6mvcYSWJDhd/5eqCSBIat/HHWWs1zp18/n6T5CmFU698F8zqrY5TlYWnCTZpu9Ty1CIocQgghzTESdMMoKdla9+T43u1skvGTFH5meiDSKnuZXi4V6ob9ImfJbE4JD4YSQ6a4wb99CxiECL0xvSy2O+9Fqt/BoEc4V5675eZ+4NGxHa+o0MZ1MQViqP5FOhinXnBCfZfM8DhbHycfbILXPAYqBeYpONGmmzQuFM3jAwxrs0KRQwghpBnhHrphdPXVAxPsR40aLHR873Y2MYwlK48E4K63zYOjz4kuTPCAUQ8DEvOpCx2bYLQJKQghfK4q9H43pvhMEyKu3qM8zVPLusueFFqne89shSb0IgN51yrOE2vDti/9pgLWjt5/ydewTpo7242LMr57SQIR3yXfc6mCrJsvDGvLBUUOIYSQZoRP6MfWvRMQPLbEbxVy5WIkNTEsJCuPRBcAuvfF9kAoG8LMYOjMmjXwDrmtmSVKOutizyx2AM9ClWCMtspnLtdHN8RNo1w3Xn0N2TIMyzShrQsdm7AxG7fmXasQfKjYljYOjLPo+aeda5keFttxbd4rn3OpgjTPUxP/frUAihxCCCErcDFsttqqkzxexh1R06vw858PNL6Uce57F7hpd0JdvUq2hPmkPi1JCfVZngPbo2rPls2bpIfSueSKFOmFlGQcYp2HWusuhirOF2I16VoUXav6HOmiSb+poELVQudL6ccoa60ljRlrRxeOyqPTFJHgEkbbRE90w6HIIYSQonRbrHSW0TdlSnGxkHYMGCBJhl6ROPumXCdX4xE5NTbBYooBeLSSSiOnGUa2UtV1GE76GOGxMkPz9D5BaWvLNq/Y1iw8oCfDw6tRhvi1rTW9JLUZCqgfy2ykGqLYgP5ZfS7MEuLmHIUwrM3vbJlGeprQNcPxmiISfOa4STmFLYAihxBCitA0D0HZhLi76zJnSEpOC11q4//gleFrO3/1uplHktRkE4YyRInKY7GFeqVdK5sXx6XXS2j0MSZ5l+Cpcq32Zs7Rhhva808gfGDowmthS37HbzPkzxx30nc6bX1D3GBctr8J2Kctfyr0GjcLAJhelqRwrjxjSvLk2AoehFprWTdQ0spyt+HvaVsKKjQAihxCCClCt8RK+3g5it7ddZkz0/gyE7ObchfWFdPw1efbFMP6fKvntjlTRrFNGCQ13lTHU59BnxyEAOpzqwudsgW6OS+2xPQ8hrVpyOqGtXlH3/T0FM3hyPs3ocpwpKQeVEnHymNY6+eD+cSNC9sxqr4Z1CSR4HuTrO03eiqGIocQQorS9ljpPN6oov+zTZsz3RCy9Y9pg5C0JcDrHgYVrmQ7B59QJ12wwKtj5uSYvVfMcdx668BeL/o4qgrhU+fr62FIw9Y0FftGE08VDmfmZphiMc0gz1pzvn8TqrxZYivwgQdC12zHyvNdzxM6WMVaa6JIKNJbq03/n6kBihxCCOnW/3m6ktfAKnpHNC0pWR+HXl4Yhqg+jrpDAkMKEmUIuoY6+QinIoI2xJxEUbRs2bJoPkSVi/fjrVyR+SLRMv37lGQM2jxjNm9QWr8lM+RPN/p9+/f4/k3wvS5F8svMMtL62Mzcp7yGdRPDeNssErolYqBiKHIIIaQbwyDKNgBCiTpzzhDS4mLgN6G4Q5Ihh/HoYkYXH0mhZXpujqsxU0Y1saJzmTAmCJwZX/lK/P/pfhRKSOt385ah3S8Sbz8DQgeiBIa57drruUtmmWVU57OJHOT5ZOUo4fPXX5+vf0+evwl6qGJSDlCIYglmvpH5XVdV7Ioa1k0p9NENIqGJorEFUOQQQkiveXKSjA+bsZclcIrcEW1bw740w0kftzmP8BDoXhtbkYC885vHkCzT+LQYk7rAUY/+ww6zj+utcCYlcEQXOhBHZm4RjqEXD0jqK2N7KO+MGQ5p9owxS3bjWuphV7p3UZ+/PEnuLsZsWrGELIO9ChHdRLrhXJokGlsCRQ4hhPRSGETW/+yzDPBQd0TbNGdp6HfFYWCbIU7mfNoqiLl6ykIIwCqMPW3sy9ZfP5qx774DBMtyodPfP3Dsb60tU+AMEDqTJtlziHRBYV4H8zFkiP11XCtbyJ8Z1oXGq+o1eHnMqnSYP3iA8pQrdv1+2YollBFG1jQRXYSmjouUBkUOIYT0UhiEb1lhm+egqJHctjnLQm80qM8bPAm2XjSuhqnZL0UP5bMlJLuIk9Bzn+IVhCCZkSBYlgud6dNXjP2ee6L+ceNSt58xdGi07Le/TT4H03OiHrg+p5zS6cOD52YvHlWmWp9DvQIZ+jaZ1xL7gHfJFK/YrkjjSdcbAHm9xzWEKzqtU4oQEhiKHEII6bUwCJsRlRayEyJEqu1zloXZVPH00+2iUc1vlrjQiy3ohrpuUGOO9L4qruIklBcN12errQaez1sse+SRaMbqq6cKluVC5y1vR5bAGeDRSRqrrfGkqsym50rZttHn0AxFxHFs+4ag0cUP/q0a2eYpP227RmkCpml5gHlFdDf+TSC1Q5FDCCFFaeMdSJsR5WqA9+qc+c6lPqfwyugV4my5JXpFKzOnRz3XPUb668o4zFOO1scLoHPffdZzigXO8OFOgkU9pm62mdf2sdCZOzf7nDBf11yT3B/muOMGel2UKDGN7qxrbD5ChBZmCZim5gHmEdHd5t0ljYAihxBCehXTiILRzLuofphGGDw4ZhiUmlO9cadusGFeb7yxIxp0Yw/XQ4VD2cKlTMPW9254US+A6Rl5ywM4f+21vQRL3sd8JfJsHi29oace4peUZ2N6ctR1seX/mJ5P20PNZV4xnyVgmp7TlkeANf2cSOtojMi56aabop133jkaP358PKCr0MjLA4ocQggpaIRYwo5a6Vkpiqthat59tlXz0nMybGIDjylTViSww1hXzyFwzMpeaQb1H/7gXnUrlBcgIZcrqXhAqEf/iBErjod5Mj1atvOGiFQi0AwvVIUKTDGf5GEwPUI24YlrmScES88tshn7v/xl/upqVZJHRDfVO0VaSWNEzq9//evoW9/6VnTllVdS5BBCSJmEvmPaTaFnPt4QS2+X5XM4c+bA6lr6vkyhZHpDZs1a4cFxeejHRy+ZNAPZDL0Kcf1tVfmGDo36DzywHIHzb/82cM7g5cJ5u14zvTKZPoeqP0zWetDnD8UHUG1N94aqsenFCFzFCP6tV4lT4XNmtbfVVx+8rmznWxdFxErT8oxIa2mMyBlwIIocQggphzKqa3VTwrDv/OC84EGxfUYva5w0p8roNnNwsjw4MK71Msl6uFWSEW+GbIXyAthEzltheigTHVTg6MeAEITAwfpCg0wXoW2GDJo9cVQJafMa6X1w9O1t1dWS/u0iKHEs9MHRr6fNe4R9Yt1lnW8dFBHR9OSQgFDkEEJILxFalHRjwrCvkZZ3Tk1PUFaeh/nA9hA6tnLFSXfDQ1//hHC15eOD0DnssDACZ889B+4fwgqCAALHt1CCniulnwO8MvCkJaHPnxmOps+fyhFC6CH25+o5UsdI64Nj8+DkJbQXtsjfA+bkkMC0VuS8/vrr8aDVY8GCBRQ5hBBSh2HTNOMkxPn53lHOc0zTIDTzRGwPGOe2AgQQODD4VXW2tLFDFCR5AfC6q2hIKDww6LX77ov6J0wo7sGx5cBg/64CGiJH9cnB4+qrO69DkOjhgQgFU3Ngu3b6tTavu749jocS2z45QFV6NcrwwubdZzfeLCG101qRk+QCp8ghhJAaaEqYSUjDrYrcADO/w8V7Y2syiv9nmgLHJjh17wP+rRuN+vzAQM+ao4QS0vF+lZjA77f2NXWLLXIJnKl6zsu4cQPPPalYRhIXXTRw3k4+2d6PCGKvaLilbzW3qtdgWcIij+DvtrBX0ghaK3LoySGEkIZRVcJwmhHlU2GsKaINosUUOEOGDDSI9fwbGPamyDFzcfRwKP1c9BwRVdHNLEagNxtNMypVZThTaOgeHoice++N+qdPD5eLo8aovC++hjg8OEkiUiX7h/Ig6Hk0+I0S47a+PFWvQZfy2FXfpOimAiakEbRW5JgwJ4cQQmqkKlHgcsfXpcJYU8LvzJAvPSzNNOpROhiJ9uo1/HuTTQZWcUPImsrx0e9+m/kiSc1GzUT5LONeGaamgarlufR7NgZ1EjoQfdg/hNr73jc4xC7LYIYHxyZyMBehrncRT06eNegqElwanWJebUUYQkJRQ3pF5Lz00kvRn/70p/iBAZ144onxvx9xjA2myCGEkJoMjKpFgUuITVqFsRD7D5UbgHmGkW4a2/CAwFMBo1sZ8hA1KgwMr91ww2AjGkLnmmvsY9Wvq61ggC52fK5bkvBE0YERI8qprqbOF2OeNGmg1ylLCCtxZM75298eVqTr4/DJycmzBn3CvWz7tzUGLrLGs/6+wLZjeBrpFZEze/Zs6x+0/fff3+nzFDmEEOJIyPj3vAZZEYHlKqryhM9VnRuAfSqvk1lUAP+GWEMeiR5ihtfVXXazfwo8O2p/Wc1dzfnJa9wnrIGiIWqJQqevr3MshPjZQtbS1qRPBTt9veT1LPj25cm7Bn2/h2Z4ohn+6JvrVNTbykIDpJtFTlEocgghxJGQ3gpfgyyUiMgKjysSPhfCy+WyD/06qPwYs5Q0hI/upTGLBSSdq55vo49FbYuwNmVkphn3rhhrBw07yxA4g4ROkkGelmtiho0dd1y62CsibvN6OdPWDwo54GFuq4s4l/yakN68ot7Wsj3ApCdZSJFDCCE9SMgQMx9R4COwsvZ77bV247zK8DkbrkJOhewgDE3dSU/qmaP3wLFhCzdKytPRw73wW69eVuQu/lvnNr9EcaM/5uu5I7a1YhN/+rni3K+/vjOvo0fbc6JwbXxylMoOfTTXlq3XkhmKl5Rfg+OaHhysI927aBtfSG9rlQU+SM+xkCKHEEJ6lLoMDBcDKE9ehe3ucB1hMD7GLYQORIiZ8I8qXPq5zZzpNp+6UFH70wWN7bcSRUVKMytuvjlaJhLN8BQsUz23x/5xnFjopq0VzJs5j+iDg3O/8MIoeu97V8yDLnQgcvSKd3nmo4zQR3Nt6etdz1MyBa9tvUP42L5DeB1rEvtDWJk+vpDe1qqrMpKeYyFFDiGE9DB1GRhZBpBrXoVqQKm21T0XdSY0u97J1s9TFybmI8nITjuObX8wXDfc0G7Aq7lVxQ18xaA2Fh+hg9ydOMTNV+CosScJW3hpzHnE+7fe2inOgIIFyrOjyjnjdVMkvFUGuzEVxMxrjiIGunC1VeZLC+czv0P6usH3qciNgqy/L/TkkBKhyCGEkF6lbgPDxwCy5VXoxpu+LQwz9MupuzSt6/zq25kGKrwLSTkSLh4j02A3H3hf3ycEA0K0cIcfPXBc58q8VtdeGy2bNClT6KCxt74W+l0EDgSaHnYGsaKH4pmGv5pXvUy2KsWNbdBgVF9j5jWAt6hp2NaWWaY6Kb/GZd2YnsU8IZ8+eXPMySElQJFDSAUsW9axufCbkEZQt4GRRwDYkuqbXnrW1VOGsatKYeZdeNOAV3fQ85ZKTrrLbxq5enJ7GilG87L1108UOssFjnGN+7MEjhqfLkYgbG1VzGD4K6FnVhHT95VWda2pBre5tsy8IpVfY66drHWjvKHwXtnCIF28Wll/X5oQVkq6noUUOYSUz3nnZYfVE1IZVfeCKSqwTGMOd9Z1Q18fp+6pqbuhoI+nDK8pj4J+J159xmzumRUOZVbaMj0b+p3/oiI3w2iOhc4662QLHG0c/Wkhamo+9JwjGOW2stg4b7P5KR6ozjZ+/Io5tnm88Ae7qZ4F29pKEmc28Z+0bvC6Ku+Mz9kKWmTdRHD5+9KUsFLS1SykyCGkXN58M4rWX3/F33s872Xo1WoAVfeC0SnSz8M03uo8j5BCDudq8ySYIUP44uTpXZRUVU3/nddroYxlm9Gsvb7sH/+IZsyYMVDgZKyFfpvAwXhVI03dK4Dj6FXBdA8PjHZTxCgvkK26nPLyYL9N9Cxk5eSY84PtbYI/6Zqpz+qV5cx1mTYPPtUFQ+crEaJBkUNIRV4c/eZgL0OvVkMoIyHa9biuwqStIS++Qk6vcpWUBO4j1vQ5vuGGgUJJCR4Y/iovxQxxcsVTZC5btiyaP3++1+fnb7jhCoGT5KnAPOqhVVlCToV22V7HY8iQbE9IXbhUV7N9N8zvQNrcY43ohSnyVN6r6+9LWXTb+fQICylyCCnfi6P61uH/nb3szaFXK4Ne+R+pb6PMtjUU9DH+zepqRfNj9DHgM1tt1RFQeoEBJQpsOUDmmNOuFTxLRbvWp+0f1zapYakSZGbuUZLnyuehFylQ42/K9y+rT47tJoFNnLlWL0zzLDbBq1UFTfYYk1Qocgip0IvT694cerVS4P9Iw3h88oZdVS3kVKiO7TzV60WvO/ajRIIqkWwzZBGuhTwn0+h1uQYqfyO0yDRFnlnxzDS6zWIUNmNd904kPcaMye9Bq2tt6c9tzXeTwtRsnlJ9Ps051wsZNHFeysIUhLhBYJu/JolhEkORQ0hFXhw9EqIXvRhN9mo1Ik+o7mIAbfdstamhoO1uvJmDpHt6ihhN8IaY+Rqm8a9yLExhceON/t60ECJTF2fKQ2GOWYWUqbEqw1MHwk3/zIknZosc9MRRYXx5PGhNx1x7SdUL//d/B895Wn5Pt6PPk/KMmuW5e1EANhyKHEIq9uL0qhejTq9WlohpTJ5Q3WWd20oTPTl1ClpTHEIkJIVt6R4eNQYV/oVQNz3XJW1NhhSZ8HINH94ZG5pzKsGT5NGBKDHnyrYm0kLX9PLLCOPL48UpGm5aRbiqbe2Z184M1+PfoWTvoN5It1dvRjUYihxCKvTi9Ko3p26vVpqIaVyekI/B3is5PN0oDMsad1KIGTw4NoFjE1pm3kXWmgwhMs2QK13YrLpqJ9Ts6qsHV0nD6xBEEEau1cfe/nb7H2b97ryvF6douGmV4aqmx86c06R1QSPeXlK7LX9zepCFFDmEhGf27OyoCDywXS9Qp1crS8Q0Mk/I5a44c3jaH+JXhgfKNidJyeQ//7m70Epak3oPGnMfro0jbWvZNjdJOTW6J0c/fwgleILUc2W8J+1Hb7zq+93xWYu6oFP/NsdtqxoXci3b1gQMdhWqZ3r4eunvShK2NRnyu0uCQ5FDSAm8/noUXXppx2BOeuB9bNft1O3VShMxjcwTcjV8227gh8BF6CHkKumOfBO8XWXkEmXdqdfv2MM7krXektbkrFkDS1/bvEF4P8sjkrSWk8LsEE6VVNJYrQnVbFL1ycF+IXiShI5qxIrtENuKMfuuDRfvnL5mIWD09aufL8QGzlGvGhfSgMacm+tCFRbQ86GSeh/1GrZra5s/0igocgghXevVyhIxjat+5xvC1NZQrZCkhezBUJ0ypbnerjJziZK8N3jNDN+CRyfJWEtbYzDEkaifJXJgvGeFVaYdJ+mRVNIY+4NQ0T0jqmHoppvaPTl6NTXlPcmzNrKuqVkyXA+PU/82hZ1LXxpf9N5M5jib8N1oEq7e0TKuEykERQ4hpGu9Wmkipu48oUHk9cy0Lem+Sprs7apCoJrVxfReObrXwDT61fHT5k/d7VceB/08dMP91luLlQJPKxaQVdLYNsd6A1R13uoYGC+8U7a1EbLSX5qnDf+2lW4OiXl829rrVY+Nb0U6df3K8riRQlDkEEK6kiwRc/bZ6TeJK/fmFMmxCRny1G3FDJro7apCfNkEg3mnGeFbytCHaDHnxgynUmANIBQM4gChYHreiHrA6FNlnbPOFceG58W2ltX7+EKagsfFIE/Ko9Dzb3ShY0u6L6NnU1Z+R1k3LZos/JuMLXdKX39l5U6RQlDkNIBG9OggpMu+J1nFDtDzr3HV7/IIjJCenG4tZtA0b1fZ82warPDomD09bInuts8i5M+Wl2F+1lZ1Su/9k9QwFK8jhAy/ddGhP971roFNTZPESBK2saUVONDnw0cY6P2CXAS1TdDpYyxDkHfrd7wqOH+tgiKnATSmRwchXfI9ySp2kPR666rfhfZSdPNd3qY1Cy3LY+YSYqbEi26s6cd0MdayihuYxQDg8bF5YmzFADDOjTayezSUEML+0hLkbeO0jc11bWR910yBk/XdyfLklNl/pdu8tVXD+WsNFDk107geHaQV9Jr3z/d74lrs4MgjW1z9rixB0sTwrm7z5JRpcOl3mlWyvS3EDM/VZ22ixsVYsyVf2zrB62tVf6AAgvk6xofXlYDR84WQL6OPDeeH7ZLEmMta9lkbadvmDWkzBSLOV89xYiEAQnJDkVMzjezRQRpPr3n/fL8nPVHCu8ywiW4SBd0o2rLWgBIA+hpwDU9zFcWqgpmtjK4SH/o+beWg9XLJK600WATpr+O3XopajRuCTW8E6nMTwKzO5rI20rw+Lnf406qrqaIItqpxvewhoOeE5IQip0Ya2aODNJ5e8/7xe5LiyftHif/zb1p4Vx66Ofwuz/mFEnxKXOklpPUwKzxUjxq9JLMubHShAwGEbcyqYkic0wWPfn620tG2Mary0Trq82rsrmujiPhXhrqtT45qmqpCCjF3tjLWvWjQMweGFIAip0Ya16ODtIJe8/7xe1KDJ69bPDm9YCD5CpcQ1xbGth6mppLk9dfwb9VUUx8PQtHML7MKrbP19THDt/TjqApuScDDA8FgOz/VyNS2D9vaKCIQzXWoeyZwbNWfB+NVuUZ58qS6kW6/UUFKhSKnJhrXo4O0Is+mW70aSefe1u9JmTlTpXvyui28qxdCXXyFS1EvnSlyVK8V8zXTc2GrngYRgyIDKrzNDH9TryU1Nk0zbl1D1mz7gDhT4XHmflSuk6uh7Wqo6w1MadB3798kUhkUOTWRVd62l+9S9youd+e71auRdO5t/Z6U6Wkp1ZPHu6bFhZNuHFcpqpKEiznWEJ4cJVz03BFdeCjPhF70wKw+hrLWemNO/bO2L7sZyqaXgQ5tINs8L6ZQM4sIZHlYXMdBg767vcukUihyaiCrvG3T71KTeu7Ot9Wrkffc2/o9KdPTUronrxfCu8qcI4Qe+YRAlW0Ams08Q3ZqV+LJJq5MMWeKZzUuHF+vnqaEDF6zFSIwBZHreH0NZJvYtwk1JR5dxWtWdTbVk8i23aRJ6aF5bSOPh7Ub8gRJpVDk1IBredvG9+ggld6dr9urUVYIVtK5t/V7UqanpRJPXi+Ed5Xl7TLDtYp4wlyvQ9qdf7N6V9a/fb10Kp/EZrTrYzSFoT6HEDpQ6+rzuuiZMGGwB0d9xiZU0ubsqqv8DOSyPCo2Qx3j3mqrjuBU68bcDqJvypTu+P7luZlCTw7JAUVODfREeVsS9O58E7waZYRgpZ17G78nZXpautWT10pchUVe49jVCDST+rPKJMOItvWxyeNlUl4rdQzbHJgha0lhc+PGDfbc4PPwnNhydGzCLG3ObOWrXa6Fr2GdJUz1KnNpRReScpDwejeEitZVFZD0HAspcgipF5e783V7NcoKweq2HKMyz6duT17XUdRjlWYAF73r7GoEQuS4iKEk41r/jI+XzlZ4QJ23rfiAzxzqHg5dSCF/J01IJc2ZLnDwGx4dHwPZNUQqS5hirHpooGmoY5ymsNG9Wvo8dwOuwoV5gqQAFDmE1Ijr3fm6vRplhGB1m2eizPNpgievq7AZpMpQtnk18uQIFM0fcDUCXcVayHwGW+EB3/LOCnNcNm9NUugfXrc1CFXjgaDRBQ6EhG27pPnzEashwhivuWawx0l5cPKGFDaJPEUwmCdICkCRQ0iNtOHufFkhWG0496acT92evK4jKRHeFgaVJ0cgVP5A0/ajY4pCU6C4CBxTAJgGvZ6j4mrc2sajCxyXfeQNkUr7jMu5oE/OJpsM/mJjP2036JPEiilyUXXP9lnmCZIcUOQQUhNtuTtfRghWW869KedTtyevK7FVGjPvtufJEfDJyXEx3qryCBUhzxhNgaOLG9OLY5ujNOPWHA88OjaS9lEkRCqt0l3WtcZnzbLa+nrMY9A3RSDY5tQmck0hSBFDCkCRQ0hNtOHufFkhWG04914+n1aSx5hLygkxE+ldcwR8qqu5hOFsvvmKJpl5PDBV5DPk8RLp49I9HLaCCabnIm9yv4+YKxoiFUr02YS3D1WEevl879JuLCD/yKya13bvFWmVNujDf6ShLFq0SEaOHCkLFy6UESNG1D0cQjJZvFjkmms6v5NYZRWRXXbp/M4C38477xSZMkWkry/MGGfOFNlvv/T399mn/nOvG/18li4VOeIIkWef7byHazF6tMiPfyzyz//cjvNpHQsXiuy0k8gzz4jMmSMyadKK9xYsEJk6VWTsWJHf/lZk5MiBn73lFpEPfGDF83XWEXniiRXPN9hg4D7TjnXffSJbbtn59x//KLLJJoPHMWqUyLnniuD/UzvsIPLwwyuOgcWC/WPh4/Vhw0SWLBFZd12Riy4S2XffwduvscbgcwoxLy6ofagx4Q+COUb9mLZx4YuDY0+cOHhcv/iFyPDhIkOGdN43z0c/f3zugx8UefrpzhfRZzxJc/fSSyvGpfPYY8nzrs+JIuvY2B/W4KOPdp7jes+d2/k3zkl//eab7WNK2q+5xjAG87rddJP7PouuL3Wd1DkBtc7x3cO/8R7OFah//+Y3Ihtv7D9G0tN4aYOowdCTQ3odW4nnIr1tui2krCq6rWJcK8jrsbB5IcySxba78Gl3r5EIryfDm++hH4pLc06VgO7r6fAZa5FQoKJeIpdxpfXX0c/f7NdTtEdRXsxjIb/ELNdtnqOaC7NPjq0yW54+OWWGK9py28w8LTXn+vliXsw/jmrdKw+WXp7cZZ0TYoHhaoR0AUklnov0tmEIlj/dVjGuVfgac7btbb1JfAzBLMPd1tfGlpeAvIwtthic36Nvr5cjDmm4u4qiKkKhXPI4ihYqaEoxC/zG+kjKP8J7ecdeRuEJ275d+jDZwgmxPRq/2sJGu6GqHKkNihxCugBbieeivW2Y7O5Pt1WMax2uxpyv8exiELoa/bqRp8SVzXtkq15mirFQhqrvOSgvS1lGeV4x6pLcX5aXy8frVJVnSSdkCXGTtAICNu+j7UYEXl97bbtXNfQ6Jz3DQoocQtpNUonns8+mgV0lWeF9eJ3enIYYc2UYpD7hW0kFD2zCzDeZvojhHroJaSivSd6wwjTK8ESl9YHBmkKYVqhQsaZ4cpK+d7g+aVUHbWvLbH6qiyVCckCRQ0hLUfk2555rt5PGjAnf26YMiuQNNQmG9zWghK2PMaePyyZ61Lh8DF6fkDnTKISBd+WVA7dHbxd1bDOPwUW82caWdR4u51BHF3qbEV3EaK/qHKoQGHXl5NiOkSTaVfie7ZhY5yoHbdy4wdeZIofkhCKHkJaHRuliRvca2P5f00RvjhJpOJ82Ywvv++IXB87/IYf0WHhfld3KixpzocSYi1FrC+9Rd62VsMFzZfjpd8HNferjNg33229f0X/Fx3B3PYdQxnOestBqXooctwoBUHaoWJNKiKeFXyZdZ32MyEVL+l4wH4fkgCKHdCWu3oE8XoQmeB70fBvXRxO9ORgLRBrGN3Zss8ZWVhhhN51jY+6W1+FZyGvU2hK19aRrGHTw6CiBoxt+piGOHjooUJB0ztjHJpus6LXjY7i7GOYhvBRZQlgvsuDbtLUJnpY6PTll32TI2+DTNkZbvo5eUAJClxBPKHJIV+JaVSxP9bEiFcuqSnBPezTJm2PmDZ1zTtQ1sJR0hXfLq/QYFTFq00ru2u5gT5qUncegxJD+vh7+k8ew9jHMbWLIxyvm01zVt2JZ3Z4WjEkXmObaV542X3zmt8xwUfN7Z+Yg6aWg09YfcryS1jmrq5ECUOSQxngnQuFaVSxP9bGiFcuqSHBvizdH9+KoR7d4c1hKuoa72VXm/uQVdGl5CXhuhvkgDydLvG2+ebIhncdw9xGltuuKsWBMPoLTdkx1TmZZaHwO/7NSIWz6vrKus22NlLU2cRx1DhCcEJ7m8fA65qpIFTfbuVTZU0bNqU2smqGGSUKlaedEugaKHNIY70SZ5ZSLbFf0M03y4jQp+d304nSTN4elpBuUl1AVZoU2m9dF5dzYDD2bN0f39iQd08y5UY88npy8FeJMMWTzLmWFlCWdw/XX2yuWwej1KVNtM6RDhfaZx1HXBaGE+lwoz43uacPxfDwUTQvNDCVUmnCTgnQdFDmkEd6JqvMg8uRLVJVjkeZV8/XiHHxwM3vb2Lw43eLNybpGPenNqbvCVBUU6VofIqTPFJF59uVqqNqamprnoRv3rmNIOocQhrytKINtrPrrvscw5w/PzePoQgq/83wHqiqY4AuFCmkYFDmkEd6JqvMg8uRLVJVjkeZV8/HiNNmYTvLitM2bYxOkLCXdEoOsDPLkFoS4M5/kBbGFSGXty8VQdRFD8GIoY95F2KZ5o8x1k5TInmVI68fA2CA40rxOviFSSdeyaI5UyrksGSLR7B0kuvBzEs3ea3y05NF5+fdJSJdBkdPjdFMFKNc8iDz5ElXlWKR51fLm4jTNmE7z4rTNm2MTpLZS0k30plVCU0NrmiTqiob5lG24J4F9QNQtWBAtiZZEs6PZ0YXRhfHvJQvmd95z6e2TNWemOLB5ynzOz9WrmNfzkHYuLnPhwRX3HxtNfFQi/WdiNDG6Irqi8L4J6QYocnqcbqoA5ZoHkSdfoqocizSvmquH4Mgjs43pOgtNzJrldh7Yrghln2M3hXmWRq8mFPuG5+UN87GJSDNESheRIUOG3rq2Vxy8djTxzfEDDe03x0dXfGH0ispaWWIiSwjrD1WcoYhofissbrkX5MGjO+IsWhJmbkLlSKVwxbNnRH1LJRI8tJ++ZX0RfiB0BonPUOdHSEugyOlhuqkClGsexGuv+edLVJVjkeVVC+khqLPQhHlzN+mB7YpQ9jl2U5hnqfRqnH4VhRbqFJELFsQCx2poL+08rvhnh4adaedgC/Oy9VPxCX98a14wtlK9ICFypBJASNrEJ4YOmndd6KwVrRWfT6jza6NgauOYSVgocnqYbqoA5erlOOkk/xCvqnIsqvKq1e2BqCKcq+xz7KYwT9L8QgupxlpNIhJjiD04SYb2UokmPT50RY5Imrclq7QzwvDMnBxbJToPgROLs2XJXpBChMyRMlmwIM69kRw/nbNLPr+kdYbtQwqmKmjjmEm92qAP/5GGsmjRIhk5cqQsXLhQRowYUfdwGs+SJSIbbSQyf37nL7DJkCEikyeLPPigyLBh0ngWLxa55prO7yRWWUVkxx1Frr02e7tddun89tm3/plQ16OM6zBzpsh++w18vs8+xfeLcd95p8iUKSJ9fVIrZZ1j0v7LOg7Jz1JZKr+X38uT8qSMl/GyvWwvQ2Vo+QdesEBk6lSRhx8W2WCDzqLYd98Vz+fMEZk0yXl3V8qVcqgcKo/JY8tfmygT5RQ5RXaT3aQu5sgcmSbTMrebLbNlqkwdODdjx4r89rciI0faP/TYYyI77DB4zvS5XWcdkSeeWPGZm28Wef/7kwfy1j6Xzn9YJj82VB4bt1TE8neqL+qTiX0TZZ7My7de9DHij/fb3tb5A44/8rZzyZoLk4UL5aIfTZG9v/OQ/9hwftIXrx/z/JLW2V6yl5wgJ8QqwdwPuFwur3Ud2sC57C67t2rMpAHaIGow9OT4wQpQvelVK9MD0ZReS2V7WbopzLNbqe0ubuBCCxgv7rz73pGvAtztd/EeYDtv71JKCBs8Q7P3HBtduO+wOJ8GeTVOnpy39unqBYEnw5uKcqRmv/TLXJ6cpPNLW2dZnqFJ0aRGhYHFHkbju9/0MZPyYLhaj8IKUM1JxK+yr0qSmDrmmGLnXncIXJVhf90U5tmN1CoMAubINN1Yg5FcmlhICGGLxatZ5OD1MXFukKvQufC5U/OJswblSKm1kSVCXM4va52Veo3buC5zwNyg+qDIIaRmL0RVXrUkMaWeF+lN45OEX6agLNvLwkafzaYRwiBQjkwTjTVbTk6c25KUk/Pm+GBzHYvXZX2DixzgZ1nfQKHz1vzbjMs6xFkZOVJKzOcVOur8XOcjuCBsmoexJJgb1B5tMKSkkDlCagWh0v39nX/jN55XyXbbiVx6aSd0P+mB97FdES68UGTevME5WOr5EUfkO3c1fyoPB3lEafN4/vkiW28tcsEFEpyLLrKf47JlnRD5iy8utv+5c+37N4+D7Uj1IAdHzykwgYWxQBbE24XM/UF+ykVyUfx76cjhIhMn2jfG6465F8glCrldaIY+9qSc8tVl8b/7Or+Wo56f/NVl8XZF5/YCuUAOloPj6yeGJRK/1icy/dQhsvSd63dyXNZYI87LmCyT47yhvWXv+DeePyvPxrkmKj/DBK9PkklxDlcucH0DXP8skFOC3JIJMmHgIWSirCVrOZ9fiPWDnLem4DqWKsascoPMv0mPy+Px63ifNAcWHiBdSdlJ6k0AggN5us8+m77dOeeI7L+/X3EBnyR8VWABQgE5uKEKKmBct90msvfeIo88Ul4xjSqKUHQDdRWhgNCAQZvFhXJhnFBdlDKLAuRK7K+y8MLChSI77SRX/tM8OfTUIfLYsBXG8qQl4+XEQ5fK6GgtefKEr8n41d/hfXzb3GYx+9lLZerKH5fLRl4ne8qeg95Xhv/hcnicTL9cJHkkptdW0CIB23iulqtjI9rl/FzXWRIQVE/L07XOgTkfELMQEvq5ZxVecNmvz3VX40hav3nHQfxg4QHS0/RKKWDXBpzjx6efuxnW5xseVlZvmaw8GRbT6I3wzypDvMrO/cnKu0gLvassROat0CwzLOzS6NLBuTMex0+aW5cQpMuiy6Kh0dDEbdS8YTtzjvB62hjbFHpkG6vt/ELk9zTt/JNC+fJ+N/Nc96aHm/YKC5mTQ3qZqnrT1M0vfjHw/A4+OIq++EW/c7cVF/BJwi9LUOrjGjs2ig46aMU51lFMo84iFk2gziIURYRBnuNkGdJFj5PHWKu7IlvR4xdJhD8mOsZ525Oik6Lzo/OX/85KCK97XstMeE9bZ/g9PBpe+lqvS+S57CfPdW9ablCvspAih/QqvVIK2CYu8Bz99XzO3RQ0KFTgk4RflqA09ztmTL1V3ppSSrsuyvLW1XUXtwkeI1djre7CCyGOnzcRfkI0IRodjc712ay78nXPaxUkrTNX4Vh0rZdRgazoPotcd3pymgFFDulZeqUUsE8oV9K524QSQttcw8N8BaWrN8Tcr7n/qq9hk0pp93L4Z6i7uEnGEu78V3mX1tVYK2JYhTAyQxh2rnfAzZ/VotVyfc5FAPeKwWpbA1V4JJoaBlj0+1SFV5mE0wYt6HtPiH9FsKQkdbz/uc+FSYxv6nnasJ27qlqmVxF78kmRQw4R2Wab5H0h+R5V4czP26qe6UUKUIENxQyyikCY+9XPsY5rqI/Hdl5tTeh3xbZOzHkIdQ5picBIqv6MfCZIgrgtAX6MjKm0ghPGbSsuEKoiW6gCCiEqwuWds9fkNckLrE4kgk+X6fG6MddJ0yvdhcK2zsquVqYqkOEa2CqQpRWBKJsi1x1zie8PzgFry1YA4mQ5mUUHmkTUYOjJIU3sTVN3nkceL4557mn9dVzu0vv2lnH1hmTtt2pvThVejCaHwrl660KcQ1V3ftvWCT7PneeQuSYhPB4hEuGL/NjGVqYnp+mNIsv0SDQ9DDDEdQ/tVSZ+MFyN9CRIPkcSupmYXnWSuit5DMMsEYDXkaiP3Jq0cy8a1ucrKF1zOlwEXJXhUmUXsWh6KFzW9cD7t9xS/ByqSgDPmwBfZyK6r0Ea2sgMZRAXbXRZ5McWdlWWod/UMK2q8tyaGgaohCfCUtPyvFyve9OFbDezkCKHkGbjYtzaPD0hvFUuQinLWHURlJdcEkVz50bRG2+4eUNcvThVeXOqKGKRN6G/impvLt46VRCiyHWp8s6vqwFmGkF136X1MUjLMDJDGcQ2AVDFj36uunGKBPzQZYnbVK2tDI9EEyuQua67pl4n0nCR85Of/CRab731olVWWSXaeuuto9tvv93pcxQ5pFtL/boYtzZPT1FvFebltNOKCyUXzj23sx/XstauAq4qb07ZRSx8Q+H0tV1FiJvP9fC9Lvq5VHnn19UAU+WHm3SX1tUgLcvIDGUQu95Rz/oZE41Z3hfH1RtjO4e13vrxOS/bXfymh2lV5ZFomifHpz9T3TczSAtFzsUXXxytvPLK0VlnnRXdd9990UEHHRStueaa0dNPP535WYoc0k35DT7GbVlhTGp+DjmkM0cIa8PdeL2SGcLdLrqoWFgfxjt69Irzc/GG6ALuyCOrEWKhco6qCIVT26sy32WHuGUJ6iTx6vL907+nVd75LWqA1R2i4nL8Mo3MxdHiuAfNIdEh8W88zwuMSVNc+AgcdWxXL1NWLha8Oi7XNSkcraqyzE2nSRXIXIQn1pJLTyXSHBolcuC5+cpXvrL8+dKlS6N11lknOv744zM/S5FDuim/wce4LaMviU/jT9/jmR60s88uFnJWd37VjTeWK7J8Q+H0a2eGiNUh6DEe9GTKIwDNdTjrzTmVGYcwjIdGQ1OPg/dtxntbci1ckvxxjvCC+BDy/LPurqtGlUnbQBzpx83yMoXysmDOkj4vjj8QiHn7uzTNu1hnX6s2epVIl4mcxYsXR0OHDo2uuuqqAa/vt99+0S677NIqkdOWMKhepu6GhaGM27Iqerk2/sxzPP3OPD631lrNCDnL+z3/n//pjPHgg8sRWb6hcOb2dfescSkQ4Vpc4tyZSyu785vX6MnKtbg0urRRBqhriM70aLrTeEPmmrgUf8D7EBRJnh7bcdNEQAhjF9c4SyD7/PgIxLYI7KZVIGtifhDpIpHz+OOPxwO5BeV3NI444ojYw2Py+uuvx4NWjwULFjRG5LQhDKqXaUrDwhDGbRkVvWzzY0saz3M88868EgiuD3hNmoKaezU3ZayhvOW30woyVPl3Kc2L4+qRMr+nl755ZSV3fvMYPS5GuWn8NsEA9THK08YbOtfEVXDMimZFE6IJuY6bt9FrUi4W5kYC/7iu7bYVMyjT++S7P3pyupPWipz+/v54e/NRt8hpSxhUL1NW2FXebfIat3gfBqSrd0WNZenS9DElzU+InBNz38OH2/e5xhoDS1urnI6zzsqe66zzC/09L1NAFC2/XeRahcCnT5MZzpf2Pa3izm8eo8f1M6EN0KIGos+408Yb2lB0FZr/Ff1XruPa1hHyLlz2ZW6nPEq+FeFcw9eyBGJbixmUQR5vVpPyg0gXihzfcLWmenLaEAbVy4Qs9eviscvr1ctTrSrL4FZjUYLBNibf0sxpRmrRfUPk+Nw4cDm/UNgM8DIEhE++kc/8VvF3KUkI6qIZXjBcZ5zDa6+tEKm415Ul4MvOO8hj9Lga5SENKJtBNyoaFSe3u+7Pd9xqvMhHyuMFcQ35cRVNriJHP27eRq9pc+L7GVwjX1GUJBDpiSjuzWpKfhDpQpED4LE5BKWctMIDEyZMaE3hgbaEQfUyoUr9uhjeRbx6WcYtDENUNnO9Y6+PZdiw5DFlzU9S3olLzonPXX08YADbCh6kibOs8wtBlpio68aG6/xW9XcprxcqrRJb1XPsa/Tk8eQUMUCz8mnMpPsk8o7b9Ga4ekFcz9NVaCJczee4eRu9hvxRolaJdRQZKCIQmVMSxpvVhPwg0sUlpNEf55xzzon++te/Rl/4whfiEtJPPfVUK0RO2R3PSXNK/fr0riljHYQKY9LHlHd+XELy8nqIrr3W7cZB0vkdc0z4sLU0MaHCCOGJqLLwSJ75LaukdhEvlC5S6xZpeYwel2ploQxQH0M9y0ArOm7diMzaxtdj5SI0sb+0EtOmcZu30auriMtzTYp6YujJCTcHbapOR1okcsCpp54arbvuunG/HHh2brvtNqfP1S1yquh4TqoVBkV71+gJ16HXAQxD9KdRSe/w6ug5LC5hTHiujynv/PiE7fk+jjjCXZyZ26jzVWFvISgSElZm1UXXa4eeQmWX1M5DnvVRtkjLa/QkGeWhDVAf74uLsCgybp+fnaOdvQ3HLKHpkuyvi4q8jV5dw/HSfoZEQ6JDo0MHzUHRnBDXz5shht1kwNObRYpogz78RxrKokWLZOTIkbJw4UIZMWJE5cefOVNkv/3S399nnypHREwWLxa55prO7yRWWUVkl106v32vtX6NXbYpinmMpH27rs0887NkichGG4nMmyeywQYiDz4oMmzYwM+obebP75inLhx8sMgOO4jMmCHyyCMDPzdkiMjkySuOlXV+Y8aIPPHE4HHlIetYOuuvL/K3v604rvqsfp1wXnfeKTJlikhfX/1r25cQ409bH2PHivzgByJDh5Z/LkkslaXye/m9PClPyngZL9vL9jJUjAEZXClXyqFyqDwmjy1/DZ/Bvmz0SZ9MlIkyT+Zl7ltxkVwke8vezucxW2bLVJnqPe6ywPmeIqfIbrJboeuA1yfL5NQxj5AR8qw8KyvLyvHzOTJHpsk07zlz/Zy6prCofeYA87+77B7/W/8s9gUul8tT5yvr84fL4fG60efK9zo0mbzXlXQvXtogajB1enKq6HhO2tW7xlY2N8Q6UN6AN95wC+PKWpumN8cXl5A83yIK6lyymoSqPjtpye3qgX3VERKm5iMpP6vt5eZDjN81T66OEJIiPUfM8aLyVsikZt88Gte712rc6IsjJf6ESuZ2nQeEmpkNP329Hnju8jmU5HYJJbTNQdGckKTPHxEd0ejy0iG+36yQRhofrtZGkRMqDIpUj28IUZHeNWlCwJWs5OysxpAhx5QWtqfPq5mbgZAplzGNG5d94yBLCOklqYveZMgr1pKKJ/gUpmhig2GX8WeN21WEozdO1Q0Oy+g5EjKp2Td5Pk8uRpESyy4/IYxOn8pw+nXLyvWBKLCtOSUWssSqMtoR4pY2Z7Y5KGrwm59X4qzM61CEkA1MWSGN6FDkVJxgS9p7J9q1d81667kZvr6YydlZ+V+unoe83py0YgZp8+ryfenvdxMS48e7i45f/MJ/zl3HjfPdbTf7cZETZBODpkAroxR5maLJxYt37rmd97Ctyz4SHzP3sRpmZRktZfYcCemRyqqupn7Q6BOGbh6SDOaQuTsuAixp3nx7/OjXLa/XwyaAksRqEwoCNGEMbb2ZQNoNRQ7pWXxLPIfoXVPEq+frlfEdr8+Y0sL2VJNS13kFMLZvv73zsHl/iggh9Rg5crCXKRRKsNjmQxWHMB943aXcfBkNhouKJtfiG6NHrzhX31DK5Y++JZFs8FAkbw7NNFp7wSg0Qa+VqseadrdccvxkhdKl3enPUxkOJaeVYJr11o+v18M1gb8JyfBNGEObbyaQ9uKjDQKk7RLSHC66qJMwDx5+WOTii9OLAmy3ncill6Ynd8Ms+9rXRJ57rvNvBZKykQCPJOrVV+/syzc5u78/ezsk5WO7z31uxXhfflnkrrs6+zBBUvwWW4gMH+43Jn3udJYtG/i6y7yC889fkdCvEvP32CP9M7gOm2wy8PxQjGD2bPv2CxeKXHBBZ47MAgBFwHGPOKLzb/2aq/l49tnBn8F60F/Hdklz5btOfdaSWiu+RRnM628bP64pvgcA54q533//FZ+ZO9e+hgYRDRV5+B0icz8oMvWmgW9JJAtkQZyQHjKRGMntIbcrkw1lQ6ftrpar42R93yIKNpCkjiR4s0gBktg/J5+TE+SE5dfHBYwlK5ne3Nfj8nj8OsaBxHmVcO/CnrKnvCAvDBg39oE1hOT1tCIGas3dIrc4rbm0c8uzXR6aMAYbWIsuc53n+411zeICxIuowdCTQ5rQuLWsfBzfErtl5n/5JOC7zKtZqAH7LhLOlzYueBR8vUxZuOYF5ZmrMtZp0f5NrsU3lBdHn3t93Mpbd9ZZUYQe0Gg0az4+fsgDkZy1fySX7h7J6ytXdge6TZ4c17GOiEZEE6IJQfIe9HyTk6KTlpdaTgsDS/pxKYvscqcfxzT72rj+6KFRob0eTUiGb8IY2uRhIt0Dw9VIowkVWmSGQ5XRuLWsKntpfW5gOCb1xymLPGF7vj108lyH0ONyvTYokBBC5NjGFHqdhhBNKs8mbfxJws+3Z5GrAQ9DO2RYSlONwqSxhjDuQyeJKyGEvjhpY0B+SyixiRCyvIUR1DVF6JrrMV1DolyT4csMsWpiQn6bbiaQdkKRQxpNqIRr3Vg0E8GLipCyq+yVWa0tD0n5MphXW/5JVr6Jrdx2Hm+OGldS5blQotPl2sAL4VpFLmlMZTQYLiqacMykHCM1NozZ9OKohy03Jw2XfAsk1WcZ3N1iFCZRpNyzj2DzTRJ3qQCXduw8d/qLNjWFyMlac6OiUVF/1O9VEcyloWnZFQSblpDv8v3G+024mUDaCUUOaSyhEq5NQzrJAFMPGIJ5vEcwsi+5JIqOOaazD9cqe2neqjb1YMojxtI+4yveMH+33JK/l40vWSLk5ZcHi0FX4QMhHFrchhBNs2b5C7ei3hxfozWkCGmaURiqZ06eu+V5ksSL3qnP+3nbdYMwcRVMeYVS1tpL8tSUUWEs7TqaY4AHDN7QQ6JD4t95K/HlIWuu14rWatz3jbQHihzSWIrmDiTtB4800aDuVOc5Xh7PU9pn2tKDKY8YS/Li5PXm+OYtFRWJWcezlU12LTcPgRRa3IYQTSjDbXqsTG8eehKlHcfXm5NktJoenCyDOy9tqNKUp8KYzbhPI4/gKJpzUSRs0LxuPmFoAA0984QB+q69MiuMuYBwQfO7hOd6GGHZ3wF8vyFmks6/aZ5T0h4ockgjCZVwnWVIpz18j5fH85T1mbb0YMojxlxEiU8YlZrHsWMH5yllhbBhG5/8L9ciB00JfQzhEbR9JydMiKI33vD39GA7X3RDC3ebfQ3utlI078P1J2uu8giWEOWtQ4UN+ggmn8IJRddenXkpEDJpx8T7VYTR1S30SPdCkUMaSaiE6zRD2rwLbTOG83hkfD4byluVRhl9YUx8xRgM5rSmqb7enLR5dDXwVbK8yzVwFSF5jHlzPnFuthBIH3EbQjSl5R8prr3W7TjYrgio5uVrcLcRXwMzaXvcJS9aRMHXGMdYsrZ1PXaosEEXweTaYDXU2qurwhhC0tK8ofgZEg0J5l1JE+ssQEDKgiKHNI603AHzznHWfnzCoXy9R7p4yON5KquMdVnFG0Jy441uxrCLtyJrHl0NfFUlzeUaKBGSVGxBPVAeuc7rp9boa68V8wimCcVhwzr7r8rzCMPKtYJWm42ivHkaNmMyhDfExxPiUnBAfcbHExMiZCpNMLmOO8TaU+fzX9F/1bKWXb2hoQpWpIl1lpImZUGRQxpHVhiTfue4yH5Mw9HXe6Qbn3k8T2WUsS6reENoTj998HnDgP73f1/RIwW9Uy64INsgzprHLMPbFsrmeg3S1lgI0Vr0+pVRnbDId7IornfZ2x7eEjJ8RxnTqMBm5phALF4WXeY8Llex5HpnHuFsdeQ/JR0nRAEHl2vjEw6XJ8fHZQ5RZEAC/GSJLxexTk8OKQuKHNIoXHId9DvHRXNxlDfHt/KUbnziN47lU7WqjPLAtrv4Rx9dnoDKC84tKTkdgsN3X0Xm0bZOfD7rUsmtyJwXCWcMWZ0w6zyHDs3+ThbF5y572xOVQxl9NmPaDEHyza9wCR3LW/rZJzSvDEHkOu4ia88nHM43LMxnDot6ctQPQkeLinWEzrWlLxVpFxQ5pFG4hhahFG+I/eQt1+tTycu3dHIoMWI2ZGxKuWmzQpc5Rt1YtuUT6a8VncciJaxd1kCROS8azhgq3yvUd7Iqwx/eiTr7foQwvEOE7/h4vULmV+TN3/EJzSsrGT6EJ8f0Tpnz5hMOh7UMD5zLWvKdQ5ecHJcfeAeT5t1nHbSpLxVpDxQ5pFGJ7rbQIjPvAUZfVkI69oNQJ4Q8qfAn86HCoXzL9brewU8yTKvofZPWtLFOb06aF0c9vvCF9HAr9VpSU1fXeUzz9rl81qcfj8ucm9+bIuGMIfO99O9kWg4S5rJMAe1q+KfdWS6TkIZ3UU+OrzEd+k55yPwd/W6/CrtL2i7JGHYVn2WX4na9rrtHuw8KLbStJXVeWPNp5a6Trm9WdTWf9WObd1+x3pa+VKQ9UOSQ4IROdC87d8W38lSefix68nwVvW9ML46PQKzLi2N6c2zhVvpr48cXm8ciJax9PIWuAkP/3hQNwyvrO1OFBzKJKuP2fT0yoZs5FukPU8QjETLnIXT+jkuxCdu8ZIlP81ojRylEKW7bGioSDmfOW54y17brC6GTVEXNZ2y29ZjnO9uGvlSkPVDkkKCETnSvIncFd6ovush+hxrHxet4H9sljUdtZ/ZnsVWTSkqE10sFF6lAlebFqcIYTRvXqFFuwuCEE+zhVuZrH/tYcjnwtEpeqNCXJZLS1ph+DRGmVVS06t8bVBBEVbY81w9eoFtu8c8Rc71+aoxJjzIFdFHD35U8uSFl9PgoEr6T15gOXb0qZP6Oz49rGBwMfNu1TnrdtRR30hr6l+hfCp2XOgYaleYRYUnX97zovKDz7utRxPkQUgYUOSQoofu+nHtuNca66x3qMu9kh/KAJXlxqjJGk/DxgJ122uBwK7PAA15DEYo8gjqrOairOIGomDs3ii65JLtsMrxTSWGc5tykhfSliZWQDVZNyvJAuoS3qm0uX1Zu3H5WHgvyLULcrfYZj0/4jroL/tnos0GM1BCYd+ZV2BlCrJD8fmR0ZBADW/9BWWYcB6LE97NqLcHwzlOKO1SfnbSftNC0PNc3RC5SkoiCZyzrcywqQMqCIocEI3TfF3xu9Oh8xl6RcScdB0ZqWbk0ISthFQ3jKiPXyjePKcsTVcR4f/XVTjWwpP1gjGPHdrxyWR41mzBNmqckEQuv0jrruOf3JF0/l4qCRXNzkjye6oH3kOPmg8sc6tuUFbfvetd5QjQhlycCRr1PGI6eb3FCdEIsBmC8z4pmWT+bJ3yp6upVEA55DXTfnxHRiNyfTZuPqvrshPzJur4hcpGSRBTLQ5M6ocghwQidB4Bu8WUY63nvUJ90UnnjCeEBs5WMTjPiQxijrvjksOR54Jxcjfeddw5zHZOEqW2elJAxt3XxKtlCIW3iy8dTlvc7E9pT5DKHtm3KiNv3uZudJ6fEJZHcVbCYny3iPaiqelVikvsyiWS+56jnv/W5kn/SCjuU1Wcn9I/r9U3zUuG3a6heqEqBzM0hIaDIIUHu4JeRO2MmqdvyLop2T/fp0o6lhYpsSWPJO55QHjAVphay4pc5RpuR7jPHPmFieR5Z5wRvnApxsz3UdXW5jjZhmjRP5nmrcWaNx/XczDWE31hHNqGU9zvj23vKBZc5NMMvy8on88kN0Y06eCdCGp8ugkX/bFHvQcjqVUmGaWLIEoTKDIn/3y39jsUG+t/afkb5Qsc3RylEfhHOOU1MuBRg8Lm++jVDOCY8lbbP580Ry+PJKatEOOk9FlLkkBB38EPnqoQOfWtiUYWQHjCMZdw4dzGg5hNJ6i7hZ2meJtcwNt+yyyG9OWqMKE+dNScu1zVpfdoMclPI6MdxFX1Z18vVi1NEIPj2ngo1hxBnVfwdyHMXHqFjRQSGeQfct+EpPosxSIEfCJAQJBmmEIFWw1wXODJQ6CAsT+XvDAijUgJHqhE6viFURT056FtzeHR4qpjA9XIN+ftR9KNUD0jSNYPYsXlQ8oSK+hYMCV2pkPQ2CylySFHDvoy+L2WXjXYhq29JiLGE8oCZY9ttt46xuOqqxQ3fLMHpGsbmYoivuWZxsWMTYKqAhe7dKCIEks7FZpAfdJB9W3gqXb04aeNzFY9FBYJP7ykXT5HLHCadUxl/B/LkJcAYL25KS5yAr+6o+362yBhCVqRLMkytR7YJHE3o6B6U5fs2BU6JQifPvGBbCM5R0ajCx7ZVd9PFRH/U77QvjCfPNUsTE3nCyFy9QGVVKiS9y0KKHJKGi2EfuupSFWWjXUjrWxJqLCE8YLZQJfz+/OfdrktWeFGa4HT1bvl4cUaMWGHsIrwK5ZSVYQ1PjHrfxZBXY3ctZOByXdPKiCft0/bayJH+Asd2vXz7NtXZDDbvHFb1d8A3tyWUyMEPjLukRpdlj6FI0rd3uFyawHnrsX///gOOsWf/nqnb5xE6w6Ph8e8Qlfpcij6o/X4t+lrssXFtfmoTE3nzXFyvWRliwsULxCIFJDQUOSQRV8PeNafFNQ+gzoaDiqy8gBBjKeoBM70URR5J55ElOF3zJfIWHjD35yOoXfq65FljeZrBhn6o8fmGADYh7DPUHJb1d8DVYA0RKmbuM8/niobMFe2P4+V9chA4utCBkd3f3++0va/QUXkmRSv1uQpjtd8QhnzRfdQlJrK8QEXFGyEmFDmkUSFjZYS+hTh3PYQm1FiKesB0L4VPngu210tzp+WyZBmjrvkSSgh/+tPu47TtD/tRxR+yigbkNaRtx1WCElXSyswrSnroXh/9euUVj0UrEhYhRG5W2X8HYHwhL6HspH/bD+7yuxjNZvPJIscsYsw6J9t7CBz1WGXqKl7b60JHrwqmjwP5QfCYKSO7SBUvl+uP8DW97Lerty7NkHcpdpHmiWmqmKAnh4SGIoc0KmSsrIaDPiSFfyU98oq+Ih6wIl4K1/PIMkaTXoe4sBUi0KtzYR3pn1999Sj693/PHpfrugxhSOtrTAmmI48sX9CYJaOTRB3eM9eQmsMPf3hgngxC/kJWJCxCyHLiZYs1lzv9iaWRC/6kCR1bSFWSKMs6RtGwJGdPDso+SwWP+YN712CMEBc+ZbzLMMoxFteiAWnlq12ENQoUFC11XbWY8C1SQEgWFDmkUSFjoUPf8uDjAagr/Cd0yJTNm5PHGNUbeZprJGvMw4dni5eB+1gWicy3rsvkY81/63OD34OAwefx2eOO61RFMwUlfqMhpr4eyxI+esidy82Gsqr/+VTQc9nO9h13ncMZM6oXa2l3+svqbg+DPM2QtYVU+XqVTI9UUW+G0zwkFQ8I9ECIW57rBIGYx3B29YggbwrbHhAd4LQ9vE1J43EVKDinpDLMTRYTeUtVE2KDIoc0NmSsDvJ6AKoM/ymzFLMuTExjFJ4FJWDWWCN7XzbPSpFxDTxvCJUZbxk3/QPWJcSJfX5UbD8+t2xAryPdYDarxWUV31DzhO2OOabz20f4qOastmafPjcbyqj+Z+7btYKe77Gzbm6oUtvwSCVRdfPAMrvbq/Gr85n11k/Wufl4lfT+J0mln3Gs86Pz4+pv+J107CTDtEqhg9ydItcJ/WFcDWh1bUIWnjBFbhm9eHSh0GQxESJXihBAkUMaGTJWF1lGZVkNSUOOscgjrdJanuPC6Mdd/SJjVuJl1iz1mi5wZIDQUXf7B+/HTF6eEa2//rJB52p6Q5Rg8slfsoWR2Qz2NMHie7OhaPW/NA+MbwW9rO18cdlvmc0Dq+5un3YXPw0frxJCpiBiEpt0pvwkzatLwYayhE6SwPG9Ti7Gvdd55vwJUXTANZerqWKi6psWpDuhyCGNDBmrgzZ4sPJ4cbCtS3+YNPFaxHv0X/+1IhenyOPaa6PoK1+xCZzO45//uT8OJcOxBo4zqTrTjOjGGwda9aYY8xUkrkLAJfzM52ZD0SIhaR4YVw9RWZ6krP2W2TwwTTyF6G7vexc/iTyhavg9JBqS21C2zauXhyOQ0DHLTZv4XKesMK2ywhP1n6wwsTz9nLLyhHpdTHAOuheKHEJa5MEK6cVBzxm9f4wKm3r5Zffj6p6tJEHg+9h55xX70iumvfTSsmjkyBnpBs/+Kzw66QKn8zjiiBnRsrfcFzZviK1Zp82bk1cIpIkS15sNuF5FioSkCTRXD5GtWEdW/yUXso5fZr+PLIN292j3UozcPMneZXmV0n7S5tUl5yOuelZQ6IzoH5F5bfPMje0alBmeqP+4iPK0UDPX47AMc/leYFI/FDmEtMSD5VLtTOV26PkzSc0okxpkuoZNpYVLFXmgvLXy/Kj9Q4h8+tPpAkc9dt+9Pz4HeHZctp8xoyN0fAWkqiJnlpV2FQKhPIVFi4SkCTRXD1FZ5eaz9ltWlahQBq3Z9LFoE8gkyvIqFZnXrDwdhMthG+8y0eox1U0Q5PF82ASA61o7Mjoyd64OigW4khRq5lplz+dY3UqZXmDSDChyCGkJIcKXsh42Q9vFiC4zT+i885ZF3/iGm8BRj6lTp3ptj/1PnrzMWaSpMs8+IW1leAqLCqc0T0mIct1FvDkuxy+r30eIvAf89Ef9scGLHxQOQA5MWrI3CgfkuatchyfHZV7T8lfw+p79e5aWi2OOw0fk2MSb61pDX5w85bwxH74eR1uYlY+o62UjvkwvMGkOFDmEdImnSZU+fuml4l4VZaC7GNF4f731sveJimzf+IbfOHDcSZNQ9lkqeAwsR+36sIW0ZTUytRWwyOMpDNVQ1nb9XT1EZZWbd9lvWZ6cop4RhGKZTSiVWEm6Aw+Bk/eucqg8Dd8fl3lNLG4QKCfHR+hkeefSDFvfAga4/q5NXUN7DVxEXdq59kKOSlN7BZGwUOQQ0iUoo7BoboxuoIds3IjHmWdGEWwS38+tvrpb6Fnex5pr9pdekruM6mMhGsraPCV4fXABh8FrJLlcdzFvjquH6vU3y+n3kdczAo9N0l38tL40CFHLMsCzzsOrjHOAH5d5TbxbHri62lH9RzkZ5Xjd5fqknYurcFEiN2v7sqqZuXqTTCO+V3JUyvICk2ZBkUNIF6Ab0PAsmMahnq/j2sMFAsfFiIa4cu2fg+2QKG/bp55HZH+UI3QGFysI80hvZFpeQ11XQoQYnnSS+1rywcdDVUa/j7yeEfSSyRMCE+quchXljdV5uMyr9bzKagiK/Toa5Wmlk0M2f01qyInXy/aSoEqfrxGflqOC39hnt3h26MnpDRZ6aIM+/EcayqJFi2TkyJGycOFCGTFiRN3DISQG35g77xSZMkWkr6+848ycKbLffm7b7bGHyDXXiCxenLzdKquI7LJL53eoYyvOOaezvTkvbvs5WkSOkVD09/fLjBlHD5qP++8XOe64MMeYPVvkgx8U2WgjkfnzO2tiyBCRyZNFHnxQZNgwqXztLVkycDwmGN/o0SI/+IHI0KH2/WNt7LijyLXXirz6qsgRR4g899zA/eG4Y8aIPPywyNve5j52XAufNXqlXCmHyqHymDy2/P1JMklOlpNlN9lN8oB97i67x/+GtePCSXKSHCaHZW43W2bLVJm6/PlFcpHsLXtnfm66TI+PkcZSWSpz3vqZL/PlfDlffNlFdpG75K4B85lnXgedV9iv72D6O8fok86Cv1wuTxwn5un38nt5Up6U8TJe3i/vl+/J9+QUOUVekBeWbzdRJsqJcqKMkTHxtv9P/p/8UH4oL8vLmcO5UC6UPWXPAcfZXraXoZLwpQoEzm2cjJPn5LnMbWfJLPmIfCT+zGSZbL3mJpgTzFPe71YTUOf7uDxu/X5jDeE858m80q8XaYg2iBoMPTmkieTtAO/TuFH34vh4FnyPYyNPVbXx46Po7LMHzovffvpLj+VP8mApb1Oap8wWKlZW9bG8ay90EQSfvByXdZWHMvIIXD0jykMDT45rWJs+Tte7yi6NQkN4c3A+qH6GceGcTopOin/7ziuKLSzf6/zywk0HPOb7hypizswcqqz5abIXwCfcUnm9fHOO2lJ9zMUzF9ILTJoFw9VIrZRl8DSBsjrAm8arb9iRr+GaZojnDXmC0NHnxdXoRg8d/N5yy/5KkpV9z1fNlb6ufRqAVrX2QpZL963wVobwL1P4qH2o8J80gyhPLg+MTCTnj45GO20PwVF2s8pQlaUGiJxlEskMKbVKYrx/HMczxK+MPCYXQVrWOvZtgIof1/C20GukTFzyi9JCF0n7ocghtVKlwVM1ZeRgmMZrUuK3KnGc5FnwPY7NEPfxvujVxFSFMX1eMKaLLoqitdbK7qGjxvTud3saQJrhVGTuXYx5fV2XVX0sjSrzf3y8QmUJfxtlJFBnGUR5cnmUkblztLPzZ2znUUazSoiUIgwytj2EjroRgd95BU5W4niZDT4hGupax75iG+sPoizPeTY1Z8WnB04vVJPrVRZS5JC6qNLgqZqk/iO33FLMa2Uar1mV1EKV77Xtx9WLk9Z7xSYM3B7Ve3JcjflZs1asa9cqZSHXftocl4GPV6gq8VWkyV+WwZP1fp4qZ75Gpu08yuiVg54vRUShdUwOQsf8fmYKnQSBk2aE47rBKxZ6zrKOW8U6zls4A2vQ9zOhxFxI2AOHKChySG00rdpUSNIM9rznaTNebT1aihrQLkZynlycNK8GPE4uvXZCCJy8QsfVmP/FL3zE2govRyjqyP9pkvgqYuCE8v7kzYtByJqrkWmeR9HePmnH8T1/JQSRx2MNw0sROrv3727dZ6LQSRA4vtc55E8IA7qooZ5HbO8e7Z7rfJsW2sXKaURBkUNqoeq7zVWSJQDydoHPm//ia0C7GMm+/XPSeq/gPZWjU5XAKeLR8bn2qiABhI9esEAvVOAaQlikEEQTvl9Via+8Bo7rXXPX0BZ9OxQacL0r7muYqvMow5Ojzt/HaHcWEDah058uEEyhs9uM3eL9+CSOl5WDk3XcOgx1jGNCNKGUc9V/muYVKbsHDsPb2gNFDqmFpt5tDoGLGPE9zyTj1azqpcLXVA6MqwFtHifLK4R9qtwaHMu1907aI6vHTll9ckIKnaRrnxRW6LMObPlrpvCpI//HhSrFVx4Dx/WuOQoEmNvBU5HVP8THYPX1MqjzyBui5PrjctfbW0DoQqffrbiCEjozZsyIli1b5pU4HjoHZ2g01Om4dRrqA4o/lPhjWx91iYEyPTm90iy1W6DIIZXT5LvNRXEN4/L15rgYryFynFyNZPNYaPCJwgF6M0+9+AEeEGNJ+80OeytH4IQUOmlC1Nag1We9J11bXfj4VjmrkirFl6uBoyfVh/KCJBk7WQLE9Jb45IvohlqeECXXnyxj2kUoWse1bEXZZ5e5BPPnz48Fjq8xHeo6q3OB6C3LiA9lqBcJY8Q5Do+G51ofdYoB3+9bFbl+pB4ockjlNPVucwh8wrhcz9PVeFW9Z/LOY1a/nbQiAWn5NnjPdV7gERrs9ZhfqsBRDxhORcgbTuhynWzzbQofFDyoOv/HharFl6tHQze4QuWzuIRJuYZW5TXUyso3UcZ0kqAIHS5XhuHo2scoy2OD+T0mOqZUD0UoQ72sMEbzB6JczQd6LNUtBkL3wGExg3ZCkUMqpcl3m0OgktMhONZcc8U52TwXrud5441uxuu4ccVynFyPo6qH6cdKy7dRnh6XpH1sN3h9LItEZniKFr/y0ir0JS95CjHo8/PGG8n5Nqb4VGvHFLVnnRWu901IQjcedcHFo1G0v00eY8e3J0deQw3HhqcK1dFCnk/a3fkyCh+ENBwxxrxlktX8IywR4iaEh8LF+xTCUA8Rxoh1lPZ5UwSaz80fjKcKMRCyBw6LGbQTihzS9QZPWah8iKVLBxuoWaWdfe7iq2pdKmfF1v/G7D3js391Lv/1XyuOY0uQL1I9zHUcyd4QH6HT7xXiVlTg+AjEpMeMGcnzlDQneiGDJt8cCNl41AeXpGtlRC+OFgfPZ0krXewT4pTHUAtVHlk3prNCdf4l+pdgc+c6lz5roei1xefXitZK3Q8EkIvx7hPKFcJQLxrGiPMKHQaJfVZBqLygsosZkPq1QR/+Iw1l0aJFMnLkSFm4cKGMGDGi7uGQBBYvFrnmms7vJFZZRWSXXTq/m8zMmSL77SfyxS+KnHFG5/k++4i8/rrIGmuILFmS/vkhQ0QmTxZ58EGRYcPs22AfG20kMm/e4GPjWPo28+d3zF+f/SvOOUfk859PP1ccL+lYRc8z7TxWgBe/JSLHpxytX8aMOVp++EORoUNFrrzyaLnqqmMSt54xY4Yce+yx0tfXJ0U46yyRAw8UOfhgkQ98YMXrb74pctddnXPDuW+xhchKKw38LF6fMaNz3htsMHCekq5/Evq6ICI3yA3yUflo5nazZba8IC/I7rJ7/BzWiqJP+gY8d+VCuVD2kr0kBEtlqfxefi9PypMyXsbL9rK9DJWh1m2vlCvlUDlUHpPHnPY9SkbF525jkkySk+Vk+Yx8RibLZOd9hiZtLrPmBu9XOfYJMkF+LD+W3WQ361iPlWOlX/oHvYd1Bi6Xywd91uf6J2FbFxNlorwmr8XX37bGMSZsM0/mydVy9aDPYwwYW16ukCuWn2uIcyyTOTJHpsk0p78lU2VqJWMigbVB1GDoySFVoocQqV416k66qxfHxWtlu4tv3rUvmuOE/egFA9JC6/Lmnbh459y8fGkenX7rOSf11wjhwQEINVtnnYFrIFS/KJ/5brI3py58774m3TVHjoGvpwdlo6suL5vHY4GwNnWne9ZbP2Xn24S665/kEdHzZaqqLqb/2ELJXHKlys7rsHk1fELi9M+H8BS6hEE2hbKKGZByYbgaITlIMj6RF2Fr0KlXGnMN08nK8whVUcvM7Uh6YLu0Y5mhbb7hSGlhTQNLVNuETn9qvpMpdIoKHL10sylqfQo+pPWLyioEkVfU9hJ54uiTwlvyhjxVXVHKxxB3NcpC5Nv0R/25CyLYcjhcr0eIvKQ8P8j/QaGDtET8puR15AmJC5WDpULh2lCxLHQxA1I+FDmEeJLWSyar10uevihp4qVoRa0sL47+GDkyjMcmD7oA6ggeXej0O43D7K/h2mAz7dogP0kXtb7elBAV6ejNqe7ua57KZVUZQD7eFt8xhfDkwCgukhtjCtEyKsiV9ZOViN+EvA7f3JVQ3r00EWorrV53E86QxQxI+VDkkNaQ1yANTd6QrTx9UbKqdekVteBBUYJF9xqleVFcvTjqcdRRAz0s5jHRK6fs6l2vvRZFxx0XReeeuyzae+/51nGiEINtHGZ/DVuDTR+RmyRqXfaX1S9K7z3kW7WtDYU7qqKMUrIwsFBpa0Q0wsmQSxNTVSdG5zHKMCYk3RcxZlVfoiOiI3J9Xjf8qw6fU2snq/BAqJ88npyqBUDZzWfN+WhSSFsTxBZxgyKHtIY8Bmlo8oYQ+RqgLkIqKzenaC6O7fE//5M+ThyzLDGq9nvuuZ1jQWAVaSqbt3lq1rVxPb5LLpWvoD744HrKRIcm9Boq4+4rPlvUeA1puLka/silyNMEsaih+qPoR8ur2OX5vN68tYxy1Wk/aq2EqNKW9ZOnvHJdAiDrBkKaMMb7rqGEu0e7tyakjTQLihzSCvIapE3x4qicHBdPh2/PFZQvvuWW5NyOJHy9OHgg50btMymfRO03tBhVc697jtLGiu1d9ucqCn2vTdr+XHKpknoPFRVXvXpDI+Td17zhUro3InT39LISo0OGhrl6vrJETpmeHMwTztdWgEFdtzJD5XxLK4deRyFvIGSJIJxriOvFhH+SBEUOaQV5DNK2enFcczGQm5LVtyZpnnAu48fnOwd4ULL6t4QWo3nmHuNIOn5awn+aJ8FV5GYJjjz5Nr1SeKApNzTSyGtkK0O9rO7pZSRG111ZzSYQy87JyZonHD+EgZ51nlmUtY5C3kBIE0EhQ97YhJPYYJ8c0njM/ik+/V9CMmeOyLTsMvnLOfJIkfe8x7//j08vIfSC2XDDztyYpM2T77nojB0r8sgjIhtvPLinDdrN6M9D9W1RPYl8mTVL5CMfcd+fGq9636UfURqzZ4tMnZrvGuP6gWXLVryGMRx2mMiLLyZ/po7vhi+YvzvvFJkypbNm0q6NuYbSPlsVF8lFsrfsnbuHCnrTuPTcOElOkrVlba++IbZ+KKrfja13S1nnGhqz/wjO87Py2eDHmS7T43lPQ/V0Qe+Ys+QsWSSLgh3fp89KW3q3pPXAwXW09aeqsy8V6R7YJ4c0nrQKVFWiKnwh2R+J7ch/MB94XRUDqCIvwsWzYJunpHLNeiGBtMdBBxX3ZoTy4mDe1fjNcs64Fkn7S8rlQWEDmyfB1YvjE5roy4wZbmM47bT6C3SY6N6xpHA081rbyoE3ITcvr3dDeVRQtMD3sz45FiFD8+r25KR5Iy6LLvOuXFbUI1BmuNrwaHjs7XO9Xr59oJpKiDmlJ4fYYLgaaTRZBmkTQ1mqAueOnI2QQsM1jGro0OrCp1xKaet9ZdRasRnIWfvDw9b3Jk+4nBmaWDSZXr/eqh+ROVYltKsWAS7npuZdFYwwRaS+TdIaakooW5EwG3wGPVTyfK6OJOsqq2jlOWf0oEnbB5LfUdFtQjQh81hZoV1VFB7wEbR5+kA1Fcw7GujmWSPMySFJUOSQRuNSgapX8SmC4FpSGJ6H/n4/Yz6kyDJxFRdplcj0NeKS8G/re+Pajwh5Ukllu4t6IMzzM6vL6cUKqhYBWeemX0fTU2gTMPpDF6tV5ea5eEKS8l9cfyB0fD9bl0GXlesDEVH0TjzEiFmNy7UCns0TgMpdyJvRe6wk5dG4iKkqe/Po40lbi2UVm6gLX69hHcKf5aPbBUUOaSwuBmmvenOyjH+Ek6kQLt/QuaRQNvVACNhhh3V+J4WJhRKjrqW00yqR4T21RvIm/ONcVc8a3ZOiz0vaPBf1QNgKJbiEFbrOexEvk8u5mdfRVvAh61rbRF0Z33+fcry2bV37ySBkLa9IquPOfFYZbmX8nR+d71xFDeWsdWOxiAHp+tm85cTr6M2DtZS1FkMVm2iC8e7rNay6CWeTevUQNyhySGNxNUh7sfFhlkGIJpVVib+yxKhLOJ7rQxn7aQIuKR/JLI2dR7j5eCBsgiNP6XKfeS/iZco6N5ey23oIW1qeUxEhV1Y5XtM4RE6Fi4GG7eBZcO0V0oQciyxDWL3/H9F/OBmodd0Fz/KO2N6rujdP0o9tLRbtA9Uk4z1NtOE3vjN1CLG6S3WTFouc7373u9F2220XrbbaatHIkSNz7YMip/vI8ijk8VJ0A2+8EUXrrOPmfQBlNecsW4y67veb3+x4VtK20b05SWQJCRjZebwIWeWqk8ZhhnG59svxFQFFvEwu5+bSPNW1nHmZuXmhyvG6hBDZ7tBD7BwQHVBKL5WmJY831ShMMvYx33nyRcr8wRrSixSg0So8Y4dEh8S/8bytxnsZzXuL0JRS3aSlIufb3/52dOKJJ0b/+Z//SZFDMinLaC9bDFRdYWvNNQeGAZWRv4C5mjs3ii65JLwYffnlFeJFDw/D+Rx9dOeB4157bXGRlSUkkl53mVOf6oA2wZG3AW2SCDDXeZE8F9dCAS4C7ctfHigk9bmHZ7KIkHMhZBI3jDFfo1UZmi7hbjC4yjCo8oYs+STk12msphG6qADOE7lKaV6JED9YC7acKBdPjEueUV3GexPC57qxwEOvsbAJIkdx9tlnU+SQTMoy2ptQmtYnhAsGbJbhiEahZVajKnPOkoxv/XW8pjx+SeFmMJIhkiCaksiTq+PiRfCtDphVXCDvQ78+6hj4fcst+fNcXM7Np3mqS45R3uvggmtZZ5dQsTwiRxm/rvksoQ2qvCFLLne5UWQBuTp1G6tlFRVIC6VK8kqg/HWZVetcPDE03qOeKtXdiyykyCFtwje0xtU705TStFn43tXH1yn0He8q5iwpDAo9bPQ8HT0MrUglvrTQyCJFFXzGZDtn1zAuXGeXnKi0Kme+68S3UEDZjyK5eT6iJMvgq6oKV0iDqkjIkquhjHCvLJGj372f9dZPFXfyixYVyPJOJXklilboy/rJCqOC8HTZD7brZSgG20trRc7rr78eD1o9FixYQJHTA/iG1rh6GkKWpi0r7C1vbkZZ1ajS5qzoHJx7rv1cbIIDx83KU1IV2OC58BlTkaIKvp9NEg3oe5MWCuha8hsiwLVaXV4Plb4PV4GGstt4uG4bOjfPVZS4xt1XVYUrlEGVJ99AN9p9c1V8KtXpP6Oj0XFPnDIKC+QtKuAi3PJ60BC2GEr8JK0V5O64fB7b9TLdVqq7l1hYlsj5xje+Ee847XH//ffnFjn9/f3WfVLkdC8+CdwwZFUoDrZNM9p8E8PrDqczH2gA6eOBCDGurDlTIgVjzrPv0aOze9ioB8bxjW+4iz6f8y9SVMHns0Wa3roW6EC4no9ITpsn13ODAHPJ1aqzyIiPKHHJJQlRhSuth06SQZU3h8H3LjXCrPI0M82qDuZq0CP/JG/YXVphgTq9abZrF9LLkzROenLcCVWqmzRX5PThP+LIs88+K88//3zqNhtssIGsvPLKy5+fc845Mn36dHnxxRcz97948eL4oVi0aJFMmjRJFi5cKCNGjHAdJmkRM2eK7Lef/fV99sne1rad736zWLJEZKONRObNw/oWefBBkWHD/PaRtt/58zvmo2LIEJHJkwcfJ2n7vj6R9dcvPq60Ofvc50TWWQd/A0TGjhV5/HG/Y51zjsjnP+83ntGjRZ57rnO8H/xAZOjQge8vXSry9a+LPPOM33XBn5hrrhF59VWRI47oHAPziXkcM6ZzrNVXF9llF5FVVrF/VvszNQh8Bp+99FL7fBZZi7Z9pB1DJ2ld5Tk3c17SwNzeeafIlCmdOa6Ci+Qi2Vv2ztxuukyXk+SkzO3myByZJtNyjaVP+mSiTJQT5UTZU/aMX4Mlpb8PjpajZUPZUMbLeNletper5Wo5VA6Vx+Sx5dtiP6fIKbKb7Bbk/C+UC+VP8if5ofxQiqLOc57Mi59PlskDxp7FZXKZ7C67D3r9Srkyfl2fM3U88zXzvbVkLXlBXkjczsZsmS1TZaqUBc7HvK55SBqn61ot+zzbgu16TJJJcrKcnPk9I/UAbTBy5Eg3bVC24mJODknC5063rb9K0h3xInfQbZTVkd0336RIfkoWWXOGYgdmbkZRL47Pw3ZuRa+LT4W0Jja9zRvqWGYPqrR+QFUW/wgdb+/b0ND8USFZSY1GzeprSdXYXO8wu57/btFuuc4na07zhPfBk2TzZOXNhVJlvX08J2VVuDPBMZCblKefEn6GRkMTy0k3ubpaU2lS1TfSkpycRx55JPrTn/4UHXPMMdHw4cPjf+Px0ksvOe+DIqe78THa07YtUwyEDnvLawS7lEMOEY6X9DDL/aKymeuxZs0qJnCSRG+R6xJaCNfR9NY1FwcCtaoeVEn9gKou/lFGvH1WaIut5K9uPCthohtUeUKqXMZeVJQV+cF55Q3vM0VniFwozLGrUIIoqjJECWsm73mlCfSsUMG6mm8S0jUiZ//997fm18z2+L86RU734mPk27w4ecWArxFb1t1+XyO4TKM5bz8ZV2+O6QVSj+HD/cSOi+h1vS5lesVA2fkoPl4c5HdV0S/KpR9Qld6cMuLtsxoaIrfFZlTajlm0YluWFypvyeu6PDm2PJMQuVDYhykskzwoVeZiFL3+WblDrl5Dl5LihDSJRoicEFDkdC8+RrvLHWuVDB9SDJR5t9/XCNa3Tyo+gIpdeYzmPP1klDcHFdDSjOekOfQNsbKVTM57XaoIJSsbn2uGwg7/8z/li4ysfkB1zGsZXdaTQlt8K5oV9VK4GLkuTUhD/ejnl9eAL8OTY+6zKZ3ui56bS6ilKe7ylhTvFhiW1h2UVnig0clFpFW4Jjl/8