JupiterLab/week2_analysis.ipynb

1091 lines
431 KiB
Plaintext
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"id": "f99ebf4e-e078-40ae-aea6-e49604cedab3",
"metadata": {},
"source": [
"бим бим бим бам бам бам"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "9623a7ed-e7d5-4fd9-8426-a51afd9f3c6d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"5\n"
]
}
],
"source": [
"print(3+2)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "2b203420-a3e0-4e7c-9279-952183d3f85d",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Первый взгляд на данные:\n",
" Имя Возраст Баллы\n",
"0 Ахмед 189 67\n",
"1 Аль 399 43\n",
"2 Муалим 5000 100\n",
"3 Исланд 12 85\n",
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 4 entries, 0 to 3\n",
"Data columns (total 3 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 Имя 4 non-null object\n",
" 1 Возраст 4 non-null int64 \n",
" 2 Баллы 4 non-null int64 \n",
"dtypes: int64(2), object(1)\n",
"memory usage: 228.0+ bytes\n",
"None\n",
" Возраст Баллы\n",
"count 4.000000 4.000000\n",
"mean 1400.000000 73.750000\n",
"std 2405.207268 24.540782\n",
"min 12.000000 43.000000\n",
"25% 144.750000 61.000000\n",
"50% 294.000000 76.000000\n",
"75% 1549.250000 88.750000\n",
"max 5000.000000 100.000000\n",
"Имя 0\n",
"Возраст 0\n",
"Баллы 0\n",
"dtype: int64\n",
" Имя Возраст Баллы Новый столбец\n",
"0 Ахмед 189 67 73.7\n",
"1 Аль 399 43 47.3\n",
"2 Муалим 5000 100 110.0\n",
"3 Исланд 12 85 93.5\n",
" Баллы\n",
"Возраст \n",
"12 85.0\n",
"189 67.0\n",
"399 43.0\n",
"5000 100.0\n",
" Имя Возраст Баллы Новый столбец\n",
"0 Ахмед 189 67 73.7\n",
"1 Аль 399 43 47.3\n",
"2 Муалим 5000 100 110.0\n",
"Двумерный массив:\n",
"[[1 2]\n",
" [3 4]]\n",
"Линейное пространство:\n",
"[ 0. 2.5 5. 7.5 10. ]\n",
"Случайные значения из нормального распределения:\n",
"[[ 0.5872165 -0.2369517 0.76563361]\n",
" [ 1.80966845 1.19757149 0.02845548]\n",
" [ 0.23419902 -2.36126673 0.56850731]]\n",
"Произведение матриц:\n",
"[[19 22]\n",
" [43 50]]\n"
]
}
],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"# Создадим DataFrame\n",
"data = {\n",
" \"Имя\": [\"Ахмед\", \"Аль\", \"Муалим\", \"Исланд\"],\n",
" \"Возраст\": [189, 399, 5000, 12],\n",
" \"Баллы\": [67, 43, 100, 85]\n",
"}\n",
"df = pd.DataFrame(data)\n",
"\n",
"# Вывод первого взгляда на данные\n",
"print(\"Первый взгляд на данные:\")\n",
"print(df.head())\n",
"print(df.info())\n",
"print(df.describe())\n",
"print(df.isnull().sum())\n",
"\n",
"# Добавляем новый столбец с вычисляемыми значениями\n",
"df[\"Новый столбец\"] = df[\"Баллы\"] * 1.1\n",
"print(df)\n",
"\n",
"# Группируем данные\n",
"grouped = df.groupby(\"Возраст\").agg({\"Баллы\": \"mean\"})\n",
"print(grouped)\n",
"\n",
"# Фильтруем записи по условиям\n",
"filtered_df = df[df[\"Возраст\"] > 21]\n",
"print(filtered_df)\n",
"\n",
"# Создаем двумерный массив\n",
"arr_2d = np.array([[1, 2], [3, 4]])\n",
"print(\"Двумерный массив:\")\n",
"print(arr_2d)\n",
"\n",
"# Используем np.linspace()\n",
"linspace_arr = np.linspace(0, 10, 5)\n",
"print(\"Линейное пространство:\")\n",
"print(linspace_arr)\n",
"\n",
"# Используем np.random.randn()\n",
"random_arr = np.random.randn(3, 3)\n",
"print(\"Случайные значения из нормального распределения:\")\n",
"print(random_arr)\n",
"\n",
"# Используем np.dot()\n",
"arr1 = np.array([[1, 2], [3, 4]])\n",
"arr2 = np.array([[5, 6], [7, 8]])\n",
"dot_product = np.dot(arr1, arr2)\n",
"print(\"Произведение матриц:\")\n",
"print(dot_product)"
]
},
{
"cell_type": "markdown",
"id": "af388c8f-3eeb-4a92-8022-dd0d40596d0a",
"metadata": {},
"source": [
"# Задание 4:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "2868ac4c-0922-4ac5-bd5e-26d0ea26e8dc",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHHCAYAAACvJxw8AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAmcJJREFUeJztnQeYE9XXxt9t9C69996rINI7FgRRFEQRUVEUxc+CigioKCoWLBRp/lVERRARkA7Sey/Se5fe2Z3veefu7GazSciySabk/J4nbMgmk7s3kzvnnvKeCE3TNAiCIAiCIAgeifT8sCAIgiAIgkDEWBIEQRAEQfCBGEuCIAiCIAg+EGNJEARBEATBB2IsCYIgCIIg+ECMJUEQBEEQBB+IsSQIgiAIguADMZYEQRAEQRB8IMaSIAiCIAiCD8RYEgRBEARB8IEYS4KQSsaNG4eIiAivt0OHDoV0PJkyZcITTzwR0vcUBEFwMtFmD0AQnMLAgQNRrFixZI/nyJHDlPEIgiAIgUGMJUEIEK1bt0bNmjXNHoYgCIIQYCQMJwghDtctWrQIzzzzDO644w5kyZIFXbt2xZkzZ5I8948//kDbtm2RP39+pE2bFiVKlMCgQYMQGxub5HlxcXF49dVXkTVrVhQtWhQzZ85M+N3rr7+OzJkzo1SpUpgxY0aS1zFMx+e7cvDgQaRPn14f4759+xIe5/Pcw3pPP/000qVLhwULFvh83q+//qofz/29vMFxNmzYUB8356ZWrVr46aefEn7fqFEj/ebKqlWrEkKervD/vXr1SvYe99xzT8J4NE3T799///3Jnnf16lV9XvlZuT727rvvonTp0vrfny9fPrRv3x67d+9OeM4nn3yCevXq6Z8v57NGjRr47bff/Pr7U/L3+fv6999/H5GRkUnm0fhsODaOMWfOnOjSpQsOHz6c7Jjbt2/HQw89hFy5cunPLVOmDN56662E33M+3Md28eJF5M2bV3/c9Rzh2CpWrJjsPThnrufd448/ro/pxo0byZ7bokULfQyu/PDDD6hduzYyZMiA7Nmzo0GDBpg1a1aKv0+C4A0xlgQhxPACvm3bNv0iQ0Ppxx9/RLt27fQLt6thxdyjPn364IsvvtAvau+88w7eeOONJMf66KOP9AsNL/Yvv/yyfrt+/Tr++usvrF27Vr9Q8gLHC/revXt9jovHpzFwK/r374/Ro0frFyj3C7MrN2/eTHJRvRX8m3lB+++//9C3b198+OGHqFq1ahID0BM0Cm8XXqBpJNBI4/u68ueff+L8+fP67wkvrDS0BgwYoH8en376KXr37o1z585h8+bNCa/j51WtWjU9LPvBBx8gOjoaHTt21D+T2yE1f9/YsWPx9ttv6+fIo48+mmSuaQBFRUVh8ODB6NGjB37//XfUr18fZ8+eTXjexo0bUadOHcybN09/Dv82nqucG19wbo4fP37b437sscdw+vRp/P3330keP3bsmD4W4zMh/Dz4/JiYGH3O+f9ChQrpz0vp90kQvKIJgpAqxo4dSytHW7VqlV/Pq1Gjhnb9+vWEx4cMGaI//scffyQ8dvny5WSvf+aZZ7QMGTJoV69e1f/Pn7lz59YeeeSRhOds2LBBi4qK0qpUqaJdu3ZNf+zUqVNa5syZtd69eyc87/HHH9eKFCmS8P/NmzdrkZGRWuvWrfWx7N27N+F3fB6fT0aMGKH/ftiwYcnG5/o88s0332hp06bVGjdunOS9PHH27Fl9jHXq1NGuXLmS5HdxcXEJ9xs2bKjfDKZPn66Pp1WrVvpPV/j/559/Ptl7tW3bNsl4duzYoT/322+/TfK8++67TytatGjC+48ZM0Z/3tChQ5Md03WM7p8dP+uKFStqTZo08TkHKf37bvX6v/76S4uOjtZeeeWVZOPhecMxuc71tGnT9Pd45513Eh5r0KCB/rns37/f69/bv3//JGM7ceKE/hrjXJo/f36S8VWoUCHZuD/++OMk511sbKxWsGBB7eGHH07yPM59RESEtmfPHv3/O3fu1M/bBx54QH+NtzH6830SBF+IZ0kQQgxDWNwFG/Ts2VP3PkyfPj3hMXqDDC5cuIBTp07h7rvvxuXLl/WwCNm0aRNOnDihe40MKleurIeH6JFJkyaN/hjDQQxLzJ071+uY6MmpXr267gHxBkMZzz33nB728xTecoXj5C6fzytcuPAt52T27Nn638mdPsfvirfwE+0hjrtDhw6698MT9JRx7lxv7qEdhtT4enr4DOhlorepc+fOCe8/adIkPTT0wgsvJHsf1zG6fnYMr9LzxM+Onr6U4M/f542VK1fqniO+9uOPP07yu9WrV+vnDT9L17mmV69s2bIJHrCTJ0/qIeMnn3wy2WfoKyTI8BbDly+++KLH39ND5/6Z8HxxhWFDzv3UqVP188KAnxFDnEYhxZQpU/RQNL1EfI23MfrzfRIEX4ixJAghhjlErjA8wNwX1zyhLVu24IEHHtAvOszdYb6IEXrgxdfIMSIFChS45XvyOcbz3Vm8eLEeVmFIz9tFcP369XjkkUf0C517uMoTQ4cO1Q2VN998E/5g5Px4ymfxBi+cnCeGurzBcCHnzvXmmstiwHDokiVLsH///oR8HhpVDO+4jpG5MjRsfTFt2jTceeeduiHCSki+57fffpvwuQXy7/ME845o+Fy6dEkPZbl/psbf6J73Q2gsGb/fs2dPij8ThnpHjBihh8LcjV4DGifunwlDu54+kytXrmDy5Mn6/3fs2IE1a9Yk+0xoJJUvX97nuPz5PgmCL8RYEgSLwZwRJjlv2LBB987QkKHnhcYM4U6a+JNf5AovPN5yYlq2bIkmTZp4fS3Hwvwk5r6MGTMmSdKuO9y105vB4wZLNoF5Wf369UP37t11z5A3mMvFuXO9efLSdOrUSff2Gd4l5mOxstGTQeGLf/75B/fdd59uKHzzzTe6t5DvyXwh15y0QP19nti1a5fuCfrf//6HOXPmYPz48QgVzFHjZoAJ2t5gQr37Z0Jvqzs0gJhbxM+C8Ce9pfSYBeP7JAi+EOkAQQgxO3fuROPGjZNUDh09ehRt2rTR/09DhB4BJtwyfGbgnqBNbxQ5cuSIX94GVgK5wzDGsmXLbhkiqlSpku5tYTiDP3lxY/KvJ+/Be++9p1ezMfnZX1idRJgoXbJkyVs+n4YIQ0lMkvdFwYIF0axZsySPff7553qisCs06uiNobHE8A+9THye+xhXrFihe5xcw6iuMFTHOWFiMquuXBOtU4K/f58neF7QSMuTJ48eOn3llVf0c4veFFKkSJEET427gczHjN8XL15c/+mavO6LdevW4eeff9bPKSaOeyNjxozJPhN6Lj1B7xKTsvn9YDUfPyNWu7l+JjR2tm7dqoeePeHv90kQfCGeJUEIMSNHjkySN8MQDSvHqNNEjAuNqyeCngZeQF1hWT2NFyNMQWjA0OPEiw9fQxg2Y+6J64WCMKTGMBm9Ht4uNAbMZ+JFjiGP7777Tg8ZcpfuDh/n38OLvGueyK1gOTgNLFZmuXvM3D0yzDlhlR8r/1ieHigY3uFFlzlZ/AzobXKF+T/0mn311VfJXmuMka9j2Mu1JJ1zQgPCX1L799ETRUOJDBs2TDcmXA1Xesxy586N4cOH49q1awmPM0eLVZo0SAiNK54z9CQeOHDA49/rCvPN7rrrLt2zFigY+uV8cvwMC7pWwRFW5vGc5Lno7iFy/Uz8+T4Jgi/EsyQIIYYLddOmTfVwAnfyXLRZsm1cZJjAyt0zQxlMkuXFgiEV9wsUjRdeRFhizzwaGjS8APLiwZ04L3o8Jo0bXhT/7//+L8nr2YaFYQ3XxHJ/YA4LQ2x8XxoUTCo3WLhwIcqVK4du3bql6JjMI/nss8/w1FNP6UYgDTjOAUMnTMJ1DSXRC8ZE69deew2BhPPFZHh6zmi40qBw93J8//33uqeDCdRMEGZeEENdTJZmyI/HYL5Wq1at9L+B3qGvv/5a95bRkPWHQP59NLYYEuW80tCgh4leMYag+BkxPEWDhGX+LKlniIxGmsGXX36pn5s8t+hNZGI1jT8mgbt7g5gLRo9cIKHBxrnkZ5ItW7YEQ86A88rQH5PK+Xmw2IEePWpT0ZNK49vf75Mg+MRnrZwgCAGXDli4cKH29NNPa9mzZ9cyZcqkde7cWTt9+nSS5y5ZskS78847tfTp02v58+fXXnvtNe3vv/9OVop948YN7aWXXtJLtQsXLqzNnDlTy5gxo17C//rrr+vHL168uDZ16tQkx+fveSxXOQHXMXqTDjBguXXZsmW1WrVqaTdv3kx4Hl87efLkZO91K+kAA46zXr16+t+dJUsWrXbt2tqECROSlJ7zPT777LMkr3MvX0+JdIArzz33nP66n376yePvWYL+1ltvacWKFdNiYmK0vHnzag8++KC2e/fuhOeMHj1aK1WqlC6bwDninHoanydS8vf5Iz1gQNkCnh8XLlxIeGzixIlatWrV9HHmyJFDPw8PHTqU7LWUlWBpfrZs2bR06dJpZcqU0fr165dsbPfff3+S1/E8vV3pAFd++eUX/Xf8zniDsg7G38LvFd9n9uzZKf4+CYI3IviPb3NKEIRAQGE87ua56w1mWxRW1z344IP6+wkpg14VVtAxp4lq0IL5MO+K4TaGkuk9EgQzkJwlQRCE+OpCVlwxN0kMJeswatQoPdmc4UBBMAvJWRIEIaxhXhHzjti/jVVTKaniE4IHK+uY58X8KOZT+dMbTxCChRhLgiCENayAo1wAE7qZ0HyrykAhNDDxnCFlak0xgV4QzERylgRBEARBEHwgOUuCIAiCIAg+EGNJEARBEATBB5KzFACoHMuWE1QgliREQRAEQbAHzESiaj5FTCno6w0xlgIADaVChQqZPQxBEARBEG6DgwcP6r0kvSHGUgCgR8mYbLZtCBTsH8YWAuyb5a1xp5B6ZJ5Dh8x1aJB5Dg0yz/af5/Pnz+vODuM67g0xlgKAEXqjoRRoY4nieDymfBGDh8xz6JC5Dg0yz6FB5tk583yrFBpJ8BYEQRAEQfCBGEuCIAiCIAg+EGNJEARBEATBB2IsCYIgCIIg+ECMJUEQBEEQBB+IsSQIgiAIguADMZYEQRAEQRB8IMaSIAiCIAiCD8RYEgRBEARB8IEYS4IgCIIgCE4xlhYtWoR7771X7w5MafIpU6bc8jULFixA9erVkTZtWpQsWRLjxo1L9pyvv/4aRYsWRbp06VCnTh2sXLkySH+BIAiCIAh2w1bG0qVLl1ClShXduPGHvXv3om3btmjcuDHWr1+Pl156CU899RT+/vvvhOdMnDgRffr0Qf/+/bF27Vr9+C1btsSJEyeC+JcIgiAIgmAXbNVIt3Xr1vrNX4YPH45ixYrh008/1f9frlw5LF68GJ999pluEJGhQ4eiR48e6NatW8Jr/vrrL4wZMwZvvPEGzOb6dVvZs4IgCM4jLg64ehXIkMHskQgmYStjKaUsW7YMzZo1S/IYjSR6mMj169exZs0a9O3bN+H3kZGR+mv4Wm9cu3ZNvxmcP38+oTMyb4GCx3r//Tro3TsKVavGoXJlDVWqaGjWTEO2bAgv/v0XkWPGIHL6dLoYOTnAzZvqZ548iOvYEXGPPAKULp3iQxufWSA/O8EzMtfWmOdz55jWEIF58yKwYEEkFiy4iaxZ1e8mT47Ab79FomJFDU89FYdcuRBeHDqEyBEjELFpE3D8OCKOHweOHUPEzZvQKlVCXPPm0Fq2hFavHm5Eqs2snM/2XTf8PaajjaVjx44hT548SR7j/2ncXLlyBWfOnEFsbKzH52zfvt3rcQcPHowBAwYke3zWrFnIEOCdx/79LXH2bCSOHgVmzFCPZcp0HQ8/vAOtWu1FTIwGpxJ5/TryL1uGIrNmIeeWLd6feO4cot5/X7+dKVkShxo2xIEmTXAzY8YUvd/s2bNTP2jBL2SuzZnno0czYPToSli7Njfi4hK91p99tha1ax/T70+cWB6//14Kv/4KfPCBhpYt96Fdu13IkSNxg+hEMh0+jJK//45CCxcikhsxD9CAiqIRNXQobqZLh9N16iDt44/L+RwigjHPly9f9ut5jjaWggU9UcxzMqDxVahQIbRo0QJZsmQJqMX77bdzkDt3M2zZEoMNGyKwcGEEdu1Koy94R45UwB9/xMKJRCxZgqguXRBx+LD+fy0yElqrVojr2hUoUgRadDQQf4tYuxaREyYgYvZsZN+1S79VnDMHsd9/D61uXb/mmV/C5s2bIyYmJgR/Xfgic23OPHPz/PnnkRg0KBJXr0bozylZUkPTpnFo0kRDkybVEzxLOXNG4M47Y/HzzxFYuzYaU6eWxN9/l8CTT8ahb9845M0LZ/Hvv4jq1w8RU6YgQlObz7gGDaA99BC0fPmAfPmgcUMdE4OIBQsQOWuWvtZEHz+uG1Z5Vq+G9umniGQqR4SaW8E+64YRGQprYylv3rw4TheqC/w/DZr06dMjKipKv3l6Dl/rDVbW8eYOP8RAf5Dp08fi7ruj0KRJlP7/2Fhg7Fjg7beBZ56JREyMw3KauFgxx4z5YvxjCxYEevRAxJNPIqJgQc8VCRUrAjSimJT/yy/6ri9i715EN2kC0APIY0Wp+fNFMD4/wTMy16Gd5127gP79VeS6aVPgq6+AsmV5YU/+vbjrLnX7v/8DZs4EBg1iSkMEvv02CnPnRoFOXu5THMGsWcBDD6m4JLnvPn29iPS2yXrsMXVjDtOKFdCefx5p1q0Dnn2W8Utg5EigcOGQ/gnhREwQ1g1/j+ewK21S6tati7lz5yZ5jNYpHydp0qRBjRo1kjwnLi5O/7/xHKvBa/5TTwG7d6vvtcHChdAXRFtz9izQvj3w6qvKUHr0UWDbNuCdd5TRdCty5wZ69QLWr1ev5TFoVTZvDsR7qAQhHClXDnjvPbXRYiSjbNlbv4ZOEtbTLFkCzJsHVKoEfPKJgwylb74B2rRRhhKtQ4bX/viDF45bv5a5SnXr4uaSJdjStSs0bp5ZZV2hAvD776EYvRBibGUsXbx4UZcA4M2QBuD9AwcOJITHutLDEM+zzz6LPXv24LXXXtNzkL755hv88ssvePnllxOew3DaqFGjMH78eGzbtg09e/bUJQqM6jirwnQcw+O7ejXQti1Qvz6wcSPsCberNWsC1M5Kk0YtZD/8wAStlB+LoVC+lppanKj584GqVYHNm4MxckGwJLNnF9Y3VQavvw488UTKI0V8fuPGwNq1wL33Jj5+TKU42Q+61154AXj+ebWh4jWDG2Z6qFNKdDR2tW+Pm1yEaXBdvKg8VfQyCc5CsxHz589nQDnZ7fHHH9d/z58NGzZM9pqqVatqadKk0YoXL66NHTs22XGHDRumFS5cWH9O7dq1teXLl6doXOfOndPHwZ+B5Pr169qUKVP0n744dkzTqlRh/ErTsmXTtCVLNHuxb5+m5cun/oAiRTRt5crAHXvHjsTJyZ9f0/buve15FlKPzHVoGDr0pn7KFywYp508Gfjj79mjablza1qvXpp286ZmHy5f1rSWLdV6wNvgwZoWFxeY85kT8dhj6rgxMZo2dWpAhx7OXA/iuuHv9dtWxpJVMdtYImfOaNpdd6nvaYYMmvb335o9+O8/TStXTg28YkVNO3Uq8O9x+rSmVaig3qNUKU07fjzJr+UCHjpkroPPsGGJtsCrr95MjS3glTFjNC1Cz4bWtNdfD/zxgwIn4uGHExfJSZMCfz7TYHrkEfUeadJo2vTpqR+3oFnBWLJVGE7wDnWXmKvYqhVLIYEHHlCRLUtDkbf771d5SQUKANRQuuOOwL9Pjhwqn4CJlzt3qjyFCxcC/z6CYDJsbsAIE+nQ4V+8915cUAq0mKUwfry6/9FHwI8/wvowU33iRJV09ddfKj8yGEml338PdOxIIT+1EHNhFmyPGEsOghJPzE9ktQsNJq4FflZFhh5WkzBX4J9/VI4RRaQKFQre+9EY46KVMyewZo1axFyERQXB7nA/wPoG8n//F4suXbYFtZKdRWGGnm/37oClW2pSNIrlgOTbb4FGjYL3XjTGaD0aa0y7dip5XLA1Yiw5DOZGT5igisdYmGFZWJfMBYxlm0yGZKlNsClTRhllTBpnQmePHsF/T0EIARStpfFCnn4aeP/94HiU3GGFHZO+DZvgyBFYD26OHn9c3Wf3BpYTBxuuaz//DLRoAVy5AnTqpHawgm0RY8mBsD3B8uXApEnKaWM5fvuNksHqPivWqIcUKlhxR+OMpb//+59yywuCzWHEp2hRoHJl4IsvQqeNyK8RC0+5MaPBxoo7S8FBMdRPg4U5Ch9/HNqdKyeHmn1bt7L0OnTvLQQcMZYcCqNOxoLJbEPLyAxROLJnT3WfPnzqIYUa9gt88011n2OxzOQIwu1RpAiweLFK+0uXLrTvzQ3Z1KlA585K7NJSof6HH1bfbwpN0dMTapEo7lxpMHExHjFC7WAFWyLGksNhz1kuYnSomK6LQquNSrenTqkt8LvvmjcWCl1Wrw6cOYOoZ55RYxMEm0FZH1dHBjdJZlC8uLIJjJYplmD4cJUTybA7rTmzBsckUsPlxhBgvC6gYC/EWAoDmFtIQ8mokjENJlMxBMbdHUtpuLqbBXMKGIZLl07v9VTU6FIsCDbhv/9Uqh+dpFZqes99B6PbroZcyDl4MNFAGTyYjfBMHAyAgQOB2rVVlwLuXr006hWsixhLDocC1izMYEUrU4XY68kUmPlplOrQq0NFbbMpXx748EP9bgXmTlFWQBBswosvAvv2qXaITMmxCkwwZz4zv+amWWsMr9Naq1cPeO45mA43Z9wsZs6s4qU04ARbIcZSGMCIFxdWQoX/kC+sXLy4gp45A9SooRrbWoUXXkBckyaIvn4dURSPkR2fYAN4veUmiKkwP/1krUKODh3UTyaar1plwgCYm0QdJXquv/tOZaFbAcYqKVtA3n+f/brMHpGQAixyFgnBZsAAIH9+YM+eBGdK6GDIzVi8eN9K3eYjIxE7ahRuZMiASArFGIuZIFgUtjMzQupUv2B0x0qw6IyRJuZXM0UnpCFC5kMaO0M20WZit5VgQQurf6m1QPkUwTaIsRQm0Pv7+efqPo2lkEWcqIr52muJcXsrij8VKoStRgNmWpX0gAmCRRk1CmAvcar2U+fIilAZhGL8bOz9ySchfGM2SafBxKa4ltMxiO9KTJcb8yJ+/x2YN8/sEQl+IsZSGPHgg0DLlkCePMDx4yF6U/ZCOHlSCUJaWGdkf/Pm0LgLPX1aucgFwaJJ3W+9lbj3YGW6FeG4DCk17j9Csjmj0CxL8hh2Gz3a3AISX9CQM+RTeveW0L9NEGMpjOCmZuxYpY9Wv34I3vDQIWDo0ER3lpXCb25oUVGIpWFHhg0Ddu82e0iCkIy1a5UApev11qp06QI0b64iToaBF9S8SMOTxIRuq8Um3aEFSdfb5s1K4kCwPGIshRn58inZkZDAchg2y6VlRhVdi6PR7cbVnVcjKyWhC4KLnuq//6rk7lDrK97O5uzTT5XGG3vHBRWKPbKtCRc308rwUtjcm419CcfL0KFgacRYClOYdDlmjOo2EhSYrGAcnEkLoeq/EIjVnW586iwsWWL2iATB44aHFa52gDpQrJvgPiRoMIxluK5eecW6sUl3WCHMD5I5kv36mT0a4RaIsRSmUJuFuz3mXgdFPI4ucbrGH3oIqFMHtoGr+5NPqvvMsWJJjyCYDO32BQvsKTTvuk8Kyvi5KaO7LWdOS+dFJoNJ3l9+qe6PHKlCcoJlEWMpTKENU6KEyr3++usAH3zOHKV+yRylDz6A7aB7nGqe3BJLo13BZGhgvPQS0LixfZUtuCFj5V7btgE2mCgaZ7RNonfJSoJT/tCwIdC+vdqUWbW0UdARYylMoR1jhPaHDFEV/gGBX/pXX01MtKRFZjfYJdzIWbJaLwkh7OC+Y/VqIEMGoGNH2JILF9S+iV2FKLkWMLjTY6PcwoVV30k70r9/ort/+3azRyN4QYylMIb6aKVLq3JkFoAFBOb6UASGTSvtHIenO5+5D+wnQUVgQTABemFYOGXsPeySjuMpz8oQ0qQDKCDR7XPnEtuGcJLSpYMtYd4SC2D4YYtsiWURYymMYTWN4cFmDjZ7PKYKftkNeXCKw7E01q5wG8+/gfBvktwlwQRmzwZWrFB2gN0Fn5nGyD0Uaz8Csv/gosWdHvXRHnsMtsbYWLJ3za5dZo9G8IAYS2EOc5fYT5aGkqHwnaqVfd06le9jNM21M9zKMweCwlRTp5o9GiGMvUqMMFFM1s6wWt6I0DPyxLYtt43rgsVcHyZL2xn2zGzTRm3KpMmuJRFjKczhGsMFme2KWrRI5cEMrxJLYu3sVTLgNpidhwkXMDuWIgm2hZ0wli4F0qZNNDLsDgWraTTReTJlSioONGKEyhqnOucDD8ARGN6l779X4X/BUoixJOhdwtkpoF69VByEsYL581VszwhfOQGWITEGwso46eMkhBDWFZQsqZrlsgm2E6BmJB22hJJmtwVFY9lfjTA2aQcNN3+4804likvdqJB3OxduhRhLQmDWGqNVCHscFCoEx5A7t2qdTsQ9LoSQVq2Abdvsqb7hC0bo6Xxm+7bbYsIE4OhRZUE+8ggcheFdomLwwYNmj0ZwQYwlIUkrN1bMM8cwRXBFnzxZ3afKpdPg7pUeM7rf6GEShBDB0y5zZjgK5l4xisa87BTDUDgTu42YnlWb5d4ud9+ttJfoVqSmi2AZxFgSEqDMBx1E3MmmKD3n44/VT5a/3tYKaHGKFFEeMyLeJSHIUIyajgXqLYYDKVpr/v5bKV0znkf3lBNx9S6xFYpgCcRYEhJg+xOuQVu2qMI2v91RP/yg7ju5+SzrnhmvZFYqJ0gQggSLvPhddKotYED9Re5BmBboN4ZXiYlc2bLBkbDahm2XLl8Gxo41ezRCPGIsCUmKv4y2aH7LCHz2mXIZ03XMBEWnUrZsYtWN0c9JEAIMK+LHj1f3aTA5GaYd/fgjMGoUcOqUHy9Yu1aFwlnCmyILy2ZwU2YoeH71VSo1FoRAIcaSkIQXX1TfVbYlYCqST1i6y5XO8Lw4HeZIEHrSUq3gKQjJYeSFDgVWxHP/4WQaNQKqV1fhRr963hnlcw8/rNqbOJnOnYHs2YG9e4Hp080ejSDGkuAOW7ndd5+6b1TneoXbQjZ9KlUKaNkSjofJl7yK8WpGLRRBCCB0INCR4LppcTL8+wxVcv7dV6/6ePKBA4lNre0uZe5vBwHDtRiwXlRCahBjSUiGIZNEe+D0aR9ZmcZ2kPLCkWFwKnF1N0RivvlGRCqFgMIGs3Qk0KFAx0I48OCDSmnkxAm19/LZMJfWJPN5qlVDWMC1hmsOE0ilwa7p2O4K9/XXX6No0aJIly4d6tSpg5U+SrkbNWqEiIiIZLe2bdsmPOeJJ55I9vtWFDgJYxo0UE4Ubmyoj+aR5cuBDRuUYOMTTyBsYEYqa7l37BCRSiGgGA4EynrRsRAOxMQkpud4DcVRhNJIdKbLLVwoVgy4915133A5CqZhK2Np4sSJ6NOnD/r374+1a9eiSpUqaNmyJU5wW+KB33//HUePHk24bd68GVFRUejYsWOS59E4cn3eBIqehTHczCxcqBZvr/2ojJWN+QPsXxAu0FDq2jVxtysIAeDaNZW3zJvhvAwXunVTcklr1qhbMliBevKkEqF02eiGBYZxyKz/c+fMHk1YYytjaejQoejRowe6deuG8uXLY/jw4ciQIQPGMCvSAzly5EDevHkTbrNnz9af724spU2bNsnzstMPHub4zJdg6QpFmUi4reykZ0/1848/lHSCIKQS9n+bOVOl5hQtirAiZ05V3EaNN0qaJYMKloSubqp0hhMMO7LTOYtpxo0zezRhjW3OvOvXr2PNmjXo27dvwmORkZFo1qwZli1b5tcxRo8ejU6dOiFjxoxJHl+wYAFy586tG0lNmjTBe++9hzt8NIK9du2afjM4f/68/vPGjRv6LVAYxwrkMVMCU3KWLo3A6tUR6N07LuHxyO++Q9S1a9CqVcPNqlWVdICNSfE8ly6NqIYNEblwIWK/+QZxRmt4wfLntNXJlSswXye7zfN77yXeTzLknTsRM28etMhI3Hz8ccutNaGY58iePRH1wgvQvvoKN8MlPzSE8+zvMW1jLJ06dQqxsbHI4xYX4v+3+5H8xtwmhuFoMLmH4Nq3b49ixYph9+7dePPNN9G6dWvdAGPIzhODBw/GAA8XyFmzZumeq0BDj5gZHDuWAc8+2xyRkRqyZ5+DnDmvAnFxaPrFF8gEYH29ejhAjQGHkJJ5zl+7NmotXIgb336LWdWrQ2PyhWD5c9qK7NqVFTlyXEWOHIkbsEBh93kuP24cSgE4Xr06VlC5mzcLEsx5jsqZEy0zZEDMrl1Y/cEHOEG9hTBldhDm+TKrm/0gQtPsUdJz5MgRFChQAEuXLkXdunUTHn/ttdewcOFCrGDXex8888wzugG0ceNGn8/bs2cPSpQogTlz5qBp06Z+e5YKFSqkG3RZsmRBIC1enhzNmzdHjEkX42bNorBoUSTefTcWb74Zh4hZsxB9zz3QsmbFzX37ADcvnR25rXm+cQPRJUsi4uhR3Pzf/6Axd0uwxTltNWrVitZtgF9+icW992phO89cUn//PUL3Zg8bFqc/EF2sGCJOncLNSZOgGcnOFiJU8xzZpw+ivvoKce3bI/bnnxFu3AjiPPP6nTNnTpw7d87n9ds2niX+MfT0HD9+PMnj/D/zjHxx6dIl/Pzzzxg4cOAt36d48eL6e+3atcurscQcJ97c4YcYjC9MsI7rD+wqsGgRw+VR6NcvCpHxIpQRXbsixmHtBlI0z3we+1EMGIBo