pMim27aSbZPQyXDIxk9VPJ0VlJ3iMTxsosVFL0Wv/udyJlnJn/2oIM67/sWgFB87GMi73jHiucY/+zZydtjfzjvItdlzhyRaQ455BjH1Ibm5aprdvfdIscdl739yJEiCxeGLZyRti6xHtdaq1Ooou7vzVJZKr+X38uT8uTypP6hYlSxCIBvwrdrcYCs/dhIStYvC1U84XK5fHmy9tfl614FDZDsjaIF+rXBtUMBg8flce9z0Qsh6PtsSmJ+3uufdF5pqHlMKnaQZ5/dUGDAtZAHaRaNKjxQBHpyiE+jTOR+hKKpd/vLDrPSwblldazHPOjhSWXmHam+OAhdLHJdTC8aPA4q52j11VEspfzclVDo54LzwPXK8pKV4c1JWpdl5Tx1Qwf1vHfyszwNSEgvUg46z4/pHfP15KR5EtLCDm3/Vs+T9tmUTvd5rn9er0uvN74s0hiXtFsbDKlKeRGS5+5wf7/79o8+Gu7Yc+d2SkYn+TmXLRN5+OHOdlXPR1IZXtw9x/vYLgQ33WS/E2/OA8BcXHxxsTl02R7vm16stH3agAdvjz063gQ8sK+XXuq8h7LSt97aed+nTHJd6OeC64/rleabD71GstalORZ1fcy1UhTcqcYdetwdx288rxp4iXy2g0cJd5KVF8QFtS3K29ruuONu9QSZIM9Kxhc3IPvIPnK8HC+jZNTyeYfnzLVEMjw4ygNku454He/jvHQwd1e89WN7T/cqFblOZeFy/c1rnHZeacCLGXK7NoE1BA8OVI2Jeg2l5Ov4m0HKh+FqpLG4hhUVDdeyUVbPkCIgfOrDH64uzOq660R23DH//PvOoW17iJUzzhA5+GCRD3ygcxxdXGXt08VAHz++0ytHP5dXXhFZdVWpnLw9ZZLCGJMIGTJ23nki++/vvn3o72pTwlCyQqtsIUEqrAzon9H7vDwvzzv176g6RM2GmvfX5LVY/GRxpBwp35HvxPORdR3Twg59QhLzXKeySLv+4BK5RMbImMKhlk0J0auDXj73bsVHG1DkkMaSZiQr47cJeTJVcdZZIgceuMLgL1t41T3/ZTVhdWlS+oUvdM4vr+jIi8phSppHfTxA/RtetzpuCOAaqSaxvoQQ42mNIkGeu94hxpNktNrGk9aM8DPyGSfjPSvnoirUee4v+8s5ck7m9mjEirvoWQLtGDlGviXfCiY68lynNjejbJKwqxqfxrh7yV6VjIkUgzk5pKspu8dJE6mr30id8192+eG0JqU4l9dei6Jzzx1Yva/ua6z3odH/bavWl1SFL+R8uvZAOvLIcOWzm1YlK0RFt6JVn0JUIfuP6D+C9NbB512bXJ4fne+cvxO61HEZlfeaXPWrjJLqbaDX85G6EZaQJl1Nlcn3TaHOfiN1zH9ZTVh1UGAg7Tz+/d9XFF7waX5a1jXWRZAqwBCq6ENezB5I6MkTsh9QWn+fqoyXPAZo1aVqQ/STwTizmkjW3VMntDHeayWFmyTsqqKpN0NIfihySNdSd9WzKpoq1mHwN23+y2rC6uLFSaoM5tr8tKxrnCYuzXkps3msz5iLonur6qiSZTMKm9g8sYgnxzTycG4hqrNleXPUMX0EGg3S4vSasANfi76Wuqaa9n0m6VDkkK6lCuMtr9FVFiEN/qIirQ7juQwB6xpmpT+SvDkhhG/WNU4Tl7Z58W02W8aYfbDNYVb4XtmenDaVnVV3q329MEnngjLUI6IRhUROUvNJ07DMI9AYWkRcOSI6InUt4X3SLtgMlHQtdVY9qyIRvuzmn1mJ7aHnP0/ifhVNWH0qx+mcfbbIAQeEnVOXa3zRRelzUnXRDdd16Xr9bXNorgPz/MpMpm5j80QksH9WPpv4/hFyRJyE7ZrgfplcJnvKnt7j0Ofmark6M6k+T8NPJokTF1zWsK0JLWk2LDxASJfkxYTMf6mjeIGv56uqcDh4MPr7/b05aBqqHzvEnGZdY4TJpc1JWaFiRcasrrfL9bfNoWsoXFnJ1G1MVsa5po0V7/uGKmXdBbd5aMx5dzmmby5Qk+adNBOss9HRaK6nLoThaoR0QV5MaIO/apGWRwBUGY6YFNJ10EHpxz7rrHBz6nKNVfEDl4d5/DJyyFzXJarTuVx/2xz6hMKVkUxdRb5PW5KrL4suG5Sjg31BAIWcd3xuQjQhU0QxJ4e44BMG2ZTvMXGD4WqEBCYphKqsECF8K9Gn5UtfCtNvxAwvCt2Q0UZWuFETm7C69H1ZYw2RF17o/LvonLo2vEWoV9ZfanX8Bx4QufvuTojY+ecXC6UrMuYZM0SOP37Fc9sYbOtyvfU6/37kEfcQTZ9mkN3YQLDs8SbN7xvyhvxMfiZ/l7/LO+Qd8mX5sqwsK+c8i85xjpVjpV/6B71XV+8j0t39cZr0PSZusBkoIQ3Oi/ERCIccIrLNNsUN/qpFWtWiKk/uj40bbhD56Eezt7v2WpGnny4+p1mi7v77RY47TrxQ4gKNTo85JnwOmYsQxXEwDiVUkq5/Vv5VXblHbWueWEfDQ1sTS8zJKXJKYRFSRYPMKggtvkl44T9GxsTXh9elPVDkkEYakG2likT4Mgsc1CnSyporc00WTf73LUhw+OEiV1xR/pzqguLNN0XuuqtzPXVwnC22EFlppRXiAuMaM2agR6rKwgQu1z9pXaZRhQdSN7R3l93jf+tCp4kehao9T2puTAEYcm7aLhDKFIGkePEQvTiB+p6TdsDCA6T1ZZN7uS9P6NyZqpunupaALpIvoq/JkAUV9DwdJPwjH8Y8DzzPypOp67uSdK2rLEzgev2z1mXZOVnd1Dwxq4R0yFyWqpsrtrGvS5vKj3czWQUtWD66nbDwAAlGHRW5erkvj2kg4jee5533Joi0JAGQVzyba/Lss8sRGHmN8LqatWZd66rEl8v1zxorXkdfIgjN0P19mmZkh9p/WZXm6qw815ZmrHWKQOK/hlBI49Lo0rqHRnJCkUNaXTa5Sbg0VbzkkiiaOzfbI+HiuQjZYLEJIs2l8hZ+33LLwHlJmytzjnRvSyiB4SIYmuJtcBUXTaoI6NqMteo5rJrQRnwVnqeqKs+11RviKgJPik5qlXeqzbTRG0iSYXU1EoQ6KnK1Edd8kKzt0nIU1l9f5G9/82uwWEe1sryVt4CtEaQ5V+YcJVUdK5p/4noeRx4p8p73VFsBzoZPfkuZuTmu84bCDQsX1ldFrwmUlddSdi5LFfk/Ps1YQZNyd3yqeimYq0OIOyw8QIJQdUWuNuJaJMBlO9cCB6GS7MvAFFVz53ZKYSsOPlhkhx0GVt4yhRxImiuXalwhxHjdpax9ca1SVvaNirbNWxGKiAkfI75pyfZVVJ5zFVLHyDFyppzZqOR+17HrNLGYBSFNhYUHSGXJw72Oazhf1nZvvBFF66yTHh41ebJ7g8UmN1A1c2jMeUmaK98Qsl4JrcwTWtftYWBNDzOrMq+lDMrO/3ENiUvKeakznC2rCETauJmrQ0hYbTCkKuVF2sVFF3XupJt+vmXLRB5+WOTii6XrwLnecUd2uI/unenvXxEyhrvkeG6W+HXZDs+feCL92AhF+s53OtcFNPU6qHm88MKBa0itna9/PTnM7qijRL797RXPsZ2aq6Q1aSPpWnQj8Ja5zAtC6+DxufRSke22q2p03RtmZnph4NnA63g/C3h/XHDdrmrgbYDXYYJMGPA6vChFwuzgBUG419PydO6xKe/SdJke77Nq4L2CJ0n30LiOe4EsiL2DhJAwMFyNeMf3ty03xzWHxTcMzDWcL2s7zPeGG3bme/Tozhife27w3GPeJ04UWbCg2TlS6nzRp8U8j6QcmixUY0ufnipg9myRqV3eyLqXQsTqJlSYWdV9bcoiRP4P9nGsHBsLgxfkheWvYz9FRUqd82frk+NCyIathHQjzMkhlSQPt8WAdBEvvg04XRtsumwHD4Vv13fz/JqSm6PPYyggjMaNE3nySb9CAN1i2PsUmiDlEkqcVJHX0gYgBL4gX5Dn5Xnnz2BubHPWRMGgi0B4pw6TwzI/c5KcJGvL2o0ookBI27VBg+7/kqaAUBaEtGTdGW5DyIsKFQP4/bnP2cWLCoXSw8DShIO+fVI4Hz6ftd0FF3Q8FHk9HCosK+m8qibpfIuAeYHAOeQQkW22Sd6uW0SNyfnn+3kYKYrKI1SYmQppQnibzWjH83+Xf5duBgLns/LZzO1Mjw7EH+amX976w54ChEKdYOxK7OIcfiQ/ShS2antdCNVdRIHUS9mVEnuCqMGw8ACpojBAUoJ8UlK/by+YtO3Q4yVvH5amJdnrTTrLeDS90EJTmvHmbbJKqi8YYCtgkLeYQZvIapiZ1VMmK7m/qUn8SQUbmlpEgdRHGxvhVgWbgRLiIV58G3C6Ntg86SS37UwRhOejRw9scpn2aErFu6R5PPjggc1Tjzwyv9A57bTspquhcWniWta+fZvx5hFFxJ0yjGtse0x0TCOM3KqaJrqKxbTGomVXeKvSeB0aDU0VOk0UbKQ82toItyrYDJQQx8IArrk1eRK9d9yx0/QwaTuzh0xR6syR8plH2/y9+WanGtusWcnH2HRTkXvvrT4HSa2j884Tefe7w4aBpeWL5WnGa675MueqV8PiVHU1AMujaK+TMnrm5AlzsSXKlxUu5dswMynHyTbmSTJJTpaTGx3ilSdXp+lFKEgY2txDqyrYJ4f0PK59fpK8D2WHgeXpbaJ7esaOjaJzzlnhHbn00ih6/fWoNorOo898VOmh0D0jKrQw1JrI8rr4ehh9wy6L0oSwuKo8Dy5343G3Pc8d1ipC4LLCXKq+c+zjycnyYtS1BlzJGp9rTyCbN4t0H23voVUFDFcjPY+L0e2aW1OGkega8taGho4h5tF3PqoyrG3rKNSaSAtFy9OM11cUFaEJYXF1x6yHMq5DGrl5xEpWfkwZ4VKuOTltD81xWaM0aokORW82DFcjXU1WmIxrn5+f/1zkox+tJwwsLeQNoVt33dX59xZbiKy0UrMriYUoOa7Px9KlIkccIfLss/Ztcc3XX7/8/kBp66hoGFhWKFpSqGXS8fOEXRahyrC4tJAx/N9eJ2/IWDeVpfYNc6mrZ8/X5evyQ/lh4vvDZbicK+e25jrmXaN1lhNn9a7m0S09tMqEfXJIV5PV98bV6Ea+zMKFbKJYNNdCCZQbbujkGB18sMgHPpB/HrMM/KoM66RxhBBZafliKAfu24zXVxQVIU+uUEi6LWY9lJGb1zhyzY8J2XMm6xoCnPN8md+Ka1h0jYbO83Khyhws4g57aGXDnBzStbiEySA3BTkqekUv81F3DkuTyZNrESp8yTU3B+/jOG+8kV6dLG9lNJdx5A0DywpFmzXLL1yx6rDLKsPibHRjeE+ISmF5w1zqmM9uvIZFzy9knlcWrN7VbNpaObAqmJNDuhbfkrrEj7xiJdR18c3N+eIX04+XNzk+K6dLiaw8wiFr32ed5SfSXecsRA5Xnlyh0HRrzHpRIzevcKij50y3XsOi51dFEYU6crCIP1WK3rbBnBzSldQdJtML5Mm1CHldfHNzhg7tHH+DDQYfT41r3jz7+67nk4ZvGJhrvpjP3GGuDj9c5Cc/sYcKhgy7rDIsLimU41Q5tWtL7hbJkSgS5lJ1uFQb8g6KXIsmn1+Tx0YGwpwpOwxXI11J3WEy3U7eEsRlXZeiFdfyepdcj5vHm1OG16WqSmd1ViNMurPJO9HhwlyqvHPs4j0aE42Jzo/Or6UsdNHKfRjvWtFajVyj3e5FI93PQnpySLdRdfWoXsSleWqV1yWtAp3y8jz3nN17VMS7pI57990ixx0XtvqeayNZH69LVZXOQlTRC12pysTX89CNd0qLNMiscj6SvEc2qkyID1G5D/v4rHw2dZsr5IpaEvzpySFth9XVSNdRd5hMt5NXrNR1XbIEWR7BVoUgaXMIZ13z4VKJK0+3+zZUl8orOtoi3mzXwEZVpcFDVO5zWa9ryVrytDxdyzVh9S7SdhiuRrqKusNkegGX5qlNuS5Zye+vvVZ/cnxV9EIIp2tC/UnRSc7hP22oLlV3s9OqUMn2CE0bHY2uNcQrRNW3NlSOY/Uu0mZ8tMGQqpQXIXmZO7eTPJ7kc1y2TOThhzvbkXzegP7+5J448A7gfWzXhOty0UX246rjTZ+e/v7FF0tXX7ek69VW4I1wYW1Z29nLAe+B7S62em26TI+3qxIcD6FE6FvzHflOHO5kegNw9x2hVPCANAV93PjtO2+4ZgiLmiAT5Dl5LnE7XJsFsiD2UNW91tK2C7GPsoE3DF4xzLkOPDhtaqRLSBbMYiCNZ7vtRC69NDtMBtuRDj4NPZVYSUIXK3quRR3XRTfsk6qT/eIXyZ9XAgANN9uew6XEnoku5rohhBPhViG3g5GcFkqkG9NV5SS4hm1hbAgnggj7jHym9nCikCF/TRAHIdZa6PVaFrg+WENtCGskJC/MySGkC1E5KS45KG3IPfFNfq8jOb5KyihF3VRC5xDA47C37J253YVyoewle0nZuBZVaFpieIgE/aYlxIdYa8x5IaRcWHiAkB4mb3+YNpAlyN58U+See0Q220xkpZWaLdjaWumsDkL2cWmCMZ2nqEJdIqysBP2mioMQa63qvkOE9BKLKHII6V2qKilcVTgdabf3rQmlkYsY02VWKnMVXE3z5JQlFJsiDkKstVDrlRAyEIocQnqUKksKhxBixxwjctRRFDrEjVCCw9WYLrvMtGvoXNPCncoM+WuKOAix1tpSypuQNkGRQ0iPEqI/TJXhdOCcc0T237/uUZFeI8uYDp1zEsKT05Rwp7JD/igOCCFJUOQQ0oPkbehZtxAbO1bk8ceTx8bQNlIWScZ0GTkneULnTJoS7tSU/BlCSO+xyEMbsE8OIV1CVv+YJvSHUSWgdZ55RuSCC5I/c/75Iltvnb4NSQbr4Y47kvsZ9TKqRwtCqvBbGeQ+ZaaLHh+hb7qXRtH31s8xckwc9gWvCERD3QLHZdwAYowChxBSJxQ5hPRwQ8+m9Hb5+tftY9NFURPG30YoEv2psmdLVmPGb8u3B4mwJsCGkoSQpsNwNUK6gDaUFDZzcUxsuTltqBTXZLq5nHiZ1FFmuq15KG0dNyGknTAnh5Aeow0lhZOKIiTl5rSlUlyToUjMB3NOCCGkmVDkEJKDrAR3JsCX58WxeXPaUCmuyVAkFqMpPVsIIYSsgIUHCCkhd4G5DfmZOzdb4IAZMzrGeVKOUVNyi9pYiKJJBSjaAHNOCCGk3dCTQxpNVd6TrNwF5jYUA2F0xx/faf7pkje0YEF6aBu9Od1RTrwNMOeEEEKaA8PVSNegQpbKNmqzcheY21Bd3tAnPymy2WaDDXQFDfXi+U9cv4QQQtoIRQ7pCqrynmTlLjC3oVraUCmujV4cBdcvIYSQtuKjDfi/ONJY9J4qKpegjLvPZu8WPXcBx8t6n4Rlu+1ELr002+OD7Yh//pNav9iOIpEQQki3Qk8OaSRVeU+ychfuu09k442Z20DaQxvKiRNCCCF5oCeHtJ6qvCfmcczjTZ+e/j69OaRpQLjssUfdoyCEEELqhZ4c0rOVoVxyF/BIKldMbw4hhBBCSHWwTw7pqv4eitB9PlTuQpLMx/HS+rHouQ2EEEIIIaQ50JNDerYyVFbuwptvitxzT6ec8Uor2bdhbgMhhBBCSDUwJ4e0liorQ3Vr7kJVDVQJIYQQQpoKRQ5pFCwfXJzzz6+mgSohhBBCSFNhuBohXURVDVQJIYQQQqqGhQcI6VFsDVQJIYQQQnqN0kTO/Pnz5cADD5T1119fVlttNXnHO94h/f398sYbb5R1SEKk1704/f0r8nBQpAHP0yrEEUIIIYR0I6UFsjzwwAOybNkyOeOMM+Sd73yn3HvvvXLQQQfJK6+8IieccEJZhyWkZ6mqgSohhBBCSNOpNCfnhz/8oZx22mnyMCwvB5iTQ0izGqgSQgghhNRFY0tIY0CjRo1KfH/x4sXxQz8RQoi/F0dBbw4h3cdSWSq/l9/Lk/KkjJfxsr1sL0NlaN3DIoSQRlFZ4YGHHnpITj31VPniF7+YuM3xxx8fqzP1mDRpUlXDI6RrcnFMmJtDSPdwpVwpk2WyTJNpsrfsHf/Gc7xOCCGkgMj55je/KX19fakP5OPoPP7447LTTjvJHnvsEeflJDFjxozY26MeCxYs8B0eIT3bQDUp8FRvoEoIaS8QMrvL7vKYPDbg9cfl8fh1Ch1CCCmQk/Pss8/K888/n7rNBhtsICuvvHL87yeeeEKmTp0q2267rZxzzjkyBLeVHWFODiHZIMLzmmuyG6juskvnNyGknSFq8NiYAkfRJ30yUSbKPJnH0DVCSNdSak7OmDFj4ocL8OBMmzZNttxySzn77LO9BA4hxA0Ilz32qHsUhJAyQQ5OksABkUSyQBbE202VqZWOjRBCmkhphQcgcODBWW+99eKS0fAAKcaNG1fWYQkhhJCuA0UGQm5HCCHdTmki5/rrr4+LDeAxceLEAe9VWLWaEEIIaT2oohZyO0II6XYq7ZPjC3NyCCGEkBU5OSgygNA0E+bkEEJ6gUUe2oBJMoQQQkjDgXA5RU5ZLmh01POT5WQKHEIIeQuKHEIIIaQF7Ca7yeVyuUyQCQNehwcHr+N9QgghJefkEEJIL4IA4DvvFJkyJblBKyF5gZD5jHwmrqKGIgPIwdletqcHhxBCDChyCCEkIOefL7LffiIzZ4rss0/doyFZeS5tFAsYI8tEE0JIOgxXI4SQQCxZItLf3/k3fuN5Xm/QHXd0fpNyuFKujBP5p8k02Vv2jn/jOV4nhBDSfihyCCEkEBddJDJvXuffDz8scvHF+b1BW28tcsEFQYdH3gJCZnfZfVBzTVQuw+t4H16eOTJHLpKL4t94TgghpD2whDQhhAQAXpuNNhKZP7/jgRkyRGTyZJEHHxQZNsx/PxBLG2zg/3niVorZFDh6pbJRMkpWlVVj0aMn96O6GZP7e4u2hjQS0q2whDQhhNTkxVG3jZYty+fNCeUNInZgsCYJHIAeNM/L8wMEjunlIb0BQxoJaTcUOYQQEigXx6ymBm+OT26OuR/fz5NscEc+D6oB53SZztC1HsAlpJEQ0mwocgghJLAXR+HrzQnlDSLJIOQoLxA6C2RB7A0i3QtE7KFy6HJhq0OxS0h7oMghhJASvDgKV29MKG8QSQc5FcivQe5N1d4g0j0hjRS7hDQfihxCCCnA3Ll2L45CeWOwXRXeIJIOksZRQADkFTpFvEGk+biKWIpdQpoNa/YQQkgBtttO5NJLRRYvTt5mlVU627l4cWxiSXlzPvc5VloLASqkXS6XxyFJ+h17eHhek9fkBXnBGqoEUYRt4A0i3YuriKXYJaTZsIQ0IYTUzJw5ItOmZW83e7bIVDa6L7U88NVydZxYDnSho7w+EEcsI90bZcZRZCBN7M6TeSwnTUiDtQHvCRJCSM2E8AYRf2CgTpWpzl6ek+VkCpweCmmE2IWgsYldrAUKHEKaDT05hBBCiAGbQBKUiTbF7iSZRLFLSEu0AUUOIYQQQogFil1CmgXD1QghhBBCSghpJIS0A5aQJoQQQgghhHQVFDmEEEIIIYSQroIihxBCCCGEENJVUOQQQgghhBBCugqKHEIIIYQQQkhXQZFDCCGEEEII6SoocgghhBBCCCFdBUUOIYQQQgghpKugyCGEEEIIIYR0FRQ5hBBCCCGEkK6CIocQQgghhBDSVVDkEEIIIYQQQroKihxCCCGEEEJIVzFMGkwURfHvRYsW1T0UQgghhBBCSI0oTaA0QmtFzksvvRT/njRpUt1DIYQQQgghhDREI4wcOTJ1m77IRQrVxLJly+SJJ56QNdZYQ/r6+uoeDmmgmocAXrBggYwYMaLu4ZCGw/VCfOGaIb5wzRAfuF78gWyBwFlnnXVkyJAh7fXkYPATJ06sexik4eAPA/84EFe4XogvXDPEF64Z4gPXix9ZHhwFCw8QQgghhBBCugqKHEIIIYQQQkhXQZFDWssqq6wi/f398W9CsuB6Ib5wzRBfuGaID1wv5dLowgOEEEIIIYQQ4gs9OYQQQgghhJCugiKHEEIIIYQQ0lVQ5BBCCCGEEEK6CoocQgghhBBCSFdBkUNaz/z58+XAAw+U9ddfX1ZbbTV5xzveEVcreeONN+oeGmkoxx57rLz//e+X1VdfXdZcc826h0MayE9/+lOZPHmyrLrqqrLNNtvIH/7wh7qHRBrM7373O/n0pz8dd2Hv6+uT//3f/617SKTBHH/88bLVVlvJGmusIWPHjpVdd91VHnzwwbqH1XVQ5JDW88ADD8iyZcvkjDPOkPvuu09OOukkOf300+XII4+se2ikoUAA77HHHvKlL32p7qGQBnLJJZfIf/7nf8Y3S+666y553/veJzvuuKM888wzdQ+NNJRXXnklXicQx4RkcdNNN8lXvvIVue222+T666+XN998Uz7+8Y/H64iEgyWkSVfywx/+UE477TR5+OGH6x4KaTDnnHOOTJ8+XV588cW6h0IaBDw3uMv6k5/8JH6OmyiTJk2Sr371q/LNb36z7uGRhgNPzlVXXRXfnSfEhWeffTb26ED8fOhDH6p7OF0DPTmkK1m4cKGMGjWq7mEQQlro5fvjH/8oH/3oR5e/NmTIkPj5rbfeWuvYCCHda7MA2i1hocghXcdDDz0kp556qnzxi1+seyiEkJbx3HPPydKlS2Xttdce8DqeP/XUU7WNixDSncBTjIiCD3zgA7LpppvWPZyugiKHNBaEhcDtn/ZAPo7O448/LjvttFOcb3HQQQfVNnbSjvVCCCGE1Alyc+699165+OKL6x5K1zGs7gEQksTXvvY1OeCAA1K32WCDDZb/+4knnpBp06bFVbN+/vOfVzBC0ub1QoiN0aNHy9ChQ+Xpp58e8Dqejxs3rrZxEUK6j0MOOUT+7//+L67ON3HixLqH03VQ5JDGMmbMmPjhAjw4EDhbbrmlnH322XEMPektfNYLIUmsvPLK8d+RG264YXniOMJJ8BwGCSGEFAU1v1DIBAUq5syZE7fAIOGhyCGtBwJn6tSpst5668kJJ5wQVylR8M4rsfHoo4/KCy+8EP9G/sXdd98dv/7Od75Thg8fXvfwSM2gfPT+++8vU6ZMka233lpOPvnkuLTr5z//+bqHRhrKyy+/HOeDKubNmxf/XUEi+brrrlvr2EgzQ9QuvPBCufrqq+NeOSrfb+TIkXG/PxIGlpAmXVEGOMn44PImNhDWdu655w56ffbs2bFgJgTlo1GKHsbHP/3TP8mPf/zjuLQ0ITZwNx7RBCYQy/h/FCE6yBG1gUiUrLBr4g5FDiGEEEIIIaSrYOICIYQQQgghpKugyCGEEEIIIYR0FRQ5hBBCCCGEkK6CIocQQgghhBDSVVDkEEIIIYQQQroKihxCCCGEEEJIV0GRQwghhBBCCOkqKHIIIYQQQgghXQVFDiGEEEIIIaSroMghhBBCCCGEdBUUOYQQQgghhJCugiKHEEIIIYQQIt3E/wcdbKFeibssaQAAAABJRU5ErkJggg==",
|
||
"text/plain": [
|
||
"<Figure size 1000x600 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"plt.figure(figsize=(10, 6))\n",
|
||
"colors = ['#ff0000', '#00ff00', '#0000ff'] # Цвета для кластеров\n",
|
||
"markers = ['x', 'o', '^'] # Маркеры точек\n",
|
||
"\n",
|
||
"for k in range(n_clusters):\n",
|
||
" cluster_data = X_scaled[labels == k]\n",
|
||
" plt.scatter(\n",
|
||
" cluster_data[:, 0], \n",
|
||
" cluster_data[:, 1], \n",
|
||
" c=colors[k], \n",
|
||
" marker=markers[k], \n",
|
||
" label=f'Кластер {k+1}'\n",
|
||
" )\n",
|
||
"\n",
|
||
"plt.scatter(\n",
|
||
" cluster_centers[:, 0], \n",
|
||
" cluster_centers[:, 1], \n",
|
||
" s=300, \n",
|
||
" c='black', \n",
|
||
" marker='X', \n",
|
||
" label='Центры'\n",
|
||
")\n",
|
||
"plt.title(f\"Найдено кластеров: {n_clusters}\")\n",
|
||
"plt.legend()\n",
|
||
"plt.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "d0295bff-217e-420f-9d83-be684525a73e",
|
||
"metadata": {},
|
||
"source": [
|
||
"## **Часть 2: Реальные данные (Wine Dataset)**"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "7d961449-a223-42af-9d47-8bfac7947f76",
|
||
"metadata": {},
|
||
"source": [
|
||
"## **Цель задачи:** Применить Mean Shift для кластеризации многомерных данных о характеристиках вин.."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "b46aeccf-478c-4d03-8a8b-47643cc32184",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 1. Загрузка данных"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 11,
|
||
"id": "837312cb-9c85-40df-a41c-c1230a8f360f",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from sklearn.datasets import load_wine\n",
|
||
"from sklearn.decomposition import PCA\n",
|
||
"\n",
|
||
"data = load_wine() # Встроенный датасет\n",
|
||
"X_real = data.data # Признаки (178 строк, 13 столбцов)\n",
|
||
"y_real = data.target # Истинные классы (3 класса)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "14b27cf3-c0f8-4aa2-8537-4168d710d622",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 2. Препроцессинг"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"id": "320942ff-ed29-4705-9f75-3b4471b20873",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"scaler = StandardScaler()\n",
|
||
"X_real_scaled = scaler.fit_transform(X_real) # Стандартизация\n",
|
||
"\n",
|
||
"pca = PCA(n_components=2) # Снижение размерности до 2D\n",
|
||
"X_pca = pca.fit_transform(X_real_scaled)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "fc6cceae-4351-4ebd-9412-c98c31fa1998",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 3. Обучение модели"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 23,
|
||
"id": "e7d1c373-85a3-4b64-8b45-be57d67c3364",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Найдено кластеров: 3\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"bandwidth_real = estimate_bandwidth(\n",
|
||
" X_real_scaled, \n",
|
||
" quantile=0.2, \n",
|
||
" n_samples=50 # Уменьшено для скорости\n",
|
||
")\n",
|
||
"\n",
|
||
"ms_real = MeanShift(bandwidth=3.0, bin_seeding=True)\n",
|
||
"ms_real.fit(X_real_scaled)\n",
|
||
"labels_real = ms_real.labels_\n",
|
||
"n_clusters_real = len(np.unique(labels_real))\n",
|
||
"print(f\"Найдено кластеров: {n_clusters_real}\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "1620a6fd-c215-421f-ae3e-7e89487a3e44",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 5. Визуализация"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 24,
|
||
"id": "1beb82b3-c204-48ec-a1a1-8f2be12c42a6",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAwQAAAIkCAYAAACgIOxgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQd4HOXRx//SdbVT79W99967AWMwpncMAUKAUJKQQEJLAiSQkPABIUDovZpqbNx7791WsdV7P+n6fc+MOHGSTrIkn9ppfjyLdXt7u+/u7d3NvDPzHx+Hw+GAIAiCIAiCIAi9Et+uHoAgCIIgCIIgCF2HOASCIAiCIAiC0IsRh0AQBEEQBEEQejHiEAiCIAiCIAhCL0YcAkEQBEEQBEHoxYhDIAiCIAiCIAi9GHEIBEEQBEEQBKEXIw6BIAiCIAiCIPRixCEQBEEQBEEQhF6MOASCIAjdBB8fHzzxxBNdPQyhEVlZWdBqtdi6dSu6E9dccw2uuuqqrh6GIAhegDgEgtACb7/9Nhtpe/bsafLc66+/zs8tWbIENputS8YndA8KCwv5XrjvvvuaPEfr6LnHH3+8yXM33XQTVCoVampq0B3uc+dCxm9sbCwWLlyI//u//0NVVVW7971t2zZ2csrLy9Ed+M9//sPn2xb+/Oc/Y+LEiZg6dWr9ultuuaXBNQsKCsLIkSPxz3/+EyaTqck+Dhw4gBtuuAEJCQnQaDQIDQ3FvHnz8NZbb7n9/qDrRe8D7fv48eNux/X73/8eX3zxBQ4ePNim8xEEQWiMOASC0A6WL1+Ou+66C9OnT8fHH38MhULR1UMSupDIyEj0798fW7ZsafIczSorlUq3s8u0bvTo0fDz8+PHtbW1+NOf/oSuggzf9957D6+88gruvfdeXnf//fdj+PDhOHToULsdgieffLLHOgRFRUV455138Mtf/rLJc2TY0/Wi5emnn2Yj/7e//S1uvvnmBtv973//w7hx47B+/Xpcf/31PIbHHnsMOp0Ot912G/7+97832fdnn33GzkB0dDQ++OADt2Oje4f2S06IIAjCeeEQBKFZ3nrrLQd9THbv3l2/bv369Q6NRuMYPny4o7y8vEvHJ3Qfli1b5lAoFI6qqqr6ddXV1Q6lUum47rrrHAEBAQ6r1Vr/XG5uLt9bDzzwgKM73udO1q5d69DpdI6kpCRHTU1Nm/f93HPP8b4zMjIc3YGhQ4c6Zs6c2ertn3/+eT5/1/eVuPnmmx3+/v4N1tlsNse4ceP4fHNycnjd9u3b+b6YNm2ao7Kyssn+6ZrT9W/MjBkzHEuXLuX7IyUlpdnx/eMf/+BxNB6fIAhCW5AIgSC0AQr7X3rppYiJicGqVaug1+ubbHPmzJkGqQSuiyv/+Mc/MGXKFISFhfFM4dixY/H555+7Pe7777+PCRMm8ExySEgIZsyYgR9//JGfS05ObvZ4tNDzTux2O/79739j6NChnI4QFRWFO++8E2VlZQ2OR6+5+OKL+RijRo3ibYcMGYIvv/zSbaoJnbPrMUaMGMHrXWdiKW2E9hEQEMDpFZMmTcJXX33VYH+bN2/GlVdeicTERJ59pfSKBx54gGfOXaF0DdpPY+j60XE3bNhQv47+bryOWLRokducfZrFpcgPXWfX63jPPfegJaZNm8apHzt27Khft3PnTlitVp41rq6u5vvHiTNiQK9z0ng89DetS01N5XMODg7me27ZsmVu04zoPqH7iO4nmq2mHHPKfz8f5syZg0cffRRnz57l/TuhiAGNqU+fPnx/0Ez2rbfeipKSkgbj/93vfsd/p6Sk1F9L5/1C6TK0f4qw0PtN9wdFJxpDKXuUvhQeHs7nRvuiY7nSmnub7uujR49i48aN9WOZNWtWi+dP9yilC7m73xrj6+tbvz/nOVJ0hI5Ds/yBgYFNXkMz/HQdXcnMzOTPAr1/tGRkZHCkxR3z58+HwWDA6tWrzzk+QRCE5lA2+4wgCA1IS0vDBRdcwIYLOQPkFLTEHXfcwYYlQYY0pRm58sILL+CSSy7hFAKz2cypR2QMf/fdd2ysOiGDggwrch4opUOtVrOhuW7dOixYsICNIDI2Cco1ptSFRx55BIMHD+Z1roYMGUhkpJNB+etf/5oNjZdeegn79+9nA5Xy2Z2cPn0aV199NadKUAoEGW80vpUrV7IR0hyUPnH48OEm68loueyyy9goIwOfxnH55Zdj+/bt7Ow40yTI0KV0LHKUdu3ahRdffBHZ2dn8nKfYtGkTVqxY0WQ9XQ+69vTeUkpHREQEr7/xxhvPuU+nYU9pQ5QbTtA1HTBgAKd2xMfH82My2J3Pub6uJahwlIzgZ555Bvv27eMUFDKiXVNNnnrqKTbcadtf/OIXnOpC146cR3p/yZloL3T+dE+Rg3j77bfzOjJA09PT+V4iZ4AM7ddee43/JaeIjOClS5fi1KlT+Oijj/Cvf/2LDXrCeV3J+CcDnj4HlFb17bff4le/+hUb93fffXd9fQbd5/SaP/zhD3weZGw3dk5bc2/TZ4VSoegz8cc//pFfR45Dc1gsFuzevZvvx7Z8TxB0/9K9vHbtWn4PyMltLXS9/P392SknB6hv377sUNB3QGPIiaJt6Bzp8yUIgtAu2hRPEIRehjOV4rvvvnP07duX/16wYEGLrzl9+jRv984779Sve/zxx3mdK43TL8xms2PYsGGOOXPmNNiXr6+v47LLLuN0BFfsdnuTY1M6Ex2H/m3M5s2b+bkPPvigwfqVK1c2WU/pIbTuiy++qF9XUVHhiImJcYwePbrJ9XGmgxiNRkdiYqLjwgsv5PXuUiGcFBYW8jaU8tDcNSGeeeYZh4+Pj+Ps2bMtpmsQn332WZPzd3dNJk6cWD9Gem+cvPrqq7yO0jxcoXV3332341xERkY65s6dW/944cKFnEpEXHXVVY4rr7yy/jlKLenfv3+T47iOx3nf3HrrrQ22o/shLCys/vGZM2c4LeWpp55qsN3hw4c5Zanx+rakDDnR6/UN3nt379VHH33E+9m0aVOrUobc7YOuWZ8+feofL1++/Jxja8u93ZaUodTUVH79iy++2OQ55z1YVFTEC2379NNP8706YsQI3ubgwYP8+vvuu8/RFigd8frrr69//MgjjzjCw8MdFovF7fYDBgzg+1kQBKG9SMqQILQCCulT6sV1113Hs6QtzVbTbD9BkYSWoFk9J5TWUFFRwREFmgF2TVeg2VKaraZ0BFcapyCdCxozpZvQ7H5xcXH9QjPWNGNKqTKukMqM64wjpfmQKg7NuObn57s9xssvv8wpI+4UdZwzrnRMmkX929/+xufkqtziek0ookDb0qwo2cp0XE9AM8s060vHb4xTTYdmd9sDnQtFbyh1iN43mil3zurSc86oAM0cU/pQa6IDROOCVrpP6DpXVlbWnxMdj6IDru8tzdxTsXPj97Y90D3iqjbk+l4ZjUY+HqWBEa73cEu47oPuf9rHzJkzOfJAjwlnZIMiZ3T/eOLebi3O9CdKH3MH3aMUuaClX79+HEWZPHlyfTTQ+f64SxVqDkrFogjbtddeW7+O/qbzocikO2h89LwgCEJ7kZQhQWgFpaWlnNJDBvKxY8dYSpLSGNzVEDjVVM6Vc0wGzl//+lc2DF1lCl0NfTKcyWimtIDzhVKAyMiiVBN3UGqGK2TgNHY6KP2FoJQNMjZdoX1TutKDDz7YbBoGpU9ceOGF9Q4G5fw7jUhn7jQ5P998802TugangXg+kKFORhulaVGdQ2PImCMo753Sc5ypLa2FDHwyBuk9pRQVGrPT4SHHIDc3l68dpbNQbUFrHYLG6SZOA5WuEV1Hem/JaSLj3x2uqWDthdLSXO8d+kxQOht9LhrfO619r8hBIueR0sYa10TQPujzRQ4CpZbRsSjtiHL0SeqXnHOn093We7ut1AVvmkK1CpTmRNBYKK2LUsOc0HtDtEW2leo0KF2IajOodsR5HEq1o7Qh13RC1/G1dYJAEATBFXEIBKEVPPfcc5w/T1CeNBmxDz/8MMsHNsY5e97YYHaFCgYpb5pyi2kflLNORhvl6X/44Ycdcg40g0wGU3MShm01fhtD+ezkvJAx7VpY6sr48eM595wMWTJ8qDCUCoepsJKMdZrhJUOT9NUHDRrEhlFOTg5HaGj858sbb7zBBnlzM61ktNN7TcZne5ww1zoCqvWgwl46D4KKs6konJ4jh8B1+3PRnKyt01Cla0MG4Q8//OB229YUxLYE1XCQwU1OohOKRlChK73fdG50DBoH1dm05r0iZ3fu3Ll8fZ5//nm+D+iaUW0HGf7OfdB5keNI0RYyvum9o/uGpDZpnfO4HXFvOyNFjZ1TJ3StnfUi7qDrRbUR7mpqmns/qX6AIg/u7j9ybMgxa/x+0viacwYFQRBagzgEgtAKyHB3NWqp4JHSYyiFxnWGm6AIAhkxAwcObHZ/1EyIZv3IuHFNLSKHwBUqJiRjh/ZJRtf5QPtas2YNz1i7pmo0B81ONp55pAJRwlW5iKCZbyqSpll1So9oziEgA8tpQNGsL10jMsA/+eQTNppo/6T5TtfViafUU2gGmgx9KlpNSkpqdjtSBKIZZ3qP3n33XTZSWyqidmXMmDH1Rj+9rxRxcF4/Mgzp3qFZcXIIyIB1RlzOF3pv6b2iGWpP7bNxoThBSj9OA5SiPXQ9KaLjhK5bY5qbuSbjniJjFA1yjYA0l95DnzNaqHianGaK8lB0ggqo23Jvt2UmncZF+3M6cG2F7gVSUSIBAEo5JKenJUj9iJwvEg9wigI4oWtOQgWURkgNzpxQpIn2TRMMgiAI7UVqCAShHZBRQrP69ANNP8hO6G8yJEk1p6VZWZpZJMPEtUMpzVw3luGk1AiadScDofGsa3NpDM1BM7p0vL/85S9NnqNxN24cRUa+qzIS5UOTgUyOSePoBxmGlCbkrnlTc1DeOc2EOtOlnDPbrudFf5Oj4QloP3Q8p7pMc5ChSlEgUvK56KKLWpwBbgwZ/SRRSUY/LY1VYegxKRzRzLZr7cT5Qmo+dP3ofWh8X9Dj5hy01kDGLN0z5GyQEd7ce0WQik9jKMpDNL6/3O2DohCNnWIyhBsfx+kcO++dttzbNJ7WNkmjqB1Fr9x1Km8tlBJF4yelJqcamCt79+5lJ9g1XYiiLldccUWDhdSdKArQOApCkwX0WXKnQCQIgtBaJEIgCO2AZsFJ0pEMMUpdoBQXmqEk2UcqCnTmFTcH5QFTmgSlV1AuNKUCUMSBUgxcO8LSYzJgydChQlI6Hs08U1EsFf3SjHxroVxskmak11COO9VAkMFDs7pUlEkGMxkeTmimmbqo0rHI2H/zzTdRUFDQxGAjqNCaDBWaTXcHGXpUO0ALjZvSgmjWOS8vr362k1JHaKaXZugpTYjyr8m5ai5dgwxAkkB1xanzT3KllMvtmuJCYyRHrqWCYUr3onOmWWdyxtoDpQE5Z7kbG/1ktDnfs9amC7UGum5Uj0JpbORY0tjpHqWZbXLqyHGl63ouKOXoxIkTbETTe03OAEVoKKJCM/kU1SLovaGo2bPPPsuFvnFxcXx93c2kO2VW6T4mTX265xYvXsz3H90v9Dfdl2Qsv/766xw5ofvCCRnLlFZH9Tt0npSPT9vRGMhha+u9TeMhuVO6XnR/0PFoFr85qO8IjZ0cYmdNQFug95w+2xSZonucHAMy7Ok8qDcGXVcaCzk3dL9TNMp5nRtDUQA6F/q+cNZL0PtDkYjWRrEEQRDc0m59IkHoBZxLjvHSSy91+Pn5OdLT0x333nsvdxclqcPGuJMdfeONN1h2kroeDxo0iI/lbjvizTffZMlH2jYkJIRlE1evXt0m2VEnr732mmPs2LHcfTUwMJAlDh966CHunOsqO7po0SLHqlWrWELROUaS9XR3fUaNGtVABpUkJl1lR2trax1XX321Iz4+3qFWq1mec/bs2Y5vv/22wf6OHTvmmDdvHnf1JZnF22+/vV660VXClCQfaV1Li1O+03lNSDLVYDA0OJ7rdjT+Cy64gN8T6jDcHtlRgq4ZbU9yn42PV1JSwrKU9PzOnTubvLY52VGStXR33RtLeZJMLHXEJTlMWug9o3GfPHmyxTE79+dc6D2Kjo52zJ8/3/HCCy+47bCbnZ3N8qfBwcEsSUqSqs7uy67nQPzlL39xxMXFsYSu67i/+eYbvr+0Wq0jOTnZ8fe//53vdddt9u3b57j22mtZzpbuQ7p3Lr74YseePXvadW/n5+fzvU3P03HOJUFaUFDA7+V7773XYH1z0rfNsXfvXu5YHRsb61CpVPw5JolakicmSWF672g89L3QHBs2bOBt6D1xldC94YYbWj0OQRAEd/jQ/9y7CoIg9FaoRmDYsGGshNQTISUaWhp3IRaE9kBRI6pvITGA7gRFQ6huhWRez7fGSBCE3o3UEAiCIAjCOeoAKHXO2Ueiu0C9NCgVSpwBQRDOF6khEATB66Cibtf6AUE4H0htiAp3uxuksiQIguAJxCEQBMHroGJXQRAEQRBah9QQCIIgCIIgCEIvRmoIBEEQBEEQBKEXIw6BIAiCIAiCIPRixCEQBEEQBEEQhF6MOASCILSKW265BQEBAc32Lbj44os7fUxC7+Dpp5/GpEmTEBERwV18qdPv/fffj6Kioq4emiAIglcgKkOCIAhCt2bv3r2stX/NNdcgMDAQx48fx+uvv47vv/+em3P5+/t39RAFQRB6NOIQCIIgCN2aL774osm6yZMnc1Oub7/9lh0FQRAEof1IypAgCK1Co9HAbDajNUrFZ86cgY+PD95+++0G6++++25eT+lHrpSXl+OBBx7g1CM6Tnx8PG666SYUFxc32I5eR69vvDzxxBMNtlu3bh2mT5/OM8fBwcG49NJLeVb5XGzYsIH3R/86yc3N5XGNGzcO1dXVbR7PoUOHeLs+ffpwukt0dDRuvfVWlJSUNDl+Tk4ObrvtNsTGxvJ1SElJwV133cXXna6lu2O5Lq7X+8SJE2wwh4aG8nFp/N98802D4zn3uWnTJtx5550ICwtDUFAQX/uysrIm4/vPf/6DoUOH8thojPR+0nvnyqxZsxqMKTw8HIsWLcKRI0cabEfvLY2xpqYG7YHeE6Lx8QVBEIS2IxECQRBaRVJSEiwWC9LS0trVBTg1NZXTPBpDRjYZ72Swk6E8ZswYNhbJeM3OzmaD0hV6/K9//av+8Y033tjg+TVr1uDCCy9kA5wM89raWrz44ouYOnUq9u3bV29ItoaKigrel0qlwooVK9zWUJxrPKtXr0Z6ejqWLVvGzsDRo0fx2muv8b87duxgo9npeFCHZTJw77jjDgwaNIgdhM8//5yN5hkzZuC9996r3+9TTz3F//7xj3+sXzdlyhT+l/ZN5xsXF4c//OEP7Bh9+umnWLJkCc+2X3bZZQ3GeM8997DjRNfr5MmTeOWVV3D27Nl6B4mg55588knMmzePnRTndrt378bWrVv5GjmhsdO4yHmk++X555/HRRddhMzMzPptXnrpJd7f+vXr2Yk4F7QvcqKsVitOnz7N56VQKFr1WkEQBOEcUGMyQRCEc3Hw4EGHr6+vY+7cuY7Dhw87ioqK6peEhATHokWL6rfNyMigMILjrbfeql931VVXOYYNG8bb3nzzzfXrH3vsMd72yy+/bHJMu93e4PH111/vSElJabCOXvv444/XPx41apQjMjLSUVJS0mTsN910U4vnuH79et4f/Ws0Gh2zZs3ifaWmprrdvjXjqampafK6jz76iLfbtGlT/ToaG41x9+7d57wOxMyZM3lxB71Hw4cP53Nw3ceUKVMc/fv3r19H7w+NY+zYsQ6z2Vy//tlnn+X1X3/9NT8uLCx0qNVqx4IFCxw2m61+u5deeom3e/PNN1sc1yOPPMLb0X6c0DVyXuvWkJeXx9s7l/j4eMcnn3zSqtcKgiAILSMpQ4IgtIoRI0bg3//+N7Zs2YLhw4ez4otzycrKOmdR6GeffYZnnnkGvr4Nv3ZoxnrkyJFNZq0J5+y0E0qdoXSV5sjLy+MiU0rRoVQZ17HPnz+fZ/lbg91u57QZmsGn1/Tt29ftducaD6HT6er/NhqNHP0gxRyCIhbO43311VdYvHgxp/ac6zq0RGlpKadMXXXVVaiqquLj0UKz6wsXLuTZdYo8uEIRCdcZfooAKJXK+utFURc6V1L2cX3/br/9dk4xouJeVyiSRMckFaDt27dj+fLl/B64Rnso4kD+U2tn+On9pGgL1Qz8+c9/5n01TuESBEEQ2oekDAmC0Gruvfde3HzzzTh27FgDY+yGG25o8XWU3kFpQSRNSukprlBKyeWXX96q41M6TXPSpwSluRADBw5s8tzgwYOxatUqGAyGc6rSULqLM52npRz3c43HaaBTaszHH3+MwsLCJilJBBnOlZWVGDZsGM4XSs0iQ/vRRx/lxR00DkonckIynq7QOcXExHAtSEvXVa1Wc2qW83kn27ZtY0fRdf/k8LTFsWkMHYvSlQi6j+bOnctpUZGRkSJ5KwiCcJ6IQyAIQpugGWHnDLcTKlptjh9//JFnmGmm+HzJz8/nWoaOZufOnVxwS3nuNHtOUQd3kYDWjIdm6slA/t3vfsfSmWRsU0Tgggsu4H89jXOfv/3tbzki4I721IC0BYoG/POf/6x3dv7v//6PIwEUEaE6Ck9A9RLktHzwwQfiEAiCIJwn4hAIgtBh0Ew1RQcoHaixE+GE0nEaK9C4g9JQaPabDOnmcBrnVPDaGFK0oTST1mjW04w+RULIgKcUnr/+9a/4y1/+0ubxkFLP2rVreX+PPfZY/XpK23GFZtPJ0WrNdTgXNGNPUAqQc0b9XNB4Zs+eXf+Yoj+UfkWFwI2vq3P/BKURZWRkNDlOSEhIg3XkDJAq0VtvvYWHH34YnoJSsJxRFkEQBKH9SA2BIAgdBqXJkOwm1Q40B6ULHTx4kPPMG+Mqcfr111+zYtCcOXOa3RfNGJMR/8477zSQoyRDmyIVTgP3XFB6E0G1DTTT/ve//72Jsd6a8ZAKTuPzIKgWwxXKyycFIMqP37NnT5P9tEbq1Qml0JAB/uqrr7JR3xh33X1J9YgcHCekHkRqPqSwRJBxTyk7NNPvOpY33niDDXKSFW0Juk6EyWRqs+wopXi524ZqT8jhcldzIQiCILQNiRAIgtBhkBFOhafucvqdUCoNSWteeeWVLDs6duxYzrsn2dH//ve/nH/++OOPswY+pYksWLCgxWM+99xzbMhS4yrS9HfKjur1+ib9CloDHZuMTzoPktekWenWjodm/Uku9Nlnn2WDm/L26ZrQrHpjnn76aX5u5syZnKZENQ9k0FMxNhVykyxoa3n55Zcxbdo0Lv6mcdOsfkFBAadtkZQrOWCu0Ew/5eRTehNFAejc6PWXXHJJfQSDZvYp0kEREVrv3G78+PFNakjoWO+//3694U/OCRUpu6b2tFZ2lKIX5JBcffXVLGdKzhM5TbR/kpC97777Wn1dBEEQhGY4hwqRIAjCOUlKSnIrO6rT6Rw5OTlNtnWVHSVIIvSee+5xxMXFsbwlSUrSNsXFxY7s7GyWKr3//vsdFRUVTY7dWOaTWLNmjWPq1Kl8/KCgIMfixYsdx44dO+d5uMqOurJhwwaHj4+P44UXXmjzeGj7yy67zBEcHOzQ6/WOK6+80pGbm+t23GfPnmX50YiICIdGo3H06dPHcffddztMJlObZEeJtLQ03ld0dLRDpVLxtb344osdn3/+eRPZ0Y0bNzruuOMOR0hIiCMgIIDlVF1lW11lRgcNGsT7i4qKctx1112OsrKyJuNylQel86b3YsWKFQ22a63sKMna0tjouP7+/nx/kHQqXX96ThAEQTh/fOh/zTkLgiAIgvdChdPUMI2ai0nqjSAIQu9FaggEQRAEQRAEoRcjDoEgCIIgCIIg9GLEIRAEQRAEQRCEXow4BIIgCL2UW265hWVEpX5AEASh4yEJblJmCwwMZIlokpt21zenMaQ2Rypr1ASU1ONWrFjR4Hn6HqdeNyS9rdPpWJmtcb+bcyEOgSAIgiAIgiB0MBs3bsTdd9+NHTt2YPXq1SxHTdLV1G+lOajT/bXXXssy2vv372cnghbX3jgkbU19Ykiqe+fOndyAkzrVk0x2a+nWKkN2ux25ubnsSfn4+HT1cARBEARBEIRGkClZVVXFHcmpV0h3gwxj6rfSUefu08hG1Wg0vJwLahRJkQJyFKhnjTuoBws5DN999139ukmTJnETTnIA6Ph03X/zm99wI02CGkZGRUWxktw111zT8xuTkTOQkJDQ1cMQBEEQBEEQzkFWVhbi4+PR3ZyBlORQ5BfUdUz3NAEBAaiurm6wjppXtqYRJhnuRGhoaLPbUEPJBx98sME6mv3/6quv+G9qdJmfn89pQk6oEefEiRP5tV7hEFBkwHmDUcdPQRAEQRAEoXtRWVnJE7hOu607QZEBcgbOHr4OQYFqj+67ssqMpOEfNrFTWxMdoCyY+++/H1OnTsWwYcOa3Y6MfZrtd4Ue03rn8851zW3T4x0CZwiGLrI4BIIgCIIgCN2X7pzeHRioRGCQZ81eB+zttlOploDqALZs2YLuQPdL9BIEQRAEQRAEL+Wee+7hmoD169efM8UqOjoaBQUFDdbRY1rvfN65rrltWoM4BIIgCIIgCIJXY3c4OmRpC1QATM7A8uXLsW7dOqSkpJzzNZMnT8batWsbrCOFIlpP0D7I8HfdhlK4SG3IuU2PTxkSBEEQBEEQBG/g7rvvxocffoivv/6a6y2cOf5UBEz9A4ibbroJcXFx3LOAuO+++zBz5kz885//xKJFi/Dxxx9jz549eO211+rTtKgW4a9//Sv69+/PDsKjjz7KykMkT9paxCEQBEEQBEEQvBo7Z/x7Vmnf3sb9vfLKK/zvrFmzGqx/6623uFEkkZmZ2UC6dcqUKexE/OlPf8IjjzzCRj8pDLkWIj/00EMsTXrHHXegvLwc06ZNw8qVK7mRmVf0IaCQB3lNJMskRcWCIAiCIAjdj+5srznHVpBxPYKCPKwyVGlGVMoH3fK824rUEAiCIAiCIAhCL0ZShgRBEARBEATvTxnycFKM3cMpSF2JRAgEQRAEQRAEoRcjEQJBEARBEATBq6EWYvYO2Ke3IBECQRAEQRAEQejFSIRAEARBEARB8Gq6g+xod0YiBIIgCIIgCILQi5EIgSAIgiAIguDVOH76z9P79BbEIRAEweMUGqqxMycb1WYzQnU6TI5PQJCm9R0TBUEQBEHoPMQhEATBY9jsdnxw+CC+OnEclWYjfODD68P9/HDjiNG4qP+Arh6iIAiC0AuRGoKWEYdAEASP8dmxI+wQ6JRKJAYFw9fHB1a7HUUGA17ZsxMBajVmJCV39TAFQRCEXoajA2RCHfAepKhYEASPUGky4euTx6FWKBDu58/OAKH09UVMYCBMNis+P3bE450iBUEQBEE4P8QhEATBIxwqyEdJTQ3CdH5unw/T+iGjvAxnyss6fWyCIAhC78beQYu3IA6BIAgewWS18uy/4qfIQGMoUkA1BrSdIAiCIAjdB6khEATBI1BakEapRI3FAn+1usnz1RYz/FQqRAUEdMn4BEEQhN6L3VG3eHqf3oJECARB8AiDwyMwMCwcRTWGJnUCVFhcYTJiamISQptJKRIEQRAEoWsQh0AQBI/g4+ODX46bgOjAQJytKENxTQ2qTCbuSZBZWYFBYRG4Yfiorh6mIAiC0AtxdNDiLUjKkCAIHmNAWDiemj2f1YY2Z55hZSFqSLZk0BBcMnAw9yMQBEEQBKF7IQ6BIAgeJSk4GL+eOBm/GDOO6wkC1WquLRAEQRCErqIjVIHs8B7kV1oQhA6BCohpEQRBEISuRoqKW0ZqCARBEARBEAShFyMRAkEQBEEQBMGrscOHF0/v01uQCIEgCIIgCIIg9GIkQiAIgiAIgiB4NRIhaBmJEAiCIAiCIAhCL0YiBIIgCIIgCIJX43D48OLpfXoLEiEQBEEQBEEQhF6MRAgEQRAEQRAEr8b20+LpfXoL4hAIgiAIgiAIXo0DvrB7ODHG4UWJNt5zJoIgCIIgCIIgtBmJEAiCIAiCIAhejeOnxdP79BYkQiAIgiAIgiAIvRiJEAiCIAiCIAhejTQmaxmJEAiCIAiCIAhCL0YiBIIgCIIgCIJXY3f48OLpfXoLEiEQBEEQBEEQhF6MRAgEQRAEQRAEr8beAX0I7F40ry4OgSAIgiAIguDVSFFxy3iPayMIgiAIgiAIQvdyCF555RWMGDECQUFBvEyePBk//PBDRx5SEARBEARBENwWFXt68RY61CGIj4/H3/72N+zduxd79uzBnDlzcOmll+Lo0aMdeVhBEARBEARBELpDDcHixYsbPH7qqac4arBjxw4MHTq0Iw8tCIIgCIIgCIwDPrx4ep/eQqcVFdtsNnz22WcwGAycOuQOk8nEi5PKysrOGp4gCIIgCIIg9Eo63CE4fPgwOwBGoxEBAQFYvnw5hgwZ4nbbZ555Bk8++WRHD0kQBEEQBEHoRYjKUBerDA0cOBAHDhzAzp07cdddd+Hmm2/GsWPH3G778MMPo6Kion7Jysrq6OEJgiAIgiAIQq+mwyMEarUa/fr147/Hjh2L3bt344UXXsCrr77aZFuNRsOLIAiCIAiCIHgKiRC0TKf3IbDb7Q3qBARBEARBEAShI3H81KnYk4ujjWb0pk2bWHAnNjYWPj4++Oqrr1rc/pZbbuHtGi+uwjxPPPFEk+cHDRrUvSIElAJ04YUXIjExEVVVVfjwww+xYcMGrFq1qiMPKwiCIAiCIAjdCoPBgJEjR+LWW2/F0qVLz7k9ZdSQfL8Tq9XKr7/yyisbbEcOwpo1a+ofK5XK7uUQFBYW4qabbkJeXh70ej03KSNnYP78+R15WEEQBEEQBEGox+6oa07m6X22BZokp6W1kO1MixOKKJSVlWHZsmUNtiMHIDo6GudDhzoEb7zxRkfuXhAEQRAEQRC6lMpGMvkdVRNLdvW8efOQlJTUYP3p06c5DUmr1bKyJ6l2UnZOt64hEHoeJqsVhYZqVJqMXT0UQRAEQRCEdhcVe3ohEhIS6mfzaSGD3NPk5ubihx9+wC9+8YsG6ydOnIi3334bK1eu5Oa/GRkZmD59Oqfqd8vGZELPo9Jkwtcnj2N1eioqjEYofH0xJjoWlw0ajKGRUZ0+nozyMmzNPItyoxFBGg2mJCSib0goF9AIgiAIQmdjs9pwam86ygsr4Bekw8Dx/aD1E7XE3kZWVhaCgoLqH3dEdOCdd95BcHAwlixZ0mC9awoSpeaTg0ARhE8//RS33XZbq/cvDoHQrDPwl43rsD8/D1qlCgFqFSw2O9afScf+/Fw8NGU6JsYndMpYbHY73jqwD9+eOoFqs7l+/efHjmBB3/64c+x4qBSKThmLIAiCIBBHtp7AF//6Fjmn82E1W+Gr8EVYXCgW3T4P0y+fJJNV3QyHw4cXT++TIGfA1SHwNA6HA2+++SZuvPFGlvNvCXIaBgwYgNTU1DYdQxwCwS3fnDzOzkBMQCA0LtXqwVotsqoq8J89OzEyOpqdhY6GohSfHjuCAJUKyfpg/pKlD0eFycjP0ZhuGDGqw8chCIIgCMTJ3al47aH3YCg3ICw2FBqdGhazFWX55fjgqS94mxlXTO7qYQpewsaNG9nAb82Mf3V1NdLS0th5aAtSQyC4rRn4MT0VWqWygTNAkDEe7R+IvOoq7MzO7pSxkNGv8vVFqM6vfsaF/g3W6qBTKvH96ZOokt4WgiAIQidAE1Lfv74GVSVViOkTxc4AoVIrEZkYToL3/LyxRn6XuhM2+HbI0hbIWD9w4AAvBOX709+ZmZn1cv2kzumumJhSgYYNG9bkud/+9rfsMJw5cwbbtm3DZZddBoVCgWuvvbZNYxOHQGgCzbxTzUBAM2EpNaXnOIB8Q3WHj+VUaQkKDQaEanVunw/R6lBSW4vjxUUdPhZBEARBKDhbhLT9GQiO1LtNCwqJDkZxdilO7DzdJeMT3GPvoKUt7NmzB6NHj+aFePDBB/nvxx57jB+TTL/TOXBSUVGBL774otnoQHZ2Nhv/AwcOxFVXXYWwsDDs2LEDERERbRqbpAwJTaA0IKWvL9cMuMPucPBCEYTOqB+gY/k2k4tJhc4Ohx0Wu63DxyIIgiAINZW1sFhsCAhxP2lGkQKH3c7bCYIrs2bN4ghTc5BaUGNItaimpqbZ13z88cfwBBIhEJpACj5jY2JRbjK6vXFJ5SdQo8G4mLgOH0t8kJ4jFVVmU7PFz/5qNZL0wR0+FkEQBEHQRwRBo1XBaHAvxW2qNUOhUiA4suOKTIW244BvhyzegvecieBRlgwagpCfCojNtrrZd5qpL62tRZXZiHkpfRHXgRX1TsL9/DAtMQkVJlP9OJxYbDaUGWsxPjaeHQdBEARB6GjCYkIwbPpgVJRUwd4okk6TaCW5pYjtG80SpILQU5CUIcEtQyIi8dDUGawmlPtTBz5yCCgycOnAwfjFmHGdNpZbRo7B2fJyHCkqgMpXwalKVGxMDsKg8HDc3oljEQRBEISL75yPjEOZyEnLhz48iHsPWEwW7kcQEOKPKx5cDIVS5LC7E3aHDy+e3qe3IA6B0CwT4uIxIioKu3JykF9dxYb42Ng4xAV2bhg0RKfDn2fPw5r0VG6SVlJTg4ggPeb16YsFffux2lBbMVotqLVYOR1JehgIgiAIbSGuXwzuffk2fPfqahzZfBxlBeVQqpUYOnUQLrp9HgZP7N/VQxSENiEOgXDOAuMZScndoq5h6eChvFBItr0NX9LLSlnGdF1GOkpra2Cx2xHlH4CFfftj0YCBSAkO8fjYBUEQBO90Cu587iYU55aioqgSfoE6RKdESkOyboodPrx4ep/egjgEQo+jvV+2RwoL8NTmDThTXs59C2yOutzPSqMJZ8rLsCYjDfdPnIJZySkeHrEgCILgrYTHhvIiCD0ZcQiEXoHVbsfLu3cgt6oStRYLyKfwV6rZuaDaCFqXX1WFl3btQJ+QECSKapEgCIIgeA2ODqghcHhRDYGoDAm9ggP5ecgoL4fSV8E9CzQKZX2kgXocqBS+MNmsnEZE6USCIAiCIHgPdvh2yOItSIRA6BXkVVdxkzMqJiYHoHHaETU4oygCPUepRYIgCELvwFRrwt7Vh7D7h/0oK6hAaEwwJlw4BmPmDYda6775mCB4G+IQCL0CtUIBarHWXINAWu90EZrriiwIgiB4F4YKA/7723dxbNspbl1FDkDWyRwc3HAMI2YMxu3P3sjFwkLPh37nW2gS3C48vb+uxHtiHYLQAqOjY6DXaKD09eWagYYdmB2cRuSvUrPTMDomtgtHKgiCIHQWX77wPQ5vOo6w2BBuJhYeF8r/UpTgwPoj+PrlH7p6iILQKYhDIPQKIn+SFqXUIIWPL4xWKzsFtNDf9EGg5yL9/TFbVIYEQRC8HuodsHvVQQSGBkCja5gaRI3G/PX+2PX9flSWVHXZGAXPITUELeM9ZyII5+CWUWNw5ZBhiArwhx0OVJlNvNgcDgSoNUgI0uM3k6chOiCwq4cqCIIgdDBZJ3NhKDcgMMTf7fO0vqqsGtmncjt9bILQ2UgNgdCr6gh+NX4iLhk4CGsz0nAoPx9lJiOi/QMxOiaG+w9E+Ln/YRAEQRC8izpxCZ/ma8t+2sbHV+ZOvQFpTNYy4hAIvY74ID1uHjkGGAmvgJqs7crJRkltDUc6JsTFI9zPr6uHJQiC0K1JGhqPoLAAVJVWISSqae8ZShUKCg9E4uC4LhmfIHQm4hAIQg9mVdppvHNwP4oMhvp1eo0WSwcPwTXDRohikiAIQjMEhQZi8iXjsfKNtdD4aRqoCRkqa2CsNmL+TTPhHyQTLN6ARAhaRhwCQeihbM48g5d37eD+CXGBQaygRL0WSmtr2UmgFKkrhgzr6mEKgiB0Wy69eyHK8su4D0FpfjmUKgWsFhtUGhWmLJmARbfP6+ohCh7sKuzpzsIOL+pULA6BIACoNpuxLessUktLeVZ9UHgEJsXHQ6tUoTtC0qmfHzvCCkmJ+p9D3aSUFOHvj/zqKiw/cQwX9BuAALU01hEEQXCHRqfBL/52A6YuOYW9aw6hvKACIdHBGLdgJAZO6AeFQtHVQxSETkEcAqHXc7SwAM9t34Kcyko2tAmFjw9SQkLx+6nT0SckFN2NM+VlSC8rQ5jOfSg73M8fuVWVOFyQj8kJiZ0+PkEQPAfJI1stVihVyiZd1oXzR6FUYNi0wbwI3oukDLWMOARCr6aguhrPbN3E/8YGBEL102yQ2WZDamkJntmyEf9ccBGCNBp0JygyQKlCzvE2hhwaklattVo7fWyCIHiGWoMRW77cia1f7WLNfJrNnnTxWMy4YhLC48K6eniCIHgRoqUl9NoZt4zyMrx5YC/OlpchPjCogXFN+ffUl+BMeTm2ZJ5Fd2y0plOpONXJHTUWCzQKJaIDAjp9bIIgnD9U1Pryr9/ER898idzUfDjsQFVpNb75zyr88xf/RdbJnK4eoiD0KOwOWnw8vMBrkAiB0Os4WVKMdw7sw5HCApypKIfFZoPZRoW5gQh1ScGhIl1ib14OLuo/AN0JkhWdEp+IFaknOXrhHCtBaU9FNQYMj4rG4PCILh2nIAjtY+Wb63B06wlEJoRD7dJF126zIzc9Hx889SV+/849kkIkCIJHEIdA6FVQGtCTG9dxilC4zg9ahRJ2uwMGsxlpZaXcoCbMRcOfCowpfag7csOIkThVWsznFKjScMTAZLOiwmhEbGAQ7hw7XowFQeiB1FbXYvs3e6AL0DVwBghfhS/CYkJx5nAmTu9Lx4CxfbtsnILQk7DDlxdP79Nb8J4zEYRW8NGRQ8ivqkKSPhiBGg0CfqoN0CoVsDkcyKqqYOnO+kI+ux39Q7tnrm50QCD+Onserhk6An5qFWqtFo4UXDxgEP4yZx4rJQmC0PMozilFdbkB/sHuRQO0/hqYjWbkZxR2+tgEQfBOJEIg9BooKrAvL5fTgpwNuyL8/FBSY4DFbuece5PVikqzCcEaLfIN1dBrtZiVnILuCtUS3DF2PG4YMQqVJiN3KhaZUUHo2SjVSvj6+sJurZucaAxNVji3EwShdTjgw4un9+ktyLdJL4QKTrdnZ+JoYSHPhvcJDcWMxGSE6H7u0uiNlJuMnFITpv151i1QreGmXtlVlfwcXY+S2hpUkHGtUuOOMeMb6Px3V/xUKl4EQej5RCVFIG5ADDIOnYVfUNPv5cqSagSE+GPg+H5dMj5BELwPcQh6GaSs87ctm5BRVsrFpzTPRJPlnx49jPsnTcH42Hh4G0arBfvz8pBZSQXEdtRYLdAof771Kd/eT63mVKJSYy0b1rOT+3BTr+GRUV06dkEQeh8UHZh3wwy89cePUJJbyo2yaB1FBqrLa2AoN2D+TTMRFhPS1UMVhB6D4ydlIE/v01sQh6AXQYWzf9uyEWmlpWwEk7QmQbPiOdWV+Me2LXh23gVICu7+M+KtgX48V6en4oPDh5BXXcWPS2pquGHXgLDwBk29KEWo2mRG39BQvLroUmhltl0QhC5kwoWjUVlShW9f+RF5aQU8eUOqB9oALaZfPgmXP3BxVw9REHoUTqlQT+/TWxCHoBexLSsTGWVlnCLjqrmv8PVFQqCeJTjXpKfitjHj4A2szUjD/+3awQ5PtH8AO0CBajXLjp4oLkKf4FBEBQSwihDJdGoUCtw0YrQ4A4IgdDmkEDb/xpkYPXc49q0+hNL8cvgF6jBi5hAkDYkXBTFBEDyKOAS9iEMF+Zwm5K67Lf246JRK7MjJ7hYOAdU5nC4tYWOecvhJd78tUHEwKQpZbTbEB+nr11NB8dCISJwoKUZudSXMdiuUvgokBwfj2mEju3UBsSAIvY/w2FAsuHlWVw9DEHo8dvjw4ul9egviEPQiSEKzpVklUt6x2m1dPsYvjh/Fd6dO8qw9pfnQrP60xGTcMmo0grWtK3w+UlSAnKoqRPj5N3kuSKPFkLAIFBtr8cux49E/LJwbeLlzlARBEITO6b2Quv8My6lGJUcirl+0REEEoRMRh6AXQfnxlFNPUQKn7GbjWflp4ZHoKsj4f23vbnx14hin90To/DidieQ0vz11AlmV5Xhy1rxWyWoazBaODjjrJBpDRcVKHx/0Cw3DiKjoDjgbQRAE4VzYbDb8+PYGrPtoC8ryy7kTs9Zfi4ET+uGq312CmBQRdhA8g8iOtow4BL2ImUkp+OzYEU6ViQsIajD7UlxTw51uF/TtOhk7ShFamXqKG4aFuEQCKM3HX6XGoYICrMtIwyUDB59zX5RiREY/NevyUzV1IJxKQ65diQVBEITO5euXV2LFa2ug0qgQER8GhVIBQ2UNDqw7jKKsYtz/6p2cNiW0jvwzhdjx3V4c234KDrsdA8b3w+SLxyJ+QGxXD03o5ohD0IuI8PfHPRMm4YUd27iAmOQ1feGDGqsZGqUK1w0bgZFdOFtORc/VFgtS3KT5kPGu8PHBmvTWOQTUpbdfaCj3WkjSqxo4PxQhKa2txbTEpAb1BeeCnKaNZzOwLy8HVruD04zmpPTpEX0KBEEQuhuFWcVY/+EW6AK0CI78+bs4INif12WfysPGT7fh8vtFUak1HFh/BO88/gnKCyug1tZNhKXuz8Dmz7fj2oeXYvLirq8P7EqkhqBlxCHoZUxPTEZMQCB+TDuNnTk5XLQ7OSEB8/v2w5jo2C7N2SQj3fenAmd3aJUqritoTeoR7eHW0ePw1KYN7PyE6nTQKihiYEWpsYZlV28aMarVYztcWIC/b93EvQoojckHPtiTm8OpTL8aNxFz+/Rt07kKgiD0dg6sOwJDRQ1i+zadiKJIAakq7fxuL5bccyE/FpqnOKcE7z75KarKqhHXLwY+vj71v4dFWSX46OkvkTAwViIFQrOIQ9ALobx5Wn41vvOPXVZbi41nz+BEcSEb1UMiIzE9MYmLhYO1WtbaZoPejVNgtFoRHxTkdr/0mt25OViVdpqjAr6+PhgXE4ebRo7CzuxsHC7Mh8FihkahxNyUvrh22Aj0CWldGLrcWIvntm5GQXU1EoL07BA4j0n9DV7evQMJej33NhAEQRBaR3W5gQ1Xp/HaGLVOBaPBBGONCf5Bkt7ZErt+OMA1GLFUjO1yPem3NCIhDDmn87D9u7248sHe6xBIH4KWEYdA6DQO5OfhH9u38Cw7eA7fgdUZqfjs6BH8bup0TE5IxPITx1BpMkGv1TZ4LfUKsDpsbMw3hgxzkhj98PBBmGw2rjegdd+fPonNmRrcPW4i7ho/gfdLkYJI/4A2jXtz5lnkVVciPvBnZ8D5RUvRFmf/BnEIBEEQWo8+PAgOuwN2u507MTfGVGPmbbR+mi4ZX0+CUoMoiuLuOtJvlVqnxsldp9Gboa7Cnu4s7PAih6DpnSMIHUB+dRWe3boZhT/NspPuf3JwCDdEo1n2Z7duQrjOjw3+cpMRhYZqWGw2TmkqM9Yip6oSQ8Ij3abmUH8FcghUvgok/dSzgOolkvXB3I/g1X276+sK2uoMEMeKCvlfV2egYf8GFfbl5bXrugiCIPRWRs0ZhoAQf5QXVDR5zmqxwWgwYsql4yVdqBWcM9vX0Xw6riAQ4hAIncL6Mxls5FMRr6thTX/HBwaxU7Ap8wx+NX4ibhwxCv5qNfIM1ciuquQi4AV9+uGxmXMQpGk6U7Q6PY3VhBorBtGXX3RAINcmUJpSu3HQLEDzT9fFOgRBEIS2EBYTggtvmwuzyYKCs0Uw1ZhgtVhRUVyFvPQCJA9LxMyrJnf1MHsEA8f3g81mZ9nWxlDE3Gy0YPDkAejNOCMEnl68hQ5NGXrmmWfw5Zdf4sSJE9DpdJgyZQr+/ve/Y+DAgR15WKEbQgW41BHYXf8DcgoU8MX+vFxcPngobho5GksGDcGJ4iKOECQFB3MRcHOcLCmCTqFy+xwdj9SJUktK2j32QRERnNpEY2kcJaAvWpIwHRUd0+79C4Ig9FYuuHUO/PV+WP3uRhRmFtf1IQjQYvrlE7Hk3os4ZUg4N+MvHI01721k2dHo5Ej4Kup+q+x2BztbwZFBvV5lSOhCh2Djxo24++67MX78eFitVjzyyCNYsGABjh07Bn//ptKSgvdCxnQzdWMM+QnUpdgJRQImxMW3at+UKmRzNJ0VcUIRhuYalLWGGYnJ+PzYEU5bogiH06khZyDfUM1jnS8qQ4IgCG2GIrkzrpiMyZeMw9lj2bCYrIhMDOfogdB6QiL1WPbUdXjrjx8iN70ACnIIfHxgs1gRHBWMm5+4qtc3ebPBhxdP79Nb6FCHYOXKlQ0ev/3224iMjMTevXsxY8aMJtubTCZenFRWVnbk8IROZGhEJEt3OhWEyPi32G1Q+vhC6esLi92OIRHt65I8KT4BJ0uK3XZgpjoEOt7omPbP4IfodPjN5Gl4bttmZFaU83jpOFTArNdocOe4CVyfIAiCILQPlVqFfqNSunoYPZrBE/vj4Q/vx+4f9uPk7lSOtvQf0wcTLhqN8Liwrh6e0M3pVJWhioq6wqHQ0NBmU4yefPLJzhyS0ElQMfAPqae4JoCiBZTXT7P6JD2q8PVBlH8gZif3ade+5/Xpi5Vpp5FdWcGpRWSwO5WJcqsq0Tc0DFMSks5r/JQS9PyCi7DhTDr25OXCardhaEQUNyZrrXypIAiCIHR0pGDBzbN4ERrCsuYdsE9vwcdBU7adAMmKXXLJJSgvL8eWLVvcbuMuQpCQkMCORFAz+vNCz+GTo4fxzJaNqLFYODJAs+zWn1J9EoP0eHb+Be3OxT9YkI9/bt+CvKoqjhQQ5Gj0CQ7FH6bNYEUjQRAEQRA8D9lrer2+W9przrE9t++v0AU2lDQ/X2qrjPjdmD91y/PuthECqiU4cuRIs84AodFoeBG8k0KDAYFqNUK1OlSZzZx5F6TVsNwoRQxe2bMLL1+0uH6Gvy2MjIrGSxcuxtass0gvK2Vng2RKKZ1Io5R2G4IgeAe11bWca0/pIHH9Y6ToVhBaiQO+cDh8Pb5Pb6FTLKV77rkH3333HTZt2oT4+NYVigreRaXJiM1nMxCm8+c+AY0hBaKzFeXcvGxcbFy7jkHFvRf2692yaoIgeCcWswUr31yPTZ9tR3lRBTf08g/2x4QLR2PJPRfAXy9CHYLQEpQ7YO+AfXoLHeoQUDbSvffei+XLl2PDhg1ISZGCod5KkcHAqUJ6jftwnVap5NoCiiIIgiAIDX9LP3z6S2z6dDvUfmpW4PHx9UF1mQGr39vImv33vHibdPQVBKHd+HZ0mtD777+PDz/8EIGBgcjPz+eltra2Iw8rdEN0KhVr+JOakDvIGajbTtJ7BEEQXDm9Lx3bv9mDoLBAhMeGQqVRQalSIjhSj8iEcBzfcQq7Vx7o6mEKQrfG7vDpkKUtUKbM4sWLERsbywqIX331VYvb02Q6bdd4IVvalZdffhnJycnQarWYOHEidu3ahW7lELzyyitcaDFr1izExMTUL5988klHHrbXQDPuJINJHYA7qTa83cQEBLKsaGltjduxltTWIFSnw5jo2C4ZnyAIQndl/9rD3MXXP7hpuqVGp2YDYed3e9q1b5vVhpzUPGSdzIGp9mdRD0EQPI/BYMDIkSPZgG8LJ0+eRF5eXv1CEv5OyKZ+8MEH8fjjj2Pfvn28/4ULF6KwsLB7pQwJnqfCaMQXx49iTUYaqkwmVtMhCcylg4dgbEz78u87GvrBumLIUO4+TA2+Iv0DuFkYS5Aaa1nT/5phI6DXelYBQBAEoadTVlABhVLB36PuIKegNL+8zcp/m7/YiQ0fb0H+mSL+vdZHBGH60klYcPNMqLVqD41eELpRUbGH58EdbdzfhRdeyEtbIQcgODjY7XPPP/88br/9dixbtowf//e//8X333+PN998E3/4wx9afQzJz+iBxblPbFyHQwX58FepWLWH0nB2ZmfhaGEB7p80FbOSu2etBjkrD06eiv/t24O86mryGLkgJ1irxZVDhuHqocO7eoiCIHQx2afzsGfVARScLWKJwBHTh2DYtEGcItNbIUOdZvKbw2Q0Qx+pb/X+yPj/6qUf8MPra7mbrT48kJ2NyuIqfPnv75B5PBu3P3sDNwsTBOHcNG6k62nVzFGjRrEs/7Bhw/DEE09g6tSpvN5sNnOz34cffrh+W19fX8ybNw/bt29v0zF67zdsD+WbkydwuCAfcYFBPMPuJEitQU5VFV7ft5tVegLU3XN2Z3piMsbHxmF3Tg6KagzwV6v5caiuaSi8NVDfge3ZmSg3Gjm6MDk+gZuTCYLQsyAj9Yc31mHF66thqKiBr8KXZ7E3fbYDgyb0wx3P3sg59L2RMXOHY8MnW/m6+OsbfleajRY4bA5MWjS21fvLPJGDNe9tgi5Ay86GE62/BrXVRuxbcwh7fzyESRc33WdRdgkKM4uh1qqQPCxBnAahx2B31C2e3idBPbNcofQdMtzPF0qzpxn/cePGsUPwv//9j9Pwd+7ciTFjxqC4uBg2mw1RUVENXkePT5w40aZjiUPQg6DOuz+mp7Iij6szQNDsTnRAAKfj7MjOxLw+/dBd0SpVmJ6UfF77oOZjHx0+yKlTlSYTnz/FG94/dABLBw3B9SNGcS8CQRB6BlQU+/VLP0CpVrK+vjM9xlhjwpEtJ/Dek5/hVy8sazZtxpvpP7YPy4tuXb4LplozO0a+vj6oKqtGVWk1Bk8cgAkXjmr1/igCU1tVy9e5MeQklBWUY/u3exo4BMU5Jfjyhe9xaONxGA1G+CoViEoMx/ybZmL65ZM67H0hR5HSoRx2O0Kigjl1ShC6G1lZWQ0ak3kqOjBw4EBenEyZMgVpaWn417/+hffeew+eRByCHgQZvrT4q9zP/jsbehXV1KA3RErePXQAOqUSifpgNv7JSaAGZ+8fPogAtQaXDR7S1cMUBKGVRt+6j7bAarUhMjG8wXMkpRkSpcfRbSd4ZjtpcO/rZUMpADc+diWrCm39ahfP0NM1o2jBjCsn4/IHLoYuQNfq/RXnlHIEpjkjnq45pWw5IQfhxXvewNnj2dCHBSIiIZxTmGib9/78OWoqa3HBrXPgSej8dq3Yh3Ufb0X2yVxOMQ2PD8OMKyZj5lWTe3UKmdA+aDLfwS1RPbtPgpyBzupUPGHChPomv+Hh4VAoFCgoKGiwDT2Ojo5u037lE9WDIOOXjH6z3X0uKRnE9CWqU3p3CNdkteLrk8eg8PFFuN/PzXjIKaCmZ3nVVVh+8hgu7N+foxGCIHRvyODMPpmDoNAAt8+T4VtRVInUfRm90iEgqMj38vsvxoKbZ+HMkay6TsUDYliGtK0EBPtzOlZzmE1WBIb8/N26/uOtXFcQ2yeqfoZeqVIgKikCJbll+OHNtZi4aAzP4HuK715djW9fWQWbzc73BfVdoH4L1I8h80Q2bnr8KokWCG3C4fDhxdP77GwOHDjAqUSEWq3G2LFjsXbtWixZsoTX0WebHlNT4LbgPT2XewGUb0858hQlIOO/MZRHH6DRcE6+N3OipJiLksN07mfEaH1hdTVOFBd3+tgEQWg7ZNzSVxoZfe7gmWyfuu16O4EhARg+fTBGzhraLmeAGDlzCJQqFdcLNMZqscFmsWLCRWPqOyTv+HYPpxK5M8ApelNVUo0D64/CU1AkYuWb69gJIieEHBj/ID92QKgAetvXu3Fw4zGPHU8QOovq6mo26GkhMjIy+O/MzEx+TMXBN910U/32//73v/H1118jNTUVR44cwf33349169Zxny8nJDn6+uuv45133sHx48dx1113sbypU3WotUiEoIdx6cDBXJCbVVmBaP8AaJRKdg7KamtRbTGz9GhcJ4WtugqzzcoesDNFqjEUObA5HFxzIQhC94dmlsPjQnkGmAy/xlDOulKtQvxA6VPiDooMUxoRGfhkoOvDW/4NGDxpAEbOHIy9qw9xPQI5GeRw1VTVoiy/HElDE3jGn6B90qJppgsypx75+qCypMpj50M1DjWVNW5rHChaVF5Uie1f7+Zia0FoLXb48OLpfbaFPXv2YPbs2Q2MeeLmm2/G22+/zT0GnM6BU0XoN7/5DXJycuDn54cRI0ZgzZo1DfZx9dVXo6ioCI899hg3LCNFopUrVzYpND4X4hD0MPqFhuHh6TPxn907cba8jA1fIkijYenOW0bVfYl7M6SwRNGSKrOZJUsbU202syRrbGDvVCQRhJ4GzTxTYepHzyyHobKmgVNAueqU806FtQPG9enScXZHju04hR/+txbpB89wDQYZ7qPnDMOiO+ZzF+Pmrveyp66Dv96fnYLctLqup/TaETOH4Po/XYGg0LrvT4oM0HpyFmimvjE0OeOwO9w+114KzhS12HeBahzyMhrmTAtCT2DWrFkt9ugip8CVhx56iJdzQelBbU0Raow4BD2QkVHReOnCi7E/Pw+5VVXQqZQYHR3Dzb56AyQrSmlRazLSWV7VNVJg5UZnNZiV3AfxQa3X5RYEoWuZdfUUnD2WhR3f7uV6ATL6LGYrLCYrzxTf/OTVXDzXUzCbLSztmbovnQtgJ18yDqNmD/OoGs+B9UfwxiMfwlBuYPlQf01dGtDGz7Yj/eBZ/Po/tyMiPszta8npWvbXa7HojnlI3X+GHS+KwCQPTWgwRpIVnXjxWHz/6moERwQ1SRsqL6xEQIg/Rs4e6rHz8gvSce1Ac9B94RfY+iJqQfCmGoKOQhyCHopKocCEuN5ZXEfcOnoszlZUILW0hIuoqeDaaLWixmpB39Aw3Da69ZrcgiB0PWQ03/LnazBi5lDOWaf0IV2gDuMXjmKDNKQNjbe6mh3f78X//ep1Tm1xkGHr44Mf3liL5GGJePSTBxCZGNFge5oxLMkrg8VoQXCUHjr/c3dsN5ss+Oyf37J8aGy/6HojnroWU0Fw1slcjhzc9MRVLe6HxtJ4PI2ZffUUHFh3BLmpeax05Bfkx3UGdH5Uc3DJXQvbXc/gDroHtny5E6YaU5NUJXJc6NjjFrZeZrUlyosq2HkiByR+QAxiUtqWZiEI3oI4BEKPJDogEE/NmY8Vp09iTXoa108E67S4os9QXNR/ICJc1IcEQegZ0OwzOQC09FRO7DqN5255CYbKWjbsqa8CpdWQsZ+6Px2PLXkW/9r8l3qj/9CmY1j97kakHz4Lu9XOs+2TF4/DwltmcUpPcxzbdpJlP8NiQ5tEHeg6klOwd80hLPn1hfXpP+0lPC4M97x4KzsgJ3aeRkVxJUdrQmNDMO+GGZh7/XR4kuHTB2HghH44uvUkQqODOWJA50jRj5K8UiQMjHPbNK0tmGpNWP5/P2D7t7u5KJqSOOg4VLB99UNLepQDKrQOijl5WpbADu9BHAKhW+HMrWtNWJ0kRm8aORrXDR/J0QFq2NZcobEgCEJnUFcHUYsAvR98fvo+oj4CNNNNxbdZJ3Kw6bPtWHjLbGz7Zjc++MvnqDUYuRBY4a+AobwG377yI9IOnOFGbO6KrInywgpWXaKOwe7Q+mu5cVllcdV5OwQEzZzf++JtXG9Q16lYjb6jkjm1y9NQmhJ1pn7vz5+x40PnSlEWlVqJgeP6cfrY+XStJgftncc/4fQ0inbE9Ini35zqcgOvIynV+1+5vUWHTBC8DXEIhE6BFH/KjbVstAdpmobDjxQWYGXqaezJy2GnYFhkFC7o1x/jYuLO6RyQE0C1BIIgCF1JbXUtjm0/CYWSlHeaTk6Q8W42WtghmHLpeHzxr+845Sa2788pP1TES9sc33EKGz/djot+MdftsSidil5CKTTu5EAtJgunYdF2noLGGNcvhpeOhhyku1+4FWePZbNzREZ84qA4Li4nB+t8OLk7DXt/PMTpWa4OV2BoALQBWqQdyMDOFfsx59ppHjgTobsgNQQtIw6B0KGQ4s/XJ4/jx7TT3CdB4evLBdBLBg3B8Mi6XM1Vaafxyu6dnPZDXZh94INNZ89gZ3Y2bhgxElcPHe7RQjxBEISOwGgwsYHfvMFa9z1Gij2Uk08N2aKTI5t8v5HjoNKqsPWrnZw65M7gHzZ1IIIj9CgrqGDJVldoUoXSesYuGImwmBD0VOi6UJEzLZ6EirHNRjMig5qqMFEUgtKhdq7YJw6BlyEOQctIfoXQoc7AXzatw1v796KkpoYLf30cwIYzGXh8w1psy8pEVkUFXtu7Gxa7HUlBwZz7T6lASfpgnvn/8PBBHCkqRG8hs6Icy48fw0dHDmH9mXTUWCxdPSRBEFqJf7B/nUKO1X1mMXcHdgDRKVFcREwGb3PddnUBOlSWVLttHsbH0vtj4bLZ7IAUZ5fwv4Sp1swF2UHhQbhg2RwPnp33QD0TqH9Cc5BDRkpXgtCbkAiB0GF8e+oE9ubmIiYgkBuoOaHeAdlVlfjvnl2YkZTMkYNkfXCTWTLqOHy2shxr0lProwneislqxX/37sK6jHQYLGaOktDloGt317iJmBTv2RkyQRA8j1qjwtQlE/DdKz9yyo5K45rf7+AGayqNEhf/cj6yTuTCbnfwbL67CKjVXPf65moEiPk3zeTXrnp7PQozi7jbMzkYCYPicNVvL0G/0SkddKY9m9CYENhtzV97Y60JKbGJXTI2wbsbk3VnxCEQOgSLzcZpQuQIuDoDBH0BU5flvOoqbM/O5EiAuy9lWqdVKHGyuBjeDjkD5EDpNVqOlNC50zXMr67Cc9s24y+z52FIRGRXD1MQhHNw/R8v53Qgkv10OgVkeFJdgK+vD+ZcPw1DJg1gTf9vX9GhqrS6SYEsOQrVFTWYd/0MLt5tDvqeIKdg6mUTuOagrlNxMAZN6Nds5EEAxs4bgXUfbHZ77UnqFA4fTFo8rsvGJwhdgaQMCR1CpcmEMmMtAlTqZvsoECarDXZH88Jd1IlZ3YOaEbU3TWh9Rjo7AyHaOnk95zWKD9RzBOWrE8e6epiCILSyGPZvP/4JM66cxAXCVrOVU4ioQdiNj12J+/5zR31x7qTFY1kJiPT8OZ2oPuUnn3X9Z10ztVXHpCZdY+ePxLTLJmLolIEedwbIock6mYPdqw7g4Iaj3E26J5MyPBEzrpiE6vIaFGWV8DWnvg6l+eUoyi5h2dMJF47u6mEKHoYiaB2xeAsSIRA6BIoKKH18YbHX5bW6+4Gxw4F+oaEoMFRzh+HGkqF2mlWz2TA5wbtDt/vyclFtsSDJTWdlMhzIUdibl8tOVpDG8xJ/giB4ltCoEDz83n2oLK1C5vEcbhZGEp2Ni41J754kNrd+tYvz/unzTrntSUMSONIQ37/j1XzORV5GAT599mtW5qEIBI0vJEqP2ddMxQW3zumRkQi6zlf97lLu4bD+k60sM+qwOxAUGoCZV03GxXcuaDEyIwjeiDgEQodAMqDjY+PxY3pqg1lvJ+UmI0cPSEEop6oK6WWliAsMqo8GULpMbnUV59DPTk7x+voBujrNKSmpfH1hsll5AcQhEISeAun/D5s6qMWag2t+vwTzbpyB4ztOw0LKN0kRGDyxf7cwtItzS/HSvW9yh2JKRQqNCeZoR0VRBTcpO70/AzOumMwz7t2hkdfZ49nYs+pAXZfrAC1GzBiCkbOGujXu6fouuHkWZl09hdO7qKcD9SMICJbeA96KowNqCBxSQyAI5+aSQYO5r0BWZQV3FiZjn2b9K4xGVJiMWDxwEAZHROKR6TPx9y2b2CmgFCHCl0LqgUH47ZRp/Fpvhs6PvlIoGuIuPYrkWCP9/TlSIAiC90HpQdOXTkR3Y+On25BzOg+xfaMaOCgkm0qz6j++swH71xyCPlLPKTZL71vE6UudDUWcV7y+Biv+txY1lTU8VjLwt329G/3H9sWdz93IDo07uMHayOROH7MgdDfEIRA6jMHhEXho6nT8Z/dO5FRVstyeAw74q9W4ZOBg3Dl2PG+XEhyCFy5YhB3ZWTheXMROA6USTUlI6hUNxybExSMmMJCLrBMC9Q0iBRQ9oGVB3/5eX0shCEL3gRqe7fx+H/wCtfXOABnZ1CisqrQKCpWCDXG1n4bTbda+v4lz8O96/mZOg+pMKCrwzX9WsYJTXP+Y+u9Qc60ZJ3aextuPfYz7/3un9LPp5UgfgpYRh0DoUCht6L+LorErJ5tTgDQKJcbFxiK+Ub481RzMTE7hpbehU6lw9/hJeHbrJpypKOdIAKUJUWSAnIGxsXFYPKD5tANBEARPQ4W2JJPqmm5TUVyF6rJqXke1BDaLHQ6bnRWTtH4aHNpwFIc3n8CYucM7bZzklKz/eCusFisiExs2GlPr1NyYjeof0g6eQb9Rve/3RfgZyj/wdA2wA96DOARCh0PG/vQkCcmeK0pA0qLfnDyBXbnZMNmtiPL358jAxQMG9YpIiSAI3QeNnxr+ej/uhBwYGsDryosqWFWlrqlXnXmlVNeZEVp/Dcul7v3xYKc6BNRkLPNEDgJD3aeW6gK13BE67YA4BILQEuIQCEI3geopaKEOz0arFXqNpl6eVRAEoTNRKBSYcsl4fPnCCpZOJcOf/qVeCoTFZIVSpWSZVSdKlYKdhs6EnBDyUprLBuI0IR8fTmsSejd2hw8vnt6ntyB9CAShm0HRgHA/P3EGBEHwOBazBRlHMpF6IAOGCkOL2868agr6jExCfkYhKooquZbAZrPBVGvivgmUouPaSdlitrKUZ2cSFBaA6ORIVJe7PxejwcSOCnVvFgSheSRC0AvJq6pCoaEaWpUK/UJCoWikjS0IgiB4F2TAb/h4K9Z9tIWbb9GMeUCIPyYuGouL75wP/yC/Jq+hLr73vHgbvnpxBfavPQIfXx/YbQ5odEpEJUciNPpn5Z6aylqOGIxfOKrTIxkzrpyMd5/8lJ0CV9lQKowuzilBvzF9MGhiv04dl9D9kKLilhGHoBeRXVmBdw/ux+7cHNRaLOwIJAeH4Kohw3plMa8gCEJvgApvv3zhe6x8cx0b0EHhgdwkjQzolf9bi+xTufjVv5dB599U2pj6Cyz7y7VYcm8F6/t/89JKnNyTylLJlEJEiThVJdVcgDx58TgMmTyg089v6pIJ3ABu0+fbUVFcCY1OA6vFBpvFivgBsVj2l2v4vF0dheM7TuHAhqOoLjMgLC4U4+aPQPKwRFEiEnot4hB4AaREQ51+/VSqZr/Mcqsq8diGtThTXoZQrR+i/ANgsdtxuqQY/9i+BUabFQv79u/QcZKcKEUmqCgtwt+/SWdiQRAEwfOQwb/+wy3wC9BBH/Fzzj/N8FPh8LFtJ7Hr+32cItQc5BjQ0ndkEr5/bQ13Vy7JK+PnSGVo4bJZuPC2uV3SUI2Oed0fl2L4jMHY8d1eZJ/Kg1+QDmPnjcDERWMa1DnUVtfizT9+hIMbjsJisvBrrVYbX5/Z107F5Q9c3KSjtOAdiMpQy4hD0IM5VlSIb0+dwJ7cHDa2qZHXBf0GYH6fvk3yz784fgxnysuRFBRcnyJE2yTqg9lZeO/gAUztIN1/mp1anZ6K706dxNmKcv4AxQQE4MJ+A3HxgIHiGAiCIHQge1cf4mZipNHfGI1OzalA27/d06JD8PP2Gm5AtnDZbDa8aQ6KZuG7oiGZK2TEj5w5lJeW+PQf33DfApIj1f00ZvqNqiypxqq31nMNxJxrp3XSqAWh+yAOQQ9l89kz+NeOrag0mRCo1rCRf7KkmJcjhQV4YNKUeqeAVGs2nc1A0E/bNSbSP4CdAuoVMCelj0fHSV+0bx/ch0+OHuG/gzVajmJkVlTgP3t2IKO8FL+eMFnqGARB6DWQZv7RrSdx5mgWP04ZnsipNpSD3xGUF1bw965rBJnUeSjNh76XVRoVinNK27RPqjkYOK4vehJUT7Bn5QGWUXU6AwRdF314IF+P9R9vwfTLJ3Z6czWh43HAhxdP79NbEIegB1JurMV/9uxCrdWCJH1w/Zd8sFbLxv/ajDSMio5mDXuiwmSEyWqDv8r9FxzN0NOsfZmx1uNjPVFSjOXHj8NPqUSo7ueiNYpEkDPzY1oqJscnYlJ8gsePLQiC0N3ISc3jlJXMY9mcy072BKWtJA1JwG1PX4eYPlEePyYV2pLhTwtRmlfOxjE1H6NV1IE4pk8kqw75638uyvU2UvefgaGiBjF93V9jKqIuyipBXnohEkWVyOsQ2dGWkWnZHsiWzLMoqqlGtH9gk5oBMrQdcGBVWmr9ukC1GiqFL0w2q9v92ex2/pciCJ6GIhMGixkh2qbh5CCNhmsf1mWkefy4giAI3Y2qsmr89zfvIP3gGYREB3MKT1y/GIREBSPtQAY/11gKlAp/qVj2i399h29fWcVyoU7DvrWMnDUUGj8NG8MFZ4uQfToXxpo6OU5ayCEgWdFXHnwHtQYjvFlpiWiu1o4artG1peshCL0NiRD0QLIrK7mSpbk0mwCVhnP1LTYbpw0FabQ8C78i9SSCtTr4NvoyLK6pQahOh/Fxnp8Rya6ohMrXt9kvYI1CyelDgiAI3s7ulQeQczoP0SlRbIi75vHTuqyTOdiz6mB9Lv+eHw/i478tR2l+XfGuww5oXl+DETOH4OYnr3YrFeqOfqNTMG7hKGz6bDtK88uhUPpymhBFKEgpKDDEH/EDYnBs+yls/2bPOXPo8zIKcOZIXbpT8rAExKR4PqrRESQMjIXWX8uOkas8qavDRlGCqOSILhmf0MHQbL6nZ/Qd3hMhEIegB6I+R8MqmvHXKFUNinUvHzIUB/LzkFlRjnA/f04fIpWh4hoDpwtdNXQ4OwuehiIWFAVoDovd1iGFzJ4iq6IC+/JzYbbZEBsYiHExcdAo5WMjCELbObjhCBe/ujoDTmgdFfce2nSMHYJTe9PwzmMf80w+Nd6itCKavSa9/90/7OfZ7Dufu6lVMpm0zfV/XMoGf2FWMew2X3YGnJ2G4/pFQ61To7K0Gtu+2tWsQ1BZWsUOysGNx1BbWZdiSrn4I2cNwTV/uAxBoYHozlDx8+DJ/bnIWuun4e7LTqh+wGQw4YJls93KrwqCtyOWTQ9kTEwsPj92hFNx/FUNjWn6wai2mDG/b78GPxQpwSF4dOZs/G/vbhwvLmZHgCIMUQEBuHLIMFzcf2CHjJVqA9aeSWNp1MaGNEUwbA47piclo7tBfRr+u3cXNp7J4LoME3XntFmh12hx6cDBuH74SIToulZVQxCEnoWpxtyiLCdp5ddW16XsrP94K6orathYd36X078kE0rf84c2HEXm8WyuPTgX1Jn4vT9/xhGIn/HhxmSJg+OhUNRNHpGRXJxbxvtv7GiYjWa8+tt3WaKUnIiQftG8nnT8t329BxVFVfj1f37BKkTthZyUk7tTUV5UydEPaiZ2PvtrDJ3TtQ8vRXlBBTIOZ0KhUnCkhN4XOt0x80di4bI5Hjue0L2wU72Mh3VC7V6kOyoOQQ9kRFQ0RkXHYGdONiL9UN9/gAzsvOoqhPn54aL+TZvDDAwLx7PzL8Cp0hIUVlOnYiWGR0ZBq+w4NQVyCIZHRmN/fi4idP710YAaiwWFNQYMCAvD7G7WFI1+DF/avQOr0k4jQKVm56DSbILN7kCF0Yj/7NmJNempeHDyNMzohs6MIAjdN2WFDF53Bjets5isSBgUy1r5R7ed5FQedxEAcgoo5//4jtPndAjyzxTilQfeRnF2CRvZxmojNH5q2Kx1dQM5ilwkDIrj45hNFkRG6t0ec//awzixMxWRCeEcTXBCij2U8nRiVyp3M5508dh2XZvDm4/j8+e/RW5aATcUowhIeFwYFt0xD9OWTvRYw7Dw2FA88NovuV/BrpX7UV1ajYiEcB73uIUjRV1I6LWIQ9ADoRqA302Zjn9u34L9+XkoqjHUf1lSWsuvJ05Gn5BQt6+l7cgxoKUzoKjAI9Nm4v92bce+vFyUGGtYpEutUGJMdAzunzyVaxy6E+llpdh89ixCNDrkGapQbjJBo1RAq6wrOCN1p5yqSpZ9DdPpMDSyZ+TPCoLQtUy8eCw39CJDPDhS3+C58sJK6AK1mHjRWFioA7DN3iClxRX+vqdJIJPlnMekguTCzGLE9Y/m6ENZQTk7A5QuRN/FNBtPhjc5CWajpVmDfu+aQyyy6OoMOOF1Dgf2rj7YLofg+M7TeP3373NBNfUBIAeDrkFZfjk++OsXfK7Tl05s836bO9aWL3fi5K5UllUZPLE/pi2d1OMkVIW2I7KjLSMOQQ+F0lX+MnsejhYVcm0A5eknBOkxOSGRIwbdCYpYPDFzDk6XluB4cRHL3PUNDcWwiMhu2SaeGr3VWM3QKnWoNJqgUSig8KkLqdN4lb4Kvt6VRiO+P31KHAJBEFpF35HJuODWufj+tdXITcv/SQ4UMJQboNQosfiXC7knAanhhMaEIC+9wG3xKxnL9F0UlRzZ4vFsNht2/bCfm4ZR7QL9S45IaV4ZHHYHlGoFRwWKcko4bYgiBVMvm+B2X9S4q6U+CeS8UFFuW6FJFroe1WXViHVJj1KplYhMDGdVpBWvr8bEi0ZDrT2/erO1H2xmtSZjjRG6gLqUzy3Ld2Hf6kO46neXtqoxmyB4K+IQ9GDoi3NYZBQvPWGsA8LCeenuGG1W+MAHlWYz7HBA4dvQaaFH9CNO9Ru7c7Pd1kcIgiC4+x5cfNcCnq2nmfuMw3VKPcOmD8LMK6dg9NzhvA3VElCaDBXw0qy+LkDbwIAmrfyopHBWG2oJm8UGi9EClabu+4n2Hd8/BkqlAqUF5Zw7T3n7tM2YRWM4vz44omHkwgkZ55Tu1BwWswURcWFtvib5GYVIP3iWHRV3E0TkGNH5UkrSiBktn29LUBO4L//ve/6bpF6dhETpUZJbxulKfUclc+Gx4J04HD68eHqf3oJYMYLQiCj/wAb9GepcgJ+xORzQKZUs6Wp3OPixIAhCayCjd+z8kRgzbwQr21A6DBXzOo1hMqxpNn/mlZNxem86K+JQipFfkI6Nd5LMDI4KxvV/uoJf1xJUMEsGdfapPJbTJCg3n2biIxLCUFVm4GjBknsvwlW/u6TFiO2EC0Zx3j0dn2oYXKF1FD2YcNGYNl8PQ2UNd25WawPcn4NayX0B6Bjnw47v9vA+yCFyhc45LDYEOafzsXPFPnEIvBj6qfb0z7XDi37+xSEQhEZMSUjEuwf9kVVRXt/d0/lDSU4CNX6L8PdnNadB4RHsHAiCILQF+k5xpq3Qd8zulfux+YsdOHs8Gz4+vhg2dSBmXj0FgycNwJYvd6AouxQqrRpzFo3l1JbWdNKlY0y7bCI+fOoL7kpMuflOnH0IopIisOCWWedM3xw8eQAmLx6LLV/sRE1VLRcTE1Wl1RxhoIjGkClNxSzORXBEEKcCGQ0mHlNjTNRATa1sUnPRVkhVSKNVuz1PWkdRFNpGEHorYskIgpsOyneMHY/nd2xFqbGW5V21SiWrDFFEIFirhZ9SySlFF/Tr3y3rIARB6BmQM/DpP77G2vc3w26zwS/IDzabFdu+3o0D64/guj9ejj998iD3I6DZ8pby+N0xZcl4HNp0FIc3HeduxTS7T45AZUkVG+ATF41BzqlcWIxmRCY235CL0phuePQKbkK28fPtKMsr5/UhMcGYcfkkzLtxBm/TVqigedi0QRx9oLFRBMP12pTklbE06oCxfXA+kFPRUgdiek7txiERvAeazPf0hL4D3oM4BILghlnJKWz4v7Z3NzZnnkEthbQVCu7oTP9Wmc2Ym9IX8/v06+qhCoLQgzm44SjWfrCFG3wF/TTrTugjAjmN5bXfvcc59MOnD+aC47ZCTbZ++c+bsea9Tdjy1S5UlVTBx9eXZ9wpakD9Dta8vxm6AA2GTR+MpfctYmlRd5Ak5wW3zsGc66YhL6OQ18WkRJ53se/Fv1zAs/M5qfnQRwRxKhT1PSgvrEBgWCAuv39Ri/0bWsPw6UNwbNspNvxdnQ6CHCRaP3TqoPM6hiD0ZHwc5IJ3UyorK6HX61FRUYGgoKCuHo7QS6EeCqvTTmNffj6nDCXpg7Gwb3/MTunToBu0IAhCW/nPA29hz6oDDQpdzbVmZJ3K5Zx3+puM4rCYYAwc3w83PXEVQqND2nUsMrJL88ux4ZNtWPP+Rp7RD44MYmObOiCXF1dyKtIDr96JkKhgdCbZp/Pw/as/4vCWE3zONKPfb3QKFt0+j8/7fCkrrMDfb3yROzVTQbYz0mI1W1nJKColEg+/9+v6WgvBe+w159juXP8qND+l6XkKU3UtXp19Z7c877YiEQJBOAejo2N5cfxUQCxOgCAInuLs0ez6WgLnbPWZY9moqazhlB6FSgmtn5ojCAc2HEXNb97hxlo0899WaCafDO1tX+/iDsCh0T8b/VQTQIXLmcdzsP6TrVj660XoTKjY985/3Izi3FIuoqb0Iapv8FRKZkikHrc/ewPeeORDFJwprE8f8lUouMj6tmeuF2dA6NV0qEOwadMmPPfcc9i7dy/y8vKwfPlyLFmypCMPKQgdBvcgkHoBQRA8iFpbV9zr2qCMnAFq9kVqQz4+FvgqFdxlmHLc0w6c4a7BUy4Z367jHVh3BNVlBsT0bSpXTZECao6249u9uOSuhW2uV/BUJ2FaOqoPxJ8+foCvQcaRTP5OpzSsUXOGtcvBEnoYHSA7Ci+SHe3QqU6DwYCRI0fi5Zdf7sjDCIIgCD0AarhVmFmEvIwCboglAKPnDWclHbu9Lnu3oriSDVVyBuh60d+BIXW1BU4VngPrDrf7eKQK5Ny/OyhyQL0PaEzeCDVnm3LpeFz/x8tx3SNLMXnxOHEGBKGjIwQXXnghL63FZDLx4pr3JQiCIPRsKN1u+7d7sP6jLVw4SuLdpKU/felEzL1++nkXpfZkpl46Adu+2o38jAIu5uVogY8Pp7RQzj+lzrgWG9MsvqGitt3HCwip645MzoY7p8Bca+LuyKRIJAjehPQhaJlulQz9zDPPcOGHc0lISOjqIQmCIAjnyXevrsbbj37MaRpafw1La5bmluGzf36Lt/70ETfj6q1Qnvztz97Ikp+FWSUcOSEJULomZJgnDYmvV8Uhx8pisiA6JbLdxxs9Zxj89DrkZxQh62Qudx8+tTcd+WeKUFtdi9oqIyYtHtcl6UKCIHQd3cohePjhh7lS27lkZdW1dRcEQRB6JqQes/KtdRwFIA17yoXXBWi5Uy4Vte5eeQB7fzyE3szAcX3x2Oe/wS/+dj1mXzONpTfJUaCcd9foCaX70Mx9ezoCOwmLDUVs32hO2yrILOKGYLVVtchNzcPxnakIjtZz4zNB8NY+BJ5evIVuNQWg0Wh4EdqO1W7H7pxsrD+TjqzKStbQn5aQhJnJKQhQ995wvCAIXQtJatZU1CCu/8+ymhazlZtwUUGtM51o0sVj0ZuhPHbKZ6frEBYTgnUfbWaDvb4jcEk1/zv3xhnn1aTr6LaTyDyezcegaIDZZOa0B1IfokgElUiSqpEgeCVeVATs1Q6B0D7MNhte2LkNazPSWSdfo1AgvcyGPbk5WJl2Co/OmI1I/59zUAVBEDqLouySn9RyfFhXnx5XlRkAuwMKlS/UOg2yT+V29TC7DXSdrv79pYjrF42Nn21DwZkiXp84OI5n7qctnXheUpxbv9rFOv/JQxNgs9m5/4DDbmdVI0oTKjxbhL2rD2HGFZM9eFaCIHR3xCHoAZwoLsKa9DQcKSyAwtcHY2PiMK9PXyTq6zSkvzl5HD+mpSJMp0OAWtPAUThWVIQXdm7HX2fP85iesyAIQmvxD9JxAWtlaRVr3FMjKJ6NVvrCZrVzN1qnuo4+vGc39vEU1DDMafyX5JXxd3doTDCvPx8oGnN6bzr3G6g7ji8CQ/wbbGN3OJB1Qhw0wfuwO3x48fQ+vYUOrSGorq7GgQMHeCEyMjL478zMzI48rFfx/amT+MPaVVh+4hiyKytwpqwcHxw+iN/++AO2Z2Wy0f9D6imofBUNnAFCrVAgXOeHwwX5SC0t7bJzEASh9zJixhB2AKiA1WqxcVExzUSTtj79q1QqYLNYsert9V091G4HKQqR8lBEfNh5OwNOfHx94PhJ4tQtDgdvIwhC76JDHYI9e/Zg9OjRvBAPPvgg//3YY4915GG9KjLw+v7dsNocSNYHIzogEDGBgfx3pcnEM/9HCgpQaDBAr3Vfe0H1AzVWC06XlnT6+AVBEAZPGsCqOFS4SjnqddJ/DpbXNNWaoA3QcnHxzu/3scqN0HFQpGHYtEGoqarl96AxVNtB71HfUcldMj5B8Paq4k2bNmHx4sWIjY3lz+NXX33V4vZffvkl5s+fj4iICAQFBWHy5MlYtWpVg22eeOIJ3pfrMmjQoO6VMjRr1iy3XzpC66A0oWqTGUn64AbpPvR3bGAQMivKsSs3u25li5eZbpAOH64gCILbWe5JF4/Dka0n4bDZ6xtekeFJmvjxA2J5xtpQWcNdenUBdeksQscw7bKJ2P3DARRllXDkwRkNoOhNwZlCJA6Ox7BpA9lho/euOWoNRhzacJTlSqlh2pDJA1gi1ZOpqcU5JTi9L4Pvj/iBsUgYWGdECUJPxfBTw95bb70VS5cubZUDQQ7B008/jeDgYLz11lvsUOzcubN+sp0YOnQo1qxZU/9YqWy7eS81BN0YqhnQKpVuvwB9qdOkjw/yq6sQGxiIzIoK+LtRE6o0m+CvUmFQeEQnjVoQBKEh+vBAhEQEISQ6mJVtaKKIpEcpl52+30hOk4xPSicSOhaSMr3uj0vxyd+/QnZqHqdsUY0HTSoFhAaw8tMfL3qGm6MNnTIQM66YhIHj+zXYx5Etx/H+X79gp8JBL7Q7WA515KyhuPHxK1la9nygCMZn//iGFaqoEJ3mu3T+Ggyc0B/X/3EpwuPCzvMqCL0RB3x48fQ+O7Jh77///e8Gj8kx+Prrr/Htt982cAjIAYiOjsb5IA5BN4YKiFua+KfnVAoFLh4wCC/t2oFyoxF6jabegTBarSitrcWclD5ICQ7ptHELgiC4MnTqIJbPpOhAWGzD7yJyDipKqjBm3nCERNUJJQgdy5RLxrNjsOuH/Th7LItrPKpLq3FydxrSD57l7sh2uwPbvtmNA+uP4NqHL+PIAkHb/+/hD1FVVo3IhDB+Lb2HZLjv/H4vOxd3PX8L/2usNkKlVUOtUbV6bBSZoGZ15AwEhgYipm80R7hJDenAusOoKKrEA6/dicAQUc4Tug+VlZWdIqNPn6uqqiqEhoY2WH/69GlOQ9JqtZxWRI1+ExMT27RvcQi6MaQmdKK4mL9sG0cJSF6UZmZGREXjon4DuOD4+1OnUGashcrXF1aHHQofX4yLjcXd4+u+yD1BrcWCHTlZOFlczI/7h4Vhcnwi/FSt/8IXBKF3ERJZ1+zq+9dWk54QRwwoZYhy1ouzS7gj74KbZnX1MHsV1Phs8S8X8N9Htp7AS/e8AV2gjt8bJ8GRQSjOKcWnz33DvQ+om/KGT7ahvKgC8f1j6n+X6F96D+nfg+uP4P2/fI5Te9M4BUypUmDMvBGYdfUUJAyMO+e4TuxKxcENR7lPAo3HCTkpGp0aZ45kcr3JvBtmdMh1EbyXuvolz++TSEhIgCuPP/445/Z7mn/84x8s2HPVVVfVr5s4cSLefvttDBw4EHl5eXjyyScxffp0HDlyBIGBP3+ez4U4BN0YkhZdmXoKOVWVXDNAKUJOZyCrqgJxgUGYnpgEha8vfjl2AqYlJmPjmQzkVlVCr9FiSkIiJsTFQ9OOXDJ3pJaW4Nmtm3GmvAy2nz4FCh8fJOj1eGjqDAwMC/fIcQRB8D4uvfsC/pcMSuqSW1fb5IPIxHBc/dClTdJShM5j+zd7uEEZdY92hd6f8NhQ5KTmY9cPB7Bw2SyOGATo64z/xmj81Eg/dBbfvrKKoz26QC0sJgvWfbgZB9YdwR3P3XjO95n2T69xdQacUDRCoVJg1wpxCITuRVZWFhf9OumI6MCHH37Ixj6lDEVGRtavd01BGjFiBDsISUlJ+PTTT3Hbbbe1ev/iEHRjqM/AA5OmspoQFRCTQ1BX1O5gZ+D3U2cgWFv3pUlfzsMjo3jpCMqNtXh6y0Zklpezc0KSpoTFZsPZ8nI8s3kj/rngQoT5nV/uaFuh6ElGeRlyKis5fWpIRCSCpNu1IHQ7qEZg6X2LeKb46NaTMBpMrK0/fPpgqLXqDvluoNnk4twyzj/vP7YPNDr5bnAHpQFp/dxfGyo6Vih9uXkc9ZCglB6a9XdHcU4ZTDVmjiyQo+ckOEKPvPQCfPDXL/DoZw9CpW4+olxdbuDoUXNQ+hGlKwlCdyIoKKiBQ+BpPv74Y/ziF7/AZ599hnnz5rW4LRUfDxgwAKmpqW06hjgE3ZzJCYnoGxqKDWcyWIbU18cXI6KiMCMpud4Z6Aw2nDnDzkB8kB5K35+/rMkITwjSI6uyAhvOZuDywUM7bUzkBLy6dzcOFOShxmxmh4kcEqqpuHro8AbjFAShexAaHYLpl0/q0GNkHMnkolSarSYDlWaVqXbhgmVz2CHxhFINGcjU0bckt5TTZUbMHIIB4/pyV+bzhYzuytJqqNRKnmU/vOk4tn+7B7lp+azCNG7BSExcNMZjjdxUWhU3iWsOu80OlUYJrb8W4XGh3FOCakIab1OaV8oOROOiYloXHh+K3PQCHNt2iouPm4P2T/tylypLGGvN6Jsg0Wih7TgcPrx4ep8dzUcffcSqROQULFq06JzbU0pRWloabrzxxjYdRxyCToCah1HaD902rrPrrSXSPwBXDR2OrmRPbjYb3O6MbEpZomVXTnanOQRFNQY8sXEd0stKEabzQ4Tej9OYSmtr8M6BfagymfDLcRM6ZSyCIHQfyFB/+b43UZhZxDPT5AjYLDaUFVTgo2e+5Fnu+TfNbPf+yVD9+uWVWP3uRtRU1tQ3+lr7wWaMnjscN//5auj8te3aN/VloJSqLV/uRGlBOXxp3w6gqqSKnRqaxbeYbTi9Lx2bv9zBxbuxfc9PWYQYPXs4zhzO5ILFxg4N1Xn4+Ppi6JRBbKBTcfEHT32B2mojK0U5MZssHPUhlaIgN44KRYFIdrYws67+rDnGzh+Jte9vRmVJVROHh/ZPv6OTF48773MWhK6gurq6wcy9s2EvFQlTEfDDDz+MnJwcvPvuu/VpQjfffDNeeOEFTgXKz8/n9TqdDnq9nv/+7W9/y1KklCaUm5vL9QvUyPDaa69t09jEIXBJO9mRnYVqs5lnmacmJHIjsPOB0mm+OXUCK06fRIHBwF9kMQGBuKj/QFw8YGCPmsE22Wxs9DcH1RKYbdZOG88Pp0+xM0DRCed1VFI+sn8AKytR9+YL+w1AUrColghCb4EM2jce+QCndqdx2kllcTXLYYbHhnB+fEluGX54cy0mLR7bbpWazV/swPevrmaJ1DiXwlpSwaFiVyp+vfGxK9u8X7PRjNcfeg/71h7hyADtpzS/HAVnizhFJ2lIAkKi9PURhOyTuXj7sY/x+3fvPe8uxpMvGccOBqX1RCVGcK4+j6nWjMKsYqSMSMLI2XWTPdOWTsTxnaexb80hVJYo4Bfkx+OpKK6oiw7o/VBZXMnX3SkrS5DTRL+1FGloCeplMOe6aVj51jp2AILCAtkxqio3wGQwYcz8ERi7YOR5na8gdBV79uzB7Nmz6x9Tw16CjH4qDKai4MzMzPrnX3vtNVitVtx99928OHFuT2RnZ7PxX1JSwg3Mpk2bhh07dvDfbaHXOwQ0e//Knp1Ym5EOg9lc9+XlcODDwwdx7bARPOPdnvAyFf7+367tWJV6mg3WYK2W8/8ptYaOR6pApP7TU5qsUMHwvrxct2FcWkcOQ//Qzgnj2h0OrM1Ig06pdOtUhWi1OFtRju3ZmeIQCEIvgb6HSN2Gil8Jharu5426H2edrGXjMjIpHIVni3F483GW3mwrZPhSgSzpYAZH1hnnTsj4tZgtLOV54S/mcjFuW6CowP51R1hdh5wNOp+c03nsHNBsUl56PgJD/aFUKbkeg7T4zxzJYqnQIZMG4HygBmV3PHsj3nr0YxScKarrS8Da5gr0HZWC2/9+Q33Ug2b66fGmz3dgy5c72Mmi34SI+HBUl9WgNK8MFcWVPEa/QB07TRRJoBQoukbUubolaF9L71+EsNhQbPh4Kwoyi1hjOyg8EBcsm42Fy+a0ScZUELoTs87RsNdp5DvZsGHDOfdJqUSeoNc7BO8e3I9vT51EsEaLiJ86ApPBWVxjwJsH9rIhP69P29Uv9ublcqfhEK0OgS5Frv4qNSqMRp7BJoWgkdEx6AnMTk7B96dPorDGgCj/hjNrxTU1CFSrMbdP304ZC0VeDGZLs+pJToel0lTXEVUQBO/n5O5UbPpsO6c2qnUq+P40a06z65QmVJxbyrPNZFwbymvadQyaQacZe79ALUryyjjXnaQwA0ICeBab8urz0gqQui+jTQ4BGQhblu/kqIazOZvFZIWpluofyAHw5VoI0uAnQ5mg7Upyrcg8nnPeDgHRf0wfPPrpg6wGRNEHGkvfUckYNm0QOyGukFNAKj+zr53KkZEv/v0dX3uSl7Vb7bCT7LXSlwuEMw5nIio5gnsSzLpmKsudngtKW5p9zVRMv3wiX3O6zpFJEe1OxRKEnlxD0Fn0aoeA8s1XpZ1GgErFhr8T359ST2g2f/mJ45id3KfFdBl3rM9Ih8Vub+AMONFrtSgrr+Ui3J7iEPQNDcMto8bgjX17caaiDAEqUgXxQbXZBJ1KhWUjx3Sa7CjVYARpNSioqgbc/D6QQ0c/+iG6ziu6FgSha6F0HavFCqVGCZvNXu8QEJQCYzQYUZJfzjPuNNvc3hz/0vwK1BqMnA/P0qm+4Nx+mgmndBlnJKFt+zWzQg/NqDv5ORDrjMo6YKq11D/vnGUkR8RTkMHN+fmLW7c9pSpVFFdh94r9nIJFDhfJhVLxMzk0BNVZlBWUY8HNs1heti2QI9Ka3gWCIJw/vdohOFRQwN194wPdKzWEanUs90npJ31C2hb+za6qgKaFvE5S58mtqkJP4tKBg5GkD+beCPvz83jdhLg+WNivPzdR6yzox3Fhn354fd8eTvlqXKRdUluDILWG60AEQegdUG8DkhUNjvBFcU4JG5Ou6Y1UGFtVUol+Y/qw1Gl72PzlLhgqDPx3XUGtD6fXUIHt2WPZiOkTxbnz5By0BXJSlGoFRwFcnRgyrg3lhnqZT1/Fz+dTU1ULtU7Ns/hdyaGNx1BTZURc/7riZqpzoNSmyuIqmI0WHmdITDDXVTSONAiCtzQm8wZ69aeTUk9olsXZ8KsxlJ9uc9h5pr+t6DU6WGzNqylY7Xboe6Be/qjoGF6cs1PnWwNBtRanSktQYzGzWhA5HK3Z5+SEBHx27AiOFBZAo1QgVOeHQA2lY5m4VuPGEaNY0UkQhN4BSV1ShICKh6vLq7lmgBtZKRRw0Pe4yQJ1kI4bpLnOxLcWSl3ZvXI/9BF6Lpq12RxQKHw4vYXSd8gpIKdk+tKJXBjbFijffuy8EVjz/iZOu6Hi3LqmYCGoqahhR4HWOaU+KaJQlleOUXOGoc+IJHQltVW19eN1QoZ/aEwI/021A1RQTNdfHAJB6L706k9nvF4PrVIFg8WCAHXTxjiVZhOC1FpWBmor05OSsDMny+0MtslqZcWhKQld+0V+PniiGHpr1ll8dPgQKzyRg0Q1AdRY7ZaRY9A/rGHHTFcO5Ofhn9u3cCSAoCgPKQvRdR4WGYUbho/CRf3PP6dWEISew6g5w7kol3Lfk4clIv9MIapKqmG2mrkoldRtLv7lApbNbA9HtpxAbWUtEgfGIhMO3jclxdDx7HYH7DaafgSu+M0l7fp+nHnVFOxbc5idivD4MC6cpdQmfUQQinNKuVaB0nNIPlWh8MWgSf1x05NXd7kwBRdXO+j8KU2raWot1Q6Qk0aRE0EQui+92iEYFBaOwRER2J+Xy4o1rnUCZLSTBCkZlu3pfDs9MRkrTp/C4cIChNPs9U8OBzkZZLyOiYnB5PgE9Fao0dq/dmxFrcWCcD9/NuZrLBaWfqXOx0/OmsN1C43Jq6rC37duRkmNAcn6EChCfNnpqjaZUFRr4P1MS0zq8h9JQRA6l7HzR2Djp9uQdiCDZ6eTBsfzTDoVtlaWVGPQhH646ndty2F3hWoQaCacog7JQxJQXljBsqAkF6pRKaGL0kMbqIOeCpfbQfyAWNz+7A2slJSfUchOBkViA0L8uZFXbL9oVvChVKURM4dixIyO6fDcVsbMG45vXlnF14KairlCUQHqTzB1yQSPNGwThPOCCoA9XQTs8B5bo1c7BGQ0/mr8RPxl43quE/BTqqBWKthINdvtGBUdjWuGjmjXvv1UKvxpxiy8tGsH9uflodRYw7NH/mo1ZiWn4J7xk5pVyfF2yNkidSej1cp9BJzGOzleFKk5W1GGT44exiPTZzV5LcmNFhmqkagPrk/1Iicg1M8PQVotcqoqsCnzDBYPGNTp5yUIQtdBaUC//OdNePuxT5C6PwNl+eW8nvLsx8wdhpufvLpdqUJOOAXGUVcwTCk+9NiZFkMUZZcgNErP0prtZdCE/njss9+wLGrB2WKuLRg0sR87C911kiMkKhiX3LWQO0NTWhVFNOj6GCpquKB44IT+mHFFx3amFgTh/OmdFqkLKcEheHrufJYBXZeRjlqLFfFBeizo2w8L+/Z3qxLUWiL8/PHEzDncQIvy5H3gg4Hh4XzM3kCRwYDduTmotVoQ6e+P8bFxnKJFBcnUuZnkSxv/yJGRT1Kt9LpCQzWrPblC66kg213dB9V80DWmiE9rHQKKAlH9gl6j7bUOmiB4C6TN/5v/3YW0A2eQcaSuuU/KsEQuvD1fg3rU7KEIiQ7m9J3IxPAG+6NZcGriRTPh55snT7P+1K23J0GNxCiSQTUQOadyWeUpQO/PjsBFt8+Dv96/q4coCFJUfA7EAgK4I/GyUWNx88gxXGhMM86emo2h/VDqi7v0F2+F6gHeO7Qf3506Wd8LgC4nFfneOWY8KkwmlgZtXFvhhJyGMmMt1wY0dgjo/WmuCLzuOD6tKgInJ235iWPYnpUFq92GALUGc1L6YMmgwVygLAhCz4S+A/qNTuHFk5BRe+VvFuPdJz9Dbmo+9OFBUKgUrMNPzc8GTeyPWVdPQW+95hMvGoPxF4ziKAH1faD0IXEEBKHnIA6BC2Royizx+fP+oQNcLOynUnNKEF1XyvPPq6rEc9s2Y+ngofXr3DkFlFJE62nWvjFDIiJxqqTYbcdkcjLIGTlXPwRSJnpq8wYUGgycpkTveYXJiA8OH+RuzE/MmotwP3EKBEFoyMRFY7nXwOr3NnIUwlhr4pnweTfOYJ393m4AU51AXL+e0VtH6IXQbL6nZ/Qd8BrE+hU8CnUt/u7UCa6hcDWqycCPD9Rzrcbx4iJEBwSwQR7XSBqUjPpSYy1mJqUgKqBhdICgbsir01NRVGNoED0gByG/ugqhOh03kmsOchj+u2cXv54kTp3RhkC1hqMPx4qL8OnRQ/jVeMl5FQShKcOmDcbQqYPqCoprzQiO0ksHXUEQejxS9i94lH15OSg3mbgOoDE0o0/rjxUVco4/5fxTN2gqLiZHgPL5qREc1RtcPWx4g14Fzr4Hg8MjOL2LcpBIrpTqDAoM1exo0Ez/L8dNQFxQUIvRgbSyUkT5BTRJPaLahCC1GhvPnqlPdRIEQXD3XRYWE8KNyMQZEISegQM+HbJ4CxIhEDxKjaWux4KrhGtjo9totmJCXDzn6n985BA7BZTHr1GoMDI6BreNHoskvR7fnjqBH9NSeeafIg40839Bv/6c598nJISfO1SQz4b92L6xWNC3/znThag7NEUJdCqV2+dJBYpqF8jRaI/crCAIgiAI3RBJGWoRcQgEjxLl788GOtUBuKvHMJjNLC1KzsCclGDuGUApRNVmE/cjGBAahlqrFX/dtAE7c7Kh8PFhZ6CkpgbvHTqAjWcz8OiM2RgRFc1LW9H9pABCUQd3TovVZufIhU7p3mEQBEEQBEHwNsQhEDzK2Ng4LiSm1B/XHgME5ehXW8xYNGBgfWdoqi0Y2ciw//zYEW5QRrKkrjP5ZMRnVVTgxV078M8FF7aoNtQco6JiEKzV4kxFGRc1UzM02g85KFTzUFhj4H//sW0zTDYbd0yem9KXOyg7z4XSl06XlmBXTja/nlKcpiYkIcK/dxcUCoIgCEK3RSIELSIOgXBeUFfhHTlZOFZYyIW6lGZDjkC+oRpnKsrZ+Fb7KmCwWNgZGBIegSuGDG12f9QUjoqGaYa+cVoPzeiT0U0qQ1QL0J4IAfWV8FepcLiqmqVQaWw2HwdyKiuRXVnxk/qRFVUmMxS+PjhZUsz9Ka4ZOhzXDR/JTgQ5JJvOZrAz4IQUim4cMYprI7prAyFBEARBEAR3iEMgtAsyhl/ZvRNrMtK4BoBm/4k6uVDqOFznGFSajOwMBGjUuGTgICwdPKRFnX8qEC4zGpvN36du0sU1Bo4UtMchWJOexnUElNpE/RConoA8fLLhzVZKF/JBv9BQqHyV9dGA0tpafHjkEPqEhLIs6cq0U1wcTY3nyPingmhSTHpt7x6E6HSYnpjc5nEJQkdhqDDg8OYTqCqrRlBYIIZPH3xeHXsFQRAE70McAqHNkJH84s7t+DH9NBvvdruDZTspcmayWbmw2F+lRkltDR6YNAWDwiMQrNVxLcC5UPnWdSG2OewtRvyUCt92jZs6UpMR3z8snOscqIDY6rDz31S8TM9VmswI0yl/VhPx82MVoy+OH+WGZkFqTYMeCTReklGlbZYfP4ZpCUkSJRC6HLrfN3yyDd+9+iPKCyvqPjg+4G67l9y1ENMvnyT3qSAIgsCI7KjQZk6VlmBL1lmOBlBkgAp1ybAgw1irULJTYHU4WE50c+ZZ7lDcGmeAiAkMRJ/gEO5U7I4Ko5GdjxGRbY8OUKSC0oLo9QSNn2oZAlRqbj/u6+PL5+GaCuQkUK3GgYI8jniQc+OOUK2OJU1zq6vaPDZB8DRbv9qFj/++HIaKGkQlRSC2XzQiEyNQVVKND5/+ErtW7OvqIQqCIHQiPh20eAfiEAhtZm9uDuf62+yOekPaCRnUpNJTVluLAMrVLyzg2ffWzmhSMTH1I6CcfqpNSCstQZXZxM9RbwDqKDwrOYUdh7ai8q0z+O0OO0cGqAnZ0aJCnCgpQr6himsHKP3H3awpnWddK4Q6x8cdVONgczjq06cEoaswmyxY+eY6OOwORMSHQaGs6wiuVCkQmRgOq8WGH95YC5tV7lVBEARBUoaEdkCyoOQUs+Hsxjb2QV1ePdvPbEg7kFpagq1ZZzkfn9JtJickYlBYeAPlnncO7senxw7DbLUhXOeP4loDz7bnGaoRotUiTOeHeX364vYx49s1bpJBHRsdy52UqcCZHBrqi1Bn4FtZVchmtbLj0BhySoZFRrK6EEUQ3EU8aBuqn3DtoCwIXUHagTMoOFuE0Khgt8+HROmRl16IjCOZ6DcqBd6AzWaDobwGCpUC/kHN1ykJ7inKLsGJnadhMVkQlRyJQRP61TuSguAViMpQi4hDILSZaP8ANvq1SgX7AzTj7holoPx/Mpip58C4uHi8fXA/Vpw+BYPFzNvT5+fLE8cwJ7kP7pkwiVN39ublstyoVqFCbEBdp+EEqx6ltTVci0DbPDR1Ohfsnk/e8wX9B+CTY4dhtNo4guH7k/FPUQ1f7jpYV0RMkqdOR4WkSP1Uatw4fBTeO3wQRwsLuGDatY8BpUeRo0BF061NjxKEjsJUY4KNiuQ17r/iVWolRweMhu7RkbvWYMTxHac5vSk4IgiDJvaDSq1qdTRk8+c7sOnz7SjJLYOvwhcDx/fFnOumY/DE/h0+9p6O2WjGZ//8Bju+3cvXnxQWyBFIGBSLG/50BfqMSOrqIQqCZxCHoEXEIRDazNTERLx3+ADKa43QKpUcMdAqfNhQp14BlFpDsqE0+06591+eOIpAlQbJ+mDehtN/zCasSD2FUJ0Ot4wag7XpaWxURwf8nApE+6b6A1pHfQ3yquqKfs8Lx08F0A4qgLbRtCJ/nn19wMXDVP9ATkhaWQk0CiUsdjsrHt06eiw7N8E6Hf68aT3OVpZz4TQ5KuQIkFrR+Ng4XDlk+PlfYEE4T8JiQ6D1U6O2ygh/fdPZclqv0akRFhOCroS+CzZ9vgMrXl+N4pwyfqxQ+CI6JRKX3bcIY+a2/HmymC14848fYvcP+9mIpXMlR2jvjwdxbMcpNmgnLx7XaefT06Dr/cFTX7BDFRDij5i+0fD19YGxxoQzhzPxyoNv48HXfomYPlFdPVRBEDoYqSEQ2gwV1d4+ehw0SgV0KjV3E6aCXUqZqbFaWL/fX63G5UOG4kRxESsHkRyn05infyltyF+pwsq001yoS3n8zc2sU0oPvSajvOy8x06qSDRuaoaWHByC6MAAxAUGYmB4BKcEDQmP5NSkkVExGBcbhxtGjMTzCy/i/gJEv9AwPDN3Aa4bNhJBGi1HSpL0wfjVuIl4bOac+oZrgtCVxA+IRb8xfVBaUA47Seu6YLfZUV5UgUGT+ne5obfly5346OkvUV5YiciEMMT1i0ZoTAjy0gvw5iMf4siW4y2+fvs3e7D7hwMIiQrmwumAYH/owwO5gNpqsuLTf3yDiuLKTjufnkbWyVy+fiRHqw8PYmeA0PppENM3itOINny6tauHKQgeQoqKW0IiBEK7mNunL4J1Wnx94gT25+ey+o/FbkO4nz/Lbl7Qrz8b8Z8fO4rwZvoOkJOQW1WJ40VFPNNOBbktzWSpFed/u9Jsv9LHl/dHUqGNoZn+UD8//GbyNCTo9W73ERcYhF+MGcdRAyogprGLfKPQnaD78YoHFyM/oxA5p/MRGBrAEQFKJaoqM9TNwP96UZenqqz43xp2WMiYd6LWqnh8uWn5WPH6Wgyd2nyzvy3Ld4GyFXUBP8sAE7R9eFwoOxYULaD0IW+C67L2Z+DUnjSOiJADNGLGYKi1bZuQOLL5OGqrjQiNaVprQumU/oE67Fl1EFf+5hIoVWIuCII3I59wod2MjYnjhVJsLDY7G/hkHDs5kJ/HP1zNqfLQejsc3Adgcnwi3jt0gIuRG29P3YFp3ajomPMe8/DIKMQFBbGKUXxQQ4Ofxkr1ChPj4hEfVFfH0BI0JipU9iZIHep4cRGnflEEpTmnSOj+JA6Kw32v3I4f39mA/WuPoKayBiqtGrOvnYoFN89CTErL0QGKIpw9ms2fi6ShCQiJ9Oy9cHJ3GoqySxEe2zRtiQz6kMhgZBzNRE5qPuL7N/3sWy1WFJwtbLbJGtUS0BRDYVYJuoLqcgM7I6f2pXOeccrwRIy/YBTPxJ8PFPF4+9GPueaCnCofmtX38UFsnyjc9MRV6D+mT6v3RTUk7FD5mREeU8FVVMX5waitqZNmVmlUXGRMS3dyCKj+pTCrmK9reHxoq+tNhN7Nz2qBnt2nt9B9PuFeDhnNe3NzOaUm0s8fY2PjGhjPPZnmOg8n6vXcsZjkQik/vzG0nlJskvUhvKxKO819AqhugIp8CZIsJaWhgWHhmByfcN5jJQP+hhGj8K/t27jDMnUb1lAdgNWC4poarmm4dvjIXjfjT9eZHLIf0+qazZERSO/NuNh43DF2nCgn9VDi+sVg2V+uxRUPVnPBaGCIP/z1/i2+pra6Fsv/7wfsXLEX1WUGXkepOOMuGIWl9y3ymIJPTVUtbBYblOpmCp+1KlhLq9iRcQfVDJDBWlPpvmcJ3cNkMFJkpLNJO3gG//vD+yg4U/RTRoEPtn+zG6veXo9b/nwNhk4Z2G5D+PXfv48jW05wnUh4QCh/V5HBTo7Taw+9h9/87y5EJ0e2an/hcX6Yd3kGJs7bB7+AugLzWoMGpw4lYNeGwRw9iEwKh8bPfef4rlCS2vTZDmz4ZCuKsorZGKNI0IwrJrOj252cFkHoacinp4OhFJSPjxzC1yePs/a9c2aZjOU7xo7H+Nh4eCvkKMxMTsbyE8fZuHSdTadUm1JjLeal9OEZe+IPU2fg+R1bkVNVWfdj/pO2/+CICH5O5yH1ntnJfTj3/8PDB9kpoFQnKiAeEhGBW0eN5ShCr+s8vWsHVqad4iZt8YFBbGRUmUxYdyYdBYYqPDVnPtdMCD2TwJAAXs4FFem+8fAH2Lv6EDsBnMpD90JpNdZ9sBmluWW469/LoNac/2eRpE8pPchUY4bWv6nBaayuK3ym+gB30D06dv5INrJJXpVnyhsVTqt1Kgxpp/F9PjP4ZLQXZhZx6pNTupNqN/LPFHIR9O/fvReRCeFt3vfxHadwcncq95ZwvWbkGMX0iURuaj43pLv8/ovPuS+Hw4rxMzaif58c1Bp8UVlGjqIPdP4mjJ52CgFBlXjnH30w7bKJ9WpsXf099dk/vsGa9zZx9CcoNIDvzcLMYnz896+QfTqXIyQKL5loEzoAURlqEXEIOpiPDh/E+4cPsmIOGVpk4NJs7Nnycvx9y2Y8OWsOhnqxAXrTiNE4U16OQwX5XHysVapYyYeM8KEREbh97M89BUZGx+Dliy7hfgXpZaVQ+PhiaGQkO02ejqZQc7OpCYk4VlTIikdUSDwoPKLZ9CZvhq7BhjPpCNX6cY2FE71Wy4XelEK0Nj0dlw0e0qXjFDqew5tP4MD6ozzrqvX/2QEkKVAyQA9tPo6D649g/AWjz/tYfUcls7Rl+qGziO0bXR+Vo1lwchJIQnTypePY+G2OGVdMwp5VB7hWICIhjA1jMhwpalCaX46xC0ag/5jO7bNAOfeFZ4sQ3SeKFZOckBEbnRLFRvvO7/Zi8V0L27zvo9tOwWq2unWgyGin94yuR2scApj3QuO7Gxr/OBTmlMNus3K0xmJWQ1HhQGL/XMy/Zihf4+7A6X3p2PDJNvgH+9c5Az9B9SMU/aIC8zHzRmDkzKFdOk5B6Kl0vdvvxZTU1OCbUyfYGaDUFKduPc2Uk459mbEWXxw/Bm+GjMonZ83FrydOxoCwcGhVSvQJCWFVHpp1puviCkUSFvbtj7vGTeQIytSEpA5LrSJZVHJCqLfBkIjIXukMENuzs1g6liRi3V0jlY8CazPSumRsQudCOe92u6OBM+CElGccdjt2rzrgkWPRTO7lDyxGUGggck7nobyoklVvjm47ieM7T6GytApFWSU4sP5IiylRdzx3EyviFOeUsrFNC/U1mHDRaNz612s7fXabxu7j69vAGXBCKj4qjRJHtp5o176pZqAlUROKRhhrzPUR1pZwmDeT+4XgqBgkDYln2VGKYpBDZndooQ/zx5I7/KALcF+j0dmQtCwVxVPaW2NIbpZqSnat2NclYxN6CA6fjlm8BIkQdCB78nI4TYgiA26L5rQ6Vughx8Fdjr23QEY+yXY6pTuF7kWFyVgnntaMQ0QyrZTeJXg/ZQXl3LSsOWgGniRCPQU1DrvnxdvwzSurONWF6grIUQiO1CM4So/MY9l47Xfv4dpHlmL60olu9zFwXF889tlvcHjzce6+rFQpMHBCPyQPTeiSWiCqi2icvuQKOShWi61d+45MDGcDhJSZ3Dk6RkMtUkYktu68bcWAT13qF8mOkmNmNpnhoA7uGhV8UQAoy9FdoM7bSrWq2XMjhaV8qtkQhGboCJFQH3gP4hB0ILUWC//r2tHWFZXCFyazFbXWuu0EoSugdClOrXQ43P7YUvQgJSS0S8YmdC7UqOzErtPNPm8xWbmY1ZP0G52CIZMG4OD6o9yHQBeoa1CjQGoyX77wPUbOHMKGa3PGINUTdAeosy+lXZFh3dgxoM+YsdbU7jSmcQtH4Yf/reVoCKVSuX5eDZU18PHxxbQlE1q3M0UY8NNvFONTdx3rsZoB37bXOXQUlCpks1qbfd5itiIg2Hsn1gSho5GUoQ4kwt+f01BINtMdNWYLN/CiRl+C0FVQWhZ1XXYWvbtC9S4kBTsvpW+XjE3oXMjgpLST2qqmESFSnKE8+PELR3n0mDTbTdEByosnSc7GBcthsaGoKKrA/rWH0RlQlGLL8p14/6+f87Lt692svNRaJi4aw83RyJFxTd1hWePcMgTo/dvdPZkctit+sxhKpYJToyqKq7ivRF5GISqLqzBlyXh+D1uDj3oaeQWA3Y2Kk4PO1xc+mu7Tv2H0nOHsAJlrzW6dAXLAuotTKHTzomJPL16CRAg6kHExcaygQ1KaCYH6BrM5pLJTbTHjogEDpLut0KX0Cw3Fov4D8MWJYzDarJzKRo4sdZCuMpu5Y/PslNZrmws9l2HTBmHcgpHY8d0++FUbEfjTjDypDJGhTM+NmOnZ4nLSwidlnsbNxZzU5eL7oCTv/DuVn4vUAxncIZlST8hRoW/s9Qpf7uh82zPXI2VY4jn3EZkYgev/dDne+/PnXBtBtRekhmM0GOGn98OVv70ESUPaL6FMqj/UzXnDx1txYlcq5/wnD43H9MsnY9plE+pVjc6JehygngxQLYEjAPD9Sc3JUQHYK+ueU3ePgmJi1OyhGDShP9eYkEIV1Q0QXEBeUI7+o1Na7QwJgtAUcQg6ECoevmPMeDy3bTPOVpSzoUVFmgaLGdVmMwaFh+PywcO6ephCL4ccVeq8TBGtb0+dQEF1NeyUV6zW4PLB/blvA6kNCd4PGZPL/notIhLDsXX5LpTklvIMGKXqzL5mKi7+5QKPa71TkS01ljLW1OngN4Zm1h3NFDp7krLCCrz+0Psoyi5GVFIk1yIQpOpDs/FUy/Dw+79uNm3JFVJhikqO5MjHsW0n+RwGju+HKZeOR9+Ryec9VkqxooUiF9SpmIzjttZL+FD9QOCDcNREAKYNgC237gnfIEB3GXz8boSPT/eZrKJ0pjueuxEf/PULLsqm6Ag1ItD4azB69jDc8NiVzTapE4R6vGhG39P4OFojR9BFVFZWQq/Xo6KiAkGt6BzbXTlYkI8vjx9l6U3qS0DGFcleXjlkOMK9uJhY6HlQilBaWSnfp9QrQ9LZei+GCgOr/tAvRMLAWO5L0FF8+MyX3FGZaggaF8tWllZz461HPrgP8QNiO2wMK99ch0+e/RqxfaM4NcoVmoXPzyjE9X+6AnOv7z5pNJ7CYS8DrKl1D5R94ePbfWuGyGTJPpWL9EOZ7BBQF21SSeptzSS7G93ZXnOO7YbP34PawzaXuaYG719xY7c8724ZIXj55Zfx3HPPIT8/HyNHjsSLL76ICRNaWfjkBYyMiualyGDgAmJq2CVpQkJ3jWqRBKsgUEdjStHoDGZfPZVrBPLSChBGPRD8NJyyU1lCHZYNmHnllA51BojDW45DqVY0cQackRNaf2TLca90CHx8QwD1zz1hujNk+CcMjONFEIQeVFT8ySef4MEHH8Tjjz+Offv2sUOwcOFCFBYWordBKRmJ+mBxBgRBEFygHP27nr8FycMTUVFUySk65BwQC26ahWsfvqzDx0CpQS31LCCHgIpXBUEQvJEOjxA8//zzuP3227Fs2TJ+/N///hfff/893nzzTfzhD3/o6MMLgiAIPQCS6/zjh/fj5O5UFJwt5tqCQRP7Izy2c9JXUoYn4uSeNLfyu7SO0pZoG0EQeigdoQrkgNfQoQ6B2WzG3r178fDDD9evoxmYefPmYfv27U22N5lMvLjmfQmCIAi9A0rNGTJ5IC+dDUmBbvlyJ0rzyhv0WmC50JxSrqGYuGhsh46BCqsPbjiKM0eySJgIycMSMXLWEGh0mg49riD0CsQh6DqHoLi4GDabDVFRUQ3W0+MTJ5q2bn/mmWfw5JNPduSQBC8nvawUWzLPIq+qCoEaDSbExWNUdAyULaQCCILQ/SHDPP3QWZzYeZpTd2JSIjFi1lDoPKQ+RFKgS+9bhM//9R2yT+fVKdY4HKipNvLfJBca3z8GHcWZo1l445EPkJtawPUTdGxKU4rrF4Pb/nY9kgbHd8hxSU726NYTqC6v4f4JQ6YMrJNKFQShV9GtZEcpkkD1Bq4RgoSE9us1C73LWPjg8EF8fuwIa+eTjj411CIZTXIKfjt5GjsIgiD0PKrLDXjn8U9wePNxbkxV1wHYB5GJYbjh0SsxdIpnIgpzrpuOuP4x3Jjs+M7T8IEPa9tPvWwCBoztuOZ81Ifhtd+9y0pGkUkRUKnrfprJ8ck6lcvP/f7dexEUem7J07Z8Z274ZBu+f201ygoq2AGhsEREQhgu+/VFmHjRGI8dSxC6B3XfG57fp3fQoQ5BeHg4FAoFCgrqisOc0OPo6Ogm22s0Gl4Eoa2sTk9lh0CjUCJZH1yfA2wwmzliQIXcv5vifeogguDtkOH61qMfYd/qQwiJDkZ4XCh/vqkIuDCrBP97+AM8+NqdHlOdoX4BtHQmu37Yz85AdEpkg8Zi5BhQJIQKrHf/cMCjCkebv9iBj/+2nJ2ryMRw7rtADgj1nnj38U+g0qgwZu5wjx1PEITuTYfmUajVaowdOxZr166tX0ehUHo8efLkjjy00Iuw2e345tQJNhyor4NrQaC/Ws0N4bZmneWO0YIg9CxO70vH0S0nERodAv+gnz/fyp+M5fKCcmz6rGlNWk/i8Kbj8FUq3HYZdkqeHt58zGPHMxvN+OHNdfx3RHxYfRM2ckCikiK4luGHN9bWpS4JgrfVEHh68RI6PLGaUoBef/11vPPOOzh+/DjuuusuGAyGetUhQThfcquqkFle3mwTrSCNhjtDHy3qfVK3gtDTObb9FExGM3SBTWsFyDnwC/LD3jWHuF6tp2I2maFw0//ACTkEZpPFY8c7tTcdxVklCInSu72mIVHByDqRw43pBEHoHXR4DcHVV1+NoqIiPPbYY9yYbNSoUVi5cmWTQmNBaC82hx00j0V1A81nDfpwJEEQhJ6FxWhhxZ3mOtHSDLrNYoPNaucU1Z5I8tAEnNyV2oLkqZW38RS11UZYLTaOsriDIgXUndlYbfTYMQWhyxGVoRbpFOmVe+65B2fPnmVJ0Z07d2LixImdcVihlxATEIgwnQ6VJvc/XgaLBRqFAsnBP0sJCoLQM6D8dnLpyUB1R01VDae5OAtxeyIkZ0qRjrL88ibPleaXw0+v86jkaVhMCDQ6NYyGn2W+GzsM9DzVbAiC0DsQLUahx6NRKnFBvwEw2qyosZgbPGe121FUY8CQiEgMDo/osjEKbcNitqAwqxgleWU8Qyr0XkbPG47Q6GAU5ZQ0uRdqq2rhsAPTlk5sNoLQE0gZlohL774AdrsDOafzWPWHlpzUPFb/uezeizwqO0oN1qgrdCl9vuwNr6ndZkd5cSXLj0YmkDMmCIKn2LRpExYvXozY2Fj+zvrqq6/O+ZoNGzZgzJgxLLrTr18/vP322022efnll5GcnAytVsuT7rt27Wrz2HrulIoguLB00BCcLinh4uHi2hrolCqYbTZe+oaG4tcTJ/dog6G3QMWO6z7cwgooZBD5KHzYECI5yLHzR8h72Ashqc2rf7+ElW9yUvO5QZhC6QtDRQ0bsxMuGo3Jl4xDT2fBzbNY8pTufUofgq8PJk4fg+mXT/J4ozb6HF3x4MV45YG3uecC9R9Qa9Uw1ZhQWVrNakdL7rnQo8cUhK7Gh5R1PTy/5NPG/VEN7ciRI3Hrrbdi6dKl59w+IyMDixYtwi9/+Ut88MEHLMrzi1/8AjExMVi4cCFv88knn3C97n//+192Bv7973/zcydPnkRkZGQbzqUbT79RHwK9Xo+KigoEBQV19XB6JWRQHy7MR3mtEUFaDUZGxUDdTfN0aaybz57Bmow0ZFdWIlCjxqykFMzr0xehOr+uHp7QiqjA679/H3tWHYRKo2TDj2YrK0uqWALx8gcuxvwbZ3b1MIUuVBsi3fwjW4/DbnMgIj4U0y+fjGlLJ0ClVsGbcKr7+HZwQ0Vqhrbq7fU4svk4S46SUzB67jBccOscxKRInZ/gHfaac2w3fvQ+1H6etQXMNTV479obkJWV1eC8WyOjT4758uXLsWTJkma3+f3vf4/vv/8eR44cqV93zTXXoLy8nOtxCXICxo8fj5deeqn++4N6eN177734wx/+0OpzkQiB0Cw02/7Ogf3IrKyA1Wbjbr9xQUG4ccRozEpOQXeDHJW5ffryIvQ8dn6/j7XmKT1EF/Czogw5BiW5Zfj2P6swctZQSWPopfQf04cXU62JexDoAnUdbjB3FZ11XlSofOdzN6GssIIjLkFhAR5tfiYIvaUxWUKjJrqPP/44nnjiifPe+/bt2zFv3rwG62j2//777+e/zWYz9u7dy419Xb8/6DX02rYgDoHglh3ZWXhu22bUWiyI9AvgPH2T1coz78/v2AqFjw+mJyV39TAFL2Lb17tZsMHVGXBCTgLlU1P04KJfzO2S8QndA41Ow4vgOUIi9bwIgtA+3EUIPAGpczZW5aTHFPWora1FWVkZSy672+bEiRNtOpZ3Tq8I54Xd4cCHhw/CYLYgPlDPzgBB/yYE6WG0WLgrMBXsCoInoMzFvIxCt84AQd1USXuSuqgKgiAIQndqTBYUFNRg8ZRD0JlIhEBowqmSYqSXlSKiUddfJxF+/sisKMfx4iIMj5Q8U+H84QZTgVqUVNU2v5HDAa1fz/uSFbyP0vwy7F19CMXZpSzPOXTqQPQf28drU5gEQegaoqOjUVBQ0GAdPSanQ6fTce8VWtxtQ69tC+IQCE2grr4Wux1qhfvbgyIFFrsNVSb3GtaC0B4mXDgGX724gguJqTNrY3lJlVaNYdMHd9n4BIHY9Pl2fPnv71FRUsXZww44uDB3+PRBWPbXa+Gv9++Q4xoqa7BvzWGc2pPKRdVJQ+Ix/sLRkuojCF7cmGzy5MlYsWJFg3WrV6/m9YRarcbYsWNZfchZnExFxfSYeoC1BXEIhCaE6nTcyIvqBwLdhL1ovUah5O0EwVNMvWwCdny3B7npBQiPDYXWX8OpRNXlBlQUVWLsgpEYOF4KxoWu4/Dm4/j4b1/xD25sn6h6x7WmqhZ7fjwEpUbFRbqelsc9ezwbrz/0HnLTCuq7GW//Zjd+fGc9bnzsKi62FwSh+1NdXY3U1NQGsqIHDhxAaGgoEhMTuTg4JycH7777Lj9PcqOkHvTQQw+xVOm6devw6aefsvKQE5IcvfnmmzFu3DhMmDCBZUdJ3nTZsmVtGps4BEITUoJDuJHX7twc+KvV8HX5caMfI2r0NSIqGgPDRO1F8BzkBNz1r2V494lPkXk8GyV5Vp59ITWZKZeOx3V/vLzVKRl0n6YdPIP9a4+gorgSwRFBGD13OPqMSJJeBkK7oHtq3YebYawxIrZvdIP7yC9QB3uUHYc2HEP2qVwkDIzzaGSAnAHqwRCdHAmlqk72mSJpBZlFePuxj/G7t+7mMQmC0BUaQ61nz549mD17dgNjniCDnhqO5eXlITMzs/75lJQUNv4feOABvPDCC4iPj8f//ve/+h4ExNVXX42ioiI89thjXIQ8atQoliRtXGh8LqQPgeAWqg/488Z1KDQYOBJAjb6MVgtKamsR5ueHR2fMlvoBoUMgxQRqzEQGkFKlxIBxfRDXL6ZN/Qw+fPpLbP9mD4w1JnYiqIEVRRzIsbj24ct4v4LQFqgfxh8vfgYKhS8CQwOaPE8/pbmp+bj2kaUe7ZdBjcrefvRjRCZF1DsDrsfMOZ2PRXfOwxUPLPbYMQXBm+w159huev+DDulD8O4N13fL824r8qsouGVweASemDWX1YYO5udxXQHp/E+KT8D1w0dyBEEQOgIqkKLOrO3tzrri9TXY+Ok2BIUFITwulGdynalHGz7eipCoYFx853yPj1vwbqwWK6cKqdTufzbpPqPFZrF59Lgn96Sx8ltjZ8B5TI2fGoc3HReHQBCE80IcAqFZKCXoyVlzkVNViQqjEUEaDeICgyTlQui2UHrFps93QOunRWDIz8WddM8GhgTAVGvGxs+2Ye7106ALkBoYofXow4MQFhOCgjNF8Nc3nWU015rho/BFTB/PRk5tVht8SXa3GUiSl7YRBMH7ioo7E9FIE84JOQEUEYgP0oszIHRrMg5ncgGyPtx9t1V9WCDKCytw5mh2p49N6NkolApMu2wid0murTY2eI4iB0U5pYjvH40hUwZ4vJswqQpRzUBjKPJlrDay5KkgCML5IBECoddSY7FgZ04W8qqqWEp1bEwskoNDunpYwnlARhOrsDSSLXVCqjBUTyAzqkJ7mHX1FKQeyMDeHw+xY0nFxJRKRA5CeHwYbnz8KqjUKo8ec/wFo/Dj2xtQkFmM6OSIBpMyZfnlXHQ/efE4jx5TEITehzgEQq9kZ3YW/rNnJ/Kqq6jfFWuJ+6vUmJGYjF+NnwidyrM/6kLnENsvGn5BfqguM7iNElSVGeCn90Nc/9YXKQuCE7VWjdv/fgOGT9+HrV/tQn5GAQICAjDn+ukcPSAVIE8TGh2CGx67Am8/9glyTudxcz5KE6o1mLiz92X3XoQBY0WOVxCE80McAqHXcbyoEM9t24wqswkx/oFQKRQ8q1xhMuGHtFO8zW+mTOvqYQrtlC4ledFNn23nzscqzc+OndloQXVZNWZfO02aOQnthiIA05dO5IUUsUjFqqNTKUfPGY6IhHBs+3oXDm8+AbvVhvFjUjB1yQRxBgShtUgNQYuIQyD0Or45eQJlRiOS9cH1P+T0b7BWy39vyjyDpUOGcj8Goedx+f2LUHi2CKf2pHHet1qn5mJiu82GwRMHYMm9F3b1EIUeQFVZNc4ezYLd7kDCoDi3TiQpYnUW8f1jcNVvL+VFEATB04hDIPQqSD51d2429Bqt21k9vUaDs5Xl2JeXKw5BD1aD+fV/bsfO7/dx52PKs04YGItJF4/FxEVjRF1IaBGz0YxvXlmFbV/t5t4DlFIYEOyHcQtHYul9i+Cv/1m9ShCEHoRECFpEHAKhV2G2WWF1OKD2VTSvJQ4fmKzWTh+b4Dmo2HP2NVN5EYTWQilA7zz+KbZ9s5vvoYiEMP5OoNqTtR9sQWFmCe558VZodJquHqogCIJHEdlRoVcRpNEiVKvjSIE7LLY69ZmYQPeylYIgeC8ndqZi96oDCInSIzQ6mDtaU9pZcEQQIhPDcWz7KVYYEgSh5+Hj6JjFWxCHQOhVKH19sbBvP5jtVhgbRQGosDjfUIXYwEBMjEvosjEKgtA17FtzCBaTBf5BTRuPaXRqzg/YuWJfl4xNEAShI5GUIaHXsXjgYBwsyMeu3GyofZUIUKthtdtRYTIiRKvFXeMmwk9kRwWh10G9BSgi0JLsaGl+eaeOSRAEoTMQh0DodZCx/6cZs/HtqRP4Me00SmtrofDxxYI+/XDJwEEYHOF5LXGhe2AxW3Bs2ynkpRew4TdgfF8kDoqTDtwCExyph81ibbHgOCxGxAYEoSfSESk+Pl6UMiQOgdBrnYKrhw7H5YOHotJkhFpRFykQvJf0Q2fx7hOfcnMnZ0djrb8Gw2cMwU2PXynqMQLGLhiJLV/uhKGiBv76hmlDJF0L+GDCRaO7bHyCIAgdhTgEAnp7TUGormm+sOBdFGYW4b+/eQfF2SWIiA/j3gTkEJDht2vFPljMVtz9wrJO1ZUXuh+DJvRjg3/L8l0w1pj+v737AI+yzNoA/EwmvfeeUELvvQmIgBQrYsFKUdHVVdfFXcXfFesutlXXsra1YMeuiFKkSofQW+gkpPdeJ/Nf54TEhExCgCSTTJ7b67swM5OZL2FI3vO9p8DTz+N0l6E85Gflo8/FPTBoQl9rnyYRnQ+2Ha0XAwIiOieHoo9i/Q9bdPCXLJZ6juiKEVOGoEOvSLRUv3+3GalxaQjtFKyTZYWcu7u3G4xGO+xbdxCHth1D96GdrX2qZEXy3rht3vXwDfHRnYK0+AzpNgA3bzeMv+1iHWondQRERLaGAQERNdjKL9bh25cXoSCvCC5uMtnZjN8+XYtNP0fj5seuxfArB6El2rpkJ5zdnKuCgepcPFyQnpiJfesPMiAgXfBfc/9lmDD9Ypzcf6piUnHXUB14R0RkqxgQEFGDHN8bi29f/VlTbcI7h1TdLh+nxqXjy+e/R4fekQhu37KKsuX8ivKLYe9QfzpQcYHl2RTUNklNSY/hXa19GkREzYJzCIioQTb9vA0F2YWaTlGdpN5IXn5OWi62/LIDLY2cX2hUkO5qWFJeXq6P8Q/3bfZzIyKi5sHBZPVjQEBEDXJkxwkdzmSpRafBzqBTXY/tOYGWaMTVgyFnXZhbWOu+9IRMePi6Y9DEflY5NyIiImtjyhAR1ZISl6YFlRIAtO8ZoT37JeVGrqbXRe5zaKED3YZePkBrBLb8ugM5GXlaTCytR+X/nV0dMfXBK9hfvhGZykyIi0lAWUkZAiL8mH9PRNTCMSAgoipJJ1Lw3X8WY9+GGBTnF2sgENIxEBNnjUWvkd21s5As/M8szpUFoLncjO7DWmZRroOjA2b982Z07Nu+ontMQoZ+DX1Gd8fYm0ehz+ge1j5FmyD1GtKB6rdP1up7SYIuKdoePLEfrrxnQqMEBuayWJiLVwKluypusO8Dg/M4GOzP3uVK3qfblu3Cxp+2IeFoElzcnTF4Un+MuHoQfIMZEBLZNLYdrRcDAiKq2hV4/b73dXCXd4AnPCM8UFZahvjDSVgwbyEuu2s8/EJ9kXQ8BUHtAjRYEGWlJiSfSEFQ+0AMmtRy024cnRxw6W0XY+xNI5GdlqMpTpIqxCnFjWfpR6vx3enCc1n8Gx2MKMgu0E5UJw+cwgNv3gkPH/fzfn5z8TqY894AyjMBw+n2n6X7YS5eCrj/GQanUfVOqZb38ebF22E2l8PJ1VnfB9++sggbf9qKP708AxFdw8773IiIWjPWEBCRWv7JGsQfSdRe/bJQlhQhZ1cnBHcIlAGtWPPVBtzy2NSqoODU4UScOpyA5JOpCO4YhLteuBWevh5o6SSQkavBlUOnqHHIrssv7y2HvaO9dpqSq+8ShHkHeul76OiO4/j9283n/fzmslMVwYA5DzC2A4yhp492eps57019TF3WfLURGxdF6997SMdg+AZ7IzDCHyFRwUg4lowFT3ylOwhERG0RdwiIWoASkwnbExOQmJsLJ3t7DAgJQbB78y2uC/MKsW3JTrh7ueqgrjPJ4in5RCoK84rx+FdzEL1sF47vidVi4qh+HTDw0j5w9XBptvOllmfHij3Iy8xHSFRQrfscHO3h4Oyg6USTbr/E4jyIsypeDZRnVAQA1QM5+X+7UMB0EiheBdjfVutTZaH/+7ebYLS3g6tnzfepvN/9w3wRe+AUDm45ooP2iIjaGgYERFa2MykRb27djNjsLJSbzZqS6OnoiAlRnTGr3wANEJpafnYBSgpLdHiXJZXpQTnpuZryMWbaRXoQVcpOzdGdpLoW+/Leys3IQ3FhyemhdufGXLq3Ik3IYOH5JSgwOOhjLO35ZKXmaJG8u4+b5XNzdUJ6qUnT5RgQENko1hDUiwEBkRUdTk/H/HVrkFlYiCA3d138S1CQVVSIbw/sg8lcjj8PHtbk5+Hq6QoHJweUFJXUuoJaVTQMc50LKiI3L1eYyysKiy2lYsl7S4JJR+fz7URlaMBvX8spYHZGOz2ncpPlz5dzlkMeR0TUFvGnH5EV/RhzAGkFBQj39KraCbAzGODr4gpPRycsP3YEp3KyG/x88lwb4mKxPu4kkvJyG/x5ku4z4NI+yM3K184wZ8pMydYi0T4XsxsPWdZ3TE8NJnPS8ywGlIW5RRh2xUAYjfVPjK6LwbGvFBJAo44zaSRSCoOj5aJ2KZJv1zMcuRm5de6Qubg5ofPAjud1bkTUinYIGvuwEdwhILKSgtJSbIqPg6eTkwYBZ/JydkZsTja2xsdrwHC25/pwZzRWHT+G7OJivZrv4eiEiyIiceeAQfB2Pnt+v3TgkXaj0o7RJ8hbg4TS0jJkJWejvNyMyfePaxVFw2QdoVHBGDV1KJZ/vAam0jJ4BXjqFfeC3EJkJmUhrHMwRl93AbtdTmOAwp8BUzxgDPsjdUiCAbnNLqDiMRbI7oB0lzq64wTSEzPhG+St9S+iKL8YWSnZGDypHyK7scsQka2Sf/GNPVnYANvBgIDISgpLS1FWXg4nO8tXTCVIkCVPYVlpvc8jz/Hiht+x9uQJ3VUI9/DUBVB2URF+PXIYyfl5eHrMeLicZWhYSMcg3Pfa7fj634twZPsxXSRJ20j/MD9MnDkGF98w4oK+XrJ91z10JVw8nLHm641IOpGqaTiSn997VHfc9OhUfS+dL4MxGPB4EObcVwFTrFS2nL7HpMGAwePBisfUYcD4Ppj64OVY9NZS7aZlsLOrGKbnaK87X7fOu55dp4iozWJAQGQlHk5O8HJyRlpBvv6/pYW+XMyQ2oL6SHeijafiEOjmBjeH073ZAfi4uMDVwQG7kpKwLvYkLo3qdNZzkj7sf33nbp0yWzmpuPOADnB0/uN5ieoisx2u/vNkjLtlNA5FH0NpcSmC2wcgsnt4oyy2DY6DAO+XgeK1FUXGcptDT8DpYhiMgfV/rsGACTPGoPfo7tpRK/VUOpzdndHrom5aSFxZOE9E1BYxICCyEkejEROiOuHDHdEoLiur0U1Irqwm5eciyN0dQ8Mj6n2e32NPoMxkqhEMVKp8ztUnjzcoIKhcOEnqBNMn6Hy5e7thwLjeTfLcuvB3vQ4GXHdenx/SIQhX3jOxQY+VrlqSQiepTxHdws6rOxIRUWvAgIDIiq7s0k2v8O9KStSUHncHR90ZyCwugoejI2b3HwR3x/qvzmcUFsK+nr7ujkZ7pBcUNMHZE9mm/Ox8/PjmUmz+ZbtOWpa2pjKLY8y0EbrLwN0EotZH6gcavYbADJvBgIDIiqSg+ImLx+LbA3ux4tgx5BQXwWhnh+HhEZjarQf6h4Se9TkkpajMUueV00pMZQh2rz/tiIgqFOYX4a05C7B3/UHd6ZChZVJUn5OWg29eXoSMpCzc/H9TWW9ARDaFAQFRCwgKZvUbiBt79tGr/ZLm4+fi0uAFx6jIdlhy9BByi4tr1SJI9yF5nkvas50iUUNs+WUHDmw6hKAIfzi6/LE75x/up4PV1n23GcOvHISOfdpZ9TyJ6BxxMJl15hD885//xIgRI+Dq6gpvb++mehkimyEpQ2GenvB3dT2nq499g0Mwtn0U0osKkZyXp/UIJSYTUvPztcPQsPAIDI+IbNJzp5ZB5kUc2HwYh6KP6iAwOnebFkdrS9LqwUAlGcwnbUqjf9ttlXMjImp1OwQlJSW4/vrrMXz4cLz//vtN9TJEbZ60J31g6HCEeHjg1yOHdDiZXLTwdnbGVV274abefbWAmWxXdloOfnjjV0Qv343CnEJd0PqF+mLszSP1ON9hYG1RRkImnFxqd/0SEqjb2Rl0NgcRkS1psoDgqaee0j8/+uijpnoJIjpNFvy39O6La7r1wNHMDO1S1N7bR9ORbElWajayU3Pg6umqud3M464ogP3vgx8iZutRePi6V+S8m8p1GNjC53/QYOG6v15p7dNsNbwDPZGRmGnxPvl3JbMLPP05oI+o1WHKUOupISguLtajUk5OjlXPh6i1kbkDvQODYGuSTqRg8bvLsWvVPhQXlWi/+y6DojD5jrHoMjAKbdn6H7bicPQx7ffv4PTH8LmACD9kpeZg1RfrMeyKQQjvHGLV82wthl42AIe3V8xQqP79FPnZBbp70H9sL6udHxFRq6ohOB/z58+Hl5dX1RERUX//dSKyfYnHk/Gfe9/D799u1jnxXv6ecHRywM6Ve/HmXz7Avg0xaMs2/rQV9o72tRavwsvfAwU5hdixYo9Vzq01GnrFQHTq31EnLcscAtkRMJWZtLuQ7E4NntwPnQewSJ+o1e4QNPbRFgOCuXPn6hZ9fcfBgwfP+2QeffRRZGdnVx1xcXHn/VxEZBt+fns5Eo8mIaxTsAYDMj1ZijvDOgcjLzNfW0HKgq0tkhSWzJQcOLnWnfNuhrTMzG32c2ut3Dxdce+rMzHymiEwmcqReCwZySdTtcj48rsvxW3zrmeqGhHZnHNKGXrooYcwc+bMeh/TseP5XzlxcnLSg4hIZCRlYvfa/RoIyLTY6mRR5hfig/jDiTgUfQzdh3ZGWyPfA08/dySfSK0zYJClqwRQ1HDeAV6487lbkRKXhlOHEmE02qFDn0h4+rJ2gIhs0zkFBAEBAXoQUdORRVxcTrbOJJApxVE+bbd4NislB8WFJfAJ9LJ4v1wZLysp0wLatkrqA77590/6fZDUoepyM/Ph4u6Cfsx5Py+BEf56EBHZuiYrKo6NjUVGRob+aTKZsHPnTr29U6dOcOfUVCKLYtLT8PGuHdibkqzzBOyNRnT29cPNvftgcGg42hoXD2fYOxi1wNPRuXaOvCyCDUY7uHq6WOX8iguLsW99DLJSsuHi4YJeI7vBw6d5f76NnDoE25buxLE9J+Ht7wk3bzftMiT57sUFxRh7yyhEdgtr1nMiImppDOaKo7Gf01Y0WUAwb948LFiwoOrj/v3765+rVq3CmDFjmupliVqtw+npeHL1SqTk58HPxRU+zi4aFOxJTsa/stbg4RGj2tyAseD2gToRdv+GGF30n7lTkpGcBf9QH3Qd0qnZzy16+S588/LPmlZiLq/4reAd4IkJMy/BxJljmm1XR9JY/vza7fjqxR+xd/1Brbcw2Nlp+8xJt4/FZbPHtdkdJiIisnJAIPMHOIOAqOE+27NTg4F2Xt46bEzYOzpqK1FJIfpo13YMCg2DQx1DprRHuqkcRnvbGUIlC9nLZo/Hyf2ntLjTP9RXizvLSiVNKFsX4pNuHwcXN+dmPa+96w7gw398gaKCYgSE+WqHHylslknB376ySHPOL51+cbOdj9RS3PPyTG3PmnA0WXdVovq2g5sXaweIiBTnELSetqNEbVVCbg52JiXC19mlKhiovigOdHPHyexs7ElJrvW5mclZWPTWUjx2+b/w0CVP4OnrX8Jvn65FQW4hbEGPYV1w5/xbENopWFs/xh9JQkpsGjz83HHj3GswZtqIZj0fCbx+fX+lfn9lB6Oy3acEYhKw2NsbsWzBKqt8/+V8BozrjT6jezAYICKykDLU2Mf5ePPNN9G+fXs4Oztj6NCh2LJlS52PlawaS109L7/88qrHSMOfM++fNGlS6x1MRtRWZRUVodhkgqeT5Svdzvb2KCs3IbOwsFaPfplSeyomEU6ujppnHxeTiM//9a32npf2ibawMOw7pid6jOiCmC1HtM2mq4czegzvogWzzS3peAqO74nVTjSWUnG8g7yREpuKg5sPY8D4Ps1+fkRE1HItXLgQc+bMwdtvv63BwKuvvoqJEyciJiYGgYGBtR7/3XffoaSkpOrj9PR09O3bF9dff32Nx0kA8OGHH1Z9fK5dOxkQUJuSXlCg3Xs8nBwR5ObeYnKrPZ2c4Gg0oqisTP88kxYYG+zg6exU40r1F//6DqdiEhDSMagqVcjLHygpKsX+jTH4+d3fMO3vV8MWODg6oNfI7tY+DRTlF2l6kIOT5R+fkq4jfzdF+X9MXSciIhIvv/wyZs+ejVmzZunHEhgsXrwYH3zwgc77OpOvr2+Nj7/88ku4urrWCggkAAgODsb5YkBAbUJcdja+2Lsbm+LjdHHtYGeHPkEhuKFnL/QKDLL26SHMwxM9AwKxOf4UPBwdawUqqQX5CPXwRJ/AP/6xn9gXh8Pbj8Mn2LtW3YDsFLh6umLz4mhccdd4m9glaCnk+y27MYV5RXB0dqx1v9QV2DvY6+POlBafjt8+/R3rvtuMwrxC+If5YuzNozD+ttEw1lEbQkRELVtOTk6D5mrJlf7o6GgdxFvJzs4O48ePx8aNGxv0Wu+//z5uvPFGuLnV/L2+evVq3WHw8fHB2LFj8eyzz8LPz6/BXwNrCKhNBAOPr/oNS44e0gIg6d4jV+HXx53EU2tWYntigrVPUQOAm3r3ha+LC2JzslFQWqJXmSV4kYJiOd9b+vSFk719jdQVaSvp6mE5bcbdyxX5WQWab0+NR1KF+o/tjZz0vFoTkuXvLD0hA+FdQ9FlYM0hjUd2HMejk/6JT576Csd2n9Ai6d1r9uO1e9/Dw+OfRl52fjN/JdSYcjPzNABfvXA9dq3Zh9KSUmufEhFZKipu7ANAREQEvLy8qo758+dbPIW0tDRtxR8UVPNCpHyclJR01i9Bag327t2LO++8s1a60Mcff4wVK1bg+eefx5o1azB58mR9rYbiDgHZvM/37EJsThbaeXrDaGdXlZPv4eiki+//bd+G1yZfAfvT91lL78AgPDZqDD7cGY0jGRlIyc/XOQQRnl4aDFzSvmOt1BQYDNppx2CsnfpkMpXDYGeoNayKLtzld1+qff/jDibA3dsNzm5OOishOy0XPkFemqZVfddGdgNe/dM7WhAtqUZSiFy5CySD1w5sPIT//OldPPbFX634VdH5KC8vx5IPVuG3T9YgK7XiKqFM1Q7pGIjrH7pKC7yJyLbFxcXB09PzvPP3G0p2B3r37o0hQ4bUuF12DCrJ/X369EFUVJTuGowbN65Bz82VAtm01Px8TROSXYHKYKBG9x5XNxzPytRBYP2CQ2Btcg6vTLwcB9NSkV5YoEFLj4BAi3UFnQd2hIevW9Ui9EzZaTkI7xyC0Kjzzykky2R67QNvzsbSD1fpULD87AINvIZdMRATZozR2QnVbf9tD04dSoTR3q5WmpGTiyNMpSbsWLkXpw4n6t8ZtR4SDHz3n8VwdLJHcPsADQSlhkfav/5v7mc6I6LroChrnyYRNSFPT88aAUFd/P39NT00Oblmx0D5+Gz5//n5+Vo/8PTTT5/1dTp27KivdeTIEQYERCKtsEDTbmTQlyUuDg4oLcjTwKGlkLajEgQ0JHXloilDseSDFbB3NOqVasPpHYOs1Gx9zNhbRtvUXIKWJCDcD7c+fh2ueWCyBmUyqdgnsHZgJg5FH0NJcaku/i2xdzJqTcKBTYcYELSyNCHZGZBgwC/Ut0YNT0iHQN0RWvrhSk0faykNDIjIehwdHTFw4EBN7ZkyZUrVLqN8fN9999X7uV9//TWKi4tx6623nvV1Tp06pd2IQkIa/vuEAQHZNDcHB9jbGVFiMtXIv69UajLBDga4O1peqLV0E2eNwaHoo9i37iDiSxJ1aJdcgXb3dsXVf56MkdfU3FakxicF22ct2jabNde0rkWhQf+DDpaj1kMmaMtOXFC7gFr3yd+1l78nDm07ivTETJ1RQURW1EIGk82ZMwczZszAoEGDNPVH2o7K1f/KrkPTp09HWFhYrToESReSIOLMQuG8vDw89dRTuPbaa3WX4ejRo3j44YfRqVMnbWfaUAwIyKZJ/n33AH9EJyboov/MBVlaQQGC3N3RtwWkC52rmK1H8NETC5F8IhVGRyPKSk2axy6da+56eQb8e4ZqHYK/q2tVupQWKheWaB47u9o0nx4jusL+tcUoLSmzsGNjRllJGZzcnBDWieldrYns6siCoK5dOPl3Jm1q2YKWyPrkt39j79MZzuNzpk2bhtTUVMybN08Lifv164clS5ZUFRrHxsZq56HqZEbBunXrsGzZslrPJ7/Ld+/ejQULFiArKwuhoaGYMGECnnnmmXOqZWBAQDZNAoBpPfvgUHo64nKzEeTqrjsFsjMg6URmmHFDz95wdaiYNttayECydx/+BFkp2QiK9K8qHJYFyskTSXj8/95H2ayeMNjbIcLLC+OC2sExOgUbf9qq3XGkCHbo5QNw8fXD4R/W8LZkdH76j+uN8G5hOL7rJMocjNqWtEJFgFZuNqND73boPqyLlc+UzoVviA8MRjutGZA0oTPJv0dnVyd4B5w9t5iI2o777ruvzhQhKQQ+U9euXfWCniUuLi5YunTpBZ8TAwKyeQNCQvHwiFF4f0c0TuVko8xs1n67AW5umNazN67o3BWtzfoftiAjMRNhnUK0k5CQHxbJZUXIknKJQynwOBwGh16BOHwiETHP/gb3hCIEennA2d0ZeZl5WPTWMmxfvluLHll43LQcnRzwyIL78fiV85F6KkOmFegVIPk7k6A1vEso/vyfWS263iM/Ox/bV+zVtqqyyO01qnurqHeQ9p+lxWUaBJ951e1CdR/WWbsJJRxJ0uGA1XcgpSVtXmY+xt86Wut79Jd56VaYi1YCpmOAwRUGxxGA01gYjP6Nel5E1HJThloqBgTUJgyPiMTA0DDsTErU7j2SPjQgOBRurbR2QLrWOLs5VwUDIqe4GCn5ebCXK5VZJTAez4HHwAiYNiQj90Q28v1c4RToDk9nZ328t6kcCUeT8Pm/vsND/7uHRY9NrF33cLy+aT6+euknbF4UjdysfK31GHXtMFw2e7x2LmqpNv+yHV+/9BMyk7J0j1wK1xe9tRRDLhuAmx69xuKANmuT9/aqhesRvWyXpmRJPv9F1wzF6OuG1Tm743ymZ9/wt6vx3txPtYDYy99Db5OdgbysfER2D8PkO8fBbDbBnP8eULQYMJcCBnn9MphLDwBFSwHPR2Gw73ROr12QW6gzRqRzlQT0LTmYJKKWjwEBtRnSunNIWDhsQUlhiS4EqpNAx2Quh5PRATISqbzEBFNuMYq2J8DezQnFxorHeJ0OCIxGO52me3TnCZ163KFXpJW+mrZDFqWzn7tVD+ksIUFYSw/E9m2IwcdPfYXSolIEnW6rKVe7czPzsearDdrh6pbHrjvr82SmZGPvuoOaU+8X4oOuQ6KQmZyjBdeB7QJ0F6WxHN11Am/N+Qhp8Rlw83SFg6O9Lp6/euEH7F13APe8MlNvbwy9R3XHn/9zO5Z+tAqHth7RegHZQZGdgUl3jNWv1Vz0G1C0CDB4AMZqnajMJsAUB3PuK4D3KzAYzh5YyUyLX99fiQ0/btUuR/L+kaJmmXgtwU5Lfz8RWQ13COrFgICoFZIrjztX74NPtWGHhaWl2jFJrt7KVVyHYHeYUgtQXlAGo5cT7AxmFJaV1XgeuVKamZyNlJOpDAiaWWOnrzQFWfhLW82CnEIteK5cbMqfnr7uMJeXY+OiaFw6fUydOxySOvPTW0ux+sv1GkSIgpwCLYJ383TRdq2Siz/62mEYd+sovcJ+IeT1Pnv2W2QkZmlKnd3pXTQPX3cNpPetP4jlH6/BlPsm17javnPVXqTHZ+jOW6+R3TQFqKFkzoAc0k1IdgekZkDShCq/h+aiJRWdpqoHA8JgBIwhQNkJoGQ74DSs3tcpLizGO3/7GLtW74eLh7MGmNKZSmYefPr018hMzqrxdRERNRQDAqJW6KIpQ/Rqq+Qou/tULDxk0rIsPkzpBbDzdIJzvxCY80tksIEGCWY7wN5QcxEqiwlZ3HGaMVkik3cP7zgOLz8Pi1eePX09cHL/Kbz7909QUlSiE3p7juiK4VcNrqovWPT2Mvz89nK4uDvp4K7EYynIyypAucmkuw7SslXqEr7+90+a5jPj6WkX1AHrwObDiIuJ125blcFAJWnLKzU0cnV90u1j9Ur+tmW78NWLP+o5aHdYs1kD5WFXDMC0h6ecUzqU7AbUYs4FTCcBuzoKiw3SBUR2Co4BqD8g2Lx4O/b8fgAB4b5wcv2je4iLu7M2GJBAZ9DEfq2itoOorXYZaqla/iUqIrLYtebiG0YgLzsfCceSkZOeC6eCciC5AHAwwuuaHrD3dYF9qAfsg9xgyq5oe+jrUjN3WgZqeQV46tRjojNJG9vysnLYO1heoGckZSEjKRO71+5Damwako6n4Jf3fsOLM99A9PJdOiBv1ZfrtaDXJ8gbhblF+nhpx+nq6appU/Leld0Fudotuw0S6F4I2e0ylZXXOQROUoUk1Uaupkvw8NG8L/X/AyMDdBdEDvl6V32xHt+8vAiN82vW0IDcgrP/Ot7w0zatG6oeDFSSf8ey8yKNAoiIzhUDAqJWmm5y49wpuP2fN2uqgiw1vN1c4XtRexTf2g3l/QIruprYGWA/KhKlUluQVwav0z2J5T4JBiSfW/KO5Uov0Zkk9UVSbfJzCmvdJ2k2p44k6HsvuH0g/MP9dHpzWOcQve+Tp7/BxkXbkJuRV9V2UwIE2ZWStquVO1NSfCtTnN28XGEqK8OWX7Zf0Dk7SC2C2YxySZ2rI6VIdjLkcb99ugYF2QWag18Z9Gg6lJ+H7rzJAjwlLu2CzgcGN8C+G1BeMT28lvICQGoH7Luf9alS49Lg7Ops+WVO16NkJGde2PkS2XoNQWMfNoJ5AkStlKRVDL9yEIZdMbAqXSO9pAivbtqAvSnJSC+syNd27OOLDuX9Yb82HqnH06q6xLh6umDcLaNx5Z8mWPtLoRZK0mVGXD0YP77xq+bfS8pNJbnSX1pYqgGDHJVkUSpX26UV5/71MXqbvDeFzFyo3hlLHltuLtddCDhVvF7yydQLbgUqwUVuRq7uOlQngbDsSPQY3kUDgENbj+riv650KElhkmnEgdPOvwOUPrfz5TCX7gJMKYBdgNx4+oSKgfJkwHEA4ND7rM8l3+e8zGSL92mtgtkMN8+zTM0maqukvI5FxXViQEDUzOSXdonJpF2PGqMjiDyHk0vFlf9gRwfMHzcBB9JScSi94spmFz9/dL85QNM7tv+2G1kpObpg6jumhxZdEtXn0ukX4/D2Y7owlqvqUgQsbTzT4zP1Cr/sCJxZIC25+9IFKzs9T4OBysFdsjOgRe+nyW6BdC2SFKLKFKXqwcX5kEF7w68ahN8+WavnJVf65d+I7AykJ2Tqv5Xxt12sswlMpvIaQU51ErjI58m5XzDHITC4zYK54FPAdOL0r15TxSa9Qy8Y3OfAcEZ9jyVDLxug7V+lIPvMNC4p/JavTf5dExGdKwYERM1EZgT8cvgQVh4/hoLSUs3nnxDVCROjOsPjHMaLn40sYnoEBOpxZsHjpbdd3GivQ22DFNje++osbTEqA/Ek1UwW8IHt/GEqLa/qpmMp8A0I89VORHKlXbr2SJ9+aT8qtQOyVSWLdOkwJEGBBAOS5Tbw0r4XfM7XzblSF/wyP0F2Kior/7wCvHDtg5ej78U9dVfNw8dddwwszSWQQECmEAdEXPgkbw38XaYADgNgLl4DmGIBgzMMjoMBx6EwaGHx2cluzaafoxF74JTWZMguX8WuR56mXg2/ciA6D2A9EJFFbDtaLwYERM0gNjsLT65ZiZNZWXC1d4CjvVGnJr8dvQUbT8Vi3uixVfMBiFoaWTBPvmMcJswYo2015Wq/9ML/4fVf9Ip/9TQgIVfe5fbuw7vgkpsuwnuPfIr4w4m6AJe2nvlZFf3zJZiQjjmymJX2t10HR2HghAsPCCT1aPqTN2DszSOx5/c/Zh9IMb6kCFU+RhbY8jVU7mBUkkV2Wnw6QjsFawvSxmKwj4TB/rbz/nxJgZKJ1p/981scij6mwVXl93H8raNw7V+v5BwCIjovDAiImpgsLt7cukmDgUhPLxhPp1f4OLugxFSGnUlJ+HzvLtwzaKi1T5WoXnIlv3JHQGpX1ny9AUknUrQot7JOQK76y20Bkf4YPKmfLmLvf/NOLFuwGgc2HYZvkBfsHSoeK8PIUuPStRXooIl9ccs/roOLW+MExrIwjugapkddxt82Goe2HcWBTYc0QJDe/pIOJQGKd5A3bnp06gXPRWhsUp/x4Nt36y5B/OEkTc3qNKCj5ZanREQNxICAqIkdykjH/tRUBLi6VgUDlRyN9vBwdMTqE8dxc6++3CWgVkOCgFnP3IQFT3yprW+lbkBSfionD985/5aqot5O/TrokZ2Wo5N8PSV1KCkLx3af1Pvb9QhHeJfQZr+6LS1I7/3PLKxZuAHrftiCnLRcGB3sMPr64Rh700i06xGBlki+T3JuLfX8iKj1YUBA1MROZWfrFOFAV8u51h6OTkgvKkBCXi4DAmpVeo/qjse+nIOtv+7Qxb2kDnUZKGk/fSy2spUAwet0wx6XqGCERgXD2iQouGz2eEyYOQb52QVaZNxYuxRE1IKwhqBeDAiImpiDTF01AOVmM4wWroCWmcthBzs4nrF7QNQa+AR6aW1BaycdkM5sU0pE1FZwBULUxHoFBmq9QGZR7eFOIrOwEJFeXmjnzRxgIiKiJsHBZPViQEDUxHxdXLW1aH5pKbKKiiomCEsPdrMZqfn5mg88pVt32HOHgIiIqEkYmuiwFUwZImoG0/v2R35pCVYcO4aT2VkaBJhhhqeTM2b16YtLO3aq9TkSOBQVFMNotNMOKERERERNgQEBUTOQqcQPDBmOK7t0w6ZTccgtKYa/qxsuiohEsHvN4ksZ2iRFmmu/2YS4mATIANOugzvh4utHoOeIrlb7GoiIiFotFhXXiwEBUTORXYGOPr561EV2Bb566Ses+PR3DQzcvVxhNpmxbelO7P39IKY9fDUuvmFEs543ERER2TYGBEQtyJ7fD2DV5+vg5ukCD1/3qtu9AjyRFp+Bb1/9GV2HdEJw+0CrnicREVFrojn/jXxF3wDbwSpGohZkw09bUVpSWiMYqCSTSHMz8rF1yU6rnBsRERHZJu4QELUgsQfi4exqeSiSDH2yMxqQcDQJLY0EMUnHU3RSbXD7ABZBExERtSIMCIhaECcXR5jKTHXeX15u1se0FHKuKz9fhzVfbUBaQoYWWPkEe2HUtcNx6fTRcHB0sPYpEhER0VkwICBqQQaM640Te2NRbiqHnbFmRl9JUSns7AwtptOQFEB//q/vsHrhBtg7GOHpJ2lOBmQmZ+Oblxch8VgSZj59I4z2RmufKhERtXXsMlQv1hAQtSDDrxqEwEh/JB5PQWlxadXtMo8gJTYVHfu0Q98xPev8fJPJhJhtR7F1yQ7s3xijqTxN5eCWI1j//Ratd5BzdnZzhrObEwLC/eAd6IlNP0drkTQRERG1bNwhIGpB/MP8cPdLM/DhP75AwtHkiqnGZjPsHe3RbWhn3PGvm+vMz9+3IQbfvfozTh1K1N0Ee0ejdiO68p6JGDK5f6OfqwQdxUUlCIjwq3Wfm6crslKyseXX7eh3Sa9Gf20iIqJzwh2CejEgIGphZBfg8a/mYNfqfbq4l9ShTv07oNuQTnWm3xzYfBjv/P1j5GXmazciJ1dHlBaV6k7DR49/qY9p7KAgNS4dDo51/wiRwCX5ZFqjviYRAYV5hdi9Zj/SE7Pg4u6M3qO66cUEIqqbtBxt9LajZtgMBgRELZAspgdP6q/H2cguws9vL0NeRh5COwXrADR9DhdHhHQI1KBg0VtL0X9cr0Yt8vX0dUdZaVmd90vKkzymucggt+QTqXpO/mG+cHF3abbXJmousjP39b8XIT0hU3cP5d+/m5crRl03HFP/chnsHfhrnYjOHX9yELVy8UeScHzPSXgHeVUFA9X5BXsj6UQKDkcfQ4/hjVeQ3G9cb2z+ZTuKC0tqdT4qKS7VFqQDJ/RFU5MF0ZZftuO3T9ci/nCSBgYePm4YftVgTLp9LFw9mjcwkDoOc7mZCzNqsMyUbGQmVVztD+4QaPHfcWVa4IInFuq/ucBIP32PSeexnLQcLP1wJYz2drj2wSua/fyJqPXjbyyiVi4/Kx+lJWXwrKO2wMHZAWUlJuRnFzTq60pxc/dhXbRw2DvAE+7ebjq2MT+rQOsHugzp1CwBwfKP1+gEZ1OpCV7+nrCzt9NzkF2R43tjce+rszRgkSLonav2oTC3EB16R2DgpX318fUFGjFbj2D9j1txbOcJ2Nkb0efiHrjo6sEIjQqu9fgjO4/j9282YffvB7RLVLvuYRg5dRgGTewLOzv2b6DapFHAoreX6ftSFvn29kZ06B2JyXeMRa+R3Wu9H5ctWIWCnMIaO4HSecw70EvvX/v1Roy9eRR8Ar2s9BURUWvFgIColfP094CjkwOKC4ot5vQXF5RoUODp59GoryuvedeLt+HL577HztX7dGCapFO6ujtj8GX9cdOjU+HiZnnIWmNJi0/Hz+8sg9FoRGCEf9Xtzq5OKC50w/71Mfjx9SXYtWYvDmw6hJLCUj1HGfDmG+yDKfdPxpT7JteqzZDF1a//W6GLNfm+Sgclc3k5fnl3OTb8sAWznr0JfUb3qHr8ll934JOnvkJedgHcPF207kO6PB3YfARHdx7HtEemMCigGlLi0vCfe/+H+MOJ+m9TFvHSFUzqgU7uP4VZz96oQWul9IQMHNl5Al4BnhZ3ECS4lfTAAxsPYcTVg5v5qyFq+VhDUD8GBEStnHQS6jIoCjtX7dXuPjLRuPrCNiMpE+16RGhhcmPz8HHH7OdvQ+LxZBzfHau3RfYIR3jnEDSHbct2IzczH6FRQZaHvJWX46sXf9BuSAYY4OzhAqOdQVOaJAdbghn5Hl331ytrfK4syiQYkEAhrNrXIo+VicwfP/mVFn7LIkzSPb6Y/51e4Q2rduVW7svNzMOqL9ej6+BOGDC+TzN8R6i1WPLBSsQfSdT3bmVA6ujsoClukuL37Ss/o/eo7lVdxeT9VV5mgn0dtTEShBpOP46I6FzxkhVRKycL0Kv+PAm+IT66wMjLykdZSRnycwq0vsDNy02LDZtyQFhIhyC9KilHcwUDIis5S/+s6+p7SUGxfh/ke+Ts7gyjDHszGHSRJQFDYV4xfvtkre40VCe7AMWFxfAJqpl6Ic8T1C4AGYmZ2LZ0l962belOZKfm6PyFM6/cSsAk05zX/7ilkb9yas0kUIxevhse3m61/l3Ke8g/1BcpsWnYuz6m6nafIG+4erqiILfQ4nNKICDpcgHhvk1+/kStuu1oYx82ggEBkQ3o0CsS971+h/b8LyksQVpCBgrzitBjWBf86eUZtfKRbYWLFAyf7rRyJsnjz8nI1x/YUnx55mJd5jTInZnJWdjz+8Ea9x3ecbzOdKfKCdKxB07pn4nHkk+nIVn+cSqFoif3VTyWSGSn5Valolni4OSghekSaFaSnYMhlw3QWiCpGapOHispRVLbIvNKiIhaTMrQiRMn8Mwzz2DlypVISkpCaGgobr31Vjz22GNwdLRc/EhEFxYUPPDf2ZpukJOWq60IJd2lro4ltqDP6O6aeiGLJC1qrqa0tEw7/kgxsOUdBAMMBjtdTEmhcXVy1Va6t9RFAhC5Giu0lauFgKSSqawcDk62lZ0pX/+RHcd1eJ50tpGUKNkhoYaROhOp95HWvDLd+0yyqyT5P66eNdODJs26BEe2H9Pvvex4SbBZVlymOw6yg3Dz/01ldysiOi9N9pPj4MGD2v7vnXfeQadOnbB3717Mnj0b+fn5eOmll5rqZYnaNFn8S/qOHG1B+16R2sVn3fdbUFZqgqefu34PivKLdZdEFkylhaUaGBgdahcOm83lGjD4BHvXuE9yt5d+tEofc2ZAJelYshvQZWCUftx1SCes+Gyt7szI7Icar1FuRlF+EQZcOgq2QtLSPn3mG60ZKSmqyFeX4HPw5P64/m9XNXkhuS2Qxbt06JKZAu4+brXeY5nJ2do5qNdFNdsES13K/W/eqS12N/20Dfk5hbB3MGLk1KEYf+torRUiojrIhZt6Lt6cl8Z+PlsMCCZNmqRHpY4dOyImJgZvvfUWAwIiahSykLpt3vWaOiQLJEnfkfwdqRHoPrSzplD8+OavGiDIBYrqOwWVi9nQjkHaQrW6kdcMwaZF25B8MlW7F1WmA0kwkHQyFRFdQ9FvbC+9TabERvVrj0PbjsI/3E87HOljS03aSUa6GUmrUluQnpiJ/z74ERKOJMIv1BfObr76+zA3Iw+rvlivaWp3vXCbTe9KNRaZkXF4+zHtzuUXIt9LJ31/SZG6pLtNmjVW63/O5OnrgakPXI4r7rpUC+rl86SZABHRhWjWvcXs7Gz4+tZd8FRcXKxHpZycP/IniYgskcX/zY9OxYQZY3RRLouqkI5B2lVJCqyP7T6J6GW7NC3I3tFB+7ZLDrZcvZeJxjf8/epaw8siuoZhxtM34tOnv0bCsWRd4GqakJ0BEV1CddFbeSVcUoZmv3Ab/jf3M20xKvMQ5JqRfE5ghB+mP3mDxbkFrZEUW0swIN/fymJYWft7+Xvoleodv+3B0Z0nmqSjla3p2Kcd7n5pOr566SeciklAWkKZvr+kOcDEmZdg3C2jzvq+9wth+i1RQ7HtaAsJCI4cOYLXX3+93t2B+fPn46mnnmquUyIiGyKdWfyv8q3V5eev79ytg8t+++x35