5lQYveMEy5/TVmLdOlVUygTnRo2i9dMqXOeZ+ctcb1j89vTTUaj+7ySVH1mgAKIp/mbhfKWgzzNLJL/6CpF//olIThQTvcKQmCDMs7/Hs03wM02aNKhRowbmUu4+nri4OP3/rp4mT/z666+6J6iLHxe0Q4cO4fTp08iXL19Axm13OnRQbVDoRJo74QTw559Jk5zDGa7sDNUuXqykBAQhhRi1KeykE05FpZ7g9b99e3Vf35MZid00FCxsKIWEKlWUvhTza376yezRhCW2MZYIZQNGjRqF8ePHY9u2bejZs6fuNWJ1HOnatWuSBHAD5im1a9cuWdL2xYsX8eqrr2L58uXYt2+fbnjdf//9KFmypC5JIADp0yc6Tb4bfFLPWdL7FJQrZ/bQzKdAASa9qftGQy9B8BMqVhtCjEZPxnDHaB784/9icXHBKpXM7PQmef5inCTSXNcUbGUsPfzww/jkk0/wzjvvoGrVqli/fj1mzpyZkPR94MABXSfJlR07dmDx4sXo7uELx7Aec5juu+8+lC5dWn8OvVf//POPxzBbuMKNHZm8pRRO4Q5Z2V1hhQ753/+k4aWQIqZOBc6cUQrWXiL+YQf3YeyedOFSFH5GJ6BNGzVBAvDooypeu369it8KIcV2vs1evXrpN09QAsCdMmXKwFsOe/r06fH3338HfIxOg+oANcpcxH87TmB3uorIafjKBaWwS10u6i1R0bt5c7NHJNgEIwRHAXwvhbdhqe/29JM38WrfaIzE03jqGc+Cw2EJ47Tt2imNO3qXwqXti0WwlWdJMI8/aw7ALpREnYeLOqICLmCw3UunTuq+hOIEPzl7VqW6kXDqFuQPj+ebhRhcxyrUxqaCrc0ejrUwvPqM37pUZAvBR4wl4dZcuYJ800YhElpi2ElIxLja/f67tCQQ/IKFpHRG8pQpXtzs0ViLXFNH4x5MQ4OCu3HlurjcktCsGVCwIPDffyqOK4QMMZaEW8MvJY2AwoVxvW5DvdRZcKFWLaBsWd2oxK+/mj0awUYGE6vgBBeYxDVtGibiYSz86xJq1zZ7QBaD8Vpjw+qlzZcQHMRYEm5NfHhpV9veyJs/Eg0aqEoewSXRwvAuSShOuAUSPfEB83GuX0dM5fJA5cpmj8aaGGvNrFnSmzKEiLEk+ObYMSA+Cb74i/cgUyYqngJ//WX2wCwG9RVY5sxElF27zB6NYHF5LjojFy40eyQW5Icf1M/HHtN/nDjBFhfmDslylCwJfcdKGZfvvzd7NGGDGEuCb5hIyC9l3bqILFsajzyS+LDgprlkVMLJAiZ44dIlYNIkYPVqdgIwezQWY+9etdmgp/aRR/QWMPnzK2FcP9t3hQ/x2oIYN051PBeCjhhLgnf4JTTCSl276j86d1b/pWeJ6QWCC0YuAeeMBqYgeEj/44W/RAmgTh2zR2NRrxJFpwoUQPnyKpf5woXExgFCPA8+CLBp+86dyvIWgo4YS4J3mMm9aZMSQotvFFupElChgurfxEoewQVqoLAR44EDEmMRPDJhgvpJDy0dKILLxozCri4hOEa1je4Bhh0lxMN8CPbLcz2phKAixpLgHcOrxC8lhRfjc5kN75KE4jz0hok3KhMWfkGIh9XeM2eq+0Y4W4hn5UrlJaG3xEX01jCWOG8nT5o3PEti6LtNnCjdA0KAGEuCZ27eTGzY6KatRNV9QsF05n8LLhiW5OTJUvYkJIG5SuyDyiIvhpgEF4zNBbUU6DWJh4ocNWuq5Yg2geAC+1JSf+LIEeCff8wejeMRY0nwDC0hlqKw+bBbU+EiRYBvv1URurx5TRuhNalfH8iXT0k0s7RXEDyE4AQXGNP/+eekriQXjIfEWesGKwQML5yE4oKOGEuCZ4xtHL+MMTHJfv3ssyp3SfAgGvfQQ+q+bIUFF9jSko4TI3oixENpktOnATZEp0K1G5wvfq3YO9atT7pgWN6//aaMTiFoiLEkJIexAiN728jBEfzHmLM//lCq3oIQv+/g16poUbNHYjGMcD8v/NHJe7vThmJUm4YSnbaCC40bqwliQpwIUgUVMZaE5Mydq758uXMDDRt6fdqKFWp9e//9kI7O+tx5p4pVXrwITJ9u9mgEwbpwM2HoAviIT957r8oIEHx4siUUF1TEWBKSY4SPqOXhYafnqiHHVIPRo0UXLQksGTQWMCMXQwhb9uwBBg5UxV6CGzNmKKVObi4oa+4Hsta4YRiZU6aIemcQEWNJSAoruOjz9iMER0UBFq7QaFq+PDTDsw1GYgrVO6mqJ4QtlNjo31/lLAkeesEZG7NbCE9NmwbcdRcwYEBohmYrTzZjuzQ6OUlCUBBjSUgK497nzqnkAK5MPqAkiqGLxrJowYVq1VQPJ9cwgxB20AsiVXBe4HfDuLgbnlgfsMB06VLl+Bbvkgs0Mo3NmYTigoYYS4LnEFzHjioefgu4ITSKMWQB87KASVVc2LJxI7Btm6ryZiWccPshOG7MOI/btwNbtoRkhPbBsMSZI0mrUgg4YiwJiVy9qiq4UlAFR120jBmB/fuBNWuCOzzbYcwhLwqygIUlhp3cpg2QNavZo7FoCI4bMz96v7CTkCH5ZrxUiId9qKh0SvkAI41CCChiLAmJ8KLO/JpChVQc3M8OH23bJnqXBBcqVlRiVJRiYPKlEFbQ02qEp2kPCC4wEdkIwaVgcoyn/vqreLK9erIlJyIoiLEkeN7psYulnzAUxxQddlIXvHiXpCou7GCo6N9/VR9qY0Mh3H4VnCEhwPmUUJwHOnRIzDs9f97s0TgOMZaExJ2ekYicQiFKGktr1wI9egRnaLbGmMs5c5RKsRA27NihqkVbtFAhJMEFuoZSEIIzYCjTCMUZhxDiKVcOKFNGheJYhSsEFDGWBAW/XNzpFSuWop0eScFaF36ULg1UqaK6gktVXNht9E+eVH0UBS8bs9uIT7JXNZO9a9cO/NBsDRdiw7skobiAI8aSoHBNrrhN64fpTswPl1wCN4wyKKOFjBA2pEsHFCxo9igsGIKjwZTCEJyrs5brjIQ2PWA01jXmWAgYYiwJSojSaMthfNlu4xDMC2/XTnIJkmHM6axZqgWK4HhY/CibhsBUwQkpoHp1ZYTSUOJ6IwQMMZYE1QuObqH8+W9rp0eof9KggbovVXEequKY/U6Lkjs+wfEwr6ZsWWDlSrNHYuEqOD+EKH3BzgEjRohRmgQan8bmTEJxAUWMJSFRl4NuoRRUwfkSqBS8LGCigeJ4Dh5URhJ7wRUubPZoLAYrtWgwcWJq1rztwzC9kvnMzz4LbN0a0BHaHyNviXlhTPYWAoIYS+EOE48NIUoaS6mAZb0xMSoMR9ViwUPeEhPp6WESHIthD7NbUN68Zo/GYhh6Y/w+pCIERyHcpk2THlKIp25ddeKxbdW8eWaPxjGIsRTusNkSS3ayZQMaNUrVobJnB5o1U/fFA+xGnTqq3x71T2QBczTGuW9s8IV4bt5MrIJL5cbM9RDGXk+Ih9EBKSoJOGIshTvGNviee5RbKJUYoTgxljwsYMbqLqE4x3L8OPDPP6mqlXAuS5YorbEcOYD69VN9OHqy6ZxatQo4dCggI3QOxslHtxujB0KqEWMpnGFmpKtbPABwAaNdsH49cORIQA7pHGQBczyGdAbrJCRfyQ1jreEiER2d6sMx0mR0ZZo6NdWHcxYNGyqjlFGDxYvNHo0jsJ2x9PXXX6No0aJIly4d6tSpg5U+yk3GjRuHiIiIJDe+zhVN0/DOO+8gX758SJ8+PZo1a4adzMwMl5boLCnhnBiyuKkkVy5gwgR1WBbXCW4LGGOVXMAY/hQch+FRFa+Sj41ZAEJwBhKK8wKjBFTuJOLmDz9jaeLEiejTpw/69++PtWvXokqVKmjZsiVOnDjh9TVZsmTB0aNHE2779+9P8vshQ4bgyy+/xPDhw7FixQpkzJhRP+bVq1fheIxwEA0lZkwGCFYEFy0asMM5awFjuJNIKM6RvPIK0L17YjhacNmY7dunOm+z/0uAuP9+9XP5ciAcluwUYSTNMW8pLs7s0dgeWxlLQ4cORY8ePdCtWzeUL19eN3AyZMiAMWPGeH0NvUl58+ZNuOXJkyeJV+nzzz/H22+/jfvvvx+VK1fG999/jyNHjmBKOJRYGBfsAIXgBD8wXA5cwEQgxnHQDvjuO6BkSbNHYjEM1w8nKEOGgB2WrdCop8uQv1vQQGC1DZsTHj6smncKqSL1geMQcf36daxZswZ9+/ZNeCwyMlIPmy1btszr6y5evIgiRYogLi4O1atXxwcffIAKFSrov9u7dy+OHTumH8Mga9aseniPx+zUqZPHY167dk2/GZyP7/B848YN/RYojGMF8pgJ7NmDmI0boUVF4SY9SwF+jylTIjBuXCS6do1D+/bWNgqCOs/uNG6M6PTpEbF/P24wM7VaNYQTIZ3rMMZq8xw9eTIoFHDznnugBXhMxvJtxp9qtXlOQlQUopo3R+TkyYidMgVx7FFpU24EcZ79PaZtjKVTp04hNjY2iWeI8P/bt2/3+JoyZcroXid6jM6dO4dPPvkE9erVw5YtW1CwYEHdUDKO4X5M43eeGDx4MAYMGJDs8VmzZumerkAzm0JuAabElCmoyHktXx5LV6wI+PF//rk8pk8vhQsXjiBdujWwA8GYZ0/UqlIF+Zcvx55PPsF2dgUNQ0I116Hixo0I/PJLGdSseRylSp1Jjbar4+Y5/YkTaLF+PbTISMxOkwbXjdZKQYDOWjM6qFhhnj1RqFAhVGffzp9+wsLb7M5gJWYHYZ4v+9lDzzbG0u1Qt25d/WZAQ6lcuXIYMWIEBg0adNvHpXeLuVOuniWelC1atNBzpAJp8fLkaN68OWICUNbvStSQIfrPHE8+iTZt2gT02Ppxc0TokaYNGwqgWbM8SJMGliWY8+yJiDNn9CSL0tu3o3gQ5t7KhHquQ8W8eRH49ddoLFxYGvv33+Sm3lSsNM+RX32l/9TuugvNHnkkKO8xbFik7skePDgWLVpoYTnPHqlVC9pXXyHb3r1ow7ZLNi3RvBHEeTYiQ44xlnLmzImoqCgcp5CJC/w/c5H8gZNcrVo17Nq1S/+/8Toeg9VwrsesWrWq1+OkTZtWv3k6fjC+MAE/LhPi40OXUR06ICoIY6Z6MR12x49HYOnSGDRvDssTrM/Pm75CxKZNiGGyBRtfhhkhm+sQYThL7rmHFbfW+bssMc/xQpSRDzyAyCCN5d9/gU2b2HYuGm3bIjzn2RMsSa5XT5cPiPn7b+C552BnYoIwz/4ezyLO4luTJk0a1KhRA3PZ9DUe5iHx/67eI18wjLdp06YEw6hYsWK6weR6TFqZrIrz95i2Xdnpr2aH6kKFgvIWDEPQJiBS1uvGHXcoa5IYTUUF28KvkqHzY1RrC/FQhHLRoqSla0HAVUJACr/cME5KEaNKFbYxlghDX6NGjcL48eOxbds29OzZE5cuXdKr40jXrl2TJIAPHDhQzyPas2ePLjXQpUsXXTrgqaeeSqiUe+mll/Dee+9h6tSpuiHFY+TPnx/tAqgFYjmMlgNGGXsIvqNS+OWGYUkan4VgW9gLkVXxrMZyqRURjF6IFGCtXBkoXjxob9O4MZA5M3D0KLB6ddDext5rzfz5wIULZo/GttjKWHr44Yf1JG2KSDJMtn79esycOTMhQfvAgQO6lpLBmTNndKkB5ikxL4deo6VLl+qyAwavvfYaXnjhBTz99NOoVauWXj3HY7qLVzoGVvHNmpX0SxQkeOFgvju7sFPRW3DBMFRlAbM9xoad53sA5cqcgeFWDqJXiTArwkj/CwfVlxTrK5QqxZLyxLVfcLaxRHr16qV7h1i6z3AZy/wNFixYoKt2G3z22WcJz2V1219//aXnLLlC7xI9UPw9hSjnzJmD0qVLw7EsXEg9BdUrgGG4IEL9OS5gFK4WwTg3ypYFSpRQC9icOWaPRkgFEoLzY2MWZGPJ9S0k7O8GywMlFBd+xpKQSowcGXo2QlDfPHEijVhWJgb9rey3gEkozvZcuqRa+4Qgqm0/mKtkbMxCoCfWqpUuLYStW1VYVHDBMJYYFr150+zR2BIxlsIJJg6FKF/JwCp6M5bEMJa4gElWqi1h2I0FjevWAS4FtYJxXhOWp4VgIWDbRdoEXbqYI1BpaVgRxwliwr0PEWfBO3IpCyeMLRcD/CHORGXvWJb3Ci7cfTcl45WUg4+G0IK1oTfDh9JIeGLCxoxQ2+1//1MpOoIL0dHKaCXiyb4txFgKJ4wvSZMmIc1EHT9eaS69/HLI3tIeUN+DsQMiC5jtYJGXVHl6YccOvaWSrkYrJYLWQPKWUoUYS+GYrxTkKjh3atRQF5V58ygtH9K3tj6St2TrKBNlyjx0PhKMtaZRI9XMNYRwrdmwQdlrggvsAcoNGidG3PwpRoylcOHUqcRYdYglbtm3mCr7rIhjpbzgQuvWKo5D+eH9+80ejZACaN+yoTu/WoKXfCUTst7ffFOFRT/9NORvbW3YiovGKxHvUooRYylcmDFDJRGz83SI+wOx8Muwz4w1VIgnR45ENW/xLtkGei8SW5yYPRqLcfYs8M8/6r4JvUcoVWKsNRIm9VFUIqQIMZbCBROSLV1xNZZkAXNDQnG2Y+NGVQVHLTHj4izEwx5kTOii+G8QVbu9QecJxXD5+YgYrpeFePFi4Nw5s0djK8RYCgcofMgFzIR8Jdd2BBRFP3BAtYcQXDA+EwpSiZq3LTC8Sk2bqvNa8KLlZgL8PIzG3dJ60Q0ar1T0ptaSiOGmCDGWwgG6xM+fB3LnBmrVMmUI3OmxCI+IB9gNKsaXLClq3jY0lszocG9p6FFiyN/kyZGwvw+MvjDGSSz4hRhL4YCxvQqROJw3XnwRGDsWiO97LLgmdRkLmHGhESzLmTPA0qWJ+fmCCytWKOHDbNmUEKJJGF8nypcdP27aMKxvLElOhN+IsRQOWGQbzMrVJ55QDi7BDVnAbNXyrHdvJVtTpIjZo7HoxoxWJIUQTaJAAdX6kl8l2X94EMOlzt6xY0p6XvALMZacDoXhqKnBhUvE4awLs4SZLcxa9M2bzR6N4AO2Ohs6VBq2WjFfyZX331dR7UcfNXskFoMdHIykLgnF+Y0YS07H2FaxPJ2tNUyGFSq80AwZYvZILAazUo2kLlnABDvC6g3qhTHUbyjTmwiHwAR8iogLbkjeUooRY8npGF8GiyRX7NwJvPKKMpaYCyq4IHlLtnDU0lvBUJzghnHe1q2r9MME62JcD5YvF1VVPxFjycm4SmYbF2KTYc4nHVzMAZXesV4WMNFAsSzsc8gIxpNPmj0SCxtLFtmYGXpY7En5+edmj8RiFCwIVK6skrpmzTJ7NLZAjCUns3AhcOWKynasWBFWgK2JmOhNpKzXjWLFgLJllctNJAQs7ag1Uj6EeCh7MXeu5YylrVuVoTR6tNkjsSASiksRYiyFSwiO5ekWQTRQfGBcaGQBsxwsQV+9Wt23QEqOtaA39OJFIE8e1ZjNItCoZQoVayYOHjR7NBY1lmbOlJwIPxBjyclY0C3ueqFhK4KjR80ejYXzlkRCwFLwmkJq1FAVcYKHyaHb2EQtN3fuuAOoXTvpEAUk5pZRD0tyIvzCOme1EFh27VLZ1BaUDKDOEi84RMLlXjRQaEVu2GD2aAQXDE+oRdL/rIVFN2auQxJjyQ1eG4ycCPFk3xIxlpy+eNWvD2TJAisuYJT7oJSA4AInhfXORBYwy3DjRqJhL8aSG4xvMc5Fj5IFk7kMY4lpgPwcBRckb8lvxFhyKhbe6ZE+fYD//gP69jV7JBbE+MxEQsAyMErBAkWGdUxqr2hdDJcN412cIItBL3bOnKo9ptGmRnDLiVi7VnIiboEYS06EFXAWkwxwJ3t21VxX8GEscWVnIzLBEpIXzLEbMwaIijJ7NBbD4hszOrwYbWJRsEgKeciJqFlT3ZecCJ+IseRUyQBqLFFLo0IF2MG2E1xgw7Hy5YG4OGD2bLNHI8T3Oq5SRfWDE1xgXMuQubCosUSGD1fRwg4dzB6Jhb1LktTlEzGWnIhFJQPcWbVK6aI1bmz2SCyI5BIIdoDezwsXVJzLqNqwIJkyWXopNBcjyZsbM5EQ8IoYS052i1s0BGeQL59qJcV8EFavCi4Yu/S//xYJAZOZMgV47DHZePtcaywmGeAN2gLMlRRcuPPOxLYKa9aYPRrLYv2zW0i5ZABvlMo2qqosCqOEFBanLSDRJjfY+JhJXceOqZ4NgmlMmgT88AOwaJHZI7EgFs9XcuW335Rm5rPPmj0SC0oIGNcK2RF4RYwlp0FPhHGxzZwZVkc0UHxICBjxSZkc02DamPGVMqIVQjzU/aAhz/hWixawOkzwpvOEG7ObN80ejUXzloyTXUiGGEtOw2Yru2tuIS9MgguygJnOunXAyZNq30HBY8EFw4hnNVWuXLA6VDbIkQM4exZYscLs0VgM43qxfLlU4HpBjCWnNbM0JANsYizRAUbBavbdkmiTG8ZnaPTdEkKOYacySpEmjdmjsRg2CsERSj4YDjCRMHOjcGGgXDm1Y5Um3h4RY8lplSm8qFI7g3XONok2NWmi7ku0yY2SJYFixVR59oIFZo8G4d7yTHCBcSzjomqjrsLGUMVY8oB4sp1lLH399dcoWrQo0qVLhzp16mCljwaAo0aNwt13343s2bPrt2bNmiV7/hNPPIGIiIgkt1Y2+vInwTjJuX2yQWWKwUMPAV27ijJyMpgLYlylZQELOVTsXrZM3RdjyYPuB+NZbMRqoy+u8Tka4VXBS06EVOAmwz5XVAATJ05Enz590L9/f6xduxZVqlRBy5YtceLECY/PX7BgAR555BHMnz8fy5YtQ6FChdCiRQscPnw4yfNoHB09ejThNmHCBNgSm+UrGXTpAowfb/niPXMQY8k0uExQ07VsWeXgE1ww1J7ZpJvVVDYhb17ldJcKXC9NvNOlUyf+1q1mj8Zy2MpYGjp0KHr06IFu3bqhfPnyGD58ODJkyIAx7EHggR9//BHPPfccqlatirJly+K7775DXFwc5s6dm+R5adOmRd68eRNu9ELZDib9cLtEbFCZIvgJY5S8GO3cCezZY/ZowgqKqLPFiUjPOGdjRp5+GnjrLaBaNbNHYjHSpwcaNVL3JSciGbbZEly/fh1r1qxBX5fOq5GRkXpojV4jf7h8+TJu3LiBHCyJcPNA5c6dWzeSmjRpgvfeew93+GgIee3aNf1mcJ4dGnXl/xv6LVAYx/LnmBEzZugfpla1Km7S2LNZe23mFW7YAJw4EYGWLUPrAk7JPIec9OkRdeediFy8GLHTpyPumWdgZyw9116gZJmNhhv8eT57FtErVoCC2Dcob2GzyenRI/F+aodux/PZF5HNmyNq5kzEzZiB2BdfhFW4EcR59veYtjGWTp06hdjYWOShqpgL/P/27dv9Osbrr7+O/Pnz6waWawiuffv2KFasGHbv3o0333wTrVu31g2wKC8dMwcPHowBAwYke3zWrFm6pyvQzPbDX1x93DgUArCzRAlss2GLjNWrc+O99+oid+5LGDFijimtCfyZZzMoVaQIyi9ejBP/+x9WFuKnbH+sOtcGV65EIyJCQ7p09m7/EIx5zrd0KWrHxeFCwYKYt3kzwFuYY/Xz2V8ypU0LZkNoCxfi799/RyzDcg6f58uXL/v1vAhNs0cm15EjR1CgQAEsXboUdV0ET1577TUsXLgQK24hnPHhhx9iyJAhuhepMhuSeWHPnj0oUaIE5syZg6Zekmg8eZaYD0WDLkuWLAikxcuTo3nz5ojh9tYbcXGILlwYESdO4Obs2dAaNoTdYBFfnjzRuHEjAlu23ECpUqF7b7/n2SzWrkXMnXdCy5wZN6nobcUxOmWu4/nii0i89VYkeveOw/vv208ALJjzHNWzJyJHj0bsCy8g7tNPYUfYzm7BgghdtqRJE83x57PfaBqiS5dGxP79uPnHH9AsIgtxI4jzzOt3zpw5ce7cOZ/Xb9t4lvjH0NNznLk5LvD/zDPyxSeffKIbSzSAfBlKpHjx4vp77dq1y6uxxBwn3tzhhxiML8wtj8tcJSa5Z8qE6AYNbHkxZeSQmkuskJ8/P0bPFwk1wfr8Ug2rjXLlQsTJk4hZvRrgZ2xzLDvX8TCtkbJlefJEISbGs4c5LOeZe+t4yYCoVq0QZeHP0Bfffw+8/DLQvHlg0q6sfj6nCE7IyJGI5ud8332wEjFBmGd/j2ebBO80adKgRo0aSZKzjWRtV0+TO/QmDRo0CDNnzkRNKs3egkOHDuH06dPIxy6vdku2ZP6AjZXzjLx0o9BGiIcyEFzViVTFBZ2rV4GFC9V9u6qIBI1//wX271frjA092O5rDfv9+RmFCR+Mk14WYnsaS4SyAdROGj9+PLZt24aePXvi0qVLenUc6dq1a5IE8I8++gj9+vXTq+WozXTs2DH9djFeDZk/X331VSxfvhz79u3TDa/7778fJUuW1CUJbIONK1NcMYY/b57tckaDj0gIhIwlS5izBOTPryriBBeMCyjLzBnDsikUq2Yjb2ZT/POP2aOxGNx0M193xw5lGAv2M5YefvhhPaT2zjvv6HIA69ev1z1GRtL3gQMHdJ0kg2+//VavonvwwQd1T5Fx4zEIw3obN27Efffdh9KlS6N79+669+qff/7xGGazJDT8uLo7wFiqWlW1mOKfxBZFgoetMOvYveiKCYG1B+jMM6PQwDbCtzZG9F59QKHROnXUfYckrgcC2+QsGfTq1Uu/eYLJ267QW+SL9OnT42+7f1PYC45umOLFVXsMG2NEm376SX1HuXkV3NT0qK/Ayenc2ewROd5Ysrk9EHjohrFZ70lf8PMdPVqMJa+Tw/ZZ/DI89ZTZo7EEtvIsCc4NwRn06aPWY4rGCW4Yn7Hs9oIG60coRElcFEYEwosnE3zoyb9FoYwd4OfLDRrFqg8dMns0FsPIkWSOcKy95TMChRhLdsdh2+AaNZSIrF2ioKYsYDSW7KH4YTtYGPPZZ/Rgq37UgpcQnAPik9QmNtraMdFbcKF2bYBl9P/9p0uXCDYMwwkuMMzINhhMxmNSnuBs6tdXvZuOHFHbYTYuEwJ+AX3pJbNHYfGNmUO82OTLL9VnXqKE2SOxGGyxROmcyZPV517LPs2Sg4V4luyMEY65804ga1Y4hS1bgN69gXffNXskFoOGklGuLWW9glm9Jw0Pp0McKEz1dICjLPCIlksSxFhygrHkoMWLMH+AOz4mX0q0yQ3js5YFLODs3QuwJ7fkr3ggXohS7z4r8cnwMpaYq3bhAsIdMZbsCpPujAXMIflKBqyCY84SL1p+tv0LH4zPmqqJLi13hNTz++9A9+6qK73g7NxI91Ss9u3Z4sbskVgMVlgzPnnzpmqtEOaIsWRXmHR35owKvzksnsxexEZHD3GguFGxopIRoGqioa8lBAQH2wOpg+5dh3qxyZ49KjWHN8ENCcUlIMaSXTFO3iZNVDKeQ7+jooHiBpMrZAELSosToyJKjCUPSYQU+02fXjVwdHC0Kb65g2AgYf8ExFiyKw7fBht/Fr2/Em3yISEgBITFi5XBVKCAaoUhuGCcZ3T3ssjAYTDSVKyY0vY1egIKbq1P/o3vCRjGiLFkR5hst2yZY93ipFIlpX3HaBN3fIILhloiQ7EnT5o9GsftPaQyyg0Hh+AMZP/hBWl9koAYS3aE2x+jxYlDBUJ4weICVqiQ0kUTPLQ+IUaSv5AqHO6ovX3o1jWSex08OcafFub2gGck7K8jxpIdCYOdHhkxQnl+O3QweyQWRLbCAeP0aWDTJmWgS4sTN+jWpXuXBjqLCxwKUz+l9cktjKU5c8K69YkYS3YkTLbBrIqTkIgfuz0Ro0oVd9yhNBenTwdy5jR7NBZda2hFOvjLmD270vatVw84dcrs0VgMVltnzaqqr9esQbgixpLdOHhQiQ9xG8TtUBjAzcy5c2aPwqKtTw4fBrZtM3s0todGUqtWZo/CghieS4dvzAirIanGUbWq2SOxGKy2bhJ/rQljT7YYS3bDOFmp08/kO4czbhyQKxfw6qtmj8RisIyb6p1hvoAJQYQuFqOJahjEJ1n0JXihuYT9xViyq1vc4flKBuysQO+vRJs8IGJUqYY5Kmy39+mnZo/Egsydq750LE3Nlw/hwtmzas0RXGgef70JYzEqMZbsRFycY1uceIMXspgYlei9a5fZo7HoAiatT24b2pkMv4R5oU9YF5K48n//p3LYvvvO7JFYjBIlgKJFVRW2od4aZoixZCfY9ZulO5kzJ2pfOJyMGVXSZZh7gD3DHT9db5cvA8uXmz0aW2LsPcLIHvAPh7c48UbhwmpPKmuNFy0XEqaTI8aSnTBOUqqq0t0SJogGiheY5G/kksjkpJjr1xMVm8PIHvAPKjYfOACkSZPYqDEMMM6Df/5RigmCC83FWBLsQhju9Fz/3HnzVANswYUwX8BSA0XwL11Szjk66QQXjPOJVZfU8AgTypZVLW/Y+oYtcAQXmjRRHib2CjxyBOGGGEt2gaEW49sbBpUprlSvrnRQzp8HVq0yezQWNZZWr5as1Nu0B/h1opNOCN9CEgOJNvngjjuAGjXCtnOALBF2gYYS4wYFCwJlyiCcYElvr15Av35KSFhwwej8ykQLut4EvwlTR+2tYRKv0eIkDCfH+JMl6d8DzcPXkhRjyY4ru4OVdL0xcKC6sTu44EYYL2CpETrNn1/VSoShPeCbFStUs256EqpVQ7hhOO43bABOnDB7NBajefNEz1KYabmIsWQXZBsseEOSvG/LWzl5smrSTOec4IIRYmnaNCzjk8xho4TAyJFA2rRmj8Zi1KunctiOHQM2b0Y4EX7fBDvCxlXc5hgLWJjClidTpiROhRBPo0aqJcGePeom+A2nTXBDNmb4+GOgRw/VEk1wgdajUR0ZZpszMZZsQISRi1Klitr2hCl9+wIPPCCCcclgLIldQMM08fJ2WywKXnYkDMOFubEk+KBZeHqyxViyAZGGsRTmi5fxHRV7wAOSt+Q3dL5RfLB8eZGiSAYTu5nQVbIkUKQIwl1q6quvgH37zB6JxWgenp0DxFiyOpqGCPZoImFuLFHmgykU27cDhw6ZPRqLYZwbPFd4sRO8YtiTzF+WMJwbImmewHPPAS+8APz5p9kjsRiVKgF58ijVTvaKCxPEWLI4mQ4fRgQtA8aKjS7zYUq2bECtWuq+OFDc4MQwwYJaS0aneMEjkpLjA5mcBMRZ64WIiLAMxYmxZHFyrV+fqKSbPj3CHdfKVcEFukjYBifMFrCUQqebRLV9JHLt2KHct8a5FMYY9gAjk5SeEsLbkvTbWDoShvLmViCXUfolK3uyvCXqMArhvYCllDVrlPONTjjDSykg6XlTu7Zy44Y5lJhiqJaSUytXmj0ai641a9Yo/Y0wwG9jqUKFCvjpp59gNl9//TWKFi2KdOnSoU6dOlh5i7P4119/RdmyZfXnV6pUCdOnT0/ye03T8M477yBfvnxInz49mjVrhp07d8IS3LiBnIaWRZi1OPFG3bpAxoxKLG7rVrNHYzGMc4R5BGx6JiTD8EjScSL5Sl4mR9YaHTrYDKUW2X+4QUVXVkhQmDJMOgf4bSy9//77eOaZZ9CxY0f8Z5IlOXHiRPTp0wf9+/fH2rVrUaVKFbRs2RInvMisLl26FI888gi6d++OdevWoV27dvpts4uY1pAhQ/Dll19i+PDhWLFiBTJmzKgf8yo7KZpMxKpViLlyBVqYKul6gk3Qf/kF2L0bqFjR7NFYjFKlVJkX2+KwbbqQDEnJ8QLdtJLcnQxx1vqgeXhNjt/G0nPPPYeNGzfi9OnTKF++PP40oURg6NCh6NGjB7p166aPgQZOhgwZMGbMGI/P/+KLL9CqVSu8+uqrKFeuHAYNGoTq1avjK9aDxnuVPv/8c7z99tu4//77UblyZXz//fd6yHEK1Q9NJiJ+8dK4DQ5DJV1vtGkDFC9u9igsiHQBvSUvvww8+yzQqpXZI7EYGzcCJ08qt62h2SUkfJ3WrVO9zAUXwmytSZEjulixYpg3b55ubLRv3143QKLdfNn0+ASD69evY82aNehLZcJ4IiMj9bDZsmXLPL6Gj9MT5Qq9RoYhtHfvXhw7dkw/hkHWrFn18B5f26lTJ4/HvXbtmn4zOH/+vP7zxo0b+i1QRMYbSzcaN0akZBgGDeMzC+RnZxYRjRsjevRoaLNm4aYF/x6z57p1a3VTY4BjSek8R86ciSg6mBo2RCyNbidPTgqjTTNmRKBOHQ0xMcmnxezz2VTq1tWv/xF79+IGCwOCuIMN5jz7e8wUR+3379+P33//HdmzZ9e9Me7GUrA4deoUYmNjkYf6Di7w/9spvOMBGkKens/Hjd8bj3l7jicGDx6MAQMGJHt81qxZuqcrEETExqLBiRNgmuXCmBhcccu1CncWLCiIZcvy4777dqFChcCEhWc7YIeUJi4OrSIiELF5M+b++COuZc8OK+KEubYD/s5z3YkTwd4AW/LmxR5Za5KxaJHv34fr+XxX6dLIuXUrtnzxBfa3bBn09wvGPF/202WYIktn1KhReOWVV3RPzJYtW5ArVy6EI/RuuXqs6FkqVKgQWrRogSxZsgTsfW60aoUZv/6Khh07IobbGiGBX3+NwooVkWjQIDfatIlL9c6CX8LmzZs7Y54/+0yPG9BfqjFmaSHMnOtvvolE1aoaatfWHJ/cnaJ5vnoV0fFe9LIvvICyFSqEZpAOwHFrRwqJZHxywABUPnYMFYK41gRzno3I0K3we8lg7g8rzxiC69q1K0JNzpw5ERUVheNsKusC/583b16Pr+Hjvp5v/ORjrIZzfU7VqlW9jiVt2rT6zR1+iIH+IK9nyxaU49odbmJ+/JGFGFGIiWEAIfU4Zp6ZS7BuHaIpEPPEE7AioZ5rOopfekmldbEeJGdOhAV+zTPdJixoyZ8fMew/yUkSEmDBV79+wMyZwOTJQKFCDl47UkqrVrqxFLlggZ4Wg6jArMXeCMY8+3s8v7OGGQJjgrcZhhJJkyYNatSogblG6w+9gCNO/39d1pN7gI+7Pp/QOjWezxwsGkyuz6GVyao4b8cUrIGRZsYUudOnzR6NhRMvudILCYVeLCoNF0PJb4zQBuvkxVBKBqeE5w8lhUQM142aNcOmc4DfxhKNjIIFC8JMGPpiKHD8+PHYtm0bevbsiUuXLunVcYSGnGsCeO/evTFz5kx8+umnel7Tu+++i9WrV6NXr1767yMiIvDSSy/hvffew9SpU7Fp0yb9GPnz59clBgTrQkcgowVhJPPhP1R7T5eOSrLAtm1mj8YSiISQD0RP4ZaEWeGX/0SHT+cAW9WjP/zww/jkk090EUmGydavX68bQ0aC9oEDB3D06NGE59erV08X0hw5cqSuyfTbb7/plXAVXQR6XnvtNbzwwgt4+umnUatWLVy8eFE/JkUsBWsjC5gXeO4afQRlcnSDWuwBL5w6periiViSXpHOAT4Ik4XYVsYSoVeIFXks3We4jGX+BgsWLMC4ceOSPJ8imjt27NCfTzHKNm5JaPQuDRw4UK9+oxDlnDlzULp06ZD9PcLtI9EmP1f3MIfONTrZaEPS6Sa4QLcsvzzcQLrkbQqeOwdQioqSVIKHhXjJEkd3DrCdsSQIBg0aAFRqYHSY/ZsEDwuYdAFN2PDS2SYOYzfE5eZ354CGDcPCgZJySpZUnQO4zji4c4AYS4JtyZRJJXfz+xlAxQZnwKomSntcvAgsX45wZvFi9VPsATckPpkiwiTalHIiwqNzgBhLgq0RT4EXpAtoAhMmUM0fePRRs0diMXbtosqwcpvQTSv4hPYAKylNrnOyJs3FWBIEW8DezrGxZo/CYoTBAuZvwQ7bnRUoYPZILIZxXtSrpxJyBJ+UL08NPsBLK9Lwpmn8xmzTJiVq5kDEWBIcoYvGHd+qVWaPxKJJ3itXAufOmT0awWpICC7F0SbpZ+4FLsAUMXNwUYl89IIjcpdc0y+EeJh0ycpO1jrPn49w5KGHgB492DTb7JFYjJs3EwXKxFhKEVxrGMEUwsuTLcaSYHsc/h1NHWE8ORQVnjQJ+O47FYoTXFi9mu0KADZarl7d7NHYBlbGs91JqVJKRkBwoUULR2u5iLEkOMYeYBKvSAi4EcbGEp1pdKqVLeu5n1dY49riJMj9vJwEU7ty5FD33TppCXfdpSpuKAy9dSuchhhLgu0pXlzdGFlYuNDs0ViMRo3UxXDnTlX5FEZISo4fkyOq3SkmjPcfvqGhZFRVOnByxFgSHIEsYF5gk0tD5T7MJkeMJS/Q/Uo3LJHJSTHSOcCPyZk1C05DjCXBEYixFJ4LmDf27AF271a5SnSuCS7Q/Uo3rOGSFVIEnSeUpjp4UDlsBQ9rDc+xa9fgJMRYEhxBkyaq8qlPH9nteU28ZJJFmIhRGUYz9ZUyZzZ7NBZDXG6pgi2WmJ5D5s6VS2gSKlUC2Nj+8uVE76VDkE9acAQs6pk4EXjqKaWHIrhQu7bqB0PlzrVrEQ7ExABlyiTaiYILYiylGmPq5syRxSYJFKIy8uAc5skWY0kQnA5jUXS9hVGc8sknge3bgTffNHskFuPwYWDbNnVRM84JIcXce6/yYvfqFWf2UKxHc2fmRIixJDgGht9YsfrNN6pkXAjvvCUiVfFuGBewWrWUO1a4LSpWBD79FGjcWGL+yTA8S2vWqE7nDkGMJcEx3LihIk7PPw9s3Gj2aCyGEY9auhS4eBFO5tAh4Pp1s0dhUQxjWeKTQrAoUACoUEHtXg2VeAcgxpLgGFih0rChIz3AqadECaBoUWVROlyMqksXJRw4bZrZI7EYdLdKvlLAYLEXc5amTZOKwnDwZIuxJDgKB35HAwOz3h2aS+AKnWZ0nrEtBZW7BRfWrwdOnVLNFFkmKKSK48eBNm2iMWZMRZw9a/ZoLEZz54lRibEkOAojuvDPP8CVK2aPxsK9mxwKnWZ0nhUrppxpggvGDoKJ3SwXFALQp1pDXFwE5s+Xqrgk0MXPc4xdAxzSdViMJcFRlCsHFCyoXOQ0mAQXeJGkh4lZ8EzscSCuUSaRkPAyOZKvFDCaN1eVJHPnysmWrIlevXqO2pyJsSQ4Cl4gjWuBhOLcYCIPq6DInDlwIpKS4wXGJRcvVvfFWAoYzZqpENOcOXIpTYbDFmL5hAXHfkfZdV4In6QuOsvoNBMJIQ8sWqRKBIsUAUqWNHs0jqFBAw1RUXHYsydCb68jeFhruBAzNm5zxFgSHEfLlsD06er6IHiVHnacGJVh/1E+gk40wYtkgMQnAwZb6ZQt+59T9x+po3p19UU8fx5YuRJ2R4wlwXFkywa0bq3C5oIbdeuqiTl5EtiwAU7i7ruBDz4Ann3W7JFYENFXChpVq57Ufy5fbvZILKgI2zx+c/b337A7YiwJQriJUTVqBCduhUuVAvr2BR5/3OyRWLDFicQng0aTJgewZs0NjBtn9kgsSAvn5C2JsSQ4knPngNdfB5o2dVy0KfU4aAETUpD1XrOmxCeDwB13XEWlShLd9LnWrFqlGnnbGDGWBEeSPj3w9ddKbV9an3hI6iKsjmKVlAOgWveECY5qRRU4JAQnmEXBgkD58mrHOncu7IwYS4Jjo02NG6v74kBxo3RpVRXF6iiHtD4ZMgR49FHg11/NHomFW5yIsRQ0du4EOncG2rUzeyQW3pzNsvdCLMaS4Fgk2uQFxguMBcwBiZcstlm2TN03/iwhHibxS4uToJM2LfDTT8rDKa1PvCzEXGts3PpEjCUhLFqfXL5s9mgsvIDZnAULgJs3lXwQ25wIiUQa4qN0s0qLk6C2PmEvwthY0XdLRoMGypo8eBDYsQN2RYwlISyiTaK55AYz31nay8WL/ZtsjGHvSZQpORESggsZDtp/BJYMGZSuh80nxzbG0n///YfOnTsjS5YsyJYtG7p3746LbDHu4/kvvPACypQpg/Tp06Nw4cJ48cUXcY5lUi5EREQku/38888h+IuEYCOtT24hRlWnjiMmxxi+hOCSEnXlCiKWLFH/adXK7OE4HodEm4JDS/vnLdnGWKKhtGXLFsyePRvTpk3DokWL8PTTT3t9/pEjR/TbJ598gs2bN2PcuHGYOXOmbmS5M3bsWBw9ejTh1k6y9By1gOXOrarjBDcckLe0Z49qah4dnSgfJShybtqECLaZKF5cWpyEAJ5/LCzZt08lfAseLEnGzNnl3IZEwwZs27ZNN3RWrVqFmtQKATBs2DC0adNGN4by58+f7DUVK1bEpEmTEv5fokQJvP/+++jSpQtu3ryJaK6u8dBTlTdv3hD9NUIood3bvr3S4xM8GEv9+6vWJ0z6cflO2IUVKxKFybNkMXs01iLPunXqjrjcQgKF8RltYoX8zJkqDUCIh0JUvMYeOwbQ22lDcVRbrI7Lli3TDRrDUCLNmjVDZGQkVqxYgQceeMCv4zAExzCeq6FEnn/+eTz11FMoXrw4nn32WXTr1k0Px3nj2rVr+s3gPMtxwF6BN/RboDCOFchjhiNMuuTNG2E7z1WqIDp7dkScOYObS5dCo8URZAI91w8+CNSrpwq+wu3j8wXnN1e8sXSzWTNoMjkhOZ+bN4/E6dORyJQpFjduSCzOlShes3/4AbEzZiDOyGHyk2Cu0f4e0xbG0rFjx5CbsRQXaPDkyJFD/50/nDp1CoMGDUoWuhs4cCCaNGmCDBkyYNasWXjuuef0XCjmN3lj8ODBGDBgQLLH+XoeJ9Aw9CikDuYQnDyZHrlzX/H6nHCc55rlyqHA0qXY9c032HHmTMjeNxhzfehQwA9pWzIePYpmx44hLioKf1+/jpvsLC0E/XwuUwZ49131mEx5UgrkygW6Oy5MmoSF9evDKuvGZT9LpSM0zbxUtDfeeAMfffTRLUNwv//+O8aPH48dbmWHNKBotPTs2dPnMej5ad68uW5cTZ06FTE+SmjfeecdPYfpIMscU+BZKlSokG6Q0XMVSIuXJwfH7mvMwq3zWho1isbVq8xlYwg26e/DeZ4jxo5F9DPPIK5OHcRSYyHIhPNchxLtq6+Qpk8fxN59N+JsrpxsZeR8TgEnTiCGit6cN15f8+SxxDzz+p0zZ86EyJMlPUuvvPIKnnjiCZ/PYWiM+UQnTpxI8jjzjljxdqtcowsXLqBVq1bInDkzJk+efMuJrlOnju6BojGUltoQHuDjnn7HYwfjCxOs44YLzG2lbUuxuHXrYvSwjSfCcp7btNF/RK5ahUhWl2bPHpK3DcRcf/CBEiDv3TvhzxDiSTCQWrYMv3PaBNzPZ36V6Omk9pIQT4ECQPXqwNq1iGGid5cuSCnBWKP9PZ6paa+5cuVC2bJlfd7SpEmDunXr4uzZs1izZk3Ca+fNm4e4uDjduPFlMbZo0UI/Bj1K6dKlu+WY1q9fj+zZs3s1lAT7QTkhoxiDiZeCl95NhoChTZg8WVUiu+2jhOvXEcGLEY2m5s3NHk3YwX6U7FfcsaPZI7EgLVvadiG2RY1QuXLldO9Qjx49sHLlSixZsgS9evVCp06dEirhDh8+rBtX/L2roXTp0iWMHj1a/z/zm3iLjc/2/fPPP/Hdd9/p0gK7du3Ct99+iw8++EDXZxKchSEzY8PvaPCxoYQADaTVq9V9KfZyY8kSRFy6hKtZs+pJ/EJo4ZSzuHTzZsmj87oQc63hBs1G2MJYIj/++KNuDDVt2lSXDKhfvz5GjhyZJKbJnCYjWWvt2rV6pdymTZtQsmRJ5MuXL+Fm5CPR/fb111/rnquqVatixIgRGDp0KPqznFpwFMYFlRfYkyfNHo2FBeNsoqZnaNtVrQrky2f2aCxG/I7gZLVqoplhAnfcAdSubXsNxuBQN17jg+WrLpEiO2CLajjC5Oyf2KnQC0WLFoVrrnqjRo2S/N8T9FbxJjgfXlC542NfURZUsEO94NK7iSFqbiK2bVNhOYtjeAhbtzZ7JBYk3kN4olo1iHqcefsPaoDxo3jySbNHYyFiYqj7A/z+u/oS16oFuyDbDiEsPcCCC5Q3b9hQ3Z8xA1aH3nvjM5S9jhtHj6odAY0lCcGZhnFecmPmS+MtrCdnhvXXGlfEWBLChg4dgFdfBXx0yQlfDBeNDRYweu/pxac3PwQ6mvYiPu4TV706rrP/n2AKdJiwsJTSZatWmT0aixpLK1awiSvsghhLQlgtYEOGAHfdZfZILGwsUWvJR4NqK8CdOqsb77lHefUFF+JdbppUwZkKtdwYbSJSVOJGoUJAhQrKRWwjIWAxlgRBAEqVUg1Xr19Xtc8W5s47lU3www9mj8SCVmS8Z0kztDIE03jqKeCLL4CuXc0eiQVpZb/yZDGWhLCC4pS80H75pdkjsRjshWijUBzx0b4xPGF88vRpIHNmaLQoBVOhvcquWdyDCG4Yaw2NJZtICIixJIQVhw+rTc0rr7CxstmjsRiuxpJFJQT27mXLGrNHYVGMZmQMwUl8UrAy9esDGTOy8SuwcSPsgBhLQljBXV7p0ko0zuLRptDTuDF7+QD79wPbt8OKDByouiZ8/LHZI7GwsSS9XywDCxG++0482cngOtOkia082WIsCWGHTStXg0+GDJaWEKCzy0hxYIspwYukuYhPWQaqePfoAQwaZJtoU+hoZa+8JTGWhLD+jlo02mQeFs5boreeXnvadPTiCy4wEY8nMyXN41tACebDytvMmZWHybBlBbeFeMkSW+REiLEkhB2NGiUKVnPnJ3gwlhYtspyEgGG/0Xsvfa7dkBCcJWHqmFGYaHxEgltOBKs4586F1RFjSQhLwWojXC4LmBtcvIoWVRIC8+fDSkiLEy8wAc+QNBdjyXIYH4msNfbyZLsjxpIQlrRtq36Ka9weEgL00tNbT6TFiRtUQqZUNCWj69QxezSCG8b5SiXv48fNHo2FE0g1a+dEiLEkhCUPPQRs2gT88ovZI7EgFpQQoNYiHShlyohuTTIMo5bxHkpHC5aCKWTVqqn70pfSDRaU0NVPTRcuyBZGjCUhLMmZE6hYUYQNPcIYZZo0wL59wI4dsAJsHfHjj8A775g9Egsi+UqWhx9NZCSwc6fZI7FwTsRff8HKiLEkhD0WcZ5YB4rFNWhgqVAcI0yPPqpuggtU6Fy3Tt2X+KRl6d0bOHlSSQgIXnIipk2DlRFjSQhbuHg98gg9TNF6QYbgIRQnWanWxsh6Z5fo3LnNHo3ghVy5gBw5zB6FxY2l5ctVux6LIsaSELZky6ZsgZ07I7B7d3azh2Mt7rlH/Vy4EDh/3tShjB0LDB4M7Nlj6jCsiYTgbAdz7wQXChcGKlVSqp0WFqgUY0kIW1w1UFavzmP2cKwnIVCqFHDjBjB7tqlD+eor4M03gX/+MXUY1sP1sxFjyfJs2QLcfTcgPY59bM4sHIoTY0kIawwP8Jo1YixZcQFjSs7atUkVDYR4li5VXj/GeGrWNHs0wi1glJTyF2vWqOIvwcNCTM+SRV1vYiwJYY1xAd69OxuOHjV7NBbj3nsTq1RMamxlRJkkJcfH5LRsqUqtBEtDm7Z2bXXfwtEmc7jzTpXUdfYssGwZrIh8w4SwJk8eoEYNZQjMmiU6AklgA7YsWVQmPBX1TMCoJjY2noILf/6pfkoIzjYYH5XFq+RDT1RU4s7VoqE4MZaEsKd1a6UdMH26fB2SJXUZ5egmLGDXriWm5BgRQSGe3buBbduUCKVIBtgG4zymyOrVq2aPxmK0bWtpS1KuDkLY07athhIlzqJWLRFcslLeEnv5XroE5MuXqIAsuHmVmDFMESrBFvA8LlBAndcWa71oPi1bKg8TM+EpiGsxxFgSwp4aNTR8+ulC/N//mZOXY2noGmd29fr1wMGDIX3rAweUPiZDF6K07sbUqUnzygRbwPPY+MgMe1eIhzlL9epZ1rskxpIgCL77wtSta8oC1r270qijxpLgApNgDR0FMZZsR4cOwP33A40bmz0SC9LWuqE4MZYEIZ6LF9VuT9qfWCcUlzatqiISXDDKq8uVA0qWNHs0wm30OZwyBejY0eyRWHitmTdPxSothBhLgqDr+0WgWLFo3HefCpkLLhjei7lzgcuXQ/KWFy6E5G3siYTgBKdSvjxQpIiq7qDBZCHEWBIEvfBLw113aUmuRUI8FSqoBYzlOyFawLjBLFtWifgJbqrdRnNjMZZsDdv3/PCD2aOwYFLXPfdYMqlLjCVBiOfee1WC9x9/mD0SCy9gIQjFnToFLF4M7NgBFCwY9LezF7QembN0xx2JuWSC7eA5zgjqY4+JmncyXDPgTRLD9YQYS4IQT5s2yrO0ciVEzdsdV2MpyEldhmB4lSrKoSW4YLg9mQjLMmvBtnUTdepYWoPRPBo3VmK4x46pxdgiiLEkCPFQz8doRyALmBuNGgEZMqht8Lp1QX0rw7PHiiHBBRqpRmhCQnC2h/mRRML+bqRJk6jmbSE3v22Mpf/++w+dO3dGlixZkC1bNnTv3h0XWb7kg0aNGiEiIiLJ7dlnn03ynAMHDqBt27bIkCEDcufOjVdffRU3LdrITwg+soB5IV06JRpHWMoTJK5cAf7+W91v1y5ob2NPGJfctUtdTIzPQnBE3YTFCr/Mp127oK81jjWWaCht2bIFs2fPxrRp07Bo0SI8/fTTt3xdjx49cPTo0YTbkCFDEn4XGxurG0rXr1/H0qVLMX78eIwbNw7vvPNOkP8awaoY3ow5c9SFW3DhgQeCvoBx3llwV7gwULVq0N7GnhheJXr5Mmc2ezRCAOomihVThV887wUX6Fliu6Xt29UmwQLYwljatm0bZs6cie+++w516tRB/fr1MWzYMPz88884cuSIz9fSY5Q3b96EGz1TBrNmzcLWrVvxww8/oGrVqmjdujUGDRqEr7/+WjeghPBcwEaMUPIB6dObPRqLYeTJbNqkepMFAcPrTg+fqHa7IZIBjlXzFk+2G1mzJqp2WiQUFw0bsGzZMj30VrNmzYTHmjVrhsjISKxYsQIPGDteD/z444+6MURD6d5770W/fv10A8o4bqVKlZCHrefjadmyJXr27Kl7sap5aUh17do1/WZw/vx5/eeNGzf0W6AwjhXIYwq3nudu3YzHzRyVBcmcGVENGyJy3jzETpqEuJdfDvg5/eCDEYiLi0T79nG4cUPUQRM4fRrRS5eC9uMNNs69xckpa0doSO08t2kTgS+/jMacORquX78pGwQXIu+5B1GzZiFuyhTc6NUraOezv8e0hbF07NgxPZ/IlejoaOTIkUP/nTceffRRFClSBPnz58fGjRvx+uuvY8eOHfj9998TjutqKBHj/76OO3jwYAwYMCDZ4/RUGYZYIGHoUQg+Ms+3pliJEqg8bx7OjhuHxWXKBGWuGQrl/mP69Ns+vOMoNHcuqsfF4VzRolhAt6efyqlyToeG253nmzcj8MYbeVGlygnMmBEb8HHZmXQZMoCZeRHLl2PRr78C2bIF5Xy+7KfQrqnG0htvvIGPPvroliG428U1p4kepHz58qFp06bYvXs3SpQocdvH7du3L/r06ZPEs1SoUCG0aNEiSZgvEBYvT47mzZsjhvFbISh4mueff47AxImReOONONSpIx6OBCpVAkaNQo7t29GmRg3uLlL0cjmnb4+oUaP0n5keewxt2Fn4Fsg8h4ZAzLNRVCIkJ+7bbxG5Zg0aX7qEmdmyBeV8NiJDljaWXnnlFTzxxBM+n1O8eHE9hHbixIkkj7NijRVy/J2/MN+J7Nq1SzeW+NqVbjoOx48f13/6Om7atGn1mzv8EIOxMAXruIL3eWb7Ler9VKgQifr1zR6ZhSheHKhZExGrVyOGk/TUUwE7p1l70bAhUKsWEGmLbMoQwd4v8RnAUR07IioFa4GsHaFB5jmIVXFr1iCGi/HTTwdlnv09nqlLUq5cuVC2bFmftzRp0qBu3bo4e/Ys1qxZk/DaefPmIS6Ou/54ZS8/WL9+vf6THibC427atCmJIcZdAr1D5dmjRghbjN0eC7+ksW7wy3pZ9PL660CDBqqhseAC25swR5KSzxUrmj0aIQgwwEIR1g0bzB6JNdeaiLlzEWVyebIt9m/lypVDq1atdBkAeoKWLFmCXr16oVOnTno+Ejl8+LBuXBmeIobaWNlGA2vfvn2YOnUqunbtigYNGqBy5cr6cxg2o1H02GOPYcOGDfj777/x9ttv4/nnn/foORLCq3KVcjb//gts3Wr2aCyGUVDB/IEAdbw17K4mTZR4r+BCfI4l2reXEkGHsmwZsHFj4kctuJQnFy+OiGvXkDve2WEWtjCWjKo2GkPMOWLMnvIBI0eOTBI7ZvK2kaxFj9ScOXN0g4ivY8ivQ4cO+NOlOV9UVJSu2cSf9DJ16dJFN6gGDhxoyt8oWAdesFu0UPcnTTJ7NBajXDmgVCmA8hoMxQUAUe32ApsXMwRhGEuCIzE+WjGW3ODmIN67lNfk1ie2qIYjrHz76aefvP6+aNGi0FziJUy4Xrhw4S2Py2q56VJ2I3igQwfV9uS33wDRKXVbwOhdYpLR5MlAx46pOhz78K1Yoe5LsqsblHdmXLJAAZXMJTgS6i1FRwObNytvdunSZo/IQtx/PzB0KPKuXs1kZSVWaQK28SwJQqjhhZsLGDUYd+40ezQWzVui1yOVAq7cTXOfw/TD+Ki6YGC4GmicSta7Y8meXYWgCfcfggv16kHLmRNpLlxAxJIlMAv59gmCF3LkAJo3V0nH586ZPRqLQcuGFaMsu50/P1WHoueOpNJB5Ty4izbikxKCczwSivNCdDRiP/wQy99+G1oKCroCjRhLguADtiFgNNdFPF4g9HIYCUap2AozxZCVcOTBBwM0Nqfwzz+6cjfuuAO4+26zRyMEGX6dGOFmas7Bg2aPxlpoXbviOBdhNvQ2CTGWBMEHDMMJt6iKo7EUe3vqwxS8P3RI5SwVKRLY4dkew8XAq6iciI6Hjlq2X+zSRSlFCNZCvoGC4AcnT1KwVGRuksAkC8YqqVO2aFFi48sUwt68tWsHfHT2Ji4u0WMnIbiwwaVYW7AY4lkSBD82+Nz1PfOM2SOxGKxKMS7kv/yS4pczL5w2geCBVasoHqc3L0bTpmaPRhDCHjGWBOEWMKeQF/WlS9X1S3DhoYcSxaiYkJwCxo6lxAfw2WfBGZojQnCMy5iYpyGEHlaGUqDSpWGFYAHEWBKEW0CJm3r11H0p63WDoTcmIDNO6YeumXsV3JEjkp/h8WpplAgaeWFC2DBsmGp98vbbZo9EcEWMJUHwU6CSGNcwIR4mHhuTk4JQ3KlTiYoDIhngIQS3Z4/KfqdnSQgrWrVSP9k7mcWQgjUQY0kQ/MCwB1jN7dJ3WbjNUNzUqRF6AV21akCJEsEdnu34+efEKriMGc0ejRBiqN7N7wW/StJqyTqIsSQIfsCydsp8MHdJROPcaNgQyJVLbYPnzfPrJZMmqaVHtJXc4Ak2caK636mT2aMRTML46CdMMHskgoEYS4KQQgfKbRR+OZsUhuLOn4/BvHkR+n0JwbmxeLFK5MqaFWjZ0uzRCCbx8MPqJ9MAeToI5iPGkiD4yaOPAsOHA7/+avZILGxJ0u1244bPp65cmQ+xsRF6EmupUqEZnu1CcJRkSJvW7NEIJnqyWVTCXH/ZnFkDMZYEIQVVcdRaYvGX4AYb6OXODZw5A8yd6/OpZcr8hxdfjEWPHiEbnT2gkWlY4hKCC3uMU2DmTLNHIhAxlgRBSD2U4TYSkG6xFS5U6CI++SQOzz8fmqHZBuZ7sUyQ+V9GC3ohrI2lGTNE1dsqiLEkCClk5EjgrruArVvNHolFEy0oRkV5buH2QnBM5JJecGEPbWbKCFAoXzAfMZYEIYVwp0c1b6lUcYMWZL58wNmzwKxZHp8yaFAkNm3KKW1O3KEyp1FmKSE4wQ3mLgnmIsaSINxGojf56SdZxJKF4gzv0v/+l+zXO3bQWIpC//51RWzPHcZbzp9XiXE0OgUhHip5Fy0KbNli9kjCGzGWBCGF3HefElemyPLKlWaPxmI89pj6+ccfysPkwo8/qp/Vq5/QQwyChxAcjc1IWZaFRNgn7sCBRPktwRzkWykIKYSiyu3aJXqXBBcoPVyhggorufSGoQfuhx/U/QYNDpk3Pity6VJiFq+E4AQfApXiyTYPMZYEIRWhOO72/OzwER5ERABdu6r733+f8PCyZcDevUCmTBrq1Dlm3visCL1wly+rvi+UiRcEN092+vTArl3AmjVmjyZ8EWNJEG6DFi2U3tLx44kNYQUXS5JGExvp0UJyCcG1a6chbdpYc8dnNcaNUz87d1bzJgguZMqkDCa3/YcQYsRYEoTbgOW8tAnuuUctZoILBQsCTZuq+z/8oKsIGPkWjzwiZXBJYDIK28uTJ54wezSCRTFODW46GOEWQo8YS4Jwm3zxhUo1qVvX7JFYEJdQ3P59GrJlA/LmBRo3lqSLJLBqkIkojRoBxYqZPRrBojRvDuTPD/z3HzBtmtmjCU9E+UwQbhOJmPjggQdUyeCuXSh1ejl27qyLw4dFazEJNJKMEJx4lYRbqHK88AJw8CBQvrzZowlPxLMkCKlk/35g9GizR2ExGJvs0EHd/9//dMOS0TnBhSVLVNYu58poFSMIXnjjDeDrr4Fy5cweSXgixpIgpAK28ipZEnjqKXXdE1zo2hW7UAJXJkyRRAtPjB2b2N6EehSCIFgWMZYEIRXkzKnyCciYMWaPxmI0boxHYn5D/rNbMO9DUe9Mpq1kNBzu1s3s0Qg2itwuXgy8+aZoLoUaMZYEIZV0765+Mv1ENJcSWb8pCqtvVMUlZESl5aPMHo61mDQJuHhRaSvVr2/2aASbwFOmZUtg8GBgxQqzRxNeiLEkCKnk3nuVh+noUWDmTLNHYx1GxdtHD2Aycs3+CThyxOwhWQfXxG6pFBD8JHPmxPQ2I4orhAYxlgQhlaRJk9gSTRK9FRSkNoQoe1RYBsTGSpzSgEKdVDJ1VTsXBD8xCifZTpDfMyE02MZY+u+//9C5c2dkyZIF2bJlQ/fu3XGRPkkv7Nu3DxERER5vv/76a8LzPP3+Z6OppSCkMBRHDRSqeoc7/IqdO6ekg5q8Ft/CY+RIZTSFO4YMM4U7Cxc2ezSCzWjYEChaFDh/Hpg82ezRhA+2MZZoKG3ZsgWzZ8/GtGnTsGjRIjz99NNen1+oUCEcPXo0yW3AgAHIlCkTWrduneS5Y8eOTfK8dkaXVEHwE/aOrVMHSJcOWLfO7NFYJwTHKsHIhx4EcuTQRWIiwj1OSWPRiJ+ItpJwG0RGJp46EooLHbYwlrZt24aZM2fiu+++Q506dVC/fn0MGzZM9wAd8ZIHERUVhbx58ya5TZ48GQ899JBuMLlCT5Xr89LxiicIt+EwYN5Sq1YIa/btUxJCFNLTC734fYqv+Io0rKhwZfp0JcxF47F9e7NHI9iUxx9XUdy5c4F//zV7NOGBLfR0ly1bphs0NV06cjdr1gyRkZFYsWIFHqBa8C1Ys2YN1q9fj6+p6uXG888/j6eeegrFixfHs88+i27duunhOG9cu3ZNvxmcpz8UwI0bN/RboDCOFchjCsGbZ6NbRbh/XAUKAJs3A8uXRyBnTk3NR7duiPn0U0TMmIH07dqF7TkdNWyYvkONfeIJxFHOPEjzIGtHaDBrnvkda906Clu3RmDfvlgUK+ZsHYEbQZxnf49pC2Pp2LFjyJ07d5LHoqOjkSNHDv13/jB69GiUK1cO9erVS/L4wIED0aRJE2TIkAGzZs3Cc889p+dCvfjii16PNXjwYD2k5w5fz+MEGoYeheATqHmm/smRI5lQoID3nLpwgBWCdKQY1KtcGbk2bkSR2bMx2+37HA5kPHwYzWbPhhYRgXllyuCy6+QECVk7QoMZ89ypUxpkzHgdV64k/Z45mdlBmOfLfmbJm2osvfHGG/joo49uGYJLLVeuXMFPP/2Efv36Jfud62PVqlXDpUuX8PHHH/s0lvr27Ys+ffok8SwxR6pFixZ6AnogLV6eHM2bN0cM29wLQSGQ88yk5qZNo8HTdvfum3rz2HAiLk7lVHgigovSo4+iyJw5KDRqFGKCsLGwMpGvvKL/1Fq3RqMgC1HK2hEaZJ7tP89GZMjSxtIrr7yCJ26R5MjQGPOITpw4keTxmzdv6hVy/N2t+O2333TrsasfZbrMiRo0aJAeZkubNq3H5/BxT7/jhxiML0ywjisEfp7pTWHnCnp2v/suBh4ckI6GauZZswIffACULu32yw4doOXJg3THj+PmzJmIfvhhhA2s3B0/Xr8b+eKLiAzR91nWDjh+nq9fB/76C2BdktMlu2KCMM/+Hs/UBO9cuXKhbNmyPm9p0qRB3bp1cfbsWT3vyGDevHmIi4vTjRt/QnD33Xef/n63gnlN2bNn92ooCcKt6N1b/Rw+PLxaovHrOWcO8McfgEenUZo0iIvfHIVdovcPP6ha71KlEvvjCEIAiitZictaAUp3CWFeDcdco1atWqFHjx5YuXIllixZgl69eqFTp07Inz+//pzDhw/rxhV/78quXbt0mQEmcLvz559/6hV2mzdv1p/37bff4oMPPsALL7wQsr9NcB5cuJiASWdoOEl2ffaZ+kmHUcGCnp8T1727nrMTyTKenTsRFjCJ7auv1P3nn/cepxSEFMKK0xYt1P1hw8wejbOxRYI3+fHHH3UDqWnTpnoVXIcOHfDll18miWnu2LEjWbLWmDFjULBgQT2fyJP7jdVxL7/8MjRNQ8mSJTF06FDdKAs09IJdp780BfBvYiL71atXEStifreEnyclI8yGXl1eE9ns8osvlEiz093jhw4BEyeq+y+/7OOJRYviePXqyEs3FFd3l++wY1m0CNiyRcVnWfMtCAGEa8033wBTpypViiJFzB6RM7GNscTKNyZpe6No0aK6weMOPUW8eYLeKt6CDY2kvXv36gZTSuDfw5ysgxTzc/rVNkAYmllmzxf1UgcOVAKV7BJ+991wNHScsIkw1YVr1PD93N333aeMpe++A955RyV6ORnDq9SlC09Qs0cjOIzy5ZUYPJ21DP2zya4QxsaSXaHBQ1VwejxYMUevmL/QuKKMAUU0U/K6cJ1nehWNQoB8+fKZOp477lDXRtoDDMU52Vhi7vKIEep+fMGXT05VrgytWjVE0JKk7ln//nC0y83oSUEXgCAEgV69lLHEVEDuP9KnN3tEzkOMpSDDqj1exJlblVINJiN0R0VxMZZuTfr4FYIGE3W5zA7JvfqqqlBx667jOFjkdfasyl1u29aPF0REIPaVVxBNa5KhOE6UU2UE+PcxhN6gAVCpktmjERzKPfeoNoMHDgATJgBPPmn2iJyHXIGDjJFrxKo+IfgYBqkVlItZOk/jwel2LnOyPv9chR39/Vs1ZsFT8vz0aec2uPrvP5VMQv7v/8wejeBgKAZP7xJxKRoXAojDl3HrYHYOTbhg1Xm+cIFKsXAkmTMruYROnVK4uhsxu08/VQlPTvQqMUZZpYra+gtCEHn2WYDF4B46egkBQIwlQQgydJzQieLEwi8PNRX+QxVrJnfv3QtMmgRHQeuYpZCEZZEWNeIFZ21aatUyexTORYwlIcVQdb0dk3FSyNy5c3XNLH9lELZu3arLPrAFjZ2hlACjTZ98oq6hTmHFClX5dttaUgyZGppmQ4ak0vKyGN9+C5w5A5QpoyuXC0IoOXIE2LjR7FE4CzGWhBTzxRdfYNy4cSl+3WuvvYa3337b78Tr8uXL484779S1r+wMw1PMX6LBZFSROwFW3bCg7e+/U3EQVojRaFq7lrL8cATsbMrQIunbVykHCkKIoN5S8eJA9+7O2n+YjRhLQorJmjWrrmeUEhYvXozdu3frYqIpoVu3brqyOqsK7QrTc4x+zU7xLlFncdaspH/bbWsscFUnt2iqbRuoF0EJi6JF9cbBghBK6tZV9vnq1ancyFiEGzcoLh2BGzfMNVfEWAo1NPUZVjLjlsJtBhsQV6pUSS/Jv+OOO9CsWTM9JOYehmvUqBFefPFF3XNE8VCKQr777rtJjvXzzz/rHaMpg6CmQdOP17JlywQxUTZGZtjtHbos4uFr+PjChQvhBO8SC6Ts7l3ix/X22+o+uwhxF5sq+vRRq/vs2coKszNU6WdIkbz+uorBCkIIYQtUJnuTQYPs710aM4Z/TzTefLO+qX+LGEuhhiVRmTL5dYvMkgXZChbUf/r7Gp+3FJRjUUjzkUcewZNPPolt27ZhwYIFaN++vUeVdDJ+/HhkzJgRK1aswJAhQzBw4EDM5sUvnn/++Qc1a9ZMUrXG16xatSqhbc2zzz6LAgUKJDGWKLlQtWpV/fV2xkneJX6s/DjYa/qttwJwQHpgKHluGBh2Xt2//14JUVIUNb5psCCEGipV8Pu5dClg533m5cvAgAHqfsOGh0ytkxBjSfBqLDH0RQOJrWToYXruued0NXFPVK5cGf3790epUqXQtWtX3TBiQrfB/v37E5oeG9AwGjFiBN544w307dsX06dPxw8//KD3w3OFr+Pr7c4jjyjvEvN+58yBLaEdYxhIzz3nvWFuiqGBzNyl5csTFa/t6FUyek1QaDPeiyoIoYa2utE7nt4lu5I2LfD+++yAEIeWLfeZOhYxlkINLwjUXvHjFnf+PM4eOqT/9Pc1Pm8pUEmuUqWK3rSYRlLHjh0xatQonOFV3gs0llxhuxGj9Qi5cuVKQgjOFR77gQcewIcffohPPvlEN7bcYRjQvUGyHWGkieksmzcDDzwAW7JggcqFYE/YN94I4IHz5k3UXWJStB1z1Chws2cPkDt3oqdMEEzitddUFJh1E3bNXYqKUgojc+fGIiYmZb1VA40YS6GGfkReacy4pcCHyYo1htFmzJihV6UNGzYMZcqU0RsCeyLGLTeDYTbXxsE5c+b0aGzRCFqzZo3+fjt37vR4bOYs5WIg3gGwRxwbX9qVRo2A6dMBFijSJgh47IC6S//+qxIV7MSpU4nxAjbu5vdNEEyE7U+o6s0uUHZ0zMeZaxslQ4wlwSs0eO666y4MGDAA69at0/OHJt9miKRatWq6bpI7r7zyit73jkYZc5fmeSgf37x5s/56p7FpE3D4MGwF7W32uguK44S5eUZiFwsE7KSvxWbA584BVatKrpJgqdNy+3b7OToPHADKlQOoUGOVFEYxlgSPMFH7gw8+wOrVq3HgwAH8/vvvOHnypC4qeTuw6o3yAa789ddfGDNmDH788Ue96u3VV1/F448/nsQDtW/fPhw+fFivnHMS1Cyk/ffyy7CNdBCF7oLOM88oufOjRxMVsK0O46rDh6v7n30mukqCZciaVXmY7Ma77yoH823I+QUNMZYEj2TJkgWLFi1CmzZtULp0aV1M8tNPP0VruhVug86dO2PLli3YsWOH/n8aXt27d9clBqpXr64/Rg9Wnjx59Ko4gwkTJqBFixYoUqQInES9emrH9Ouv9kj2ZmSJdvIPP4Qoo9PQXWJ4y8rwQ6T0AWMGbA7MOKUgWBDuVe2g77tlC6ur1f0PP7ROp6CkZUeCEA89SDNnzvT4O3f1bsoKuDNlypQk/6f+Uq9evXQ1blbAMQfp2LFjyfKe6MkyuH79OoYPH46ffvoJToO9VSlezV6r7PixYQNlEmBJGD2l3UJxuJCk4jz8MPDxx0oenH3VRo6EZfnrL6WlwA/P0FcSBAsaIMyXjIwEWrQAKlaEJYmLUxpR/MkimDvvhGUQz5IQMt566y3dQ+Sa+O0Lhv/efPNNPW/KiQwcqJKkmVPw+eewJPyoGBmjoXTvvcBttARMOVzRjQkZNYqlMLCsVIBRwffSS0CJEmaPSBA8UqGCMj74fWbo3yp5QJ7SE+gB46bMal4wMZaEkMEWKTR+mNDtDyVLlsQzvFI7FHaMMZwRNJyoZWg1xo5NXLyoPB4yl3iDBkrIiVAwhtIXVoMGHRMraPEGRJ1TEIIHxXDpAGXY/48/YDn27VOatEb4jVq1VkKMJUEwkcceU/lLLPxi5byVoEwWtRUNYy7kiaKM/TFXjatoQEWdAgDjpkblHoUoWcknCBaGbYkMRyhDXS4yeJaJaF+6BNSvn7hPshJiLAmCidDJRi3D7NlVA0wrucdpvLEwkdXwL75owgCoFk8VT8JJskrfOJYGskEuw3D33adU8wTBBtC+Z77S8ePAk09aa715/nkloDl6tFoXrYYFhyQI4QWNkYMHgd69rVP5wdwGRpeoNcr8arcONKGDkhFG3wau7lZQcqc0MrPeqTpOY84qH5og3AIKVLJehkWn9ORYTdm7cWPVEsqKiLEkCBbAtcrs9Gng2jUzR6N2dsxxYASsVi1zx6IPhE3odu8G3n7b3LFQvpzJW0ZCl0OU5YXwoVIlgL3L2fO5ZUtzx6Jpqnedl8YQlkKMJUGwEMuWKU+TkVsQapgz4Oq8cet9bJ6yniEfQNHHSZPMGQeTPIyQG+OSrVqZMw5BSCVU9Ga+pNlO0fffVz20KbVHAXwrI8aSIFiIs2dVVRxTdH75JfS7PEa6mGBJj5KloBgqBalIly7AypWhj0t2764MJtZhs1xHEBwAPdl0koaaX35JrJHg14l7IisjxpIgWMwm6NtX3WeqjpfewkGLdnEBs2zPOgqvtGkDXL2qEqtD1R2UViQNtWnTVO01kz6Y/CEINofeHArkcpP0zTehe98VK4DHH1f3qftkB4UYMZYE02jQoEGK1Lk7deqkt1xxOizTp8zQhQvKNmDyd7ChCLVRnc98BkvqgDLL/Oef1erOcp62bYPvu6ehROuVVxLGLLgFr1w5uO8pCCGC3hwaSkY1Wih6se3fD9x/v9rz3HOPEuu3A2IsCaYwdepUHD9+XDeA/IX96d5//32cs3pwOwA2wYQJSpRt1y5lOAUzAXL+fODBB1WkiQunS2s+65E5s/LwMJmKPRw6dlTy4sGCGkrUeyJslkvJAEFwEAMGKAF6wkgz9yPB4sIF1QmAex3uObhXtkvfaTGWBFP48ssv0a1bN7/VvEnFihVRokQJ/BD0bq7mQ1uAskIlS6r8ISZBBoOJE1We8vnzqgcsc6