KTmoLTMrB2GJOXn5sem1pgnUN2Acb3RoVcEti7ZqX3hJeWo2+BO6D+uF1zOaP0or/33D+7F/o2HNCiRHHAZHiWtRpt7UrLsSpw6lKgdlTr0idQryo1l0+JoOLk6WexYJfnucnV795r9DAgaqNuQznjs8wd1pyAjKUuLjLsP7VTr/UVE1OICgrlz5+L555+v9zEHDhxAt27dqj6Oj4/X9KHrr79e6wjq8uijj2LOnDk1dggiIpgTSdQcJOde2mnKgk9SYmxlkJYMfZr1zE244W9XITYmAYU5hVpsHRjpf9bUFsn1lp2HhpBFckhUkA6aOnU4EYW7TuhV3H6X9KzqJd+UstNy8PVLP+mQuILTrVbla79oyhBcde/ECz4H2SEpyC60OPxOVHwvzXW2xaS63zcSGBARtaqA4KGHHsLMmTPrfYzUC1RKSEjAJZdcghEjRuDdd9+t9/OcnJz0IKLmI3nyP725BLvX7kdRQbEuUCK6hWHy7WNtapiW5GN3b8KF18ZF27Dw+R+0paQMh5PJxmu/3ogOvdvpROfqk5QbmyzC//vgh4jZelTTdySlR9tWpuXil/d+Q1ZqDm7/500XFOTJgj8g0l9TsGqWYFeQ15PWOJLyQkRENh4QBAQE6NEQsjMgwcDAgQPx4Ycf2swVRyJbIeklr/35f3pVWxaSUihaVlyKY7tOaE78bU+UYPiVg6x9mi2etIH87NlvtY1kaKegqp91MhFZ6gree+RTPLLgviZrCbl58XZNO5FuSXYGA8pKTDr11jfYG/kujti2ZCdGTR2q7UEvhBRHy9cjgWNl8XQlmecgrV8HTbCdIJKIbIehvOJo7Oe0FU1WQyDBwJgxY9CuXTutG0hNTa26LzjYNgrsiFq75QtWazAQGvVHkaikhEjXHtk5+OH1X7SbTltoJSkTjY/vPqndgST//1yu6K/9ZqN+flin4BppSI5ODgiI8MeJPbHYtz6mVjejxvLbJ2uQlZyNjMQsvVJvMBq0diCwnX9Fbn9yFnas3HPBAcGwKwdi56q9mpYkAYEEANLSVeZeSPvWqfdMRGBkwy4YNbXC/CLsWXtA0+CkE0+vkd3gH8ZZCUREzRoQLF++XAuJ5QgPD69xn6WpokTUvGQBu3XpTl3UWSoS9QvxQUpcOvb+fgCDJ/WHrSorLcMv763QRX2WtHwsN2shsCzer3voSvgEetX7+dLOdM+6gzpsylJNghQwl5WZ9Ap+UwQEBzYfxr4NMdpGVRbpBgejtq2UIED+jjv0jtS2qZI+dKGcXJxw10vTseyj1djw4xZ9TtkN6dCnHcbdPApDLx+AlmD7b7u1e09qXHrFJOvTsxJGXTsMU/9yGYd3EbVF8oOgsZefZtiMJvupKHUGZ6s1ICLrkd7xMkzLtY4e5vZSPGo2a/65rZKLE5L3v/LzdVpMLdN2ZfEs7UrX/7BFd0kefPuuWlOQazxHuVnrBQxnSYmUicWNTa7Of/vKIv06jA72eghZpNvbGzW1J+l4iu76SPpQY5Ddoqv/PAkTZ12CtPgMbTcqBdotJSVUAqQP//EFCvOLte2rvI8laJNdjKUfrNTWntfNudLap0lEzUwu1zT2hBQDbEfL+AlORM1OUklksVQ5oOtM0joTp6+stkbSdUcKpeWQdpiWnNgXpwt/d193+IX66PdDAgLpzhPcIVBrKTb8uLXe15HdlQ69IrWzjyWSgqTzC7qGorFJz/+4gwlV6U2yM1DFYNCvJzs1RwOF/uN6N+pry25EeOcQBLcPPGswIEXPR3Ye10NSeZqKBEbLP16NvOwCBLcPqAhqTwdIMvlXUuHWfrtJd0+IiOgPDAiI2ijJMe9zcU/kpOed7hBTU2ZyNrwCPNF7VPdmPS8JRPauO4CvXvwRnzzzNZYtWK0TchtKFpxfPv8DnrjmRfznnvfwn3vexZPXvIDP/vltrZaYO1fu1em6Hj61dwDkqrosKGVi8dmMnDpUr5TnpNdMy5Hva0psqtYRVE42bkzyd1RSVAr/CD/9GiS4k8JmuSIuwYGpVA4Teo3siqi+7dHciguL8f3rv2De1c/jhRlv6PHkNS9i8bvLUVpS2uivJylfh7Ydg5efh8X0LSmcz8vM1xQrImpjJF29KY7z8Oabb6J9+/ZwdnbG0KFDsWXLljof+9FHH+nPs+qHfN6ZF0PmzZuHkJAQuLi4YPz48Th8+PA5nRMTKYnaMOmxf3DzIcQfTdKaASm+lAWkLDRlUTnp9rE63Ks5r+pLd6ODWw7rxGHdjzUbtHXm9X+7Snvqn60e4IP/+xzblu7UNqNB7fyr0qOk8DbtVDrueXWWFvsKSQ2SK+l1zSOQ/P/M1Bz9YVvfzAJpz3rp9DFY/vEa5GbmaVqNyVSO4oJibcM58+lpTTKgTOoWZGCa2VSOdj0ikHwiBZkpOSgtKtXvnexeePh645r7LzvrzIXGpn8Xj32BLb/sgIu7s850kF+eEjR9++pipMSmYcbT0xo11ai4sETTqOR9bIns/ujjCizvihERNbWFCxfqzK23335bg4FXX30VEydORExMDAIDAy1+jqenp95f6cyf5y+88AJee+01LFiwAB06dMDjjz+uz7l///5awUNdGBAQtWGR3cJw76u3Y+GLP+Lk3jikJ2TCaG+n7UcnzhyDS24a2WznIovujx7/Ent+P6C5/JWLOrnSLUPTPv/Xd9pWs8ewLnU+x951B/Wqv5y/LEIrSbqIs7uzpg/9+Mav+sNUAo6kEykoLzPVueAvKihBZLuAsy6m5f5r/3oFugyK0hQjSUVycHLQqcYjrhqsaTVNQV4vIMIP6fEZCGoXUDFwrV0AivOLNSCQ1Jgew7oisnvNxg7NYdfqfYhevltTsar/XfiH+SI/uwCbfo7G0CsG1vv3ea5kR8vN0xWFuYU1XrOS7KZIUCDnRERtTAspKn755Zd1SO+sWbP0YwkMFi9ejA8++ECH/9b1O6auDp3y+0uCin/84x+4+uqr9baPP/4YQUFB+OGHH3DjjTc26LwYEBC1cR37tMPcj+/H0V0ntG2lLMQ7D+zY7K1GpZf/gU2HdbFW/QqvLOAkQEg4moTVC9fXu4CMXrZLrxDLYlBSjyQdSNJ2nNyc9HnS4zPxxfzv4RXgoT/IJb9fcuztHR209Wp1knpjKi1r8BwG+YHdZ3QPPZqLTB++7M7x+OyZb/SKuwRMkuokRc4S3Ln7uOOy2eOafXdAbP5luwZzlhbmUpcidR1bl+xo1IBA3rMSZPzy7nJ4+HnUmKosvzTT4tO1pWzPi7o22msSEeXk5DRo0G5JSQmio6Px6KOPVt0mu6SS4rNx48Y6nz8vL0/b+MvO/YABA/Cvf/0LPXtWdK07fvw4kpKS9DkqeXl56e6DPCcDAiJqMFkwdurXAehnvXM4tO2o5sD7u/taPD/p9HNwyxGtEagrWJFFpr29PZJj05CekKGLeln4S+qM/CCV55fnCe8cWpXWImk9slMgi2jJ9a/sMiRpRl2HdMLwq5puMFtORq7uaEhQIt2e+o7pcc698kdeM0TPffF7v2lKlCzC5euVacVTH7wcvUY2Xg2IfA+llacEW3KlXwKSuqSdytDhaHWR1p+ys9HYZGfrcPRRHIo+Bld3Z7i4u2i9gvx9egV44cZHroGDY93nRUR0riIiImp8/MQTT+DJJ5+s9bi0tDS9aCVX76uTjw8ePGjxubt27aq7B3369EF2drbO9hoxYgT27dunbf0lGKh8jjOfs/K+hmBAQEQtgrbltKs7n18W6vIYqXGoi+SpZyRlolhSQ+wMmrYjzye55ZJGY7AzwNHFscaitPOAjji8/ThKS8r0c2VHQRbnl9x4Ea554DJNQWlscrV67dcb8eN/lyArJUfKGPR1f3jDTV9X2npamg1hiXx9o68bjiGXDcCBTYc0Hcc7wFODmcZa+Mr5bvllO1Z89jtOHU7Uc/X098DIa4bi0ukX15paLLwDPXFyf1ydzym7L5Li0xTF8ve9fgd++3QtNv60DQXZBdplacTVQzD+1lHo0Ltdo78mEbVtcXFxmudfydLuwPkaPny4HpUkGOjevTveeecdPPPMM432OgwIiKhFCIkK0hpiuaovC/kz5WUVoH3P8HrboIZ3CdE0IekOVP3qdUWIIfMCoP35zww0AiP9NDi4+9/TUW4ya/qQFsE2ka1LduKL577X/5f2mBU7GGYtqpYr/XLuV9x96Tk9pyzK+49t3NailZZ+uArfvfaL1ltIICBb3DmpOfj+P4txcl8s7npxeq3dgkET+mHX6v0666J6ECaK8ot0srEUYzcFCQqmPnA5rrjrUuRk5FVNVSaitstgrjga+zmFBAPVA4K6+Pv7w2g0Ijk5ucbt8nFdNQJncnBwQP/+/XXwr6j8PHkO6TJU/Tn79Wv4tj/bjhJRi9D34h6a5pIiaS9ntEGVibvSoWbUtcPrzYfPTc/ThamkzZRUtt8sL9dJwRIWyOJfhnWdSW6XV5Tdgp4jujZpMCDbxcsWrNKiZqmNqNwJkB0NmYrs5OyIVV+uQ352PloCSaeSNqGSjy9/P7JjInUB/uF+Wry9Y+U+bF68vdbnDbi0D7oN6aS1DdJZSP5O5e9Cgh4ZaNZndPcmb2kr7wX/UF8GA0T0R1FxYx/nwNHREQMHDsSKFSuqbpOfi/Jx9V2As/0O2bNnT9XiX7oKSVBQ/TmlpmHz5s0Nfk7BgICIWgRZvM14ahp8g7yRcCRRF41SE5B4LEkX+tJyVPLl65OTKXninpquIgtuSZ+RgWESQ9gZDTA6GrXlZO2Ao1AHh8kuQVNLOJKE+MOJmtZjiZy79NOP2XoULYEUaktNhQQr1ZWe/v7mZeXprAFZ6FcnV+Vlx0VmNEiAlng0CQlHK66KSfeqO5+7tVm+30RELcmcOXPw3nvvaYvQAwcO4J577kF+fn5V16Hp06fXKDp++umnsWzZMhw7dgzbt2/HrbfeipMnT+LOO+/U++Ui2YMPPohnn30WP/30kwYL8hyhoaGYMmVKg8+LP42JqMWQK/R/++BenR4saTWS+9+hdyRGThmCQRP7nTWv3sPbDbkZubpYlSBA0oN0h6CkTIMAU0EJyoylWnQqBcQ+QV66qJWr85IP3xyk9aXUQkheuyWyWyFpS/K1twQ6FE5mNdidTrwym5F6Kl2v/Ov31VSuwcuTU1/EZbPHY/yto6t2cSR15475tyAlLg0n95/S2+XvU2ZeEBE1J/mp1Nj91gzn8TnTpk1DamqqDhKTol9J61myZElVUXBsbGyN+SyZmZnaplQe6+PjozsMGzZsQI8ef3S0e/jhhzWouOuuu5CVlYWRI0fqczZ0BoFgQEBELYr07L/2wSv0ONtAsDNJB6LCvGLYOxo1rUWCgIKcwophkqc3BeyMxoqdg9w4ZCRkaGvO0dcPw+DJzdNiSbrzyLnJ1GRLXXiK8org5OqIwMiKoWrWJl16qk/jzEjMROKxZP17cXJ1qqr5KMovxtf/XqQ7A6OuHVbjOQIj/PUgIiLgvvvu08OS1atX1/j4lVde0aM+8vNYdhLkOF9MGSKiFutcgoHiwmLsXX8Q7t6uWjxcUlTRUlRaZMrVFrnCbWdvpznlMudAnlumCd/y+LW4+bFrtdCrOXj5e2p+vbTB1GnM1cjVdrki375nhKbgfPnc9/jk6a+x/JM1mj5lDZLrL0XBEljJ+UnbUbkuVllELLdJzYUEOhI4LF2wWtt8EhG1KC2ghqAl4w4BEVmVFP/uWbsf+zbEaJpMaMcgDJ7UD4GRAef0PPGHk5CdkoPIHuH6p0w3LsqrXJiaT7cgBbyDvNCuZ7gGCskn0zSPvbmCgUpX3TNRU2iO7z6pE5SdT19pz8su0BoKqWn474MfaWtOTdcB8Mv/VuCmuddgyOT+zXquMqSu78U9dYiYdG+SvyMHJ3uUm0ya/iTBlW+wd9VE6JSTqTi+JxZdBkY163kSEdH5Y0BARFYjV8Pf/fvHOLrzhF6ttzMYNOd/6UerNGXo4htGNPi55PMkxUgW98EdArW4OGbrEd0ZkH788qfsGMhVbNkdkEBAFto56XlobnJF/S//nY2VX6yr6JWfUwgHZ0eMv3IQjm4/juP74zTFxul0u069Mn8qHZ889RV8Q7wrhsg1E9ldmfXsjXD1dNHZCRK4yPda6jmke09Yl5Cq1Cd7B6PWR0irUSKiFqUpruibYTMYEBCRVcii8oPHPkfMtqMIivCv6lUvQ69kyvDCF37U1pbSBrQhQqOC4enngdzMPC1alUWqtMqUOgIp1JX0HFnEyhV5fX1Tuf4slxQja5DUoWvuv0znDUhAIFfaD0cfw5qvNmo70spg4I9ZCf6IP5KE37/Z1KwBQWUdwcynb0T/cb3x7zvegtHBqF2SZCZE9bQuqYuQr0P+3oiIqPVgDQERWYV0ppEJwZLTX31wlVzJ9wvzRVFBEVYvXN/g53P1cMGIqwfrYDIZfCWLf68AL00NkvSWstIyDRgqp+pmJmfrx33H9IQ1ye6FBAdOLk44tO2Ynqelyb+y8JYZALvX7tevyRr6jO6BQZP6VUxz9nCpEQzIOcnUZQngpDCciKhFkeYITXHYCO4QEJFVHNl+DGXFpdpx50yy0JR0lEPbjmrnIBe3hrVOm3znOO11v2PlHsCcBaODXdWVa3cvNx2sJSkvUqArrT2vuneiLsZbCllU11dGLbMUKoetGdG8dQ+Vfy/X/fUKJB1LRvzRJA1QZCdD6gqkc1NY5xBMffDyZj8vIqIGsZ31e6NjQEBEVqHDwerpImSws4NZ6gLOGCJWHwkc7n7pNuxYsRebF0dr3n1kt3DkZecjJzUHqXFpunMgOxATZozBJTdehJZEFtSyQ1JWatJ8/DPJorv7sC66q2Atkpr14Dt3Y8VnaytmRRSUaJvUUdcOxbhbRmu6ExERtS4MCIjIKsK7VCx+K/vYn0mm48qgMks7CPWRxbJ04qnejUeKjU8dSkDqqQy9ot15QIeqtpktSb+xvXRBLUO/QjoEVg0DE7mZ+VpLMGpq8wxQq48UPN80dyqueeBynQTt6ulqMc2JiKilMMg1qEbeITDY0I4DAwIisoreo7ojNCpI24XK4lcWuzUWvwYDRl877JxmEdRFniOia5geLZnk5U9/ahren/sZ4o8kwtnNWXc0CvIKderyJTeOxOBmbjtaHwkCzicQOL43Flt+2Y6TB05pgNZndE9tNStpYkRE1PwYEBCRVcgV+lnP3IR3/rYACUeTtLBYFr2F+cWaLjPmxosw9IoBaGt6DOuCh96/B+t/3IroZbt0B6XLoI64aMoQ7fJTfaR9ayM7NUs/XIVFby9Dfk4BHJ0ctNvTrlX7sPKL33H3SzMQ3jnE2qdJRDaJfUfrYzDLT+gWKicnB15eXsjOzoanZ8sp/COixpMWn669+KOX79ZpwxFdQzH8qsHa/ac1L36pNumQ9N8HP9RdD58gr6rdH6mZSDqejPa9IvF/n//FqjUSRGRb67XKc/vrIwvg5NS4baaLiwvwyvMzWuTXfa64Q0BEVuUf5ocr75moB9m2NV9v0OnGYZ1qFh7LjpBMpo47GI89vx/EgHG9rXaORGSbWENQP15+IyKiJldaUoojO07A3cvyFToZJCfpQyf2xDb7uRERtXXcISAimyP56TtW7EHaqQytTeh5UVdEdgtrlAJlOj8Vyalyia6exzTj+RBRG8MSgnoxICCiVksGjCUcSdIORe17hsPF3QXRy3fhy+d/QEZCZsXParMZP7/thAHj++CWx69r8JAzalxSQNypfwedEWFpGJykEhnl77FXhFXOj4hsHSOC+jAgIKJWJycjFz++8Su2Ld2lw7qkX793oBe6Do7CzhV7UVxUgsB2AZqbLn0T8rMKsP6HrRo43P7Pm619+m3WqKnDsG9dDDKTs+Ed6Fm1YyMTmlPi0tCuezh6jepu7dMkImpzWENARK1KYV4h3nnoY6z4bJ1OOw6I8IdfiI8OMlv87m9IOJ6MwEj/qkm/suh093GDl7+HtvE8dTjR2l9CmyWdo666dyLKy8sRfzhRB7AlHktG0vEUnYB8x/ybdSeBiKjRlTfRYSO4Q0BErcqWX3bgwObDCGoXoIWoFYzwDvBE/KFEDRIK84rg5lmzeFWCgvgjSTiw6RB73VuJBGeT7xyHrkM6YdPP0YiLif9jMNnkfvD09bD2KRIRtUkMCIioVdm4aBvsjIZqwUAFCQQkdchsKkd2ak6tgEAWozL9uLS4rJnPmM78e4jq214PIqLmwraj9WPKEBG1KpnJWXBycap1u72DvQYJ5vJylJbUXvTLxF/pcCPpRERERPQHBgRE1Kr4BHmjpLCk1u12dga9z1xe+5KNFBannspAUPtA9BnNolUiIqLqGBAQUasy9PKBMJnKK674n8HZ3Rmuni6aNpR8MhW5mXna0UYKWD393HHLY9fC0dnRKudNRETUUrGGgIhalaGXD8DmxdE4uOUIPP08tFhYAoCc9FwtJp50xzhtX7n+hy3ISMqCg6M9xtx4EcZMu0hvP18psanITMmBm5crwjoFc8gZEVFrm45YMSGxcZ/TRjAgIKJWxdXDBfe8MhPfvrpYpxEnn0jRxblXgCcmzByDy2aPh4OjA8bfNhqFuYVwcHK4oF2B2IPx+Om/S3Bg02GUFJVogNG+VyQuv+tS9BzRtVG/NiIiahosKq4fAwIianVk0u3tz96EtHsnajqQTLjt0DsSbl5uVY+xs7Or8fH5kLaYb9z3P6ScSod3gBc8fN1RWlSKg1sOIy4mAXc+dwv6XtyzEb4iIiIi62FAQEStln+orx5NZdFby5ASl46wzsEaYAjZIXDxcNaBWt+9uhi9LuoGo33FEDQiImqp5HJ+Y1/SN8NWsKiYiMiCtPh07N8YowPPKoOBSpKi5Bfqi4SjyYjZesRq50hERNQYuENARGRBVmoOSopK4eZtOe1IJuyaSsuQnZbb7OdGRETnxlBecTT2c9oK7hAQEVkg3YTsHe0tzjwQ0vbUzt6ojyMiImrNGBAQEVkQ3D4Qnfp3QFZKtg42O5O0NA2M8EO3IZ2scn5ERESNhQEBEZEFUicgrUVl1oHUChTlF2tgIGlESSdSYbS3wxV3T+CgMyIiavUYEBAR1aHroCjc9eJ0dOgVoYPP4g8nISMxU3cGbpt3A4ZfNcjap0hEROfSZKixDxvBomIionrI8LFuQzvhyI4Tmj4kNQNdBkXB0cnB2qdGREQNxUnF9WJAQER0FkajUXcLiIiIbFGTpgxdddVViIyMhLOzM0JCQnDbbbchISGhKV+SiIiIiMjyDkFjHzaiSQOCSy65BF999RViYmLw7bff4ujRo7juuuua8iWJiIiIiKilpAz99a9/rfr/du3aYe7cuZgyZQpKS0vh4MD8WyIiIiJqBk1RBGyGzWi2GoKMjAx89tlnGDFiRJ3BQHFxsR6VcnJymuv0iKiZpMWnY+NP27Bt6S4UFRQhvEsohl81GP3H9dJcfSIiIrKxtqOPPPII3Nzc4Ofnh9jYWPz44491Pnb+/Pnw8vKqOiIiIpr69IioGR3fG4sXb/8vvvvPYiSfTEVeVgF2rtqLd/72MT59+huYykzWPkUiIrJBBnPTHG02IJC0HxnYU99x8ODBqsf//e9/x44dO7Bs2TK9+jd9+nSLUz/Fo48+iuzs7KojLi7uwr46ImoxSktKsWDel0iNTUNoVDACIvzgG+yt/+/h44bfv9uM9T9ssfZpEhERtTnnnDL00EMPYebMmfU+pmPHjlX/7+/vr0eXLl3QvXt3veq/adMmDB8+vNbnOTk56UFEtmfvuoM4dThJAwE7Y81rEdLbPycjD2u/2YRR1w7TCwtERESNh0UEjRoQBAQE6HE+ysvL9c/qdQJE1DbIlF+zqRyOzo4W73f3dkPyiRTkZubB09ej2c+PiIiorWqyouLNmzdj69atGDlyJHx8fLTl6OOPP46oqCiLuwNEZNtkV0DSBeWwtANgLi+Hwc4Aoz0Li4mIqJFxUrF1iopdXV3x3XffYdy4cejatSvuuOMO9OnTB2vWrGFaEFEb1HlAB90dKMwrsnh/bmY+Og3oCFcPl2Y/NyIiaiMZQ4192Igm2yHo3bs3Vq5c2VRPT0StTKf+HdB1SBR2r94PY6QRTi4VqUPmcjPSEzP14zE3jGD9ABERka3OISCitk0W+jOfuQn/e+RTxGw7ClNpGQx2dhoQePi64ZoHLkef0T2sfZpERGSD5FKToZFTfAywHQwIiKjZ+AR64cF37sK+9THYtyFG04dCOgRi8KR+CIw8v2YFRERE1MIHkxERVefg6IB+l/TCLY9dizvn34LL77qUwQAREbWZGoI333wT7du3h7OzM4YOHYotW+qewfPee+9h1KhR2qBHjvHjx9d6vIwDOHMm2KRJk87pnBgQEBERERE1g4ULF2LOnDl44oknsH37dvTt2xcTJ05ESkqKxcevXr0aN910E1atWoWNGzfqPK8JEyYgPj6+xuMkAEhMTKw6vvjii3M6LwYERERERNQ22o429nGOXn75ZcyePRuzZs1Cjx498Pbbb2tnzg8++MDi4z/77DPce++96NevH7p164b//e9/OtdrxYoVNR4nHTyDg4OrDtlNOBcMCIiIiIiIzlNOTk6No64BvCUlJYiOjta0n0p2dnb6sVz9b4iCggKUlpbC19e31k5CYGCgtvq/5557kJ6efk5fAwMCIiIiIrJxTVdEEBERAS8vr6pj/vz5Fs8gLS0NJpMJQUFBNW6Xj5OSkhr0VTzyyCMIDQ2tEVRIutDHH3+suwbPP/+8zvyaPHmyvlZDscsQEREREdm28tNHYz8ngLi4OHh6elbd3FQDeJ977jl8+eWXuhsgBcmVbrzxxhpzwGQQcFRUlD5OBgQ3BHcIiIiIiIjOkwQD1Y+6AgJ/f38YjUYkJyfXuF0+lrz/+rz00ksaECxbtkwX/PXp2LGjvtaRI0ca/DVwh4CIiBokNzMP25buwv4NMSgpLkW7nuEYdvlAhEbV/4uMiIgAR0dHDBw4UFN7pkyZordVFgjfd999dX7eCy+8gH/+859YunQpBg0adNbXOXXqlNYQhISENPjcGBAQEdFZnTxwCu/+/RMkHk2Cwc4AO6Mddq/Zh9VfrMd1D12J0dcNt/YpEhG1eHPmzMGMGTN0YT9kyBC8+uqryM/P165DYvr06QgLC6uqQ5CagHnz5uHzzz/X2QWVtQbu7u565OXl4amnnsK1116ruwxHjx7Fww8/jE6dOmk704ZiQEBERPUqKijG+3M/Q8LRJJ0sbbQ36u1msxlp8RlY+MKPCO4QiC4Do6x9qkRElp1nm9B6ncfzTZs2DampqbrIl8W9tBNdsmRJVaFxbGysdh6q9NZbb2l3ouuuu67G88gcgyeffFJTkHbv3o0FCxYgKytLC45lTsEzzzxzTrUMDAiIiKheu1btRfyRRAS1C6gKBoRMw/QP80X8kSSs+24zAwIiogaQ9KC6UoSkELi6EydO1PtcLi4umkp0oRgQEBFRvY7tjkW5qRwOjrV/ZUhQ4Orhgv2bDumOgXxMRNTitJAdgpaKXYaIiKhestCvj8QAEjAQEVHrxICAiIjqFdk9DAY7O5SVWh5yU5BTiG5DOnF3gIja4lwym8CAgIiI6jVgfB8EtQ9A8snUGjsBsnOQkZQFJzcnjLxmqFXPkYioQSlDjX3YCAYERERUL6kRuONfNyMg3Fc7DSWdSEVqXLoWE8svxGvuvww9hne19mkSEdF5YlExERGdVad+HfDwgvuxefF27Fm7XweTdezTDsOvHKR/EhG1aCwqrhcDAiIiahC/EB9cduc4PYiIyHYwICAiIiIi28YdgnqxhoCIiIiIqA3jDgERERER2TbuENSLOwRERERERG0YdwiIiIiIyMY1xSQxM2wFAwIiIiIism0yU7G8CZ7TRjBliIiIiIioDeMOARERERHZOKYM1Yc7BEREREREbRh3CIiIiIjItrHtaL24Q0BERERE1IZxh4CIiIiIbBtLCOrFHQIiIiIiojaMOwREREREZNvM5RVHYz+njWBAQERERES2jUXF9WLKEBERERFRG8YdAiIiIiKyfbZzQb/RMSAgIrJxJUUl2PP7ASQdT4GDkwO6D+uM8C6hMBgM1j41IiJqARgQEBHZsAObD+PTZ75B0okUmMvNMJvNcHFzRv9xvXDLP66Dq4eLtU+RiKjpsYagXgwIiIhsVFxMPN575BNkp+YgINxPdwckIMjLKsCGH7fCZCrH3S9O504BEVEbx6JiIiIbtearjchIykJIhyANBoQs/j183OAT5I1dq/bi+J5Ya58mEVHz7RA09mEjGBAQEdmgstIybF+xG26erjDY1d4BcPV0QXFBCfatP2iV8yMiopaDKUNERDaotKQMZSUm2DsYLd6vaUIGA4oLS5r93IiImh1rCOrFHQIiIhvk7OoE/zBfFOQWWrzfVGbSX2aBkf7Nfm5ERM1O1u6NnjIEm8GAgIjIBskOwMipQ1FuKkdRfnGN+6SwOC0+A74h3ug/rrfVzpGIiFoGpgwREdmokdcMwf4NB7FjxV7YO9rDzcsVZaUm5Gbmws3TDTf8fQo8fNytfZpERE2PKUPW3yEoLi5Gv3799IrVzp07m+MliYjaPEdnR9z14nTc8PDVmhokA8pkj3vwxP647/XbMWRyf2ufIhERtZUdgocffhihoaHYtWtXc7wcERFVCwomzrwE428djdzMPDjoToGbtU+LiKh5cYfAujsEv/76K5YtW4aXXnqpqV+KiIjqYLQ3wjvAi8EAERE17w5BcnIyZs+ejR9++AGurq4NSi2So1JOTk5Tnh4RERERtQHSTEGOxn5OW9FkOwTyTZo5cyb+9Kc/YdCgQQ36nPnz58PLy6vqiIiIaKrTIyIiIiKi8wkI5s6dq8XB9R0HDx7E66+/jtzcXDz66KMNfm55bHZ2dtURFxd3rqdHRERERFRTo88gMNtUDcE5pww99NBDeuW/Ph07dsTKlSuxceNGODk51bhPdgtuueUWLFiwoNbnyWPPfDwRERER0QVhUXHjBgQBAQF6nM1rr72GZ599turjhIQETJw4EQsXLsTQoUPP9WWJiIiIiKg1FRVHRkbW+NjdvWL4TVRUFMLDw5vqZYmIiIiIauIOgfUHkxERERERURseTCbat29vU+2ZiIiIiKh1MJeb9Wjs57QV3CEgIiIiImrDmm2HgIiIiIjIOuRqfmNf0TfDVnCHgIiIiIioDWNAQERERES2TfL9m+I4D2+++abW1jo7O2sr/i1bttT7+K+//hrdunXTx/fu3Ru//PJLjfulRnfevHkICQmBi4sLxo8fj8OHD5/TOTEgICIiIqI2kjLU2Me5kXlcc+bMwRNPPIHt27ejb9++OqcrJSXF4uM3bNiAm266CXfccQd27NiBKVOm6LF3796qx7zwwgs6/+vtt9/G5s2b4ebmps9ZVFTU4PMymFtw65/s7Gx4e3sjLi4Onp6e1j4dIiIiIjpDTk4OIiIikJWVBS8vL7S0c5NzemD8XDjZOzXqcxeXFeO1356rtU51cnLSwxLZERg8eDDeeOMN/bi8vFy/d/fffz/mzp1b6/HTpk1Dfn4+fv7556rbhg0bhn79+mkAIMv40NBQPPTQQ/jb3/5WtX4OCgrCRx99hBtvvLFhX4y5BYuLi2uqcI4HDx48ePDgwYNHIx6ybqcYJFEAAAZ7SURBVGtpCgsLzcHBwU32Nbu7u9e67YknnrB4LsXFxWaj0Wj+/vvva9w+ffp081VXXWXxcyIiIsyvvPJKjdvmzZtn7tOnj/7/0aNH9TV37NhR4zGjR482P/DAAw3+PrXoLkMS8UjU5eHhAYPBgNYYLXN3g/heoEp8L1AlvhfIlt4PcpU6NzdX120tjeTdHz9+HCUlJU32tRvOWKPWtTuQlpYGk8mkV++rk48PHjxo8XOSkpIsPl5ur7y/8ra6HtMQLTogsLOzQ3h4OFoz+YfdGv9xU+Pje4Eq8b1AlfheIFt5P7S0VKEzgwI5qG4sKiYiIiIiamL+/v4wGo1ITk6ucbt8HBwcbPFz5Pb6Hl/557k8pyUMCIiIiIiImpijoyMGDhyIFStWVN0mRcXy8fDhwy1+jtxe/fFi+fLlVY/v0KGDLvyrP0ZS0KTbUF3P2epShlozyR+TllJ15ZFR28H3AlXie4Eq8b1A1fH90HbMmTMHM2bMwKBBgzBkyBC8+uqr2kVo1qxZev/06dMRFhaG+fPn68d/+ctfcPHFF+Pf//43Lr/8cnz55ZfYtm0b3n33Xb1f6hcefPBBPPvss+jcubMGCI8//rjWc0h7UptoO0pEREREZEveeOMNvPjii1r0K+1DZYaAtCMVY8aM0aFl0jK0+mCyf/zjHzhx4oQu+mXuwGWXXVZ1vyzlJaCUIEFav44cORL//e9/0aVLlwafEwMCIiIiIqI2jDUERERERERtGAMCIiIiIqI2jAEBEREREVEbxoCAiIiIiKgNY0DQjIqLi7WaXFpE7dy509qnQ81MugPccccd2hLMxcUFUVFR2hWgqcapU8vz5ptvavcImZgpHSW2bNli7VOiZiatBAcPHgwPDw8EBgZqW8CYmBhrnxa1AM8991xVC0mi5saAoBk9/PDD2heW2qaDBw/qAJJ33nkH+/btwyuvvIK3334b//d//2ftU6NmsHDhQu0/LUHg9u3b0bdvX0ycOBEpKSnWPjVqRmvWrMGf//xnbNq0SYcLlZaWYsKECdqHnNqurVu36u+GPn36WPtUqI1i29Fm8uuvv+pi4Ntvv0XPnj2xY8cO3S2gtk36EL/11ls4duyYtU+FmpjsCMiVYek/LSQ4jIiIwP3334+5c+da+/TISlJTU3WnQAKF0aNHW/t0yAry8vIwYMAA7Rsvw6VkbSDDqoiaE3cImkFycjJmz56NTz75BK6urtY+HWpBsrOz4evra+3ToCYmaWHR0dEYP3581W12dnb68caNG616bmT9nwGCPwfaLtkxkgm01X8+EDU3+2Z/xTZGNmBmzpyJP/3pTzqmWvLIicSRI0fw+uuv46WXXrL2qVATS0tLg8lkQlBQUI3b5WNJJaO2SXaJJF/8oosuQq9evax9OmQFX375paYQSsoQkTVxh+A8yRa/FP/Ud8gvelnw5ebm4tFHH7X2KZOV3wvVxcfHY9KkSbj++ut194iI2uaV4b179+qikNqeuLg4/OUvf8Fnn32mjQaIrIk1BBeQ95menl7vYzp27IgbbrgBixYt0kVhJblSaDQaccstt2DBggXNcLbUEt4Ljo6O+v8JCQkYM2YMhg0bho8++khTR8j2U4YkXfCbb77RrjKVZsyYgaysLPz4449WPT9qfvfdd5/+va9du1Y7j1Hb88MPP+Caa67R9UD19YGsF+T3gnQmrH4fUVNiQNDEYmNjkZOTU/WxLAals4gsDKTIMDw83KrnR81LdgYuueQSDBw4EJ9++il/2Lch8u99yJAhumtYmS4SGRmpC0MWFbcd8itXCsm///57rF69Gp07d7b2KZGVSPbAyZMna9w2a9YsdOvWDY888gjTyKhZsYagickv/Orc3d31T+lBz2Cg7QUDsjPQrl07rRuQnYVKwcHBVj03anrSZUx2BKSWSAID6SIirSZlAUBtK03o888/190BmUWQlJSkt3t5eel8Emo75O//zEW/m5sb/Pz8GAxQs2NAQNRMpOe4FBLLcWYwyI062zdt2jQNAufNm6eLQGktuGTJklqFxmTbpM2wkIsD1X344YfagIKIyBqYMkRERERE1IaxmpGIiIiIqA1jQEBERERE1IYxICAiIiIiasMYEBARERERtWEMCIiIiIiI2jAGBEREREREbRgDAiIiIiKiNowBARERERFRG8aAgIiIiIioDWNAQERERETUhjEgICIiIiJC2/X/8lrUPTUcmFsAAAAASUVORK5CYII=",
|
||
"text/plain": [
|
||
"<Figure size 1000x600 with 2 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"plt.figure(figsize=(10, 6))\n",
|
||
"plt.scatter(\n",
|
||
" X_pca[:, 0], \n",
|
||
" X_pca[:, 1], \n",
|
||
" c=labels_real, \n",
|
||
" cmap='viridis', \n",
|
||
" alpha=0.7 # Прозрачность для наглядности\n",
|
||
")\n",
|
||
"plt.title(f\"Кластеризация Wine Dataset (PCA)\\nЧисло кластеров: {n_clusters_real}\")\n",
|
||
"plt.colorbar()\n",
|
||
"plt.show()\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "14cdcf90-d2cd-4fe5-bbfc-92ef878deb09",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Анализ результатов\n",
|
||
"**Синтетические данные:**\n",
|
||
"- Алгоритм корректно определил 3 кластера, соответствующие исходному распределению.\n",
|
||
"- Центры кластеров совпадают с ожидаемыми позициями.\n",
|
||
"\n",
|
||
"**Реальные данные:**\n",
|
||
"- Найдено 3 кластера, что совпадает с количеством классов в Wine Dataset.\n",
|
||
"- Визуально кластеры частично перекрываются из-за:\n",
|
||
" - Ограничения PCA (потеря информации при снижении размерности)\n",
|
||
" - Перекрытия характеристик между классами вин"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "965fc562-8f3e-44c8-8cdc-e60f98c8becd",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Выводы\n",
|
||
"1. **Mean Shift** эффективен для данных с явной кластерной структурой.\n",
|
||
"2. Для многомерных данных требуется:\n",
|
||
" - Предварительное масштабирование признаков\n",
|
||
" - Визуализация через методы снижения размерности\n",
|
||
"3. Параметр **bandwidth** критически влияет на результат."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "e45cc924-1e26-4f25-b932-349360f35692",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.13.2"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|