XMTvq8JayM+/NPVUJIl9hDD6lVONCwcZ+hzM0YJbNiBcFh8PvOCDdDYdwwMSXQrbVnwKBkATsXUHWDex7ufeyCGEswr+rI243uSX+fS308f557O7CH25AhQ/S2I2nTpkXhwoV1zw7ZtGkTmjRpgvTp0+OOO+7A008/jYsuLSnYXLd27drImDGj3uaE/d32x+eYnDx5EvPmzcO93GK4PD9NmjT4559/Eh7je+fOnVv3QBnwNT8Hc+tjIQoVUgYTC7DYMynQ0CHDkB+1FelZmjEDSJcO9oDlMzwPKATFlZ2KnnTDBQJeMWgcGUqc/fubV54oCCEymBhpZoVcbKzqZc28okCTJo0qZqUCB9c3OyHGkklQnNjbrUOHpM/NmzfC63OZEOwKQzeennc79O3bFx9++CH69euHrVu36vlFefLkwaVLl9CyZUtkz54dq1atwq+//oo5c+agV69e+utu3ryJdu3aoWHDhti4cSOWLVumG1MR8S6LxYsXI0OGDChXrlzCezVq1AgvvfQSHnvsMT3Mtm7dOv19v/vuO/09DWiArVy5EtfMFiIKEfnyAWPGJH6GNGy4IwuE8i7tDC5arEih3WEbQ8mACQ8LF6pJYkiOglAzZ6bumAcOAM2bJ/Z5YfYpjSVBcDh08nOtYWSbX6ny5QNz3LFjk3YrojRZtWqwH5pNeO+997S6detq6dOn17JmzerXa+Li4rR+/fppefPm1dKlS6c1bdpU+/fff5M85/Tp09qjjz6qZc6cWT/uk08+qV24cCFFYzt37hwvXfpPd65cuaJt3bpV/+mKutx5vrVpo54TGxurnTlzRsuQIc7rcxs2TPp+OXN6fl5KOX/+vJY2bVpt1KhRyX43cuRILXv27NrFixcTHvvrr7+0yMhI7dixY/qccj4WLFjg8difffaZVrx48WSPX7t2Tatatar20EMPaeXLl9d69OiR7DkbNmzQj71v3z6Px/Y23764fv26NmXKFP2n1RkyRH2ezZtr2vbtKXttXJymzZypaf36aaYRlLk+fFjT6tZVExMRoWmDBmnapUspn5zvv9e0LFnUcTJk0LRvvlGP2xA7ndN2xonzzD/FdW3hV2D58pQf58QJTXv++cRr0KxZ1pxnX9dvV2zjWbp+/To6duyInj17+v0ahnGYGzN8+HCsWLFCDwnRI3LVJc7VuXNnbNmyBbNnz8a0adOwaNEi3QsSbBix8nZz19w7dkzz+lyGTlxhfoun56WUbdu26d6bpk2bevxdlSpV9Pk0YJiNYbsdO3YgR44ceOKJJ/S5Ztjsiy++wNGjRxOee+XKFaTz4MZgGO7HH3/EpEmT9M/oMwoQusGwH7lshbYXJsAIEeP+TNWhEi8LtZhvdCsWL1Y5ScxPomLu2rVwVoIXs9R79FDrMl1l9PFzcm5VSsi1gK66du2Arl3VZNapA6xfD3CtsXwClyAEFnqcy5RJ/P+IEcCdd6rijyVLVJjOF9u3q/wnNt5mDiShc9bDpcReaDZj7NixfnmW6FWiR+njjz9OeOzs2bO6t2TChAn6/+mB4BSsWrUq4TkzZszQIiIitMPcrQbRs+QPhmeJP0PNxo0b9b9pz549yX738ssva40aNUryGOeWz1+4cGHCY2vXrtU++OAD3SOYKVMmbdmyZQmeqXz58nl8X3qyoqKitGzZsmkHDhxI9vvly5fr73Py5Mmw9CyRXbuU99HYsUVFaVr16pr2ySeJzzl0SP2fzrk770x8btq0mtanj6Z5mb6gE/S5HjtW04oWTTo5HTvSnalpY8Zo2qRJmjZnjqZxDXjoIU3LlCnxudHRdGFr2o0bmt2x2zltV8Jhnvv2TRqlYPTi8cc17ZdfNG39+qQeKH6lXJ9bsyajDqkfgxU8S2a1xww6e/fuxbFjx9CMjTjjyZo1K+rUqaPn0LBknT+ZfFyzZs2E5/D5rNCiJ+qBBx7weGx6XFxzZs7Hb+1v3Lih31zh/xl1o9eFt5SgR+vif6b0tamFVWf04tDj9pTRyDSeMmXKYNy4cbhw4UKCd4mJ2Zy3UqVKJYyV3ifeXn/9dd3zRK8Rc474GD+b06dP63lPBrt378bLL7+MESNG4JdffsHjjz+OWbNmJamYYw5UwYIFde+VpznhY5wvznuUnzWpxmfm/tlZFe7YJk+mQyQCfftG4d9/I3RPUb16sbhxQ80JRSX/7/9iEl4TFaXhiSc0vPlmbEJipRl/btDnunNnCnIhYto0RH71FSKZ0/Trr+rmBa1AAcTdfz/iuHVmPTO/dzY5F5xyTtuVcJhnSgs0bx6BkSMjMXNmBE6disD48dBvlStrWL36ZsJz162L1p2x99yj4eWX43DXXZr+/9ROTzDn2d9jOtZY4sWYuCYHG/83fsefrLZyJTo6Wr8QG8/xxODBgzGAZ5AbvLAzcdn9eHnz5tUrxRhKvB1olJhB7969dUOHBgiNzFOnTmH79u3o0KED3n33XXTp0kX/PY2eF198EQ8//LBuYLFSjsZU69at9b99165d+Pfff/Hggw/qhiUNMVbQ0RBrFd9fKzY2Vg+JssKOx6dxxdsHH3ygH9tg/vz5ejK4YaC6wzlmmI/hVCaapwSOx07QFhwyBDh1Kh127MiBvHkvYfp0pUF15Uo06tevgvz5LyF//osoV+408uS5oqtz82Y2QZ9rxhJefhlZ2rVDofnzke7MGcRcuoToy5cRc/kytMhIHK9RA0fr1MFZ6jPQIGefGd4chN3OabsSDvPcqROrZiOwbVsOrFqVF+vX50Zc3DVMn7404TktWhTGSy+dRoECl/SItnuaiBXn2d+UDlONpTfeeAMfGYJvXmB+TNmyZWElWCXWp0+fhP/zwl2oUCG0aNECWbJkSfJc5t4cPHgQmTJl8pin4wt6SGgoZc6cOaGSLJQMGjRI9xyxIu7IkSPIly8fnnnmGd0Amjlzpu4FYk4TDcT27dvr6tr8O2mA0rPHvCUaUnzd888/rxtfhpeIGktTpkzBQ9TIiX+vQ4cO4a+//tLnkDd6mGhAMe+J3ijO5fTp0/Wb+zwb8Dk02KgO7u98c2fBL2Hz5s0Rw4usQ3CvqrQCpsw1pYk9UCz+5kScek5bjXCc5/vuc/0fc0jbJPyPHQfsNs/eNt6WMpZeeeUV/YLqi+LFi9/WsXlBJ9To4cXagP+vyrbu8c85wcaYLtAb8d9//yW83hPUHOLNHX6I7h8kPSY0dGgkpESAkRhhJuP1oYbvSdVs3tyh8UKtJE9wvmkI+YLGZoUKFXRDskiRIujfv79+c4WeKN4Mxo8fr4fx6tWr53PMnC9Pn8WtuJ3XCLeHzHVokHkODTLP9p1nf49nqrGUK1cu/RYMihUrphs8c+fOTTCOaEEyF8moqKtbty7Onj2LNWvWoEaNGvpjNACMsJMQPPjZjB49GgcOHNCNJX9P6mFUVRYEQRCEEGKbnCVeVOnx4U96a9aztBdsB1FSD/0QhuuYT8TEbHoXKHL43nvv6UnHNJ4ocpg/f35dMJFQFJE5Mz169NDlBejqo7Aik7/5PCG4GJ+Dv7gnmguCIAhCKLCNsfTOO+/oYRiDavESoEbCL6HGj2uT1ddee01Xm6ZuEj1I9evX13NtXHNZWKFFA4m5NwzhMLmY2kyCIAiCIAi2MpZYXcWbP6X2BvQuDRw4UL95g5VvbOMhCIIgCILgCdsoeNsdd0NOCA4yz4IgCEKgEWMpyBjCiLersSTcnmaGVKYIgiAIYReGsysUpaQO0cmTJ/ULeEokAFiVRyOL2kFmSAfYzaNEQ4lSEFRl91e9WxAEQRBuhRhLQYZ5U9Qdokjj/v37U2wAUI2aIotmiFLaERpKvjSyBEEQBCGliLEUAtKkSaPLF6Q0FEcpA7btoBq1hJVuDedIPEqCIAhCoBFjKUQwjJbSdie88FNRnK8TY0kQBEEQzEESYQRBEARBEHwgxpIgCIIgCIIPxFgSBEEQBEHwgeQsBVAIkY16AwkTvFkOz+NKzlLwkHkOHTLXoUHmOTTIPNt/no3r9q0EjcVYCgAXLlzQfxYqVMjsoQiCIAiCcBvX8axZs3r9fYQm/SFSDcUjjxw5gsyZMwdUD4kWLw2wgwcPIkuWLAE7rpAUmefQIXMdGmSeQ4PMs/3nmSYQDaX8+fP7FH8Wz1IA4AQXLFgwaMfnySFfxOAj8xw6ZK5Dg8xzaJB5tvc8+/IoGUiCtyAIgiAIgg/EWBIEQRAEQfCBGEsWJm3atOjfv7/+UwgeMs+hQ+Y6NMg8hwaZ5/CZZ0nwFgRBEARB8IF4lgRBEARBEHwgxpIgCIIgCIIPxFgSBEEQBEHwgRhLgiAIgiAIPhBjycJ8/fXXKFq0KNKlS4c6depg5cqVZg/JUQwePBi1atXSlddz586Ndu3aYceOHWYPy/F8+OGHutL9Sy+9ZPZQHMfhw4fRpUsX3HHHHUifPj0qVaqE1atXmz0sRxEbG4t+/fqhWLFi+hyXKFECgwYNumVvMeHWLFq0CPfee6+ups01YsqUKUl+zzl+5513kC9fPn3umzVrhp07dyIUiLFkUSZOnIg+ffro5ZJr165FlSpV0LJlS5w4ccLsoTmGhQsX4vnnn8fy5csxe/ZsvVljixYtcOnSJbOH5lhWrVqFESNGoHLlymYPxXGcOXMGd911l95odMaMGdi6dSs+/fRTZM+e3eyhOYqPPvoI3377Lb766its27ZN//+QIUMwbNgws4dmey5duqRf6+go8ATn+csvv8Tw4cOxYsUKZMyYUb8uXr16NfiDo3SAYD1q166tPf/88wn/j42N1fLnz68NHjzY1HE5mRMnTnBrqC1cuNDsoTiSCxcuaKVKldJmz56tNWzYUOvdu7fZQ3IUr7/+ula/fn2zh+F42rZtqz355JNJHmvfvr3WuXNn08bkRABokydPTvh/XFycljdvXu3jjz9OeOzs2bNa2rRptQkTJgR9POJZsiDXr1/HmjVrdBeja/85/n/ZsmWmjs3JnDt3Tv+ZI0cOs4fiSOjFa9u2bZLzWggcU6dORc2aNdGxY0c9rFytWjWMGjXK7GE5jnr16mHu3Ln4999/9f9v2LABixcvRuvWrc0emqPZu3cvjh07lmT9YE83pqiE4roojXQtyKlTp/S4eJ48eZI8zv9v377dtHE5mbi4OD2HhmGMihUrmj0cx/Hzzz/r4WSG4YTgsGfPHj08xPD9m2++qc/1iy++iDRp0uDxxx83e3iO4Y033sD58+dRtmxZREVF6Wv1+++/j86dO5s9NEdz7Ngx/aen66Lxu2AixpIgxHs9Nm/erO8QhcBy8OBB9O7dW88LY7GCEDyDn56lDz74QP8/PUs8p5nfIcZS4Pjll1/w448/4qeffkKFChWwfv16faPFpGSZZ+ciYTgLkjNnTn3Hcvz48SSP8/958+Y1bVxOpVevXpg2bRrmz5+PggULmj0cx8GQMgsTqlevjujoaP3G5HomavI+d+ZC6mGFUPny5ZM8Vq5cORw4cMC0MTmRV199VfcuderUSa82fOyxx/Dyyy/r1bVC8DCufWZdF8VYsiB0m9eoUUOPi7vuGvn/unXrmjo2J8EcQhpKkydPxrx58/RSYCHwNG3aFJs2bdJ34MaNHhCGLXifGwMh9TCE7C59wbyaIkWKmDYmJ3L58mU9h9QVnsNco4XgwfWZRpHrdZHhUFbFheK6KGE4i8K8A7p0eVGpXbs2Pv/8c72sslu3bmYPzVGhN7rS//jjD11ryYh7M2mQGh5CYODcuueBseSXWkCSHxY46N1g8jHDcA899JCuyzZy5Ej9JgQO6gAxR6lw4cJ6GG7dunUYOnQonnzySbOHZnsuXryIXbt2JUnq5oaKRTecb4Y733vvPZQqVUo3nqh3xfAnNfKCTtDr7YTbZtiwYVrhwoW1NGnS6FICy5cvN3tIjoKnv6fb2LFjzR6a4xHpgODw559/ahUrVtTLqcuWLauNHDnS7CE5jvPnz+vnLtfmdOnSacWLF9feeust7dq1a2YPzfbMnz/f45r8+OOPJ8gH9OvXT8uTJ49+jjdt2lTbsWNHSMYWwX+Cb5IJgiAIgiDYE8lZEgRBEARB8IEYS4IgCIIgCD4QY0kQBEEQBMEHYiwJgiAIgiD4QIwlQRAEQRAEH4ixJAiCIAiC4AMxlgRBEARBEHwgxpIgCIIgCIIPxFgSBEFwgY192Takffv2SR4/d+4cChUqhLfeesu0sQmCYA6i4C0IguAGG9BWrVoVo0aN0hv+kq5du2LDhg1YtWqV3uxaEITwQYwlQRAED3z55Zd49913sWXLFr0pbceOHXVDqUqVKmYPTRCEECPGkiAIgge4NDZp0gRRUVHYtGkTXnjhBbz99ttmD0sQBBMQY0kQBMEL27dvR7ly5VCpUiWsXbsW0dHRZg9JEAQTkARvQRAEL4wZMwYZMmTA3r17cejQIbOHIwiCSYhnSRAEwQNLly5Fw4YNMWvWLLz33nv6Y3PmzEFERITZQxMEIcSIZ0kQBMGNy5cv44knnkDPnj3RuHFjjB49Wk/yHj58uNlDEwTBBMSzJAiC4Ebv3r0xffp0XSqAYTgyYsQI/N///Z+e7F20aFGzhygIQggRY0kQBMGFhQsXomnTpliwYAHq16+f5HctW7bEzZs3JRwnCGGGGEuCIAiCIAg+kJwlQRAEQRAEH4ixJAiCIAiC4AMxlgRBEARBEHwgxpIgCIIgCIIPxFgSBEEQBEHwgRhLgiAIgiAIPhBjSRAEQRAEwQdiLAmCIAiCIPhAjCVBEARBEAQfiLEkCIIgCILgAzGWBEEQBEEQfCDGkiAIgiAIArzz/yvhgwad2AglAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGdCAYAAAAfTAk2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQ6VJREFUeJzt3Qu8TPX6+PFnk1ud+kXu7NrEISdFbnHql+KHUoc4lUuRlFc3uXWhE1JKF/WXOCmVdCKqg0rlJNFVlFIpORS5hFxyCoW2/X89386aZvae2Xtm71mz1vquz/u85uxm9syYPbZZz3qe5/t8s/Ly8vIEAADAIqW8fgEAAADpRoADAACsQ4ADAACsQ4ADAACsQ4ADAACsQ4ADAACsQ4ADAACsQ4ADAACsc4SE0OHDh+W7776To48+WrKysrx+OQAAIAk6m/inn36SmjVrSqlShedoQhngaHCTnZ3t9csAAADFsGnTJqldu3ah9wllgKOZG+cNOuaYY7x+OQAAIAk//vijSVA4x/HChDLAccpSGtwQ4AAAECzJtJfQZAwAAKxDgAMAAKxDgAMAAKxDgAMAAKxDgAMAAKxDgAMAAKxDgAMAAKxDgAMAAKwTykF/AAB75R7OlXc2viNbf9oqNY6uIWcef6aULlXa65cFmzI4b7/9tlxwwQVmUyydOjhv3rwiH7NkyRI57bTTpFy5clKvXj156qmnCtxn8uTJkpOTI+XLl5dWrVrJ8uXLXfoJUNIPmSUblsiznz9rvur1eLcBQHHl/0x54YsXJOehHDl7+tnSa04v81Wvz1k9x+uXCpsyOPv27ZNTTz1VrrjiCunWrVuR91+/fr107txZrr76apkxY4YsWrRIrrzySqlRo4Z07NjR3Gf27NkydOhQmTJligluJkyYYL63Zs0aqVq1qps/DlI4Y9q5b6cMeX2IbP5xc+Q+x1U4znzd9fOuyG21jq4lA5oNkPqV6nOmBSAlGrQMWjAo5nMmHv1+9+e6y+DTB0uXBl34nAmJrDzdezwTf1BWlsydO1e6du2a8D633HKLvPLKK7Jq1arIbT169JA9e/bIggULzHUNalq0aCGTJk0y1w8fPmw23ho4cKAMHz486c26/ud//kf+85//sBdVBj9kklH7mNryUKeHpNtJRQfEAMJ7MvXiVy/KhGUTivUcfM4EVyrHb181GS9dulTat28fc5tmZ/R2dfDgQVmxYkXMfUqVKmWuO/eJ58CBA+ZNib4gfcHNX5/7a1qCG7Xlxy3m+UgnA8hPPxec8lNxgxvF50w4+CrA2bZtm1SrVi3mNr2uAcnPP/8sO3fulNzc3Lj30ccmMm7cOBPxORfN+CA9Z1KaucmT9CUBnecavGAw/TkAXDmZyvvv/66ef7XM+GwG/YCW8lWA45YRI0aYdJZz2bRpk9cvKfD0w+Dh5Q+nLXMTTT94Nv24SW5fcjsfPABcOZlSO/bvkEvnXkojsqV8FeBUr15dtm/fHnObXtc6W4UKFaRy5cpSunTpuPfRxyaiK7L0OaIvKHmaeMi/hrj654x9ZywfPECIOSuk9GTHjZOpaJSt7OOrAKd169Zm5VS0hQsXmttV2bJlpVmzZjH30SZjve7cB8HquUkGHzxAuPtt9GTHbZTH7eNqgLN3715ZuXKluTjLwPW/N27cGCkd9enTJ3J/XR7+zTffyM033yxfffWV/P3vf5fnnntOhgz5PVOgS8SnTp0q06dPl9WrV8s111xjlqP369fPzR8FLqaJi8IHDxAuXpxIKcrjdnE1wPnoo4+kadOm5uIEJ/rfo0aNMte3bt0aCXZUnTp1zDJxzdro/JwHHnhAHn/88cgMHHXJJZfI+PHjzXM0adLEBEy6hDx/4zHST5dmluQDR+fgOLNwivvBo68BgL1KeiKVfUy2PPfX52Rx38UyuNVgc1uWZKX0HJTH7ZCxOTh+whyc4s2d+OeX/5RJH/42fyiZD5kHOjwgVY6qEjMuXTkDAdfuXitTV0yVzT8lHzTdduZtcnvb2xnSBVhKMycaXKQq0RC/kszpcgKjFy5+gZk5ATx+E+AQ4BSqOB8O/6/j/5OBLQcmFYQ4wdOibxYlXWdnSBdgJ/080PJQKj03ejI1odOEQj8PnM8Z7efTxRE79+9MOkOkQY5+5qwftJ4TKx8gwCkCAU5qdfBMfBDoB5Cmg/UDqKg/j7MqwD6pnkxpNrdd3XYpb7vgfK6pVMpgWvJqm9M26fvDHYGdZIzg1sGdoEPPpIpzlqOP0axM9HMlQtMxEN6mYv180KyNlqo14Ej180ZPivTkqNYxtVJ6nJbVESwEOEhLQ7FmbkqaUUnlg4emYyB8J1MlPZGK/qzZMGiDycpoJigZ2keIYCHAQYnOVq5vcb35kNCyVDrKRc4HT7IfOpxVAeE5mUrHiZRDAyTNAGkmSJ+3sMxxpQqVTCBGxjhYCHBQorOV7o26FytNXBh9Lq2tJ+PLHV8yrwIIsGRPUvSkJ10nUqmWx3f/vFva/6M9y8YDhgAHBThnKnrWUlQd3Fn6nW76vEWdVSnmVQDhOJnSkx63VjElWx5nqnqwEOAg7nh0PVvRsxY36+DpajpWfPAAwdxnSv/tVjmySsJ/526fTOUvj79x2RsJT+5Y4BAsBDhIeSVDOuvg6Ww6VnzwAMHaZ0p389ZdveM1GWfiZCqa/hl6SXRyp1jgEBwEOEh6JYOe1ejZjRt18HSsduCDB7BrSXimTqaK0xPEAgf/O8LrF4DgrGTQsxrnDCeTnNUOfPAA9p9IablKp6Fr5jbVIX6Z7Ali2bj/kcGBEYTggQ8ewP4TKS1XaXCT7tWZ6VzgoEGY9g6xgtPfCHAQmOChqA+eTDUjArD3RCqZBQ4ahGnvECs4/Y0AB4EJHor64NG0t87l0bNEzqoA/wnCiVSqCxxYwelfbLYZ8s02nV129Yxp7e61ZidfFV0j99vmlvE25SudVVpy834PathxHPCfojbV9dvO3fl3IdfMTTx+e902+5HNNpHqUs1ec3rJ6CWjzUqp/DMgvFjJkOzKqsGtBpvbooMbxVkV4D+FZWEzvSQ8lQUOmslJFNwoVnD6E6uoQr5UM/9ZlK6U0tvGtB0j9SvVN6liL1YyFEVfj76uy+ZeFvf7+jPoB6bOxenSoIvvXj8QNk425MCvB8z+T1NXTJXNP22OOZHS4MYvJ1JB6x1CQQQ4IVTYUk0nMHj848d9n24takVG9FmVnoUB8E9ZudbRtXx/IhW03iHEokQVQqkEBn7GWRUQ3MF+3/30nen5K3dEOc+WhNu0CAMFEeCEkC2BAWdVQLCzxUHZXiVovUP4DQFOCNkSGHBWBfibLdniwpaO+20RBn5HgBNCtgQGnFUB/mZLtjjeCs6Z3Waar+sGrjMrT5/9/FkmG/sMAU4I2RQYcFYF+Jct2eJ4S8d7Nu5pVp2e+PCJkVEbTDb2Fwb9hXjQX7yVDZq58etSzWQHFjorMlT+24IQtAG2CNpgv3SM2vDbYNQwH78JcEIW4OQPBNrUbiPvb37fuiAgXvDGdGPAu0DA7xPSixO4JeovCnLg5ndMMkZSk4v1q6ZXNc2q6Va/L9Us6bJUphsDmWdjGdmm5mmbMegvJBKlU52DflA/aIozxJDpxkBmM8X6700vtpSMbWuethUBTgiE6aDPdGPAW2EoD9vYPG0jSlQhEKZ0KmdWgHfCUh62ZdSG7QhwQiBMB33OrABv2DK1OGyjNmxGgBMCYTroc2YFeCNMmWJbm6dtk5EAZ/LkyZKTkyPly5eXVq1ayfLlyxPet23btpKVlVXg0rlz58h9Lr/88gLf79SpUyZ+lEAK00GfMyvAG2HKFBc22ViXhms/o041Zrqx5U3Gs2fPlqFDh8qUKVNMcDNhwgTp2LGjrFmzRqpWrVrg/nPmzJGDBw9Gru/atUtOPfVUueiii2LupwHNtGnTItfLlSvn8k8S/IO+1sD1IB9vFoVNB33nzCpeo2MQhxgCQRCmTHG8ycZharIOCtcH/WlQ06JFC5k0aZK5fvjwYcnOzpaBAwfK8OHDi3y8BkSjRo2SrVu3ylFHHRXJ4OzZs0fmzZtXrNcU1kF/Nk0uLu50Y1uCOMBvbJ5anCymG7svleO3qxkczcSsWLFCRowYEbmtVKlS0r59e1m6dGlSz/HEE09Ijx49IsGNY8mSJSYDVLFiRTnnnHNk7Nixctxxx8V9jgMHDphL9BsURvoPy6ZZFKmeWekHsKaLw/CzA5kWtkxxmMdxBIWrAc7OnTslNzdXqlWrFnO7Xv/qq6+KfLz26qxatcoEOfnLU926dZM6derI119/Lbfeequce+65JmgqXbrgL864ceNkzJgxEjaJMhhhnP9C2hhwX5jLw8zg8h9fD/rTwKZx48bSsmXLmNs1o+PQ759yyily4oknmqxOu3btCjyPZpC0Dyg6g6NlMptxQA/fFGfAD8KWKQ5zk3WoV1FVrlzZZFS2b98ec7ter169eqGP3bdvn8yaNUv69+9f5J9Tt25d82etW7cu7ve1AVlrddEXm4Vl2FYywjSbA/CCU/qNXjHkZIpt2uOuKGFtsg5tgFO2bFlp1qyZLFq0KHKbNhnr9datWxf62Oeff970zVx66aVF/jmbN282q61q1OAXhwN6uGdzAF5v4KvXw3QSFcZxHEHh+hwcLQ1NnTpVpk+fLqtXr5ZrrrnGZGf69etnvt+nT5+YJuTo8lTXrl0LNA7v3btXbrrpJvnggw9kw4YNJljq0qWL1KtXzyw/DzsO6LFIGwPuIFMcixlcIQxwLrnkEhk/frxZ6t2kSRNZuXKlLFiwINJ4vHHjRrMEPJrOyHn33Xfjlqe05PXZZ5/JX/7yF/njH/9o7qNZonfeeYdZOBzQCyBtDKQfmeL4mG4csjk4fmTzHBytgWuauCg6cTMMnfzM5gDSj8+ZwjGDKwRzcOBdHbioA3pY6sBhn80BuIFMceHCOo7Db9hs0zLUgQsibQykF6Xfkq80g/soUVlWogrrtgzJIG0MpAel3+Qxk8y74zcBjqUBjuKADsDtVVQqXumX7Ch7U7mBAKcIYQlwUDSCQKD4yBQXneVKNLaDLFfx0GQcUhysU0PqGCiZsG7LkAz2pvIeAY4lOFinhv2pgPRgxVB8rDTzHquoLMBE0dQwpAyA21hp5j0CnIDjYJ06trMAio8lz8lhbyrvEeAEHAfr1JE6BoqHzTWTx0wy7xHgBBwH69SROgZSRyk8dQwZ9RZNxgHHwTp1bGcBpLcUrv9mtBSuK6rISMRipZl3yOAEHHXe1JE6BlJDKTw9K816Nu5pvvLZkhkEOAHHwbp4SB0DyaMUjiCiRGXRwTreHBwmiiZG6hhIDqVwBBFbNVi0VQOTjAG4gc0104/P6+Jhq4aQYqIoADdL4bpaSoOZeJtrUgpPHpPnM4MeHCAfBpkBBdG3lh4st88cSlQWlahQcpxZAYWjtFJ87DBecpSoQoAPmfRjA06gaJTCi48dxjOLACeAyDKkH4PMALiN5faZRQ9OwFC/dQeDzAC4jeX2mUWAEyDsHO4ezqyAgmi4Ty8mz2cWAU6AkGVwD2dWQCx2Dk8/Js9nFgFOgJBlcA9nVsDvKIW7h+X2mUOTcYCQZXAPg8yA39Bw7z62ickMMjgBQpbBXZxZAZTCM4Udxt1HBidAyDK4jzMrhB2lcNiCACdg2DncfQwyQ5hRCoct2KohoFs1MMkYgBvYOdwbfKYnh60aQoAsAwA3UArPPKbTB7jJePLkyZKTkyPly5eXVq1ayfLlyxPe96mnnpKsrKyYiz4umiadRo0aJTVq1JAKFSpI+/btZe3atRn4SQDAfjTcZw5L8t3jegZn9uzZMnToUJkyZYoJbiZMmCAdO3aUNWvWSNWqVeM+RtNO+n2HBjnR7rvvPpk4caJMnz5d6tSpIyNHjjTP+eWXXxYIhoCSInWMMKLh3n0syQ94D44GNS1atJBJkyaZ64cPH5bs7GwZOHCgDB8+PG4GZ/DgwbJnz564z6cvt2bNmjJs2DC58cYbzW1ai6tWrZp5bI8ePazrweEA6x1SxwDcottf6ITooizuu5iWhGIcv10tUR08eFBWrFhhSkiRP7BUKXN96dKlCR+3d+9eOeGEE0wg1KVLF/niiy8i31u/fr1s27Yt5jn1h9VAKtFzHjhwwLwp0ZegYFy6d0gdA3ATS/Ld5WqAs3PnTsnNzTXZlWh6XYOUeBo0aCBPPvmkvPjii/LMM8+YjE+bNm1k8+bfDjLO41J5znHjxpkgyLlo4BQEHGC9w8amANzGkvyQTTJu3bq19OnTR5o0aSJnnXWWzJkzR6pUqSKPPvposZ9zxIgRJp3lXDZt2iR+xwHWW0xzRRixe3hmMZ0+wAFO5cqVpXTp0rJ9+/aY2/V69erVk3qOMmXKSNOmTWXdunXmuvO4VJ6zXLlyplYXffE7DrDeInWMsKEcnnnsLh7gAKds2bLSrFkzWbRoUeQ2LTnpdc3UJENLXJ9//rlZEq501ZQGMtHPqT01y5YtS/o5g4ADrLdIHSNMKId7hyX5AV4mrkvE+/btK82bN5eWLVuaZeL79u2Tfv36me9rOapWrVqmT0bdcccdcvrpp0u9evXMSqr7779fvv32W7nyyisjS8Z1ldXYsWOlfv36kWXiurKqa9euYgsOsP5IHRc1zZXUMYKOpcreY0l+QAOcSy65RHbs2GEG82kTsPbWLFiwINIkvHHjRrOyyvHDDz/IVVddZe5bsWJFkwF6//33pVGjRpH73HzzzSZIGjBggAmCzjjjDPOcNs3A4QDrLaa5IixSKYezVNk9TKdPP/ai8nE/jpM2VvEOsKQvvZmDo01/bGwKW2hDsfbcFGVmt5nSs3HPjLwmIBH2orIEO4d7j9QxbEc5HLYig+PjDI6DScYA3MLu4QgSMjiWoTYLwC30m/kXJ7eWDfoDAGQWS5X9h7lEJUeJKgAlKgDIBDIG/lpgkr9kyAITSen4TYBDgINi4EAAwM2eqERL98PeE/UjPTjBxsEzeEvH9QNH+xjCelYFID2YS5Q+BDg+w8EzmKljZ6R9mFPHAEqObXrShyZjH2E/GH9jh3cAbmMuUfoQ4PgEB0//Y4d3AJnapif/7uIOvV2nqbNNT9EIcHyCg6f/kTqGTfRkacmGJWarBv3KyZO/5hKp/EEOc4lSQ4DjExw8/Y/UMWzBjBV/Yy5RetBk7BMcPP2PHd5hAxrlg4F98EqODI5PUHf1P1LHCDp6/YK5TY/u4q5f+WxJDQGOT3DwDAZSxwgyev0QJpSofHjwjDcHR4MbDp7+QOoYQUWvH8KEAMdnOHgGAzu8I4jo9UOYEOD4EAdPAG6gUT742MoneQQ4ABCyXj9dLaXBTHSQQ6+f/7GVT2poMgaAEKFRPpjYyid1WXl5eQXzlJZLZbt1ALARpY5g/V3pIMZEK+Cc0uL6Qeut/zv8MYXjNyUqIA04WCBo6PWzc3k/f6e/I8DxGAfG4KMuDsBNLO8vHgIcD3FgDD7G3gNwG8v7i4cmY4/QMBZ8jL0HkAls5VM8BDge4MBoB8beA8gEtvIpHgIcD3BgtAN1cQSJnjAt2bBEnv38WfOVE6hgYXl/6ujB8QAHRjtQF0dQ0O9nB7bySQ0Bjgc4MNqBsfcIAhrh7cLy/uRRovIADWN2oC4Ov6PfD2FGgOMBDoz2oC4OP6PfD2GWkQBn8uTJkpOTI+XLl5dWrVrJ8uXLE9536tSpcuaZZ0rFihXNpX379gXuf/nll0tWVlbMpVOnThIkHBjtoX9XGwZtkMV9F8vMbjPNVx2Zzt8hvEa/H8LM9R6c2bNny9ChQ2XKlCkmuJkwYYJ07NhR1qxZI1WrVi1w/yVLlkjPnj2lTZs2JiC69957pUOHDvLFF19IrVq/BwMa0EybNi1yvVy5chI0NIzZg7o4/Ih+P4SZ65ttalDTokULmTRpkrl++PBhyc7OloEDB8rw4cOLfHxubq7J5Ojj+/TpE8ng7NmzR+bNm1es18RmmwDCtEljUY3wYdikEXZI5fjtaonq4MGDsmLFClNmivyBpUqZ60uXLk3qOfbv3y+HDh2SSpUqFcj0aAaoQYMGcs0118iuXbsSPseBAwfMmxJ9AQDb0e9nP+YbeRTg7Ny502RgqlWrFnO7Xt+2bVtSz3HLLbdIzZo1Y4IkLU89/fTTsmjRIlPCeuutt+Tcc881f1Y848aNMxGfc9EMEgCEAf1+do8A0Azd2dPPll5zepmvep2tfjJQovruu+9M38z7778vrVu3jtx+8803m6Bk2bJlhT7+nnvukfvuu89ka0455ZSE9/vmm2/kxBNPlDfeeEPatWsXN4OjF4dmcDTIoUQFICz0zJ5+P/vnGzmZuRcsDV5TKVG52mRcuXJlKV26tGzfvj3mdr1evXr1Qh87fvx4E+Bo0FJYcKPq1q1r/qx169bFDXC0ATmITcgINg4o8BMa4cMz30iDnMELBptFLGH+zHG1RFW2bFlp1qyZKSU5tMlYr0dndPLTrM2dd94pCxYskObNmxf552zevNn04NSowUoA+AOpYwBuYb6RT+bg6BJxnW0zffp0Wb16tWkI3rdvn/Tr1898X1dGjRgxInJ/7akZOXKkPPnkk2Z2jvbq6GXv3r3m+/r1pptukg8++EA2bNhggqUuXbpIvXr1zPJzv6MhLDyp4/wfQM5ofIIcACXBfCOfzMG55JJLZMeOHTJq1CgTqDRp0sRkZpzG440bN5qVVY5HHnnErL7661//GvM8o0ePlttvv92UvD777DMTMOlScW1A1jk5mvHxexmKDe/sR+oYgNuYb+STOTh+5MUcnLA2hIWNZuW0HFUUnXZMPwSA4gjzfKMf/TIHB79hw7vwIHUMP6AUbjfmGyWHACcDaAgLD1LH8BoN7uHAfCMf9OCAs/ow0aXg+gFTVOpY7wdkqhTuNLhz4LML+xkWjgxOBnBWHx6kjuEVSuHhnm/Us3FP85XPlt8R4GTwrD7/Ac+ht2cfk81ZvSVIHcMLlMKBWJSoMnhWryliDWaiz7A4q7cTqWNkGqVwIBYBTobP6uPNwdHghrN6+zAaH5lEKRyIxRycDG+2yf5EANwQ5tkoCI8f/bLZJgrirB6AGyiFw8GJ9G9oMgYAS9DgDuYg/Y4SVYZLVADgNs7gwykMWwL9mMLxmwCHAAcAYEkPVqJRAVmW9GCxFxXgQ+wPBMAtzEEqiCZjIEOp43gjArQpNOgpYwDeYw5SQWRwXMQZO6Lr4vnPrpz9gcLY/AcgvZiDVBAZHJdwxo5k9gfSurjuD6RTj4NcFwfgLTb6LYgMjgs4Y4eDujiATGCj34IIcNKMHX0Rjbo4MoFyOBRzkGJRovLwjJ2JxvajLg63UQ5HNDb6/R0BTppxxo5o1MXhxWA3pxwexrN2sCWQgxJVmnHGjmjUxeEWyuFA4QhwXDpjz38wc+jt2cdkc8YeItTF4QYa2IHCUaJKM3b0RTzUxZFulMOBwhHguHjGHq/xT4MbztjDibo40olyOFA4Ntt0cbNNdvQF4PbmikU1sAd9c0WguMdvMjgu4owdgFsohyNZuSE92abJGAACigZ2JDNKIOehHDl7+tnSa04v81Wvh2GiPiUqF0tUAJAJYT1DR/HmJGX9N8MXxCA4leM3AQ4BDgDA0h6tzQlGCQS1RyuV4zclKsBD7CEEwA3vMCeJJmPAK+whBMAtW5mTlJkMzuTJkyUnJ0fKly8vrVq1kuXLlxd6/+eff14aNmxo7t+4cWN59dVXY76vVbVRo0ZJjRo1pEKFCtK+fXtZu3ateI2zcaRaG89/huXsIRSGBkAA7qnBnCT3A5zZs2fL0KFDZfTo0fLxxx/LqaeeKh07dpTvv/8+7v3ff/996dmzp/Tv318++eQT6dq1q7msWrUqcp/77rtPJk6cKFOmTJFly5bJUUcdZZ7zl19+Ea+EuVMdqWEPIQBuO5Ntg9xvMtaMTYsWLWTSpEnm+uHDhyU7O1sGDhwow4cPL3D/Sy65RPbt2yfz58+P3Hb66adLkyZNTECjL7dmzZoybNgwufHGG833tdmoWrVq8tRTT0mPHj0y3mRsY6c63KPZPQ2Ai7K472LmKAEo8bFJxZuTFMRjk2+ajA8ePCgrVqwwJaTIH1iqlLm+dOnSuI/R26PvrzQ749x//fr1sm3btpj76A+rgVSi53QTZ+NIFbVxlASlcCSrW8jnJLnaZLxz507Jzc012ZVoev2rr76K+xgNXuLdX293vu/clug++R04cMBcoiNALzrVORuHojaO4qIxHanqFuKNfkOxTHzcuHEmy+NctESWLpyNI1XUxlEcNKajpNsG9Wzc03wNQ3DjeoBTuXJlKV26tGzfvj3mdr1evXr1uI/R2wu7v/M1leccMWKEqdc5l02bNkm6cDaO4u4hpPIHOewhhHgohQM+C3DKli0rzZo1k0WLFkVu0yZjvd66deu4j9Hbo++vFi5cGLl/nTp1TCATfR8tOelqqkTPWa5cOdOMFH1JF87GURxhr40jNQxtA3w46E+XiPft21eaN28uLVu2lAkTJphVUv369TPf79Onj9SqVcuUkdSgQYPkrLPOkgceeEA6d+4ss2bNko8++kgee+wx8/2srCwZPHiwjB07VurXr28CnpEjR5qVVbqcPNPY0RfFFebaOFJDKRzwYYCjy7537NhhBvNpE7Au916wYEGkSXjjxo1mZZWjTZs2MnPmTLntttvk1ltvNUHMvHnz5OSTT47c5+abbzZB0oABA2TPnj1yxhlnmOfUwYBeno3Ha/7T4IazcRRVGwcKQykcSB2bbaaxXMWOvgDc3DhRG4rj9eEEdeNEwM3jN3tRpRFn4wDcQCkc6ZYbghPyUCwTB4CgozEd6TInJFsLUaJKY4kKANwWhjNvuGdOwLcWSuX4TYBDgAMACFEv1+YEIweC0Mvlm72oAKSGfYYAuOWdkM1ToskY8An2GQLgpq0hm6dEBgfwAfYZAuC2GiGbp0SAA3iMfYYAZMKZIdtaiAAH8FjY6uIAvFE6ZBv9EuAAHgtbXRzJo+kc6dYtRPOUaDIGPBa2ujiSQ9M53NItJBv9MgeHOTjwGPsMwbZhbIBbmIMDBEjY6uIoHE3nQHoQ4AA+EKa6OApH0zmQHvTgAD4Rlro4CkfTOZAeBDiAj2gw0zanrdcvAx6i6RxID0pUAOAjYRvGBriFAAcAfISmc3gh18KZSwQ4AOAzNJ0j02MJch7KkbOnny295vQyX/V60PfAYw4Oc3AA+JSeRdN0DjfNCdjMpVSO3wQ4BDgAgBAPGd2cYCyBH4eMMugPsIiNtXEA3nvH8plLLBMHfIz9iAC4ZavlM5fI4AA+r43nP8PSPav09qA3AALwVg3LZy4R4AA+xH5EANx2puUzlwhwAB+yvTYOwHulLZ+5RIAD+JDttXHER0M5Mq2bxTOXaDIGfMj22jgKoqEcXulm6Ua/zMFhDg58PJ9CG4rj9eH4cT4FwjNsDfAKc3CAgLO9No7f0VAOuIMAB/Apm2vj+B0N5UAAA5zdu3dL7969TRrp2GOPlf79+8vevXsLvf/AgQOlQYMGUqFCBTn++OPlhhtuMKmoaFlZWQUus2bNcvNHATyhQcyGQRtkcd/FMrPbTPNVy1IEN/agoRwIYJOxBjdbt26VhQsXyqFDh6Rfv34yYMAAmTlzZtz7f/fdd+Yyfvx4adSokXz77bdy9dVXm9teeOGFmPtOmzZNOnXqFLmuARRgIy1Dtc1p6/XLgEtoKAcC1mS8evVqE6R8+OGH0rx5c3PbggUL5LzzzpPNmzdLzZo1k3qe559/Xi699FLZt2+fHHHEb/GYZmzmzp0rXbt2LdZro8kYgF/QUA4ErMl46dKlJqviBDeqffv2UqpUKVm2bFnSz+P8EE5w47juuuukcuXK0rJlS3nyySclhIvBAFiAhnL4VW7A5zK5VqLatm2bVK1aNfYPO+IIqVSpkvleMnbu3Cl33nmnKWtFu+OOO+Scc86RI488Ul5//XW59tprTW+P9uvEc+DAAXOJjgABwG8N5fHm4GhwQ88VMm2OBXOZUg5whg8fLvfee2+R5amS0iCkc+fOpsx1++23x3xv5MiRkf9u2rSpKV/df//9CQOccePGyZgxY0r8mgDALbYOW4M9c5m2/Hej36Cs4ky5B2fHjh2ya9euQu9Tt25deeaZZ2TYsGHyww8/RG7/9ddfpXz58qav5sILL0z4+J9++kk6duxoMjTz5883jynMK6+8Iueff7788ssvUq5cuaQyONnZ2fTgILA0VcyBEIBbPWGbE4wu8LonLJUenJQzOFWqVDGXorRu3Vr27NkjK1askGbNmpnb3nzzTTl8+LC0atWq0BevwY0GKi+99FKRwY1auXKlVKxYMW5wo/T2RN8DgsaG1DGA4M9lauvz1Z2uNRmfdNJJZhn3VVddJcuXL5f33ntPrr/+eunRo0dkBdWWLVukYcOG5vtOcNOhQwdTcnriiSfMde3X0Utu7m/NTS+//LI8/vjjsmrVKlm3bp088sgjcvfdd5v5OUBYUsf5P4Cc1LF+HwCKy6a5TK7OwZkxY4YJatq1a2dWT3Xv3l0mTpwY+b7OxlmzZo3s37/fXP/4448jK6zq1asX81zr16+XnJwcKVOmjEyePFmGDBliVk7p/R588EETSAFhHumvqWMd6a99HJSrAIR9LhObbdKDg4DQZZpnTz+7yPvptGO/p44B+FOuz+cy+WIODoD0sil1jODPGIGdSls0l4kABwgIm1LHYae9UnqWrBm5XnN6ma96nR4q+EE3Szb6pURFiQoB4ffUMUo2Y8Q5Ow7SAQR2y/XhOApKVICFbEodh1VRjeJKG8UpV8FPG/32bNzTfA3aZwsBDhAgtqSOwyqVGSMAfLxMHED6MdI/uGgUBzKHAAcIcOoYwUKjOJA5lKgAIEM006blxPw9VA69PfuYbHM/ACVDgAMAGUKjOIIsN2CzmwhwACCDaBRHEM0J4Owm5uAwBweAB/w4YwTw++ymVI7fBDgEOLAAB0sAbg4Y3ZxgvEGmB4ymcvxmFRVgwdmVDo+L/gDSDxzt9aDcASBTs5v8trKTHhzAgtRx/g8g3c5Bb/dzfRyA/20N8OwmAhwgoBj7D8BtNQI8u4kABwgoxv4DcNuZAZ7dRIADBFSQU8dhFLQZIkDQZzcR4AABFeTUcdgEcYYIEPTZTSwTZ5k4Ar58UxuK4/XhZHr5Jvw/QwQI+jiKVI7fZHCAgApy6jgsaASHjZv89mzc03z1+2cLAQ4QYEFNHYcFjeCAdxj0BwScBjFdGnTxPHWMgmgEB7xDgANYlDqGv9AIDniHAAcAXJ4hUlQjuB9niABBaTxOhAAHAFxuBNdVVBrMRAc5NIIj6Ob4fB88mowBwEU0gsNGcwKwDx5zcJiDA0v5OXUcRvx9wLYZXJsTrBB0cwZXKsdvSlSAhfyeOg4jGsERxvEHbT38nadEBVgmCKljAMG1NSDjDwhwAIswOReA22oEZPwBAQ5gESbnAsjU+IOsfFvEOPT27GOyPR9/4GqAs3v3bundu7dpBDr22GOlf//+snfv3kIf07ZtW8nKyoq5XH311TH32bhxo3Tu3FmOPPJIqVq1qtx0003y66+/uvmjAIEQlNSx7TRDtmTDEnn282fNVzJmsEnpgOyD52qTsQY3W7dulYULF8qhQ4ekX79+MmDAAJk5c2ahj7vqqqvkjjvuiFzXQMaRm5trgpvq1avL+++/b56/T58+UqZMGbn77rvd/HEA3wtK6thmNHgjTOMPBsX5Xdfgxg+/664tE1+9erU0atRIPvzwQ2nevLm5bcGCBXLeeefJ5s2bpWbNmgkzOE2aNJEJEybE/f5rr70m559/vnz33XdSrVo1c9uUKVPklltukR07dkjZsmWLfG0sE4ftyzeLmpzrxvJN/N7gnf+9d85qmXsD2+RmePxBKsdv10pUS5cuNWUpJ7hR7du3l1KlSsmyZcsKfeyMGTOkcuXKcvLJJ8uIESNk//79Mc/buHHjSHCjOnbsaH7oL774wqWfBgiGoKSObUSDN8I8/qBn457mq58+W1wLcLZt22b6Y6IdccQRUqlSJfO9RHr16iXPPPOMLF682AQ3//jHP+TSSy+Ned7o4EY51xM974EDB0wAFH0BbMXkXG/Q4A34S8o9OMOHD5d77723yPJUcWmPjkMzNTVq1JB27drJ119/LSeeeGKxnnPcuHEyZsyYYr8mIGg0iOnSoAuTczOIBm8g4AHOsGHD5PLLLy/0PnXr1jVNwN9//33M7brSSVdW6feS1apVK/N13bp1JsDRxy5fvjzmPtu3bzdfEz2vZoKGDh0aua4ZnOzs7KRfAxBETM7NLBq8gYAHOFWqVDGXorRu3Vr27NkjK1askGbNmpnb3nzzTTl8+HAkaEnGypUrzVfN5DjPe9ddd5ngySmB6SotbTbSpuZ4ypUrZy4A4PZskKIavL2eDQKEZd8113pwTjrpJOnUqZNZ8q0Zl/fee0+uv/566dGjR2QF1ZYtW6Rhw4aRjIyWoe68804TFG3YsEFeeuklswT8f//3f+WUU04x9+nQoYMJZC677DL59NNP5V//+pfcdtttct111xHEAPAMDd6AmJWEupLz7OlnS685vcxXve7FFjGuDvrT1VAawGgPjS4PP+OMM+Sxxx6LfF9n46xZsyaySkqXeL/xxhsmiNHHaTmse/fu8vLLL0ceU7p0aZk/f775qtkcbUDWICh6bg4AeIEGb4TZHJ/tg+faHBw/Yw4OwsgvaeMw4L1GWGdwbU6wkjBdM7hSOX67OskYgD8wXTezaPBG2LyTwpiETP3bYLNNwHJ+SxsDsM9WH45JIMABLMZ0XQBhHZNAgANYjOm6mcHu4Qi7M/87JiH/CkKH3p59THZGxyTQgwNYzI9pY9vQ3wRIZEyClr01mInOGns1JoEMDmAxP6aNbUJ/E+DfMQksE2eZOEKwdLOo6bolXboZRplaFgsETa6LYxJSOX6TwQEsxnRd99DfBBQ+JqFn457mq1efLwQ4gOX8lja2Bf1NgL/RZAyEgAYxXRp0YbpuGtHfBPgbAQ4QEkzXTS92Dwf8jRIVABQD/U2AvxHgACHGgLqSob8J8C+WibNMHCHFgLr0YfdwwH/HbwIcAhyEeEBd/t4Rp7RC9gGAHzEHB0BCbMAJIAwIcICQYUBdydC3BAQDy8SBkGFAXfHRtwQEBxkcIGQYUFc8bKwJBAsBDhDSAXX5Z7c49PbsY7IZUBeFviUgeAhwgJBhQF3q6FsCgocABwghBtSlhr4lIHhoMgZCig04k0ffEhA8BDhAiLEBZ3LYWBMIHkpUAFAE+paA4CHAARDBELvE6FsCgoW9qNiLCjAYYpccNtYEvMNmm0UgwAFisfkmgCBgs00ASWOIXeEo2wHBxCoqIORSGWIXthVXlO2A4CKDA4QcQ+ziY+8pINhcDXB2794tvXv3NnWyY489Vvr37y979+5NeP8NGzZIVlZW3Mvzzz8fuV+878+aNcvNHwWwFkPsCqJsBwSfqwGOBjdffPGFLFy4UObPny9vv/22DBgwIOH9s7OzZevWrTGXMWPGyB/+8Ac599xzY+47bdq0mPt17drVzR8FsBabbxbE3lNA8LnWg7N69WpZsGCBfPjhh9K8eXNz28MPPyznnXeejB8/XmrWrFngMaVLl5bq1avH3DZ37ly5+OKLTZATTTNC+e8LoPhD7LTsosFMdNYirEPsKNsBwedaBmfp0qUmCHGCG9W+fXspVaqULFu2LKnnWLFihaxcudKUtvK77rrrpHLlytKyZUt58sknJYSr3YG0YYhdLMp2QPC5lsHZtm2bVK1aNfYPO+IIqVSpkvleMp544gk56aSTpE2bNjG333HHHXLOOefIkUceKa+//rpce+21prfnhhtuiPs8Bw4cMJfodfQAYrH55u/YewoIYYAzfPhwuffee4ssT5XUzz//LDNnzpSRI0cW+F70bU2bNpV9+/bJ/fffnzDAGTdunOnlAZD65pthnNxL2Q4IvpQnGe/YsUN27dpV6H3q1q0rzzzzjAwbNkx++OGHyO2//vqrlC9f3qyIuvDCCwt9jn/84x+mNLVlyxapUqVKofd95ZVX5Pzzz5dffvlFypUrl1QGRxuamWQMFC7sc2Di/fzacK3BTRh+fiDIk4xTzuBosFFUwKFat24te/bsMX00zZo1M7e9+eabcvjwYWnVqlVS5am//OUvSf1Z2qdTsWLFuMGN0tsTfQ9Aats3OHNgwtCbQ9kOCC7XenC0d6ZTp05y1VVXyZQpU+TQoUNy/fXXS48ePSIrqDQ7065dO3n66adNs7Bj3bp1Zkn5q6++WuB5X375Zdm+fbucfvrpJhukS9DvvvtuufHGG936UYDQKWoOjJZpdA6MHvxtOtgnKseFbYIzYANXt2qYMWOGCWo0iNHVU927d5eJEydGvq9Bz5o1a2T//v0xj9NVUbVr15YOHToUeM4yZcrI5MmTZciQIWblVL169eTBBx80gRSA9Ajj9g1hL8cBtmE3cXpwgAJ0Y8lec3oVeb+Z3WZKz8Y9JejYTR0IBnYTB1AiYZoDw7YMgJ0IcACEevsGtmUA7ESAAyDhHBiVP8ixbQ4M2zIAdiLAARDq7RvCVI4DwoQmY5qMgULlXzrdpnYbeX/z+9bMhdGfL+ehnCK3ZVg/aH2gf07ABq4O+gMQLtFzYHS10YkPn2jVUmq2ZQDsRIkKQEpLqfM35DqTjfX7QRWWchwQJpSoKFEBSZdxEq02CmIZJ97UYsW2DIB/UaICkFa2TTZmajFgP0pUAEK1lNrmUhuA3xHgAAjNUmqmFgPhQYADIDSTjZlaDIQHAQ6AEk821sDgytOulOe+eE6WbFji2wyITaU2AIWjyRhASkup8zfnVqpQyXwdvWS07xt2bSm1ASgay8RZJg4Ue3n12t1r5fYltxfoaXGyPH6bIcPUYiA8x29KVACKNdn44j9dLFM/nhqYhl0nMPvrSX81r8/2TUSBsKNEBcD62Tjx5t6UyioluXm/B1+audHgxk8ZJwDFR4ADwOqGXWfuTf5MkxPcDD59sHRp0IWpxYBlKFEBsLZht7C5N05Z6p9f/pPgBrAQGZxC5ObmyqFDh7x+GfC5MmXKSOnSpUM7GydRw66zwkqDDL14EUAEqYwGIL0IcOLQhWXbtm2TPXv2eP1SEBDHHnusVK9eXbKy4g/Cs3k2jpZ/nFk4+e3+ebe0/0d7z5aNB6WMBiD9CHDicIKbqlWrypFHHhmqgxZSD4b3798v33//vbleo0a45qckmo2Tn7PPU6aWjTsrpr7c8WVS92fuDWAf5uDkW0evZal///vfJrg57rjjPHuNCJZdu3aZIOePf/xjKMtVGlDoBOOLX7jYZG3iydSMmXgrphJh7g0QLMzBKQGn50YzN0CynN+XsPZsaXCgl0TBTab2eUq0U3g8zL0B7EaAkwBlKaSC3xfv+12KWjGVn2Zu/DZpGUD60IMDIC2S7WPRvhgtZ6V7aXZRK6Yct515m7Sr246l4YDlyOAASOuy8fxbIOQ39p2xcvb0s82eUFpSSlf2ZtE3i5K6b6MqjcyScIIbwG4EOCFw+eWXS9euXVN+3KJFi+Skk04yjdfJ+PLLL6V27dqyb9++YrxK2LJsXBUV5ESvrCppkKOP12BJA6dksGIKCAcCHJdXlTz7+bPmq5cbDj700EPy1FNPpfy4m2++WW677bakVwU1atRITj/9dHnwwQfFKxs2bDD9MCtXrkxLkIfiLRuvdUytIu+b99//XT3/apnx2Yxi/TtJtak4+5hsk2kCYD96cDK0TNWrQWdKl9Sl6t1335Wvv/5aunfvntLj+vXrJ1dddZWMGDFCjjjCvl+vgwcPStmyZb1+Gb6mv+O6t5P2xGjZqKjMyo79O+TSuZcm/e/EmXGjGaAh/xqSVFMxK6aA8CGDk2aJzijTlY5P5IUXXpDGjRtLhQoVzPye9u3bR0pF+bMXbdu2lRtuuMFkaCpVqmQm8N5+++0xzzdr1iz5v//7Pylfvry5ruOS9Dk7duxo/lvt3r3blKRGjRoVeZw+Rm9/6623Er7WTz/9VM4++2w5+uijzRyDZs2ayUcffRT5/nvvvWdeoy69rlixovkzf/jhB/O9BQsWyBlnnGEmB+vPef7555tAzFGnTh3ztWnTpiaTo8+jP9v06dPlxRdfNLfpZcmSJeZ+mzZtkosvvtg8n74XXbp0MVkgh/Pe3XXXXVKzZk1p0KBBsf+OwkSDCO1z0X6XVOi/m+7PdTeBi5PRic6G3vHWHZIzIcf08GhQpMFRMlgxBYSPawGOHhDatGljDlJ68EiGHjj1YKnTYPVArQfUtWvXxtxHD569e/c2B0Z93v79+8vevXvFDwpbpurcNnjB4LSXq7Zu3So9e/aUK664QlavXm0O3t26dYsEIvHoAf+oo46SZcuWyX333Sd33HGHLFy4MPL9d955R5o3bx65rkGBPubDDz+UiRMnmtuuvvpqqVWrVkyAo9mNJk2amMcnon9/Ghjpc61YsUKGDx9u9nNSWlpq166dKXctXbrUZJIuuOCCSB+QBm1Dhw41AZH2CJUqVUouvPBCOXz4sPn+8uXLzdc33njDvC9z5syRG2+80QQxnTp1MrfpRX83dWaNBk8aaOnr1cDqD3/4g7mfZmoc+uesWbPGvD/z588v1t9RWBW332XCBxNMEFNtfDVz0f/uNaeXjF4yWjb/VHQ5Kv+qKR3kR3ADhItrNQQ9QFx00UXSunVreeKJJ5J6jB5o9eCpB1I9Ex85cqQ5AGnzqpNJ0IOjHqD0YKMHKC2JDBgwQGbOnCle82pjP30/fv31VxPUnHDCCeY2zeYU5pRTTpHRo0eb/65fv75MmjTJHMg1A6O+/fZbk7GIpsHMo48+Kn369DHbWbz66qvyySefFChF6eP08Yls3LhRbrrpJmnYsGHkz4/+HdDA6u9//3vktj/96U+R/85fMnvyySelSpUq5nfk5JNPNv+tNLujmSmHBswHDhyIue2ZZ54xgdHjjz8emWMzbdo0EzhrkNihQwdzmwaCeh9KU+5syFmYXT/vKvFr0CXhlKWA8HEtgzNmzBgZMmRIkQdah2YbJkyYYJpatUygB+Cnn35avvvuO5k3b565j2YntEShB5tWrVqZUsXDDz9syil6v7AOOjv11FNN1kPfaw0qp06dGinpJKLvbzTNmjn7Kamff/45ElRG0+fXjMk999wj48ePjwlOooMJ3Z8pEc3AXHnllSZDp88TXWJyMjiJaEZPs1V169Y1WbycnJxI0JQqLZWtW7fOZHA0c6MXLVP98ssvMa9J31eCm8ysrEonmoqBcPNND8769etNVkAPetHNsRrIaKlC6Vc9u44unej9tUyhpZagpOPTvUxVVzlpRuu1114zpR0N+rRXRN/TRJySkEMzGE6ZR1WuXDlukKSBi5aV9M/MXz6MLiM6mZR4tCfmiy++kM6dO8ubb75pXvPcuXMjwVFhtFylz69BnP6dO3/v0SWlZGlpU/t/NKiKvuheZL169YrcTzM4yMzKqnShqRiAbwIcDW5UtWrVYm7X68739KtughlNyyN61u3cJx4tTegGXdEXLwaduXlGqQHKn//8Z5M507KRZhycoKE4tElXyz75DRs2zASUGkxpOVEDlPxWrVplHl8Y3ZRSM3yvv/66Ka1pacjJLGmpLNGGltoLo1k+zfLojJ78QZiTack/u0dvz3/baaedZoI0/Z2qV69ezKU4K89QeJCzYdAGWdx3sTxz4TNS5cgqrmZ0aCoGkFKAo82gziqURJevvvpK/GbcuHHmgOVcsrOzM56Od/OMUrMYd999t2m81VKNNtbu2LHDBADFpb1P2uAb7ZVXXjE9LzNmzDC9OtpH07dv35ggQ1cgbdmyJSYTF01LX9dff73pcdE+HW3s1WZj57Xq8nK9fu2118pnn31mfp8eeeQR2blzp1lRpb01jz32mCktaXCl5a5oGqxoFkhLmdu3bzc7ziotZenzaYCkz6X9W9rPpZkqLYlqk7FmvPR16QqzzZtTa2RF8iurep/SW6acP8Xcls4gR4MmDZ40iKKpGEBKAY6evWsfTGEX7Y0oDqf5Uw9K0fS68z39Gt0norS5VksW0c2j+elBUw90zkWXBmc6He/mGaX2orz99tty3nnnmcyIZjgeeOABOffcc4v9nHrw1zKSBgRKAyZdsablJc18KM0WaYZNV1M5nn32WdOc6zQ756elLc3EaKOyvlZd3aSvU59L6W2a1dH+mJYtW5omdV3erZk6zRxpv5WWyLShWDNA999/f8zz6/00s6TN0NrsrMGL0tk8WrbT8qaWzzSw0hV++r4df/zxJoukQZb+jNqDo+8pglG2yvrv/zRo0uCJbRgAqKy8wtYSp4FO0B08eLDs2bOn0Pvpy9ADki7p1UBKaSlJz8j1OXr06GECKO3X0EyF9k4oPRjqsl49486/6icRfV7N5Giwk/9Apgc3PZPXVVzxmmyT5Qwj04Zi7bkJ4sZ+mqHR90qDhWRoH4w2HeuKNi2XhUm6fm/Cxvl38uJXL8qEZRNMoJLqaist+2pmlIwNYL8fCzl+Z2yZuJZKNLOiX7X3wRmdr/0NulpF6TJhLR/pqhwtb2kgNHbsWHOQdJaJa9DiDKnTM2wNZvRsfMqUKabMoOUODX6SDW4ynY4Psr/97W9mubY2H2v2pCj6d33rrbeGLrhByf+d6OXME84sMAH8uArHFVguXvvo2nJVs6ukfqX6gT15AOA+1wIcHf6m82wcTtPp4sWLzXRZpeUPp0dC6WRdHeSmc20046PLwLWXIvqMWPs/NKjRJlM96OpcFGfwHNJLV6xpwJIsp0EXKOkWD9GZTxX0bCgAC0tUfpSJEhXChd8bAPBXico3y8QBAADShQAngeihd0BR+H0BgJD04ASVDoTT3h7d+kGXE+t1Z58iID+t8OrqMV1Gr783bOkAAP5AgJOPHqS0j0I3sPTD/lYIBp2po/N0klltBgBwHwFOHHoWrgcrHSKYf7w/EG94oQ4YJNMHAP5BgJOAHqx0Q8r8m1ICAAD/I58OAACsQ4ADAACsQ4ADAACsE8oeHGd4s05EBAAAweAct5PZhCGUAc5PP/1kvmZnZ3v9UgAAQDGO47plQ2FCuReVTp3VGTdHH3102pf2anSpgdOmTZuK3CcDxcf7nBm8z5nB+5wZvM/Bf681ZNHgpmbNmkXOHQtlBkfflNq1a7v6Z+hfKP+A3Mf7nBm8z5nB+5wZvM/Bfq+Lytw4aDIGAADWIcABAADWIcBJs3Llysno0aPNV7iH9zkzeJ8zg/c5M3ifw/Veh7LJGAAA2I0MDgAAsA4BDgAAsA4BDgAAsA4BDgAAsA4BThpNnjxZcnJypHz58tKqVStZvny51y/JKuPGjZMWLVqYCdRVq1aVrl27ypo1a7x+Wda75557zMTvwYMHe/1SrLRlyxa59NJL5bjjjpMKFSpI48aN5aOPPvL6ZVklNzdXRo4cKXXq1DHv8Yknnih33nlnUvsZIbG3335bLrjgAjNVWD8j5s2bF/N9fX9HjRolNWrUMO97+/btZe3atZIpBDhpMnv2bBk6dKhZFvfxxx/LqaeeKh07dpTvv//e65dmjbfeekuuu+46+eCDD2ThwoVy6NAh6dChg+zbt8/rl2atDz/8UB599FE55ZRTvH4pVvrhhx/kz3/+s5QpU0Zee+01+fLLL+WBBx6QihUrev3SrHLvvffKI488IpMmTZLVq1eb6/fdd588/PDDXr+0QNu3b5851unJfTz6Hk+cOFGmTJkiy5Ytk6OOOsocF3/55ZfMvEBdJo6Sa9myZd51110XuZ6bm5tXs2bNvHHjxnn6umz2/fff6+lX3ltvveX1S7HSTz/9lFe/fv28hQsX5p111ll5gwYN8volWeeWW27JO+OMM7x+Gdbr3Llz3hVXXBFzW7du3fJ69+7t2WuyjYjkzZ07N3L98OHDedWrV8+7//77I7ft2bMnr1y5cnnPPvtsRl4TGZw0OHjwoKxYscKk36L3u9LrS5cu9fS12ew///mP+VqpUiWvX4qVNFvWuXPnmN9rpNdLL70kzZs3l4suusiUXZs2bSpTp071+mVZp02bNrJo0SL597//ba5/+umn8u6778q5557r9Uuz1vr162Xbtm0xnx+6h5S2b2TquBjKzTbTbefOnabGW61atZjb9fpXX33l2euyfUd47QnR9P7JJ5/s9cuxzqxZs0ypVUtUcM8333xjSida3r711lvN+33DDTdI2bJlpW/fvl6/PGsMHz7c7G7dsGFDKV26tPm8vuuuu6R3795evzRrbdu2zXyNd1x0vuc2AhwENruwatUqcxaG9Nq0aZMMGjTI9DlpwzzcDdQ1g3P33Xeb65rB0d9r7VkgwEmf5557TmbMmCEzZ86UP/3pT7Jy5UpzgqTNsbzP9qJElQaVK1c2ZwXbt2+PuV2vV69e3bPXZavrr79e5s+fL4sXL5batWt7/XKso+VWbY4/7bTT5IgjjjAXbfDWZkH9bz37RXro6pJGjRrF3HbSSSfJxo0bPXtNNrrppptMFqdHjx5mldpll10mQ4YMMSsz4Q7n2OflcZEAJw00ndysWTNT440+M9PrrVu39vS12UT72DS4mTt3rrz55ptmySfSr127dvL555+bs1znolkGTefrf2swj/TQEmv+UQfaJ3LCCSd49ppstH//ftMXGU1/j/VzGu7Qz2cNZKKPi1om1NVUmTouUqJKE62ha6pTDwQtW7aUCRMmmCV0/fr18/qlWVWW0hTziy++aGbhOHVcbVzTGQtID31v8/c16fJOndNCv1N6aRZBG2C1RHXxxReb2VmPPfaYuSB9dFaL9twcf/zxpkT1ySefyIMPPihXXHGF1y8t0Pbu3Svr1q2LaSzWkyBd+KHvtZYBx44dK/Xr1zcBj84i0rKgzjDLiIys1QqJhx9+OO/444/PK1u2rFk2/sEHH3j9kqyiv67xLtOmTfP6pVmPZeLuefnll/NOPvlks3y2YcOGeY899pjXL8k6P/74o/n91c/n8uXL59WtWzfvb3/7W96BAwe8fmmBtnjx4rifyX379o0sFR85cmRetWrVzO93u3bt8tasWZOx15el/5eZUAoAACAz6MEBAADWIcABAADWIcABAADWIcABAADWIcABAADWIcABAADWIcABAADWIcABAADWIcABAADWIcABAADWIcABAADWIcABAABim/8PE+2OX9xccXwAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGdCAYAAAAfTAk2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAKu1JREFUeJzt3Q98zvX+//HXDPPnNKxhFvnbzZ8Tpi0znJOTHSMV56gQB0tzK1Yx+bMOZpTlT45ISYWciP5R+rM4hMr8aVIpHDpE2EaaGTVs+91e79/tur672GbYtWt773G/3T63+Xyu9+dzfa6L8vR+v97vj1dubm6uAAAAWKSCp28AAACguBFwAACAdQg4AADAOgQcAABgHQIOAACwDgEHAABYh4ADAACsQ8ABAADWqSjlUE5Ojhw7dkxuuOEG8fLy8vTtAACAItC1ic+cOSOBgYFSoULhfTTlMuBouGnQoIGnbwMAAFyDI0eOSP369QttUy4DjvbcOL4gX19fT98OAAAogoyMDNNB4fh7vDDlMuA4hqU03BBwAAAoW4pSXkKRMQAAsA4BBwAAWIeAAwAArEPAAQAA1iHgAAAA67g14GzevFnuuecesyCPVjyvXr36iuds3LhRbrvtNvHx8ZFmzZrJkiVLLmszf/58adSokVSpUkVCQ0Nl+/btbvoEAACgLHJrwDl79qy0bdvWBJKiOHjwoPTs2VP+8pe/yK5du2TkyJHy8MMPy6effupss3LlSomJiZG4uDjZuXOnuX5ERISkpaW58ZMAAICyxCtX1z0uiTfy8pJVq1ZJ7969C2wzbtw4+eijj2T37t3OY/369ZP09HRJTEw0+9pjc/vtt8sLL7zgfOyCLvrz2GOPyfjx44u8UFCNGjXk9OnTrIMDAEAZcTV/f5eqGpykpCQJDw93Oaa9M3pcnT9/XpKTk13a6LModN/RJj9ZWVnmS8m7AQAAe5WqgJOSkiJ169Z1Oab7Gkh+++03OXnypGRnZ+fbRs8tSEJCgkl8jo3nUAEAYLdSFXDcJTY21nRnOTZ9BhUAALBXqXoWVUBAgKSmproc030dZ6tatap4e3ubLb82em5BdEaWbgAAoHwoVT04YWFhsn79epdj69atM8dV5cqVJTg42KWNFhnrvqMNAACAW3twMjMz5cCBAy7TwHX6t5+fn9x8881m6Ojo0aOydOlS8/ojjzxiZkeNHTtWHnroIdmwYYO89dZbZmaVg04RHzx4sISEhEj79u1lzpw5Zjp6ZGSkOz8KAKAciPeKl9ImLjfO07dQJrk14Hz11VdmTZu84URpQNEF/I4fPy6HDx92vt64cWMTZkaNGiXPP/+81K9fX1599VUzk8qhb9++cuLECZk0aZIpLA4KCjJTyC8tPAYAAOVXia2DU5qwDg4AID/04JRuZXYdHAAAgOJAwAEAANYh4AAAAOsQcAAAgHUIOAAAwDoEHAAAYB0CDgAAsA4BBwAAWIeAAwAArEPAAQAA1nHrs6iA8ri0OsuqA4Dn0YMDAACsQ8ABAADWIeAAAADrEHAAAIB1CDgAAMA6BBwAAGAdAg4AALAOAQcAAFiHgAMAAKzDSsZwYkVgAIAt6MEBAADWIeAAAADrEHAAAIB1CDgAAMA6BBwAAGAdAg4AALAOAQcAAFiHgAMAAKxDwAEAANYh4AAAAOsQcAAAgHUIOAAAwDolEnDmz58vjRo1kipVqkhoaKhs3769wLZdunQRLy+vy7aePXs62wwZMuSy17t3714SHwUAAJQBbn+a+MqVKyUmJkYWLFhgws2cOXMkIiJC9u3bJ3Xq1Lms/XvvvSfnz5937v/yyy/Stm1buf/++13aaaBZvHixc9/Hx8fNnwQAAJQVbu/BmT17tkRFRUlkZKS0atXKBJ1q1arJokWL8m3v5+cnAQEBzm3dunWm/aUBRwNN3na1atVy90cBAABlhFsDjvbEJCcnS3h4+P+9YYUKZj8pKalI13jttdekX79+Ur16dZfjGzduND1AzZs3l0cffdT09BQkKytLMjIyXDYAAGAvtwackydPSnZ2ttStW9fluO6npKRc8Xyt1dm9e7c8/PDDlw1PLV26VNavXy/Tp0+XTZs2SY8ePcx75SchIUFq1Kjh3Bo0aHCdnwwAAJTrGpzrob03rVu3lvbt27sc1x4dB329TZs20rRpU9Or07Vr18uuExsba+qAHLQHh5ADAIC93NqD4+/vL97e3pKamupyXPe1bqYwZ8+elRUrVsjQoUOv+D5NmjQx73XgwIF8X9d6HV9fX5cNAADYy60Bp3LlyhIcHGyGkhxycnLMflhYWKHnvv3226Z2ZuDAgVd8n59//tnU4NSrV69Y7hsAAJRtbp9FpUNDr7zyirz++uuyZ88eUxCsvTM6q0oNGjTIDCHlNzzVu3dvufHGG12OZ2ZmypgxY2Tr1q1y6NAhE5Z69eolzZo1M9PPAQAA3F6D07dvXzlx4oRMmjTJFBYHBQVJYmKis/D48OHDZmZVXrpGzhdffCFr16697Ho65PXtt9+awJSeni6BgYHSrVs3mTp1KmvhAACAkisyjo6ONlt+tDD4Ujr1Ozc3N9/2VatWlU8//bTY7xEAANijVM+iAgCUTfFe8VKaxOXGefoWUMJ42CYAALAOAQcAAFiHgAMAAKxDwAEAANYh4AAAAOsQcAAAgHUIOAAAwDoEHAAAYB0CDgAAsA4BBwAAWIeAAwAArEPAAQAA1iHgAAAA6xBwAACAdQg4AADAOgQcAABgHQIOAACwDgEHAABYh4ADAACsQ8ABAADWIeAAAADrEHAAAIB1CDgAAMA6BBwAAGAdAg4AALAOAQcAAFiHgAMAAKxDwAEAANYh4AAAAOsQcAAAgHUIOAAAwDolEnDmz58vjRo1kipVqkhoaKhs3769wLZLliwRLy8vl03Pyys3N1cmTZok9erVk6pVq0p4eLjs37+/BD4JAAAoC9wecFauXCkxMTESFxcnO3fulLZt20pERISkpaUVeI6vr68cP37cuf30008ur8+YMUPmzp0rCxYskG3btkn16tXNNX///Xd3fxwAAFAGuD3gzJ49W6KioiQyMlJatWplQkm1atVk0aJFBZ6jvTYBAQHOrW7dui69N3PmzJEJEyZIr169pE2bNrJ06VI5duyYrF692t0fBwAAlPeAc/78eUlOTjZDSM43rFDB7CclJRV4XmZmpjRs2FAaNGhgQsz333/vfO3gwYOSkpLics0aNWqYoa/CrgkAAMoPtwackydPSnZ2tksPjNJ9DSn5ad68uendef/99+WNN96QnJwc6dixo/z888/mdcd5V3PNrKwsycjIcNkAAIC9St0sqrCwMBk0aJAEBQXJHXfcIe+9957Url1bXn755Wu+ZkJCgunlcWzaMwQAAOzl1oDj7+8v3t7ekpqa6nJc97W2pigqVaok7dq1kwMHDph9x3lXc83Y2Fg5ffq0czty5Mg1fiIAACDlPeBUrlxZgoODZf369c5jOuSk+9pTUxQ6xPXdd9+ZKeGqcePGJsjkvaYOOelsqoKu6ePjY2Zm5d0AAIC9Krr7DXSK+ODBgyUkJETat29vZkCdPXvWzKpSOhx10003mWEkNWXKFOnQoYM0a9ZM0tPTZebMmWaa+MMPP+ycYTVy5Eh5+umn5ZZbbjGBZ+LEiRIYGCi9e/d298cBAABlgNsDTt++feXEiRNmYT4tAtbamsTERGeR8OHDh83MKodff/3VTCvXtrVq1TI9QFu2bDFTzB3Gjh1rQtKwYcNMCOrcubO55qULAgIAgPLJ7QFHRUdHmy0/GzdudNn/17/+ZbbCaC+O9vToBgAAUOpnUQEAAFwvAg4AALAOAQcAAFiHgAMAAKxDwAEAANYh4AAAAOsQcAAAgHUIOAAAwDoEHAAAYB0CDgAAsA4BBwAAWIeAAwAArEPAAQAA1iHgAAAA6xBwAACAdQg4AADAOgQcAABgHQIOAACwDgEHAABYh4ADAACsQ8ABAADWIeAAAADrEHAAAIB1CDgAAMA6FT19AwAA4PrEe8VLaROXG+fR96cHBwAAWIeAAwAArEPAAQAA1iHgAAAA6xBwAACAdQg4AADAOgQcAABgHQIOAACwTokEnPnz50ujRo2kSpUqEhoaKtu3by+w7SuvvCJ/+tOfpFatWmYLDw+/rP2QIUPEy8vLZevevXsJfBIAAFAWuD3grFy5UmJiYiQuLk527twpbdu2lYiICElLS8u3/caNG6V///7y2WefSVJSkjRo0EC6desmR48edWmngeb48ePO7c0333T3RwEAAGWE2wPO7NmzJSoqSiIjI6VVq1ayYMECqVatmixatCjf9suWLZPhw4dLUFCQtGjRQl599VXJycmR9evXu7Tz8fGRgIAA56a9PQAAAG4POOfPn5fk5GQzzORQoUIFs6+9M0Vx7tw5uXDhgvj5+V3W01OnTh1p3ry5PProo/LLL78UeI2srCzJyMhw2QAAgL3cGnBOnjwp2dnZUrduXZfjup+SklKka4wbN04CAwNdQpIOTy1dutT06kyfPl02bdokPXr0MO+Vn4SEBKlRo4Zz02EvAABgr1L9NPFnn31WVqxYYXprtEDZoV+/fs5ft27dWtq0aSNNmzY17bp27XrZdWJjY00dkIP24BByAACwl1t7cPz9/cXb21tSU1Ndjuu+1s0UZtasWSbgrF271gSYwjRp0sS814EDB/J9Xet1fH19XTYAAGAvtwacypUrS3BwsEuBsKNgOCwsrMDzZsyYIVOnTpXExEQJCQm54vv8/PPPpganXr16xXbvAACg7HL7LCodGtK1bV5//XXZs2ePKQg+e/asmVWlBg0aZIaQHLSmZuLEiWaWla6do7U6umVmZprX9eeYMWNk69atcujQIROWevXqJc2aNTPTzwEAANxeg9O3b185ceKETJo0yQQVnf6tPTOOwuPDhw+bmVUOL730kpl9dd9997lcR9fRmTx5shny+vbbb01gSk9PNwXIuk6O9vjoUBQAAECJFBlHR0ebLT9aGJyX9soUpmrVqvLpp58W6/0BAAC78CwqAABgHQIOAACwDgEHAABYh4ADAACsQ8ABAADWIeAAAADrEHAAAIB1CDgAAMA6BBwAAGAdAg4AALAOAQcAAFiHgAMAAKxDwAEAANYh4AAAAOsQcAAAgHUIOAAAwDoEHAAAYB0CDgAAsE5FT98AUF7Fe8VLaRKXG+fpWwCAYkMPDgAAsA4BBwAAWIeAAwAArEPAAQAA1iHgAAAA6xBwAACAdQg4AADAOgQcAABgHQIOAACwDgEHAABYh4ADAACsQ8ABAADWIeAAAADrEHAAAIB1SiTgzJ8/Xxo1aiRVqlSR0NBQ2b59e6Ht3377bWnRooVp37p1a/n4449dXs/NzZVJkyZJvXr1pGrVqhIeHi779+9386cAAABlhdsDzsqVKyUmJkbi4uJk586d0rZtW4mIiJC0tLR822/ZskX69+8vQ4cOla+//lp69+5ttt27dzvbzJgxQ+bOnSsLFiyQbdu2SfXq1c01f//9d3d/HAAAUAa4PeDMnj1boqKiJDIyUlq1amVCSbVq1WTRokX5tn/++eele/fuMmbMGGnZsqVMnTpVbrvtNnnhhRecvTdz5syRCRMmSK9evaRNmzaydOlSOXbsmKxevdrdHwcAAJT3gHP+/HlJTk42Q0jON6xQwewnJSXle44ez9teae+Mo/3BgwclJSXFpU2NGjXM0FdB18zKypKMjAyXDQAA2KuiOy9+8uRJyc7Olrp167oc1/29e/fme46Gl/za63HH645jBbW5VEJCgsTHx1/XZykP4nLjpCzivktWvFd8mfweue+Sve+y+ueb+7ZHuZhFFRsbK6dPn3ZuR44c8fQtAQCAshpw/P39xdvbW1JTU12O635AQEC+5+jxwto7fl7NNX18fMTX19dlAwAA9nJrwKlcubIEBwfL+vXrncdycnLMflhYWL7n6PG87dW6deuc7Rs3bmyCTN42WlOjs6kKuiYAAChf3FqDo3SK+ODBgyUkJETat29vZkCdPXvWzKpSgwYNkptuusnUyagnnnhC7rjjDnnuueekZ8+esmLFCvnqq69k4cKF5nUvLy8ZOXKkPP3003LLLbeYwDNx4kQJDAw008kBAADcHnD69u0rJ06cMAvzaRFwUFCQJCYmOouEDx8+bGZWOXTs2FGWL19upoE/9dRTJsTo9O9bb73V2Wbs2LEmJA0bNkzS09Olc+fO5pq6MCAAAIBXri4sU87okJZOLdeCY+pxgKtTVmf1cN/Fg9k6KCt/f5eLWVQAAKB8IeAAAADrEHAAAIB1CDgAAMA6BBwAAGAdAg4AALAOAQcAAFiHgAMAAKxDwAEAANYh4AAAAOsQcAAAgHUIOAAAwDoEHAAAYB0CDgAAsA4BBwAAWIeAAwAArEPAAQAA1iHgAAAA6xBwAACAdQg4AADAOgQcAABgHQIOAACwDgEHAABYh4ADAACsQ8ABAADWIeAAAADrEHAAAIB1CDgAAMA6BBwAAGAdAg4AALAOAQcAAFiHgAMAAKxT0dM3AAAoWFxunKdvASiT3NqDc+rUKRkwYID4+vpKzZo1ZejQoZKZmVlo+8cee0yaN28uVatWlZtvvlkef/xxOX36tEs7Ly+vy7YVK1a486MAAIAyxK09OBpujh8/LuvWrZMLFy5IZGSkDBs2TJYvX55v+2PHjplt1qxZ0qpVK/npp5/kkUceMcfeeecdl7aLFy+W7t27O/c1QAEAALg14OzZs0cSExNlx44dEhISYo7NmzdP7rrrLhNgAgMDLzvn1ltvlXfffde537RpU3nmmWdk4MCBcvHiRalYsaJLoAkICOB3EQAAlNwQVVJSkgkhjnCjwsPDpUKFCrJt27YiX0eHp3SIK2+4USNGjBB/f39p3769LFq0SHJzcwu8RlZWlmRkZLhsAADAXm7rwUlJSZE6deq4vlnFiuLn52deK4qTJ0/K1KlTzbBWXlOmTJE777xTqlWrJmvXrpXhw4eb2h6t18lPQkKCxMfHX8enAQAAVvfgjB8/Pt8i37zb3r17r/vGtJelZ8+ephZn8uTJLq9NnDhROnXqJO3atZNx48bJ2LFjZebMmQVeKzY21vQEObYjR45c9/0BAACLenBGjx4tQ4YMKbRNkyZNTH1MWlqay3Gto9GZUleqnTlz5owpIL7hhhtk1apVUqlSpULbh4aGmp4eHYry8fG57HU9lt9xAABgp6sOOLVr1zbblYSFhUl6erokJydLcHCwObZhwwbJyckxgaSwnpuIiAgTSD744AOpUqXKFd9r165dUqtWLUIMAABwbw1Oy5YtTS9MVFSULFiwwEwTj46Oln79+jlnUB09elS6du0qS5cuNcXCGm66desm586dkzfeeMOlIFhDlbe3t6xZs0ZSU1OlQ4cOJvzoFPRp06bJk08+6a6PAgAAyhi3roOzbNkyE2o0xOjsqT59+sjcuXOdr2vo2bdvnwk0aufOnc4ZVs2aNXO51sGDB6VRo0ZmuGr+/PkyatQoM3NK282ePdsEKQAAALcHHJ0xVdCifkoDS97p3V26dCl0urfSXqG8C/wBAABciodtAgAA6xBwAACAdQg4AADAOgQcAABgHQIOAACwDgEHAABYh4ADAACsQ8ABAADWIeAAAADrEHAAAIB1CDgAAMA6BBwAAGAdAg4AALAOAQcAAFiHgAMAAKxDwAEAANYh4AAAAOsQcAAAgHUIOAAAwDoEHAAAYB0CDgAAsA4BBwAAWIeAAwAArEPAAQAA1iHgAAAA6xBwAACAdQg4AADAOgQcAABgHQIOAACwDgEHAABYh4ADAACsQ8ABAADWIeAAAADruDXgnDp1SgYMGCC+vr5Ss2ZNGTp0qGRmZhZ6TpcuXcTLy8tle+SRR1zaHD58WHr27CnVqlWTOnXqyJgxY+TixYvu/CgAAKAMqejOi2u4OX78uKxbt04uXLggkZGRMmzYMFm+fHmh50VFRcmUKVOc+xpkHLKzs024CQgIkC1btpjrDxo0SCpVqiTTpk1z58cBAADlPeDs2bNHEhMTZceOHRISEmKOzZs3T+666y6ZNWuWBAYGFniuBhoNMPlZu3at/PDDD/Kf//xH6tatK0FBQTJ16lQZN26cTJ48WSpXruyujwQAAMr7EFVSUpIZlnKEGxUeHi4VKlSQbdu2FXrusmXLxN/fX2699VaJjY2Vc+fOuVy3devWJtw4RERESEZGhnz//ff5Xi8rK8u8nncDAAD2clsPTkpKiqmPcXmzihXFz8/PvFaQBx98UBo2bGh6eL799lvTM7Nv3z557733nNfNG26UY7+g6yYkJEh8fHwxfCoAAGBlwBk/frxMnz79isNT10prdBy0p6ZevXrStWtX+fHHH6Vp06bXdE3tBYqJiXHuaw9OgwYNrvkeAQCAZQFn9OjRMmTIkELbNGnSxNTQpKWluRzXmU46s6qg+pr8hIaGmp8HDhwwAUfP3b59u0ub1NRU87Og6/r4+JgNAACUD1cdcGrXrm22KwkLC5P09HRJTk6W4OBgc2zDhg2Sk5PjDC1FsWvXLvNTe3Ic133mmWdMeHIMgeksLZ2K3qpVq6v9OAAAwEJuKzJu2bKldO/e3Uz51h6XL7/8UqKjo6Vfv37OGVRHjx6VFi1aOHtkdBhKZ0RpKDp06JB88MEHZgr4n//8Z2nTpo1p061bNxNk/vGPf8g333wjn376qUyYMEFGjBhBLw0AAHD/Qn86G0oDjNbQ6PTwzp07y8KFC52v69o4WkDsmCWlU7x1+reGGD1Ph8P69Okja9ascZ7j7e0tH374ofmpvTkDBw40ISjvujkAAKB8c+tCfzpjqrBF/Ro1aiS5ubnOfS383bRp0xWvq7OsPv7442K7TwAAYBeeRQUAAKxDwAEAANYh4AAAAOsQcAAAgHUIOAAAwDoEHAAAYB0CDgAAsA4BBwAAWIeAAwAArEPAAQAA1iHgAAAA6xBwAACAdQg4AADAOgQcAABgHQIOAACwDgEHAABYh4ADAACsQ8ABAADWIeAAAADrEHAAAIB1CDgAAMA6BBwAAGAdAg4AALAOAQcAAFiHgAMAAKxDwAEAANYh4AAAAOsQcAAAgHUIOAAAwDoEHAAAYB0CDgAAsA4BBwAAWMetAefUqVMyYMAA8fX1lZo1a8rQoUMlMzOzwPaHDh0SLy+vfLe3337b2S6/11esWOHOjwIAAMqQiu68uIab48ePy7p16+TChQsSGRkpw4YNk+XLl+fbvkGDBqZ9XgsXLpSZM2dKjx49XI4vXrxYunfv7tzXAAUAAODWgLNnzx5JTEyUHTt2SEhIiDk2b948ueuuu2TWrFkSGBh42Tne3t4SEBDgcmzVqlXywAMPyB/+8AeX4xpoLm0LAADg1iGqpKQkE0Ic4UaFh4dLhQoVZNu2bUW6RnJysuzatcsMbV1qxIgR4u/vL+3bt5dFixZJbm5usd4/AAAou9zWg5OSkiJ16tRxfbOKFcXPz8+8VhSvvfaatGzZUjp27OhyfMqUKXLnnXdKtWrVZO3atTJ8+HBT2/P444/ne52srCyzOWRkZFzTZwIAAJb24IwfP77AQmDHtnfv3uu+sd9++83U6uTXezNx4kTp1KmTtGvXTsaNGydjx441dToFSUhIkBo1ajg3rfUBAAD2uuoenNGjR8uQIUMKbdOkSRNTH5OWluZy/OLFi2ZmVVFqZ9555x05d+6cDBo06IptQ0NDZerUqaaXxsfH57LXY2NjJSYmxqUHh5ADAIC9rjrg1K5d22xXEhYWJunp6aaOJjg42BzbsGGD5OTkmEBSlOGpe++9t0jvpXU6tWrVyjfcKD1e0GsAAMA+bqvB0doZncYdFRUlCxYsMNPEo6OjpV+/fs4ZVEePHpWuXbvK0qVLTbGww4EDB2Tz5s3y8ccfX3bdNWvWSGpqqnTo0EGqVKlipqBPmzZNnnzySXd9FAAAUMa4dR2cZcuWmVCjIUZnT/Xp00fmzp3rfF1Dz759+8xQVF46K6p+/frSrVu3y65ZqVIlmT9/vowaNcrMnGrWrJnMnj3bBCkAAADllVsO51drDY4WG58+fdqssgzAfvFe8VKaxOXGefoWAKv//uZZVAAAwDoEHAAAYB0CDgAAsA4BBwAAWIeAAwAArEPAAQAA1iHgAAAA6xBwAACAdQg4AADAOgQcAABgHQIOAACwjlsftlnWZWdnmweCouzSh7N6e3t7+jYAACWMgJMPff5oSkqKpKene/pWUAxq1qwpAQEB4uXl5elbAQCUEAJOPhzhpk6dOlKtWjX+YizDQfXcuXOSlpZm9uvVq+fpWwIAlBACTj7DUo5wc+ONN3r6dnCdqlatan5qyNHfU4arAKB8oMj4Eo6aG+25gR0cv5fUUwFA+UHAKQDDUvbg9xIAyh8CDgAAsA4BBwAAWIci46sQ7xVfYu8VlxtXbNcaMmSIKZxevXr1VZ23fv16iY6Olt27dxepOPeHH36Qbt26yb59+6R69eoFtps8ebK5l127dl3V/QAAUFT04JQDzz//vCxZsuSqzxs7dqxMmDChyDOPWrVqJR06dJDZs2dfw10CAFB8CDjlQI0aNcxid1fjiy++kB9//FH69OlzVedFRkbKSy+9JBcvXpSSxiwpAIADAccS77zzjrRu3dqs+6Lr94SHh8vZs2edQ1S9e/d2tu3SpYs8/vjjpofGz8/PrPKrw0Z5rVixQv76179KlSpVnIvm6TUjIiLMr9WpU6ekfv36MmnSJOd5eo4e37Rp0xXv+eWXX5YGDRqYadwPPPCAnD592vnajh07zLX8/f1NQLvjjjtk586dl82O0jB17733miGxZ5555pq/PwCAXQg4Fjh+/Lj0799fHnroIdmzZ49s3LhR/v73vzuDSH5ef/11Ewq2bdsmM2bMkClTpsi6deucr3/++ecSEhLiEib0HA0ec+fONcceeeQRuemmm1wCTuXKlSUoKMicX5gDBw7IW2+9JWvWrJHExET5+uuvZfjw4c7Xz5w5I4MHDzY9SVu3bpVbbrlF7rrrLnM8Lw1mf/vb3+S7774znx8AAEWRsSUBR4eENNQ0bNjQHNPenMK0adNG4uL+fyGzhocXXnjBFBVrr4n66aefJDAw0OUcDTPa6zJo0CDzOIuPP/7YBJOKFV3/GOl5en5hfv/9d1m6dKm5ppo3b5707NlTnnvuOdOjdOedd7q0X7hwoRlm056hu+++23n8wQcfNMNiAADkRQ+OBdq2bStdu3Y1oeb++++XV155RX799dcrBpy89DlNjmc2qd9++805PJWXXl97TJ599lmZNWuWCUeX0mEyfQZUYW6++WZnuFFhYWGSk5NjZmCp1NRUiYqKMtfXISpfX1/JzMyUw4cPu1wnby8TAAAOBBwL6CwnHV765JNPzEwm7Q1p3ry5HDx4sMBzKlWq5LKvQ1AaMBy09iW/kKTBJTk52bzn/v3787221uDUrl37uj6TDk/pNHKdAbZlyxbza60tOn/+vEu7wqajAwDKL4aoLKEBpVOnTmbTmhgdqlq1apXExMRc0/XatWtn1rW51OjRo6VChQomTGlNjA4rXTqcpOvm3HfffYVeX3tijh075hwG0zobva4GM/Xll1/Kiy++aN5DHTlyRE6ePHlNnwUo7rWlAJR+BBwLaKGw1s/oInv6xGzdP3HihLRs2fKar6mzpbSoOK+PPvpIFi1aJElJSXLbbbfJmDFjTE/Lt99+K7Vq1TJtDh06JEePHjUzrgqjw196rg5zZWRkmFldOpNK62+UDk39+9//NkNQ+rq+l+PJ4AAAXAkBx4J/AWp9yubNm2XOnDkmDGjvjRbr9ujR45qvOWDAADONXGtitFdFA9PQoUPNrCUNNyo+Pl7Wrl1rZlOtXLnSHHvzzTdN0HIUOxekWbNmpihae2h0SEsLh7XHxuG1116TYcOGmffSqeTTpk2TJ5988po/DwCgfPHKLWwusaU0BGjhqq67ouHg0tk9WrvSuHHjfItsyxPtNdHvSmdOFYXWx2jPy/Lly81QWWnB7ykA2P/396UoMkaB/vnPf5qemLzFx1eqq3nqqadKVbgBAJRPDFGhQLrujAaWotJhJ90AAPA0t/Xg6LL5HTt2NMvwF/U5SDpapjOAdE0WLSjVQtVLpyJrvYbWh2jXlF5X60J0fRQAAAC3Bxytx9BF4R599NEin6OPDNDHACxYsMDMBNI1TnQ2j9ZQOGi4+f777826Lx9++KEprtViVAAAALcPUekMG7VkyZIi997oLKAJEyZIr169zDFdyr9u3bqyevVq6devn3nOkj63SJ+H5FjBVhe105k4Ot340kcLXI+i1p2g9OP3EgDKn1JTg6OzXPT5RnnXT9FK6dDQULPuigYc/anDUnmX59f2ukCc9vjoIwTyk5WVZba8VdgF0YdF6vV0ETpdjVf3dRE9lD0amrUnUae46++p/l4CAMqHUhNwNNwo7bHJS/cdr+lPXcguL33Qo5+fn7NNfhISEpw9SleifxHqdGJ9gKWGHJR9Wgemz77S31sAQPlwVQFn/PjxMn369ELb6DBSixYtpDSJjY11eWSB9uDo4nEF0X/p61+I+oTu7OzsErpLuIM+M0tDML1wAFC+XFXA0ecQDRkypNA2TZo0uaYbcSzRr0+R1llUDrofFBTkbJP3iddKQ4jOrHKcnx8fHx+zXQ39C1EfSHnpQykBAIBlAUdrUq73KdEF0WEhDSn6TCVHoNGeFq2tcczECgsLk/T0dPM06+DgYHNsw4YNpohUa3UAAACU24oSdFXbXbt2mZ86zKO/1i3vmjU6lKVPvHb0mIwcOVKefvpp+eCDD+S7776TQYMGmZlRvXv3Nm304ZHdu3eXqKgo2b59u3nidHR0tClALs4ZVAAAoGxzW5GxLtiX92nU7dq1Mz8/++wz6dKli/m1PshRnyfhoA93PHv2rFnXRntqOnfubKaF531+0LJly0yo6dq1qyka7dOnj1k7BwAAoFw/bFNDlU43P3LkyBUf1gUAAEoHxyQh7QTRpWTKxDTxknTmzBnzs7CZVAAAoPT+PX6lgFMue3C0KFnXuLnhhhtK7fRhR0qll8n9+K5LDt91yeG7Lll83yVDI4uGG627vdLaZuWyB0e/lPr160tZoP+h8B9LyeC7Ljl81yWH77pk8X2735V6bhxY2hUAAFiHgAMAAKxDwCmldOXluLi4q16BGVeP77rk8F2XHL7rksX3XfqUyyJjAABgN3pwAACAdQg4AADAOgQcAABgHQIOAACwDgGnFJo/f740atTIPGQ0NDTUPDkdxS8hIUFuv/12s6J1nTp1zFPr9QGwcL9nn33WrCI+cuRIT9+KlY4ePSoDBw6UG2+8UapWrSqtW7eWr776ytO3ZZ3s7GyZOHGiNG7c2HzPTZs2lalTp5rVduF5BJxSZuXKlRITE2OmG+7cuVPatm0rERERkpaW5ulbs86mTZtkxIgRsnXrVlm3bp1cuHBBunXrZp5oD/fZsWOHvPzyy9KmTRtP34qVfv31V+nUqZNUqlRJPvnkE/nhhx/kueeek1q1ann61qwzffp0eemll+SFF16QPXv2mP0ZM2bIvHnzPH1rYJp46aM9NtqroP/BOJ6bpc83eeyxx2T8+PGevj2rnThxwvTkaPD585//7OnbsVJmZqbcdttt8uKLL8rTTz8tQUFBMmfOHE/fllX0/xNffvmlfP75556+FevdfffdUrduXXnttdecx/r06WN6c9544w2P3hvowSlVzp8/L8nJyRIeHu7y3CzdT0pK8ui9lQenT582P/38/Dx9K9bSHrOePXu6/BlH8frggw8kJCRE7r//fhPY27VrJ6+88oqnb8tKHTt2lPXr18t///tfs//NN9/IF198IT169PD0raG8PmyztDp58qQZ09V/EeSl+3v37vXYfZUH2lOm9SDatX/rrbd6+nastGLFCjPsqkNUcJ///e9/ZthEh7qfeuop830//vjjUrlyZRk8eLCnb8+63jJ9iniLFi3E29vb/P/7mWeekQEDBnj61kDAAf6vZ2H37t3mX18ofkeOHJEnnnjC1Dpp8TzcG9a1B2fatGlmX3tw9M/2ggULCDjF7K233pJly5bJ8uXL5Y9//KPs2rXL/EMpMDCQ77oUIOCUIv7+/uZfAampqS7HdT8gIMBj92W76Oho+fDDD2Xz5s1Sv359T9+OlXToVQvltf7GQf+1q9+51ptlZWWZP/u4fvXq1ZNWrVq5HGvZsqW8++67HrsnW40ZM8b04vTr18/s62y1n376yczQJOB4HjU4pYh2IQcHB5sx3bz/GtP9sLAwj96bjbS+XsPNqlWrZMOGDWaqJ9yja9eu8t1335l/4To27WXQrnz9NeGm+Ogw66XLHWiNSMOGDT12T7Y6d+6cqZPMS/8s6/+34Xn04JQyOm6uyV//59++fXszw0SnLUdGRnr61qwcltKu5ffff9+shZOSkmKO16hRw8yCQPHR7/fS2qbq1aubdVqoeSpeo0aNMsWvOkT1wAMPmHW0Fi5caDYUr3vuucfU3Nx8881miOrrr7+W2bNny0MPPeTpWwPTxEsn7bKfOXOm+QtXp9HOnTvXTB9H8dKF5vKzePFiGTJkSInfT3nTpUsXpom7iQ65xsbGyv79+03PpP7DKSoqytO3ZZ0zZ86Yhf60F1iHYLX2pn///jJp0iTTIw/PIuAAAADrUIMDAACsQ8ABAADWIeAAAADrEHAAAIB1CDgAAMA6BBwAAGAdAg4AALAOAQcAAFiHgAMAAKxDwAEAANYh4AAAAOsQcAAAgNjm/wG1BLIB7TbwgwAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGzCAYAAACPa3XZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAKEVJREFUeJzt3QtU1HX+//E3eAHWCwooyApqZamZVngj3V01klzXdDXLVsrbZheyVTdLdlPTY2F20c1Qywxzy0xb1NxWzWVJT0cwxdwuCmlZkAouFiAG6Or8z+ezP+bvAJozzHzm9nyc8z3DfC8zH7+Ow8vPNcBisVgEAADAkEBTbwQAAKAQPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGET4AP9axY0eZMGGCu4sBwM8QPgAfsnr1agkICJB9+/bVe3zgwIHSvXv3Br3HP/7xD3nqqaca9BoA/BvhA/Bj+fn5snLlSrvDx7x581xWJgC+j/AB+LGgoCBp0qSJeJMzZ864uwgAGojwAfix2n0+zp07p2s1OnfuLMHBwRIeHi4DBgyQHTt26OPq3LS0NP2zat6p2S4OBn/84x8lJiZGB5vrrrtOnn/+eam9eHZlZaU8+uijEhERIS1atJA77rhDjh07pl/r4iYd9bPad/DgQfnd734nrVu31uVRPv30U12eq666Spc1KipKJk2aJKdOnbJ5r5rX+PLLLyUpKUlCQ0OlTZs2Mnv2bF2uwsJCGTFihLRs2VK/xgsvvOCiuw2gRmPrTwB8RllZmZSUlNTZr8LF5ahf1KmpqfL73/9e+vTpI+Xl5br/yP79++W2226TBx54QI4fP67DyF//+leba9UvchUisrKyZPLkyXLjjTfK9u3bZebMmTpYLF682HquCg3r16+Xe++9V/r16yc7d+6UYcOGXbJcY8aM0YHomWeesQYZVYavv/5aJk6cqEPDF198Ia+++qp+zMnJsQlFyt133y1du3aVhQsXyvvvvy8LFiyQsLAweeWVV2Tw4MHy7LPPyltvvSWPPfaY9O7dW375y19e8f0GYCcLAJ+Rnp6ufjNfdrv++uut53fo0MEyfvx46/OePXtahg0bdtn3SE5O1q9T26ZNm/T+BQsW2Oy/8847LQEBAZYjR47o57m5ufq8adOm2Zw3YcIEvX/u3LnWfepnte+ee+6p834//vhjnX1vv/22Pn/Xrl11XmPKlCnWff/9738t7du31+VauHChdf8PP/xgCQkJsbknAJyPZhfAB6mmEVUzUHvr0aPHZa9r1aqVrjk4fPiw3e+pOqI2atRIN6dcTDXDqNqKrVu36ufbtm3Tjw8//LDNeVOnTr3kaz/44IN19oWEhFh/rqqq0jU9qhZFUTU1tananBqqnL169dLlUrU0F//5VVORqlEB4Do0uwA+SDWZqF+utak+E/U1x9SYP3++7v9w7bXX6iG5t99+u24a+anQonz77bcSHR2t+3BcTDV11ByveQwMDJROnTrZnHfNNddc8rVrn6t8//33un/KunXr5OTJk3WanWqLjY21ea76fqi+IqrfSe39tfuNAHAuaj4AWKl+Dl999ZW8/vrrOny89tprcvPNN+tHd7q4lqPGXXfdpYcJq1qRjIwM+eCDD6y1KhcuXKhzvqrtuJJ9Su0OsgCci/ABwIbqhKk6cb799tt6JIiq9bh4BErtjpw1OnTooDujnj592mZ/Xl6e9XjNowoHR48etTnvyJEjV1zGH374QTIzM2XWrFm69uO3v/2t7hCrRr4A8HyEDwBWtZsbmjdvrptDqqurrfuaNWumH0tLS23O/fWvfy3nz5+Xl19+2Wa/GuWiAsvQoUP188TERP24bNkym/OWLl16xeWsqbGoXUOxZMmSK34NAO5Dnw8AVt26ddNTsMfFxekaEDXM9t1335VHHnnEeo46pqiOpSpIqCAwduxYGT58uAwaNEj+/Oc/yzfffCM9e/bUTSGbN2+WadOmydVXX229fvTo0TooqLBTM9RWzcNxuZqVi6k5OVQT0aJFi/Tw4Z///Of6vWrXpgDwTIQPAFYqULz33nv6F7mq7VBNJGo+DDVXR41Ro0bpkSmqo+ebb76pax9U+FCdSNW1c+bMkXfeeUfS09P1JGbPPfecHvFysTVr1ui5OVTTzsaNGyUhIUFfo0aaqE6gV2Lt2rW6HGpkjyrDkCFD9Iga1ekVgGcLUONt3V0IADhw4IDcdNNNOtCMGzfO3cUB4EL0+QBgnJpevTbVDKNqT5hZFPB9NLsAME711cjNzdV9RBo3bqybS9Q2ZcoUvS4MAN9GswsA49Rsq2qIrFowrqKiQk8ApiYzU51VVRgB4NsIHwAAwCj6fAAAAKMIHwAAwCiPa1xV0y6rKZrV4lRXMtkQAABwP9WLQy2voObaUSPXvCp8qOBBb3cAALyTWhOqffv23hU+apbjVoVXUygDAADPV15erisPan6Pe1X4qGlqUcGD8AEAgHe5ki4TdDgFAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGedyqtgDgCgUFBVJSUuLQtRERERIbG+v0MgH+ivABwC+CR5cuXaSystKh60NCQiQvL48AAjgJ4QOAz1M1Hip4jBo1Stdi2HttRkaGfiR8AM5B+ADgN1TwiI6OdncxAL9Hh1MAAGAUNR8A7EbnTQDGwsf58+flqaeekjfffFOKiop09eWECRPkySeflICAAH2OxWKRuXPnysqVK6W0tFT69+8vy5cvl86dOzeooAA8A503ARgNH88++6wOEm+88YZcf/31sm/fPpk4caKEhobKo48+qs9ZtGiRvPTSS/qcTp06yezZsyUxMVEOHjwowcHBDS4wAPei8yYAo+Fj9+7dMmLECBk2bJh+3rFjR3n77bfl448/ttZ6LFmyRNeEqPOUNWvWSGRkpGzatEnGjh3b4AID8Ax03gRgpMPpLbfcIpmZmfLll1/q5//+97/lo48+kqFDh+rnR48e1c0xCQkJ1mtUrUjfvn0lOzu73tesrq6W8vJymw0AAPguu2o+Zs2apcOBau9t1KiR7gPy9NNPy7hx4/RxFTwUVdNxMfW85lhtqampMm/ePMf/BAAAwHdrPtavXy9vvfWWrF27Vvbv36/7dTz//PP60VEpKSlSVlZm3QoLCx1+LQAA4GM1HzNnztS1HzV9N2644Qb59ttvde3F+PHjJSoqSu8vLi6Wdu3aWa9Tz2+88cZ6XzMoKEhvAADAP9hV8/Hjjz9KYKDtJar55cKFC/pnNbpFBRDVL6SGaqbZs2ePxMfHO6vMAADAX2o+hg8frvt4qCFyaqjtJ598Ii+++KJMmjRJH1dzfUybNk0WLFig5/WoGWqresSPHDnSVX8GAADgq+Fj6dKlOkw8/PDDcvLkSR0qHnjgAZkzZ471nMcff1zOnDkjU6ZM0ZOMDRgwQLZt28YcHwAAwP7w0aJFCz2Ph9ouRdV+zJ8/X28AAAC1sbYLAJ9fU+bQoUMuKQ8AxxA+APjFmjIAPAfhA4DPrylz+PBhycrKclnZANiH8AHA59eUcaSpBoCHzPMBAADQUNR8ADDOkQ6gdBoFfAfhA4AxFRUVejh+UlKSu4sCwI0IHwCMqaqqEovFQqdRwM8RPgAYR6dRwL/R4RQAABhF+AAAAEYRPgAAgFGEDwAAYBQdTgE/xSJtANyF8AH4IRZpA+BOhA/AD7FIGwB3InwAfoz5NgC4Ax1OAQCAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRjHYBvBgThQHwRoQPwEsxURgAb0X4ALwUE4UB8FaED8DLMVEYAG9Dh1MAAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAeG746NixowQEBNTZkpOT9fGqqir9c3h4uDRv3lxGjx4txcXFrio7AADw9fCxd+9eOXHihHXbsWOH3j9mzBj9OH36dNmyZYts2LBBdu7cKcePH9cTIAEAADg0yVibNm1sni9cuFCuvvpq+dWvfiVlZWWyatUqWbt2rQwePFgfT09Pl65du0pOTo7069fPnrcCAAA+yuE+H2fPnpU333xTJk2apJtecnNz5dy5c5KQkGA9R607ERsbK9nZ2Zd8nerqaikvL7fZAACA73I4fGzatElKS0tlwoQJ+nlRUZE0bdpUWrVqZXNeZGSkPnYpqampEhoaat1iYmIcLRIAAPDl8KGaWIYOHWr3mhK1paSk6Cabmq2wsLBBrwcAAHxwYblvv/1W/vnPf0pGRoZ1X1RUlG6KUbUhF9d+qNEu6tilBAUF6Q0AAPgHh2o+VEfStm3byrBhw6z74uLipEmTJpKZmWndl5+fLwUFBRIfH++c0gIAAP+r+bhw4YIOH+PHj5fGjf//5aq/xuTJk2XGjBkSFhYmLVu2lKlTp+rgwUgXAADgcPhQzS2qNkONcqlt8eLFEhgYqCcXU6NYEhMTZdmyZfa+BQAA8GF2h48hQ4aIxWKp91hwcLCkpaXpDQAAoD6s7QIAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAADw7PBx7NgxSUpKkvDwcAkJCZEbbrhB9u3bZz1usVhkzpw50q5dO308ISFBDh8+7OxyAwAAfwgfP/zwg/Tv31+aNGkiW7dulYMHD8oLL7wgrVu3tp6zaNEieemll2TFihWyZ88eadasmSQmJkpVVZUryg8AALxMY3tOfvbZZyUmJkbS09Ot+zp16mRT67FkyRJ58sknZcSIEXrfmjVrJDIyUjZt2iRjx451ZtkBAICv13y899570qtXLxkzZoy0bdtWbrrpJlm5cqX1+NGjR6WoqEg3tdQIDQ2Vvn37SnZ2dr2vWV1dLeXl5TYbAADwXXaFj6+//lqWL18unTt3lu3bt8tDDz0kjz76qLzxxhv6uAoeiqrpuJh6XnOsttTUVB1QajZVswIAAHyXXeHjwoULcvPNN8szzzyjaz2mTJki999/v+7f4aiUlBQpKyuzboWFhQ6/FgAA8LHwoUawdOvWzWZf165dpaCgQP8cFRWlH4uLi23OUc9rjtUWFBQkLVu2tNkAAIDvsit8qJEu+fn5Nvu+/PJL6dChg7XzqQoZmZmZ1uOqD4ca9RIfH++sMgMAAH8Z7TJ9+nS55ZZbdLPLXXfdJR9//LG8+uqrelMCAgJk2rRpsmDBAt0vRIWR2bNnS3R0tIwcOdJVfwYAAOCr4aN3796yceNG3U9j/vz5OlyoobXjxo2znvP444/LmTNndH+Q0tJSGTBggGzbtk2Cg4NdUX4AAODL4UP5zW9+o7dLUbUfKpioDQAAoDbWdgEAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAAnj3aBQBw5dQM0CUlJQ5dGxERIbGxsU4vE+BuhA8AcGHw6NKli1RWVjp0fUhIiOTl5RFA4HMIHwDgIqrGQwWPUaNG6VoMe6/NyMjQj4QP+BrCBwC4mAoeapkJAP9Dh1MAAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUUwyBgAe7NChQw5fy9ow8FSEDwDwQBUVFRIQECBJSUkOvwZrw8BTET4AwANVVVWJxWJxaF0YhbVh4MkIHwDgwVgXBr6IDqcAAMAoaj4ANysoKNBV4yY7IkKM3G/+joD6ET4ANwePLl26SGVlpbuLAhd2/ARgi/ABuJGq8VDBw5FOhYcPH5asrCyXlQ0N7/jJ3xFQP8IH4KWdCh1pqoHj+DsCnIcOpwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAADw3PDx1FNP6cl2Lt7UBEkXj4dPTk6W8PBwad68uYwePVqKi4tdUW4AAOAvNR/XX3+9nDhxwrp99NFH1mPTp0+XLVu2yIYNG2Tnzp1y/PhxPTEPAACAw5OMNW7cWKKioursLysrk1WrVsnatWtl8ODBel96erp07dpVcnJypF+/fva+FQAA8EF213yo6YLVLH9XXXWVjBs3Tq9NoeTm5sq5c+ckISHBeq5qkomNjZXs7OxLvl51dbWUl5fbbAAAwHfZFT769u0rq1evlm3btsny5cvl6NGj8otf/EJOnz4tRUVF0rRpU2nVqpXNNZGRkfrYpaSmpkpoaKh1i4mJcfxPAwAAfKvZZejQodafe/ToocNIhw4dZP369RISEuJQAVJSUmTGjBnW56rmgwACAIDvatBQW1XLce2118qRI0d0P5CzZ89KaWmpzTlqtEt9fURqBAUFScuWLW02AADguxoUPioqKuSrr76Sdu3aSVxcnDRp0kQyMzOtx/Pz83WfkPj4eGeUFQAA+Fuzy2OPPSbDhw/XTS1qGO3cuXOlUaNGcs899+j+GpMnT9ZNKGFhYboGY+rUqTp4MNIFAAA4FD6+++47HTROnTolbdq0kQEDBuhhtOpnZfHixRIYGKgnF1OjWBITE2XZsmX2vAUAAPBxdoWPdevWXfZ4cHCwpKWl6Q0AAKA+rO0CAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAA8J7wsXDhQgkICJBp06ZZ91VVVUlycrKEh4dL8+bNZfTo0VJcXOyMsgIAAH8OH3v37pVXXnlFevToYbN/+vTpsmXLFtmwYYPs3LlTjh8/LqNGjXJGWQEAgL+Gj4qKChk3bpysXLlSWrdubd1fVlYmq1atkhdffFEGDx4scXFxkp6eLrt375acnBxnlhsAAHipxo5cpJpVhg0bJgkJCbJgwQLr/tzcXDl37pzeX6NLly4SGxsr2dnZ0q9fvzqvVV1drbca5eXljhQJaLCCggIpKSlx6NqIiAj9OQcAuCB8rFu3Tvbv36+bXWorKiqSpk2bSqtWrWz2R0ZG6mP1SU1NlXnz5tlbDMDpwUMF5crKSoeuDwkJkby8PAIIADg7fBQWFsof/vAH2bFjhwQHB4szpKSkyIwZM2xqPmJiYpzy2sCVUjUeKnio/kmqFsPeazMyMvQj4QMAnBw+VLPKyZMn5eabb7buO3/+vOzatUtefvll2b59u5w9e1ZKS0ttaj/UaJeoqKh6XzMoKEhvgCdQwSM6OtrdxQAAn2ZX+Lj11lvls88+s9k3ceJEXV39xBNP6BqLJk2aSGZmph5iq+Tn5+sq7fj4eOeWHAAA+H74aNGihXTv3t1mX7NmzfScHjX7J0+erJtRwsLCpGXLljJ16lQdPOrrbAoAAPyPQ6NdLmfx4sUSGBioaz7UKJbExERZtmyZs98GAAD4a/j48MMPbZ6rjqhpaWl6AwAAqI21XQAAgFGEDwAAYBThAwAAGEX4AAAA3j3aBfBXhw4dMnINAHg7wgfQQGqV54CAAElKSnJ3UQDAKxA+gAaqqqoSi8Xi0Lowhw8flqysLJeVDQA8EeEDcOO6MGoxOgDwN3Q4BQAARlHzAZ+iFjF0pDaBjp/wVY5+tlVNXmxsrNPLAyiED/hU8FArLFdWVrq7KIDXd4QOCQmRvLw8AghcgvABn6FqPFTwoOMn0LCO0OrfUkZGhn4kfMAVCB/wOXT8BBr27wFwNcIHAKBe9BeBqxA+AAA26C8CVyN8AABs0F8Erkb4AADUi/4icBUmGQMAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAA4LnhY/ny5dKjRw9p2bKl3uLj42Xr1q3W41VVVZKcnCzh4eHSvHlzGT16tBQXF7ui3AAAwB/CR/v27WXhwoWSm5sr+/btk8GDB8uIESPkiy++0MenT58uW7ZskQ0bNsjOnTvl+PHjMmrUKFeVHQAAeKHG9pw8fPhwm+dPP/20rg3JycnRwWTVqlWydu1aHUqU9PR06dq1qz7er1+/el+zurpabzXKy8sd+5MAADzGoUOHHLouIiJCYmNjnV4eeHH4uNj58+d1DceZM2d084uqDTl37pwkJCRYz+nSpYv+EGVnZ18yfKSmpsq8efMcLQYAwINUVFRIQECAJCUlOXR9SEiI5OXlEUB8nN3h47PPPtNhQ/XvUP06Nm7cKN26dZMDBw5I06ZNpVWrVjbnR0ZGSlFR0SVfLyUlRWbMmGFT8xETE2NvsQAAHkD9brBYLLrJXdVi2KOkpEQyMjL0I+HDt9kdPq677jodNMrKyuTdd9+V8ePH6/4djgoKCtIbAMB3qOARHR3t7mLAV8KHqt245ppr9M9xcXGyd+9e+ctf/iJ33323nD17VkpLS21qP9Rol6ioKOeWGgAA+O88HxcuXNAdRlUQadKkiWRmZlqP5efnS0FBgW6mAQAAsLvmQ/XPGDp0qG6LO336tB7Z8uGHH8r27dslNDRUJk+erPtvhIWF6XlApk6dqoPHpTqbAgAA/2NX+Dh58qTcd999cuLECR021IRjKnjcdttt+vjixYslMDBQTy6makMSExNl2bJlrio7AADw9fCh5vG4nODgYElLS9MbAABAfVjbBQAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAY1djs2wE/raCgQEpKSuy+7tChQy4pDwDAuQgf8Ljg0aVLF6msrHR3UQAALkL4gEdRNR4qeIwaNUoiIiLsuvbw4cOSlZXlsrIBAJyD8AGPpIJHdHS0Xdc40lQDADCPDqcAAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAAA8N3ykpqZK7969pUWLFtK2bVsZOXKk5Ofn25xTVVUlycnJEh4eLs2bN5fRo0dLcXGxs8sNAAD8IXzs3LlTB4ucnBzZsWOHnDt3ToYMGSJnzpyxnjN9+nTZsmWLbNiwQZ9//PhxvUIpAACA3avabtu2zeb56tWrdQ1Ibm6u/PKXv5SysjJZtWqVrF27VgYPHqzPSU9Pl65du+rA0q9fvzqvWV1drbca5eXl/M0AAODDGtTnQ4UNJSwsTD+qEKJqQxISEqzndOnSRWJjYyU7O/uSTTmhoaHWLSYmpiFFAgAAvho+Lly4INOmTZP+/ftL9+7d9b6ioiJp2rSptGrVyubcyMhIfaw+KSkpOsTUbIWFhY4WCQAA+Fqzy8VU34/PP/9cPvroowYVICgoSG8AAMA/OFTz8cgjj8jf//53ycrKkvbt21v3R0VFydmzZ6W0tNTmfDXaRR0DAACwK3xYLBYdPDZu3Cj/+te/pFOnTjbH4+LipEmTJpKZmWndp4biFhQUSHx8vPNKDQAA/KPZRTW1qJEsmzdv1nN91PTjUB1FQ0JC9OPkyZNlxowZuhNqy5YtZerUqTp41DfSBQAA+B+7wsfy5cv148CBA232q+G0EyZM0D8vXrxYAgMD9eRiaghtYmKiLFu2zJllBgAA/hI+VLPLTwkODpa0tDS9AQAA1MbaLgAAwCjCBwAAMIrwAQAAjCJ8AAAA75jhFAAAT6LmlCopKXHo2oiICL0OGcwgfAAAfCJ4qIVMKysrHbpezVWVl5dHADGE8AEA8HqqxkMFj1GjRulaDHuvzcjI0I+EDzMIHwAAn6GCR3R0tLuLgZ9Ah1MAAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAABgFDOcwqMWeDp06JBLygPAezjyPcB3h3chfMDjFngC4J8qKiokICBAkpKS3F0UuBjhAx61wNPhw4clKyvLZWUD4LmqqqrEYrHw3eEHCB/wqAWeHGmqAeBb+O7wfXQ4BQAARhE+AACAUYQPAABgFOEDAAAYRfgAAABGMdoFl8REYQAAVyB8oF5MFAYAcBXCB+rFRGEAAFchfOCymOwHAOBsdDgFAABGET4AAIBnh49du3bJ8OHDdVW8Wn1w06ZNNsfVokBz5syRdu3aSUhIiCQkJOg+AAAAAA6FjzNnzkjPnj0lLS2t3uOLFi2Sl156SVasWCF79uyRZs2aSWJiol6tEAAAwO4Op0OHDtVbfVStx5IlS+TJJ5+UESNG6H1r1qyRyMhIXUMyduzYOtdUV1frrUZ5ebm9RQIAAP7a5+Po0aNSVFSkm1pqhIaGSt++fSU7O7vea1JTU/U5NVtMTIwziwQAAHw5fKjgoaiajoup5zXHaktJSZGysjLrVlhY6MwiAQAAD+P2eT6CgoL0BgAA/INTaz6ioqL0Y3Fxsc1+9bzmGAAA8G9ODR+dOnXSISMzM9OmA6ka9RIfH+/MtwIAAP7S7FJRUSFHjhyx6WR64MABCQsLk9jYWJk2bZosWLBAOnfurMPI7Nmz9ZwgI0eOdHbZAQCAP4SPffv2yaBBg6zPZ8yYoR/Hjx8vq1evlscff1zPBTJlyhQpLS2VAQMGyLZt2yQ4ONi5JQcAAP4RPgYOHKjn87gUNevp/Pnz9QYAAFAba7sAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMIHwAAwCjCBwAAMIrwAQAAjCJ8AAAAowgfAADAKMIHAAAwivABAACMInwAAACjCB8AAMAowgcAADCK8AEAAIwifAAAAKMam307mFZQUCAlJSV2X3fo0CGXlAcAPJWj33vV1dUSFBTk0LURERESGxtr9Pu9oe/rDIQPH6Y+mF26dJHKykp3FwUAPFZFRYUEBARIUlKSQ9eray0Wi0PXhoSESF5ent1BoKHf746+r7MQPnyYSsTqgzlq1Cidcu1x+PBhycrKclnZAMBTVFVV6fDQkO9KR64tKSmRjIwM/WhvCGjI93tD3tdZCB9+QH0wo6Oj7brG0ao8APDH70pHrnUGd71vQ9HhFAAAGEX4AAAARhE+AACAUYQPAABgFOEDAAAYxWgXQxoyGYyjE9gwURgAwBMRPgxo6GQwDZnABgAAT0P48JLJvpgoDADgKwgfPjyBDROFAQA8kd+FD29eiAcA4HsOOdA/z9v79LksfKSlpclzzz0nRUVF0rNnT1m6dKn06dNH3MnbF+IBAPiOigYuaOfNXBI+3nnnHZkxY4asWLFC+vbtK0uWLJHExETJz8+Xtm3birt4+0I8AADfUeWEBe28lUvCx4svvij333+/TJw4UT9XIeT999+X119/XWbNmiXu5q0L8QAAfE+EH/bpc3r4OHv2rOTm5kpKSop1X2BgoCQkJEh2dna9c1iorUZZWZl+LC8vd0kVl3LixAldTnucOnVKP6o/W83rXClV4+Po+/7nP//hWq7lWq6161p3vjfXev61p/7v95n6XebM37U1r3VFU0NYnOzYsWPqXS27d++22T9z5kxLnz596pw/d+5cfT4bGxsbGxubeP1WWFj4k1nB7aNdVA2J6h9S48KFC/L9999LeHi47ojjbVTyi4mJkcLCQmnZsqW7i+MRuCd1cU9scT/q4p7UxT3x7HuiajxOnz59RU1IjV3RdtWoUSMpLi622a+eR0VF1TlfTRtee+rwVq1aibdTHwJ3fxA8DfekLu6JLe5HXdyTurgnnntPQkND3bOwXNOmTSUuLk4yMzNtajPU8/j4eGe/HQAA8DIuaXZRzSjjx4+XXr166bk91FDbM2fOWEe/AAAA/+WS8HH33Xfrnrhz5szRk4zdeOONsm3bNomMjBRfp5qQ5s6d69AqtL6Ke1IX98QW96Mu7kld3BPfuScBqtepuwsBAAD8h9P7fAAAAFwO4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThw4XuuOMOiY2NleDgYGnXrp3ce++9cvz4cfFX33zzjUyePFk6deokISEhcvXVV+shYo4smuVLnn76abnlllvkZz/7mU/M7uuItLQ06dixo/630rdvX/n444/FX+3atUuGDx+up6hWS0xs2rRJ/F1qaqr07t1bWrRoIW3btpWRI0daF+z0V8uXL5cePXpYZzZVk3hu3bpVvAXhw4UGDRok69ev1/9I/va3v8lXX30ld955p/irvLw8PdvtK6+8Il988YUsXrxYVqxYIX/605/En6nwNWbMGHnooYfEH73zzjt6YkIVRPfv3y89e/aUxMREOXnypPgjNSGjugcqkOF/du7cKcnJyZKTkyM7duyQc+fOyZAhQ/S98lft27eXhQsX6pXW9+3bJ4MHD5YRI0bo71av4MwVbXF5mzdvtgQEBFjOnj3r7qJ4jEWLFlk6derk7mJ4hPT0dEtoaKjF36jVrpOTk63Pz58/b4mOjrakpqZa/J36it64caO7i+FxTp48qe/Nzp073V0Uj9K6dWvLa6+9ZvEG1HwYolbqfeutt3T1epMmTdxdHI9RVlYmYWFh7i4G3Fjro/7nlpCQYN0XGBion2dnZ7u1bPDs7w2F747/OX/+vKxbt07XBHnLGmqEDxd74oknpFmzZhIeHi4FBQWyefNmdxfJYxw5ckSWLl0qDzzwgLuLAjcpKSnRX5y1l15Qz9XSDEBtqul22rRp0r9/f+nevbv4s88++0yaN2+up1Z/8MEHZePGjdKtWzfxBoQPO82aNUt3Arvcpvo21Jg5c6Z88skn8sEHH0ijRo3kvvvuU01d4s/3RDl27Jjcfvvtuq/D/fffL77GkXsC4Kepvh+ff/65/p++v7vuuuvkwIEDsmfPHt1nTC3oevDgQfEGrO1iJ7Vg3qlTpy57zlVXXSVNmzats/+7776TmJgY2b17t9dUjbninqgRPwMHDpR+/frJ6tWrdTW7r3Hkc6LuhfofXWlpqfhTs4sa5fPuu+/qEQw11Jeoug/+XlOoQqr63+zF98afPfLII/ozoUYEqVFzsKWaK9UoQtWp3y9XtfVlbdq00Zuj1YVKdXW1+Os9UTUeahRQXFycpKen+2TwaOjnxJ+o8KU+C5mZmdZfsOrfiXquftEAivo/8tSpU3UQ+/DDDwkel6D+7XjL7xfCh4uoarC9e/fKgAEDpHXr1nqY7ezZs3Uq9aVaD3uo4KFqPDp06CDPP/+8rh2oERUVJf5K9QVSHZLVo+r/oKpRlWuuuUa35/o6NcxW1XT06tVL+vTpI0uWLNEd5yZOnCj+qKKiQveHqnH06FH9mVCdK9W8Qf7a1LJ27Vpd66Hm+qjpDxQaGqrnDPJHKSkpMnToUP2ZOH36tL4/Kpht375dvIK7h9v4qk8//dQyaNAgS1hYmCUoKMjSsWNHy4MPPmj57rvvLP48lFR95Orb/Nn48ePrvSdZWVkWf7F06VJLbGyspWnTpnrobU5OjsVfqb/3+j4P6nPiry71vaG+U/zVpEmTLB06dND/Ztq0aWO59dZbLR988IHFW9DnAwAAGOWbDe4AAMBjET4AAIBRhA8AAGAU4QMAABhF+AAAAEYRPgAAgFGEDwAAYBThAwAAGEX4AAAARhE+AACAUYQPAAAgJv0/UaHsDr+IrKUAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"x = np.linspace(0, 10, 100)\n",
"y_sin = np.sin(x)\n",
"y_cos = np.cos(x)\n",
"\n",
"plt.plot(x, y_sin, color='red', label='sin(x)')\n",
"plt.plot(x, y_cos, color='blue', linestyle='--', label='cos(x)')\n",
"\n",
"plt.xlabel(\"X\")\n",
"plt.ylabel(\"Y\")\n",
"plt.title(\"Графики синуса и косинуса\")\n",
"plt.legend()\n",
"plt.grid()\n",
"plt.show()\n",
"\n",
"# Scatter plot\n",
"plt.scatter(x, y_sin, color='green', label='sin(x) scatter')\n",
"plt.legend()\n",
"plt.show()\n",
"\n",
"# Bar chart\n",
"plt.bar(x[::10], y_sin[::10], color='purple', label='sin(x) bar')\n",
"plt.legend()\n",
"plt.show()\n",
"\n",
"# Histogram\n",
"data = np.random.randn(1000)\n",
"plt.hist(data, bins=30, color='gray', edgecolor='black')\n",
"plt.title(\"Histogram\")\n",
"plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "8edb4383-f419-4e9d-85ed-48c50442288f",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGwCAYAAACzXI8XAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAJGlJREFUeJzt3QtYVVXex/H/ARTsCKh4ZUTzklIhKfVMZpPjBOWFrEafNMMscrwNY6BNQ0yZUThQY+lM2ERkpiOFadlY01RkITV2IdCiqSzLlMYL3QRRQIXzPmu9L+f1CHhBZO91+H6eZz+cs/Y5+/yxNvxYa+21HS6XyyUAAAAG8rG6AAAAgOYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGMtPvFxdXZ3s3r1bAgMDxeFwWF0OAAA4BWqZuwMHDkhoaKj4+Pi03SCjQkxYWJjVZQAAgGYoLS2V3r17t90go3pi6v8hgoKCrC4HAACcgoqKCt0RUf97vM0GmfrhJBViCDIAAJjlZNNCmOwLAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMayTZDJyMjQyxAnJSW52/bu3Ss333yz9OzZU5xOp0RFRcnzzz9vaZ0AAMA+bBFkCgsLJSsrSyIjIz3ap02bJtu2bZMNGzZISUmJTJgwQSZNmiRbtmyxrFYAAGAflgeZyspKiYuLk+zsbOncubPHvs2bN8vcuXPl5z//ufTv31/uuece6dSpkxQVFVlWLwAAsA/L736dkJAgsbGxEhMTI2lpaR77RowYIWvWrNH7VYB57rnnpLq6WkaNGtXk8WpqavR27G3AcXLq33XXrl1Wl4Hj9OnTRwICAqwuA4bj/LYnzm8vCDK5ublSXFysh5Yao4LL5MmTJSQkRPz8/OScc86R9evXy8CBA5s8Znp6uqSmpp7Fqr2T+iE3c+ZMq8vAcZ544gkZNGiQ1WXAcJzf9sT5bXiQKS0tlcTERMnLy2sykS5YsED2798vb7zxhnTt2lVefPFFPUfm7bffliFDhjT6npSUFJk/f75Hj0xYWNhZ+z686S8DdVKZbufOnbJo0SK5++67pW/fvuIN/12AM8X5bU+c34YHGTXPpaysTF+JVK+2tlYKCgokMzNTT/JVXz/55BO58MIL9f6LLrpIh5hly5bJ448/3uhx/f399YbTo8KkN/1loH7IedP3A5wJzm94M8uCTHR0tL4S6Vjx8fESHh4uycnJcujQId3m4+M5H9nX11fq6upatVYAAGBPlgWZwMBAiYiI8GhTa8Wo+TCq/ciRI3ouzKxZs2Tx4sW6XQ0tqaGol19+2aqyAQCAjVh++XVT2rVrJ6+88op069ZNxo8fr9eYWbVqlaxcuVLGjRtndXkAAMAGLL/8+lj5+fkez8877zxW8gUAAOb1yAAAAJwMQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFi2CTIZGRnicDgkKSlJP//mm2/088a2tWvXWl0uAACwAVsEmcLCQsnKypLIyEh3W1hYmOzZs8djS01NlY4dO8rYsWMtrRcAANiD5UGmsrJS4uLiJDs7Wzp37uxu9/X1lZ49e3ps69evl0mTJukwAwAA4Gd1AQkJCRIbGysxMTGSlpbW5OuKiopk69atsmzZshMer6amRm/1KioqWrReAG3Pvn37pLy83Ooy2rydO3d6fIW1goODpUePHm07yOTm5kpxcbEeWjqZ5cuXy/nnny8jRow44evS09P1EBQAtFSImXrzNDly+P//QIK1Fi1aZHUJEJF27f1l9d9XWR5mLAsypaWlkpiYKHl5eRIQEHDC11ZVVckzzzwjCxYsOOlxU1JSZP78+R49Mmq+DQA0h+qJUSGmqv8vpS4g2OpyAFvwqS4X+XqTPj/abJBRQ0VlZWUSFRXlbqutrZWCggLJzMzUw0Nqnoyybt06OXTokEybNu2kx/X399cbALQkFWLqnF2tLgOAXYJMdHS0lJSUeLTFx8dLeHi4JCcnu0NM/bDStddeK926dbOgUgAAYFeWBZnAwECJiIjwaHM6nRISEuLRvn37dt1L88orr1hQJQAAsDPLL78+maeeekp69+4tV199tdWlAAAAm7H88utj5efnN2j705/+pDcAAADjemQAAACaQpABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwlp/VBXiLffv2SXl5udVltHk7d+70+AprBQcHS48ePawuA4AXI8i0UIiZevM0OXK4xupS8H8WLVpkdQkQkXbt/WX131cRZgCcNQSZFqB6YlSIqer/S6kLCLa6HMAWfKrLRb7epM8PggyAs4Ug04JUiKlzdrW6DAAA2gwm+wIAAGMRZAAAgLEIMgAAwFgEGQAAYCzbBJmMjAxxOBySlJTk0f7uu+/KlVdeKU6nU4KCgmTkyJFSVVVlWZ0AAMA+bHHVUmFhoWRlZUlkZGSDEDNmzBhJSUmRRx99VPz8/OSjjz4SHx/b5C8AANCWg0xlZaXExcVJdna2pKWleeybN2+e3H777XLXXXe52wYPHmxBlQAAwI4s79pISEiQ2NhYiYmJ8WgvKyuT999/X7p37y4jRozQC2r98pe/lHfeeeeEx6upqZGKigqPDQAAeCdLg0xubq4UFxdLenp6g31ff/21/nrffffJjBkz5NVXX5WoqCiJjo6WL7/8ssljqmOp+7vUb2FhYWf1ewAAAG0wyJSWlkpiYqLk5ORIQEBAg/11dXX666xZsyQ+Pl6GDRsmS5Ys0UNLTz31VJPHVfNp1JLo9Zv6HAAA4J0smyNTVFSkh49UL0u92tpaKSgokMzMTNm2bZtuu+CCCzzed/7558uuXbuaPK6/v7/eAACA97MsyKghopKSEo821fMSHh4uycnJ0r9/fwkNDXUHmnpffPGFjB07tpWrBQAAdmRZkAkMDJSIiAiPNrVWTEhIiLv9zjvvlIULF8pFF10kQ4cOlZUrV8rnn38u69ats6hqAABgJ5Zffn0ianG86upqfRn2jz/+qANNXl6eDBgwwOrSAACADdgqyOTn5zdoU2vIHLuODAAAgG3WkQEAAGguggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLFsE2QyMjLE4XBIUlKSu23UqFG67dht9uzZltYJAADsw09soLCwULKysiQyMrLBvhkzZsj999/vfn7OOee0cnUAAMCuLO+RqayslLi4OMnOzpbOnTs32K+CS8+ePd1bUFCQJXUCAAD7sbxHJiEhQWJjYyUmJkbS0tIa7M/JyZHVq1frEDN+/HhZsGDBCXtlampq9FavoqJCWotP1f5W+yzA7jgfAHh9kMnNzZXi4mI9tNSYm266Sfr27SuhoaHy8ccfS3Jysmzbtk1eeOGFJo+Znp4uqampYoUOOwos+VwAANoqy4JMaWmpJCYmSl5engQEBDT6mpkzZ7ofDxkyRHr16iXR0dHy1VdfyYABAxp9T0pKisyfP9+jRyYsLExaQ1W/kVLXoVOrfBZgQo8M4R6A1waZoqIiKSsrk6ioKHdbbW2tFBQUSGZmph4e8vX19XjPpZdeqr9u3769ySDj7++vNyuoEFPn7GrJZwMA0BZZFmRUz0pJSYlHW3x8vISHh+shpONDjLJ161b9VfXMAAAAWBZkAgMDJSIiwqPN6XRKSEiIblfDR88884yMGzdOt6k5MvPmzZORI0c2epk2AABoeyy/aqkp7du3lzfeeEOWLl0qBw8e1PNcJk6cKPfcc4/VpQEAAJuwVZDJz893P1bBZdOmTZbWAwAA7M3yBfEAAACaiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMJZfc97k4+MjDoejyf21tbVnUhMAAMDZCzLr169vztsAAACsDzLXXXedx/MXXnhBtm7dKhERETJp0qSWqg0AAODszpF58MEHZcqUKfLqq6/K9OnTJTU19UwPCQAA0DpBZuXKlfLkk0/KBx98IP/4xz9kxYoVZ3pIAACA1gkyu3fvluHDh+vH6ut///vfMz0kAABA6wQZdYWSn9//TrXx9fWVurq6Mz0kAADA2ZvsO2zYMPfl11VVVTJ+/Hhp3769uFyu5hwOAACg9YLM9ddf3+QVTMfuAwAAsF2QWbhwYctXAgAA0BpBpqKi4oT7g4KCmnNYAACAsx9kOnXq1OgtCtQcGdXOLQoAAIBtg4yybt066dKlS8tWAwAA0BpB5vLLL5fu3bs39+0AAADWBZlPP/1UfvjhB3E6ndKzZ099+TUAAIARC+JFR0fLhRdeKP369dNhZsiQIbJkyZJmF5KRkaHn1yQlJTU692bs2LF6/4svvtjszwAAAN6lWT0yO3bs0OHiyJEj+gomdZsCda+lBQsWyNGjR+XOO+88reMVFhZKVlaWREZGNrp/6dKljU4uBgAAbVuzgkzfvn09nl988cV6dd9BgwbJ/ffff1pBprKyUuLi4iQ7O1vS0tIa7N+6das8/PDD8uGHH0qvXr2aUy4AAPBSzZ4j05gbb7xRDzedjoSEBImNjZWYmJgGQebQoUNy0003ybJly/Q8nFNRU1Ojt1Nd8wYAToVP1X6rSwBsw8dG50OLL4g3cODAUz5Obm6uFBcX66GlxsybN09GjBjR4DYIJ5Keni6pqamn/HoAOBUddhRYXQIAOy2IV1paKomJiZKXlycBAQEN9m/YsEHefPNN2bJly2nVlpKSIvPnz/cIXWFhYad1DAA4XlW/kVLXoZPVZQC26ZHpYJNwb9mCeEVFRVJWViZRUVHuNhWACgoKJDMzU+bMmSNfffWVDk3HmjhxolxxxRWSn5/f6HH9/f31BgAtSYWYOmdXq8sAYJcF8dTl2yUlJR5t8fHxEh4eLsnJydK1a1eZNWuWx/76S7zVxGIAAADLFsQLDAyUiIgIjzZ1rJCQEHd7YxN8+/Tpo9euAQAAsM2CeAAAAEYuiFevqXkv9dRnAgAA2GZBPAAAAGMXxAMAAGj1OTKNadeuncfl1AAAALbrkVHrvaiJvc8995zs2rVLDh8+7LH/xx9/bKn6AAAAWrZHRt0C4JFHHpHJkydLeXm5Xkl3woQJ4uPjI/fdd19zDgkAANA6QSYnJ0ffrfqOO+4QPz8/mTJlijz55JNy7733ynvvvdecQwIAALROkNm7d69eN0bp2LGj7pVRrrnmGvnnP//ZnEMCAAC0TpDp3bu37NmzRz8eMGCAvP766/qxuos19zkCAAC2DjK//vWvZePGjfrx3Llz9UJ45513nkybNk1uu+22lq4RAACg5a5aysjIcD9WE37VAnmbN2/WYYYbOgIAAGPWkVHDSS+99JKUlZVJcHBwy1QFAADQ0j0y6s7TW7Zs0XeoVvLy8iQ2NlbPi1GXXi9evFieffZZueGGG07nsAAAAGe/R+bbb7/Vi+HV+/Of/6wvvd6/f7/89NNPMmvWLHnooYeaVwkAAEBrDi199tlnerKvr6+v7pFRj7/88sszOSQAAEDrBBnVE9OlSxf3886dO8uBAwfO5JAAAABnJ8g4HA69Hd8GAABg+8m+LpdLbr31Vveid9XV1TJ79mxxOp36eU1NzdmpEgAA4EyDzC233OLxfOrUqQ1eoxbFAwAAsF2QWbFixdmrBAAAoLUXxAMAALAKQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxrJNkMnIyBCHwyFJSUnutlmzZsmAAQOkQ4cO0q1bN7nuuuvk888/t7ROAABgH7YIMoWFhZKVlSWRkZEe7RdffLG+4/Znn30mr732mrhcLrn66qultrbWsloBAIB9WB5kKisrJS4uTrKzs6Vz584e+2bOnCkjR46Uc889V6KioiQtLU1KS0vlm2++saxeAABgH5YHmYSEBImNjZWYmJgTvu7gwYO6d6Zfv34SFhbW5OtqamqkoqLCYwMAAN7J0iCTm5srxcXFkp6e3uRrHnvsMenYsaPe/vWvf0leXp60b9++yderYwUHB7u3E4UeAABgNsuCjBoiSkxMlJycHAkICGjydWrYacuWLbJp0yYZNGiQTJo0Saqrq5t8fUpKipSXl7s39TkAAMA7+Vn1wUVFRVJWVqbnvtRTk3gLCgokMzNTDxH5+vq6e1bOO+88GT58uJ5Hs379epkyZUqjx/X399cbAADwfpYFmejoaCkpKfFoi4+Pl/DwcElOTtYh5njqqiW1qZADAABgWZAJDAyUiIgIjzan0ykhISG6/euvv5Y1a9boy63VGjLffvutXmtGrSkzbtw4q8oGAAA2YvlVS01R82befvttHVoGDhwokydP1uFn8+bN0r17d6vLAwAAbblHpjH5+fnux6GhofLKK69YWg8AALA32/bIAAAAnAxBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWLYJMhkZGeJwOCQpKUk///HHH2Xu3LkyePBg6dChg/Tp00duv/12KS8vt7pUAABgE35iA4WFhZKVlSWRkZHutt27d+tt8eLFcsEFF8jOnTtl9uzZum3dunWW1gsAAOzB8iBTWVkpcXFxkp2dLWlpae72iIgIef75593PBwwYIIsWLZKpU6fK0aNHxc/P8tIBAIDFLE8DCQkJEhsbKzExMR5BpjFqWCkoKOiEIaampkZv9SoqKqS1+FQz7AV46/ngbd8P4C3ng6VBJjc3V4qLi/XQ0sl8//338sADD8jMmTNP+Lr09HRJTU2V1hQcHCzt2vuLfL2pVT8XsDt1Xqjzw2Sc34C9z2+Hy+VyWfHBpaWlcskll0heXp57bsyoUaNk6NChsnTpUo/Xql6Vq666Srp06SIbNmyQdu3anVaPTFhYmLs352zZt28fE5FtQM2lUkOQd999t/Tt29fqcto89UOuR48eYjrOb3vg/G5b53dFRYX+jJP9/rasR6aoqEjKysokKirK3VZbWysFBQWSmZmpw4ivr68cOHBAxowZI4GBgbJ+/foThhjF399fb61N/cf0hh/Y3kL9kBs0aJDVZcBLcH7bC+c3bBFkoqOjpaSkxKMtPj5ewsPDJTk5WYcYlcZGjx6tg4nqiQkICLCqXAAAYEOWBRnVw6KuTDqW0+mUkJAQ3a5CzNVXXy2HDh2S1atX6+f1E3e7deumgw4AAGjbLL9qqSlqEvD777+vHw8cONBj344dO+Tcc8+1qDIAAGAXtgoy+fn57sdq4q9F85ABAIAhbHOLAgAAgNNFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMJZtgkxGRoY4HA5JSkpytz3xxBMyatQoCQoK0vv2799vaY0AAMBebBFkCgsLJSsrSyIjIz3aDx06JGPGjJE//vGPltUGAADsy8/qAiorKyUuLk6ys7MlLS3NY19970x+fr5F1QEAADuzvEcmISFBYmNjJSYmpkWOV1NTIxUVFR4bAADwTpb2yOTm5kpxcbEeWmop6enpkpqa2mLHAwAA9mVZj0xpaakkJiZKTk6OBAQEtNhxU1JSpLy83L2pzwEAAN7Jsh6ZoqIiKSsrk6ioKHdbbW2tFBQUSGZmph4i8vX1Pe3j+vv76w0AAHg/y4JMdHS0lJSUeLTFx8dLeHi4JCcnNyvEAACAtsWyIBMYGCgREREebU6nU0JCQtzte/fu1dv27dv1cxV81Pv69OkjXbp0saRuAABgH5ZftXQijz/+uAwbNkxmzJihn48cOVI/37Bhg9WlAQAAG7B8HZljHb9ezH333ac3AAAA43pkAAAAToQgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLNsEmYyMDHE4HJKUlORuq66uloSEBAkJCZGOHTvKxIkTZd++fZbWCQAA7MMWQaawsFCysrIkMjLSo33evHny0ksvydq1a2XTpk2ye/dumTBhgmV1AgAAe7E8yFRWVkpcXJxkZ2dL586d3e3l5eWyfPlyeeSRR+TKK6+Uiy++WFasWCGbN2+W9957z9KaAQCAPfhZXYAaOoqNjZWYmBhJS0tztxcVFcmRI0d0e73w8HDp06ePvPvuuzJ8+PBGj1dTU6O3ehUVFWf5O/AOahhv165dYrqdO3d6fDWd+v89ICDA6jJgOM5ve+L89oIgk5ubK8XFxXpo6Xh79+6V9u3bS6dOnTzae/Toofc1JT09XVJTU89Kvd5M/ZCbOXOmeItFixaJN3jiiSdk0KBBVpcBw3F+2xPnt+FBprS0VBITEyUvL69FE2lKSorMnz/fo0cmLCysxY7vrdRfBuqkgv3+uwBnivPbnji/DQ8yauiorKxMoqKi3G21tbVSUFAgmZmZ8tprr8nhw4dl//79Hr0y6qqlnj17Nnlcf39/veH0qDDJXwaAd+L8hjezLMhER0dLSUmJR1t8fLyeB5OcnKx7Udq1aycbN27Ul10r27Zt012kl112mUVVAwAAO7EsyAQGBkpERIRHm9Pp1GvG1LdPnz5dDxN16dJFgoKCZO7cuTrENDXRFwAAtC2WX7V0IkuWLBEfHx/dI6OuRBo9erQ89thjVpcFAABswuFyuVzixdRk3+DgYL0ujerVAQAA3vP72/IF8QAAAJqLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGMvWtyhoCfULF6sVAgEAgBnqf2+f7AYEXh9kDhw4oL+qu2kDAADzfo+rWxW02Xst1dXVye7du/Xdth0Oh9XloBUSvAqtpaWl3FsL8DKc322Ly+XSISY0NFTfQLrN9siob753795Wl4FWpn7I8YMO8E6c321H8Al6Yuox2RcAABiLIAMAAIxFkIFX8ff3l4ULF+qvALwL5zfa5GRfAADgveiRAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZeI13331XfH19JTY21upSALSQW2+9Va/KXr+FhITImDFj5OOPP7a6NNgEQQZeY/ny5TJ37lwpKCjQt6UA4B1UcNmzZ4/eNm7cKH5+fnLNNddYXRZsgiADr1BZWSlr1qyROXPm6B6Zp59+2uqSALQQtW5Mz5499TZ06FC566679P2WvvvuO6tLgw0QZOAVnnvuOQkPD5fBgwfL1KlT5amnnjrprd8BmPlHy+rVq2XgwIF6mAnw+ptGou0MK6kAU98NXV5eLps2bZJRo0ZZXRqAM/Tyyy9Lx44d9eODBw9Kr169dNuJ7oiMtoP/C2C8bdu2yQcffCBTpkzRz9X4+eTJk3W4AWC+X/3qV7J161a9qXN99OjRMnbsWNm5c6fVpcEG6JGB8VRgOXr0qISGhrrb1LCSGlfPzMw8pdvAA7Avp9Oph5LqPfnkk/q8zs7OlrS0NEtrg/XokYHRVIBZtWqVPPzww+6/2NT20Ucf6WDz7LPPWl0igBamLsNWw0pVVVVWlwIboEcGRlPj5D/99JNMnz69Qc/LxIkTdW/N7NmzLasPwJmrqamRvXv36sfqfFc9rWrS7/jx460uDTZAjwyMpoJKTExMo8NHKsh8+OGHLJwFGO7VV1/VE3zVdumll0phYaGsXbuWyfzQHC6uUQUAAIaiRwYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgA+CU3XrrrXL99dd7tH333XcSERGhl44vLy+3rDYAbRNBBkCzqRBz5ZVXSocOHeT1119v9J5XAHA2EWQANMv3338v0dHR4u/vL3l5ee4Q88gjj8iQIUPE6XRKWFiY/Pa3v9V3Klby8/PF4XA0udV755135IorrtABSR3j9ttvl4MHD7r3n3vuuQ3e+/vf/969/29/+5sMGDBA2rdvL4MHD5a///3vHrWr16vXjB07Vn9G//79Zd26de7933zzjX7N1q1b3W0LFizQbUuXLnW3ff7553LVVVfp772+jk6dOrX4vzWAphFkAJy2H374Qd913M/PT4eYY395+/j4yF//+lf5z3/+IytXrpQ333xT/vCHP+h9I0aMkD179ujt+eef1231z9WmfPXVVzJmzBh993J15/I1a9boYPO73/3Oo4b777/f470LFy7U7evXr5fExES544475JNPPpFZs2ZJfHy8vPXWWx7vV8FEfcZHH30kcXFxcuONN8pnn33W6Pf77bff6gCjQs+xbrvtNjly5Ij8+9//1jUcG3IAtBJ192sAOBW33HKLa+TIka6hQ4e62rVr5xo+fLjr6NGjJ3zP2rVrXSEhIQ3a33rrLVdjP4KmT5/umjlzpkfb22+/7fLx8XFVVVXp53379nUtWbKk0c8bMWKEa8aMGR5tN9xwg2vcuHHu5+pzZ8+e7fGaSy+91DVnzhz9eMeOHfo1W7Zs0c+nTZum6zr+czt06ODKyclxP1+xYoUrODj4hP8eAFoWPTIATktBQYHU1dXpYZft27fLQw895LH/jTfe0ENOP/vZzyQwMFBuvvlm3YNz6NChUzq+6iF5+umnpWPHju5t9OjR+jN37Nhx0verXpXLL7/co009P7635bLLLmvwvLEemeLiYt3L88ADDzTY169fP73vVL83AC3P7ywcE4AXU/NJNm7cKF27dpXHHntMpk6dKrGxsRIZGannllxzzTUyZ84cWbRokXTp0kUPC02fPl0OHz4s55xzzkmPr+bTqOEgNS/meH369JHWpoao1PybXr16Ndi3fPlyueWWW3RgU8NOR48elYCAgFavEWjL6JEBcFrURF4VYpQbbrhBJkyYINOmTdNBpaioSPecPPzwwzJ8+HAZNGiQ7N69+7SOHxUVJZ9++qkMHDiwwaYm757M+eefr+esHEs9v+CCCzza3nvvvQbP1XuPtWHDBvniiy88JhIfS32P1157rVxyySWyZcsWPW8HQOuiRwbAGVm2bJleRyY1NVUmTZqkJ78++uijMn78eB0gHn/88dM6XnJysg4IanLvb37zG331kwo2alJxZmbmSd9/55136jqGDRumJyS/9NJL8sILL+ghr2OtXbtWB5Bf/OIXkpOTIx988IHuYTmWGjZT30tTPUlqwrIaBlMBTvUWde/e/bS+VwBnjh4ZAGdEDR9lZ2fLgw8+KNXV1frya/VYhRsVENLT00/reGqIatOmTbonRF2CrQLJvffeK6Ghoaf0frVg31/+8hdZvHixXHjhhZKVlSUrVqyQUaNGebxOBa/c3Fz9eatWrZJnn322Qa+N6gVSQ0eNUfWpoPXMM89YMuQF4H851Izf/3sMAG2CWu9FTdI9fpViAOahRwYAABiLIAMAAIzFZF8AbQ4j6oD3oEcGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAABBT/Q9mxH2BeeuBHAAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAANVlJREFUeJzt3Ql8VNXd//Ff9o0sJIGQkIRNlrCLIkWrgqCoiPj4tNaKluJTaquikhYpLaioLaItpX2kUv0/SrVS1CoWqcWiqFQR2URAw74kLEkIZF8mIZn/63fCxESIBJjMzJl83i+Pd+bOzOXcmcnMd84599wAp9PpFAAAAEsFersCAAAA54MwAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgtWDxc3V1dXL48GGJjo6WgIAAb1cHAAC0gE6DV1paKikpKRIYGNi2w4wGmbS0NG9XAwAAnIOcnBxJTU1t22FGW2RcT0ZMTIy3qwMAAFqgpKTENEa4vsfbdJhxdS1pkCHMAABgl5YMEWEAMAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACs5tUws3r1ahk3bpw5vbeee+HNN9885T5ZWVly4403SmxsrERFRcnQoUMlOzvbK/UFAAC+x6thpry8XAYNGiQLFiw47e179uyRb3/729KnTx/54IMPZMuWLTJr1iwJDw/3eF0BAIBvCnA6nU7xAdoys3TpUrnpppsa1t16660SEhIiL7300nmdQlxbdYqLizlrNgAAljib7+9g8VF1dXXyz3/+Ux588EEZM2aMfPbZZ9KtWzeZMWNGk8DzdQ6Hw5TGTwYAwHfp0IGCggK3bzcxMVHS09Pdvl34Hp8NM/n5+VJWViZPPPGEPP744zJ37lxZsWKF3HzzzfL+++/LlVdeedrHzZkzR2bPnu3x+gIAzi3I9MnIkMqKCrdvOyIyUrZnZRFo2gCfbplR48ePl6lTp5rLgwcPljVr1sjChQubDTPacpOZmdmkZSYtLc1DtQYAnA1tkdEgM2H6U5KU3sNt283L3iMvz51mtk+Y8X8+G2a0eTA4OFj69u3bZH1GRoZ89NFHzT4uLCzMFACAPTTIpPbs5+1qwFI+O89MaGioOQx7x44dTdbv3LlTunTp4rV6AQAA3+LVlhkdE7N79+6G6/v27ZPNmzdLfHy8aRacNm2afO9735MrrrhCRo4cacbMvPXWW+YwbQAAAK+HmQ0bNpiQ4uIa6zJx4kRZtGiR/Nd//ZcZH6ODeu+77z7p3bu3vP7662buGQAAAK+HmREjRsiZprm58847TQEAALBqzAwAAEBLEGYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWC3Y2xWwXXZ2thQUFLh9u4mJiZKenu727QIA2qZsP/6+Isyc5xujT0aGVFZUuH3bEZGRsj0ry+tvEACA/bL9/PuKMHMeNOHqG2PC9KckKb2H27abl71HXp47zWyfMAMAOF8Ffv59RZhxA31jpPbs5+1qAADQJr+vGAAMAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsJpXw8zq1atl3LhxkpKSIgEBAfLmm282e9+f/OQn5j7z58/3aB0BAIBv82qYKS8vl0GDBsmCBQu+8X5Lly6VtWvXmtADAADQWLB40XXXXWfKNzl06JBMmTJF3nnnHRk7dqzH6gYAAOzg1TBzJnV1dXLHHXfItGnTpF+/fi16jMPhMMWlpKSkFWsIAAC8zacHAM+dO1eCg4Plvvvua/Fj5syZI7GxsQ0lLS2tVesIAAC8y2fDzMaNG+UPf/iDLFq0yAz8bakZM2ZIcXFxQ8nJyWnVegIAAO/y2TDzn//8R/Lz8yU9Pd20zmg5cOCA/OxnP5OuXbs2+7iwsDCJiYlpUgAAgP/y2TEzOlZm9OjRTdaNGTPGrJ80aZLX6gUAAHyLV8NMWVmZ7N69u+H6vn37ZPPmzRIfH29aZBISEprcPyQkRDp16iS9e/f2Qm0BAIAv8mqY2bBhg4wcObLhemZmpllOnDjRjJUBAADw6TAzYsQIcTqdLb7//v37W7U+AADAPj47ABgAAKAlCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArBbs7QoAAGCb7OxsKSgocPt2ExMTJT093e3b9XeEGQAAzjLI9MnIkMqKCrdvOyIyUrZnZRFozhJhBgCAs6AtMhpkJkx/SpLSe7htu3nZe+TludPM9gkzZ4cwAwDAOdAgk9qzn7erAQYAAwAA2xFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKzm1TCzevVqGTdunKSkpEhAQIC8+eabDbfV1NTI9OnTZcCAARIVFWXu84Mf/EAOHz7szSoDAAAf49UwU15eLoMGDZIFCxaccltFRYVs2rRJZs2aZZZvvPGG7NixQ2688Uav1BUAAPimYG/+49ddd50ppxMbGysrV65ssu7pp5+WSy65RLKzsyU9Pd1DtQQAAL7Mq2HmbBUXF5vuqLi4uGbv43A4THEpKSnxUO1gIw3GBQUFrbLtxMREQjcAeIA1YaaqqsqMofn+978vMTExzd5vzpw5Mnv2bI/WDfYGmT4ZGVJZUdEq24+IjJTtWVkEGgBoZVaEGR0MfMstt4jT6ZRnnnnmG+87Y8YMyczMbNIyk5aW5oFawjbaIqNBZsL0pyQpvYdbt52XvUdenjvN/BuEGQBo42HGFWQOHDggq1at+sZWGRUWFmYK0FIaZFJ79vN2NQAA/hhmXEFm165d8v7770tCQoK3qwQAAHyMV8NMWVmZ7N69u+H6vn37ZPPmzRIfHy/Jycnyne98xxyWvXz5cqmtrZXc3FxzP709NDTUizUHAAC+wqthZsOGDTJy5MiG666xLhMnTpRHHnlEli1bZq4PHjy4yeO0lWbEiBEeri0AAPBFXg0zGkh0UG9zvuk2AAAAxbmZAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVvBpmVq9eLePGjZOUlBQJCAiQN998s8ntTqdTHnroIUlOTpaIiAgZPXq07Nq1y2v1BQAAvserYaa8vFwGDRokCxYsOO3tTz75pPzxj3+UhQsXyqeffipRUVEyZswYqaqq8nhdAQCAbwr25j9+3XXXmXI62iozf/58mTlzpowfP96se/HFFyUpKcm04Nx6660eri0AAPBFXg0z32Tfvn2Sm5trupZcYmNjZdiwYfLJJ580G2YcDocpLiUlJR6pLwDvyM7OloKCglbZdmJioqSnp7fKtgG0gTCjQUZpS0xjet112+nMmTNHZs+e3er1A+AbQaZPRoZUVlS0yvYjIiNle1YWgQbwcT4bZs7VjBkzJDMzs0nLTFpamlfrBKB1aIuMBpkJ05+SpPQebt12XvYeeXnuNPNvEGYA3+azYaZTp05mmZeXZ45mctHrgwcPbvZxYWFhpgBoOzTIpPbs5+1qAPASn51nplu3bibQvPfee01aWfSopuHDh3u1bgAAwHd4tWWmrKxMdu/e3WTQ7+bNmyU+Pt406z7wwAPy+OOPS8+ePU24mTVrlpmT5qabbvJmtQEAgA/xapjZsGGDjBw5suG6a6zLxIkTZdGiRfLggw+auWh+/OMfS1FRkXz729+WFStWSHh4uBdrDQAAfIlXw8yIESPMfDLN0VmBH330UVMAAACsGjMDAADQEoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAND2wkz37t3l2LFjp6zX8yfpbQAAAD4dZvbv3y+1tbWnrHc4HHLo0CF31AsAAMD9J5pctmxZw+V33nlHYmNjG65ruHnvvfeka9euZ7NJAAAAz4WZm266qeFs1hMnTmxyW0hIiAkyv/vd786vRgAAAK0VZurq6syyW7dusn79eklMTDybhwMAAHg3zLjs27fP/TUBAADwVJhROj5GS35+fkOLjcvzzz9/rpsFAABo/TAze/ZsefTRR+Xiiy+W5ORkM4YGAADAmjCzcOFCWbRokdxxxx3urxEAAEBrzzNTXV0tl1566bk8FAAAwPth5kc/+pEsXrzYvTUBAADwVDdTVVWVPPvss/Luu+/KwIEDzRwzjc2bN+9cNgsAAOCZMLNlyxYZPHiwubxt27YmtzEYGAAAeNI5hZn333/f/TUBAADw1JgZAAAAq1tmRo4c+Y3dSatWrTqfOgEAALRumHGNl3GpqamRzZs3m/EzXz8BJQAAgM+Fmd///venXf/II49IWVnZ+dYJAADAO2Nmbr/9ds7LBAAA7A0zn3zyiYSHh7tzkwAAAO7vZrr55pubXHc6nXLkyBHZsGGDzJo161w2CQAA4LkwExsb2+R6YGCg9O7d25xJ+5prrjm3mgAAAHgqzLzwwgvn8jAAAADfGjOzceNG+etf/2rKZ599Ju5WW1truq26desmERER0qNHD3nsscdMtxYAAMA5t8zk5+fLrbfeKh988IHExcWZdUVFRWYyvSVLlkiHDh3c8uzOnTtXnnnmGfnLX/4i/fr1M2NyJk2aZLq57rvvPl5BAABwbi0zU6ZMkdLSUvniiy/k+PHjpuiEeSUlJW4NGWvWrJHx48fL2LFjpWvXrvKd73zHjMlZt26d2/4NAADQBltmVqxYIe+++65kZGQ0rOvbt68sWLDArQOAL730Unn22Wdl586d0qtXL/n888/lo48+knnz5jX7GIfDYYqLBizAn2RnZ0tBQUGrbDsxMVHS09NbZdsA4FNhpq6uTkJCQk5Zr+v0Nnf5xS9+YcJInz59JCgoyIyh+fWvfy0TJkxo9jFz5syR2bNnu60OgK8FmT4ZGVJZUdEq24+IjJTtWVkEGgD+H2auuuoquf/+++Vvf/ubpKSkmHWHDh2SqVOnyqhRo9xWuVdffVVefvllWbx4sRkzo+d/euCBB8y/2dw5oGbMmCGZmZkN1zUMpaWlua1OgDdpi4wGmQnTn5Kk9B5u3XZe9h55ee40828QZgD4fZh5+umn5cYbbzTjWFxBIScnR/r372+ObHKXadOmmdYZHWysBgwYIAcOHDCtL82FmbCwMFMAf6ZBJrVnP29XAwDsDTMaYDZt2mTGzWzfvt2s0/Ezo0ePdmvlKioqzIR8jWl3kzu7sgAAQBsKM6tWrZJ7771X1q5dKzExMXL11VebooqLi01X0MKFC+Xyyy93S+XGjRtnxshok7duW+ey0cG/d955p1u2DwAA2liYmT9/vkyePNkEma/TuV/uuusuEzbcFWb+93//10yad/fdd5u5bXSsjP4bDz30kFu2DwAA2tg8M3po9LXXXtvs7XpYts4K7C7R0dEmQOk4mcrKStmzZ488/vjjEhoa6rZ/AwAAtKEwk5eXd9pDsl2Cg4Pl6NGj7qgXAACA+8NM586dzUy/zdmyZYskJyefzSYBAAA8F2auv/56M4alqqrqlNu0G+jhhx+WG2644fxqBAAA0FoDgGfOnClvvPGGObWAHtXUu3dvs14Pz9ZTGegMvb/61a/OZpMAAACeCzNJSUnm5I8//elPzUy7TqfTrA8ICJAxY8aYQKP3AQAA8NlJ87p06SJvv/22FBYWyu7du02g6dmzp7Rv3751aggAAODuGYCVhpehQ4ee68MBAAA8PwAYAADA1xBmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1Xw+zBw6dEhuv/12SUhIkIiICBkwYIBs2LDB29UCAAA+Ilh8WGFhoVx22WUycuRI+de//iUdOnSQXbt2Sfv27b1dNQAA4CN8OszMnTtX0tLS5IUXXmhY161bN6/WCQAA+BafDjPLli2TMWPGyHe/+1358MMPpXPnznL33XfL5MmTm32Mw+EwxaWkpMRDtbVHdna2FBQUuH27iYmJkp6e7vbtAgBgbZjZu3evPPPMM5KZmSm//OUvZf369XLfffdJaGioTJw48bSPmTNnjsyePdvjdbUpyPTJyJDKigq3bzsiMlK2Z2URaAAAHuXTYaaurk4uvvhi+c1vfmOuX3jhhbJt2zZZuHBhs2FmxowZJvw0bpnRrirU0xYZDTITpj8lSek93LbdvOw98vLcaWb7hBkAgCf5dJhJTk6Wvn37NlmXkZEhr7/+erOPCQsLMwXfTINMas9+3q4GAAD+fWi2Hsm0Y8eOJut27twpXbp08VqdAACAb/HpMDN16lRZu3at6WbavXu3LF68WJ599lm55557vF01AADgI3w6zAwdOlSWLl0qf/vb36R///7y2GOPyfz582XChAnerhoAAPARPj1mRt1www2mAAAAWNcyAwAAcCaEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYzedPNAkAwPmqq3NKfqlDjhRXSl5JlRwprpLckio5XlYtxZU1DaW06oQ4TtRJTW19qT5RZx4fFBggwVqCAkXqaiVl8p9lVW6wRJcdkrDgQIkICZKo8GCJDguWqLD6ZUxEiHkcWh9hBgDgN07U1smx8mrZVxYocSMmyRMfH5eiDz+UA8cqTEg55+3WOcVhLtWa/4fEd5bCapHC4xXNPiYgQCQ2PETaR4VK+8gQSYgKk44xYRIfGSqBhBy3IswAgIdlZ2dLQUFBq2w7MTFR0tPTpS1w1NRKXqlDCkodcrTMIUdLHXK8olqcTr01WGKH/besO6QRpD6GaMtKx+gw6RQbbkpSTLgktguT2IiQhqKtKdrSEhIU2LDUUKKtNLV1ThNqPt/6hdz2gzvl5qm/lugOqVJ1ok4qq2ul1FEj5Y5aKas6YS7X1DqlqLLGlH2N6q316BAdJknR4ZIcFy6p7SMkMpSv4/PBswcAHg4yfTIypLKi+V/05yMiMlK2Z2X5ZaApqaqRw0WVcrioSg4XV8qxsurT3i88JFCiA0/Ino+XS+bk2+XyC/tIt4QoSYkLr+8mOk/FcSHiOPSlJEc4JTU55rT3cTqdUl5dK4Xl1VJYUS3Hy6uloKxa8kurTMjRbi4tmw/W3z8+KlTiAoIkstelUlFz7i1IbRVhBgA8SFtkNMhMmP6UJKX3cOu287L3yMtzp5l/wx/CjIaX7GMVcrCw0oQXHc/yddqa0qFdmGnpSIwONZfbhQXLod1fyob3npXrn7xLhvTq4PG6BwQEmHpoSYuPbBJyCitqJL+kfszOoaJKE3I07ByXIOnwX7+UH/4jT4ZtXSuj+iTJqIyO0iUhyuP1tw1hBgC8QINMas9+3q6GT9GuHA0uGmAOHC83X/qNaXePdhOlxEZISlyEJMeGm8G2NtGQo60wWvqcbNWprKmVQ4WVsn3fQdl+4IhIQqp8vPuYKY8u/1L6dIqWGwenyLiBKU2CEb5i17sAAOBXcstOSPTQm2R1XrAcz9krtfUDXgwdIqtjW/QLvHNchHSKCZfQYP+bUUSPhLqgYzsJL66VVbN+Im998KnkBibKe1n5sn7/cdmeWyrbV+yQJ1fskCHpcXLjoBS56cLOEhcZ6u2q+wzCDADAo4dIbzlULCu/zJWVX+bJzrwyib/qR3LUjNF1SnR4sHSJjzRdK2ntIyQsJEjampToYLlhSHf50eXdpaiiWv61LVfe+vywfLL3mGzKLjLlN//aLtf17yS3Dk2Xb3WPNy0+bRlhBgDQqvQooHX7jsvyLYdNgNH5Xlz0COXyfZ/LsMH9ZHBGD4mLCGnzX8yNaevL9y9JN0XH2SzfckT+vvGgfHmkRP6x+bApXRMi5fZvdZFbhqZJTHiItEWEGQCA2+lA162HimXZ5sPy1pbDklfyVYCJCg2SEb07ytV9kyTecUSuHP4r6XnFG9KebpNv1DEmXO78djeZdFlX89z+bV2OLNt8SPYfq5DH/5klv1+5U757cZq5va0NGibMAADcZs/RMhNgln1+WPYVlDesjwkPluv6J8t1AzrJ8B4JEhZc3320aVOeF2trJ225GpgaZ8rMsRmmdeaFj/fJrvwyWbRmv/zlk/1yTd8kuXvEBTIoLU7aAsIMAOC86CkCdEyHBphth0qazPcyOiPJDFi9sneHhgAD99GjuW4bpt1QabJ6V4H830f7ZPXOo/LOF3mmXNGrg0y56gLx92eeMAMAOGs6Gdzb246YVgE94sZ1EJLObnt5z0QZP7izjO6bZOZZgWdaa67s1cGUXXml8syHe8xro8FGS/8OoRKW1l/8Fe8yAECLlDtOyLtZeQ1fkjq1v8slXePNXCjXD0g2c6jAe3omRcu8WwbLA6N6yTMf7jYDhrcdrZZOtz0hH+XXyVWdqqRjdLj4E8IMAKBZetboD3ceNV1I736ZZyZ4c+mXEmO6kG4YlGLmgYFvSU+IlDk3D5R7r+opj762VlbsLJG8qmAzcLhXUjsZ3j3Bb+aqIcwAAE45lPrTfcfMOJi3t+ZKceVXM/HqYcA3Du5sQoxO9Abf1zkuQu66KFaef/A2+dbUP0tORZCZ32d3fpkM7Bwnw7rHS7jl8/kQZgAADYdSaxfS8q8dSq2nEBg3KMUEmIGpscwDY6kTRblySWKtXN6pm3y8p0AOHKuQzQeLZHtuiXyre4IM6BwrgTrxj4UIMwDQhumvc+1Ccs1X0vhQah3/ouNghnVLkCBLv+RwKj0p502DO8uBY+Xyn10Fcqy8Wj7YedSEWT36Kd3C8z8RZgCgjTlcVGlaX7QV5ovDpx5KrUciXdErkUOp/VwXc8qISNl6uFjW7j1mQs3Szw6Z8TRX9Oxg1Uk87akpAOCc5ZdWydtbjpjp8DccKGxYr4dS669x7ULSGXlt+gLD+QsMDJBBqXHSOynaBJotB4vNeJr9BRVyaY8EGZAaK4EWdCvyrgUAP3W8vFpWnDxJoQ7odR1Jrd9NQ/VQ6kEcSo16OgBYTzHRNzlGVu3IN2OmtOtJzwE1KqOjzx/KbVWYeeKJJ2TGjBly//33y/z5871dHQDwOQFhUbJqX4X8YfM6+Wh3gTkyyeXC9Di5YWCKjB2QLJ1iffvLCd47/9MtF6fJtkPF8vGeY+akoK+sz5GLu8TLJd3ifXbslDVhZv369fLnP/9ZBg4c6O2qAIBPKas6IXsKyuTL/GBJm/KyPL2+uMlcMHokkgaYNAsHdsLzAk+e+6lHh3amdUYHia/bf9ycd0u7IpNifC8IWxFmysrKZMKECfLcc8/J448/7u3qAIBPdCHpl4uWrw6jDpSAoEBJiwmW7w7rLjcMTJbuHZgLBudGx09pCNbTI7y/46gZIPzKhhy5KL29DOsWL8FBgeIrrAgz99xzj4wdO1ZGjx59xjDjcDhMcSkp+WqkPgDYqq7OKbklVbK3oFz2Hi2TwoqvJrJTybHhkhBQJu88ebe88e5bMmRIT6/VFf53eoTO7SPMTNA6OFgHkO89Wi6j+3YUX+HzYWbJkiWyadMm083UEnPmzJHZs2e3er0AoLWVOU6YuUB0crPs4xXiOFHXcJsOXdBuI+0K6J4YZX5FH9z1hfyz8LBX6wz/FBkaLNf1T5ZeSWWyanu+HK+oltc2HJReMUEigd6PEt6vwTfIyckxg31Xrlwp4eEt66PTAcKZmZlNWmbS0tJasZYA4B41tXVypLjKBBcNMQVl1U1uDwsOlC7xkabrqGtiJPPAwON6dGhnTo+grTTbc0tlR0mQdLrjt5JTXCNDvFgvnw4zGzdulPz8fBky5KunqLa2VlavXi1PP/206U4KCmr6xxwWFmYKANgQXnQCu0NFlXKwsFLySqoaDp92SYoJky7xUSa8JEWHWzvdPPzrMO4x/TpJ9w5R8u4XR0Q6XSB/21Ym40d6r04+HWZGjRolW7dubbJu0qRJ0qdPH5k+ffopQQa+c46Xqpo6Ka2qkfLqWqnUUlMrjpr6pRa93Syr9fJX6/TD/USdLp1yorZ+Wb/u5PLk9Zq6+tv1eq3Taf5N8x3gNP81XHee/GLQa3rZdV3V1FRLyuRn5Z3DIRJ27ICZe0NH8esyQAJMM76eg6bxUm/XScaCggLMIYrBgYEnlwFNlqVlgRLZ53JZd6hKStsdlcjQIFPahQWb7oCo0GAz2yrnuGk79D15uLhK1uRUStzIO+WD3GApzNlzSnjR90hq+wjpkhBpppXX5n3AF/XsGC1yPFte+/camTzuFq/Wxaf/SqKjo6V///5N1kVFRUlCQsIp69F6ocQEkOpaqag50RBMdKn991qqT9RJWXmwpNz1/+QHb+ZK1d//ZcKHDULiU6TshEjZiabN+ecvWDqMny5PfFwo8vG6095DQ48r4DQOOvrl1S4sSNqFB0tMeIjERIRIbESIuZyf55DQpB5SViMmBIYGB1oxO2dbPdoo60iJbM4paihHS+sPToi95GY5Vt00vNSXSHNOJEIubBERJFKw/LfSfvb3vVoPnw4zaD06jvBYmcMMMCx1nDDzVOhlU6pOSMXJFpOWR5JACYnrJGXVXz1CWzL0izkiNMi0QkSEBJkSfrKY6ydv0+va/69fziHawhEUKCFB9S0drsshQYH1l0+uC9Z1gYESGFjfklLfolLfivLVZa3J1247Wb+s7dvlh5MmyS2ZcySxc1epO9maY5bOU5datBVIJyGrdbUMuS43LOvMsqy0VA7s2CqDhlwsQaERJgDqc1vuqH9uld6vtOqEKWcj+Yd/kHeOiMiRveZ6aFCghIUEmvEU4cFBJy/r8+l6Xk8uQ7663bWeIHT+9O9ED4/efqRUduSVmgCjYwlcwaUxfT+nxwbJ56uWyYhR18iAPhcQXoC2GGY++OADb1fBGtrNs+doecPREPuPlcuX2QWSes9L8o+DoSIHs1u0Hf3ScwWPxkvXF6IGkJK8HPn7vBny6l8XySVDBkp0eIhEhQb59Id07dFQcRzaLh3CnZLq5snE9KiSdbN/JXOmbWwy5st1iG1FTa0JNvWlPuhUVNeHSb2ulzXklFTVSHFljZRUnpCSyhrJLSyRvTlHJCw2UWqd9c9tdW2dKaXnUE997cJPhh1ndbAkjp8uz2wolgvyt5vWoLiTrUKxkfXLuMhQs/T119bd9PXQMS37Cur/nvTs0mZZUCGHiyubdF82pt1Eem6bC9PiZHBanPTvHCtfbv1cLvrFn6Tr+NHmuQTQBsMMmv9luDOvVHbkupalZlDh6QS1a2+WGkS0K0ObuaPD6peu69qiol0f+iXXkumrD5Y4pfrwdkmLDZHk2Ai376M/0QGc5rk+hxP66TQFF110rWQueEOSe/QVx4mT3X01dQ2X9f3gWlel606z1PCjtItQS4lpHQqUqD6Xy8q9FbJy755vrIe2MDQJORFfhZ2YJte/Wup601LXwvdUa3ehamuaPlfalVq/rO9CdbVQHisMluT/+ZPcvjRXKl7VprDm6T726RRdX5JjzLJXUjQnbQQ8hL80y2jXhE4t/XlOkXyWU2SW2rTd+PwrjXWMDpOuiVHSNSHSnO69tjhPpv1kovx45lPSvXc/j9cf7lM/5kZD59k/Vt8vjkYBR7/QjxzMlneW/D/56QM/l8i4RCmuqG8VKqo8uazQFqIaE4Q0COhsoFrkHFuENNRENmrlM5dDv7qsg6s1NGn404lG9bp2i+nlIDPwWuTIkRKJu/KHsqUwSPbsOCp14mzoFtTB4a7B5E0Gj9fqPtd3B36zQAlNTJeKmvr7RYcHS7fEKPN35Pp70qX+fSVEhbaplirA1xBmLGjeXr+/UD7Zc0w+yy6UrYeKG8ZcfP2XYe9O0eY07r1cy6R25pdyY5s2lUh13h4J9Z1ZqOEjQSiksE5KNy2X7/WbLUOG9Gu2RUNbL1zhpnHIKaqsbrLeVVzXtcvM1R3jahHS9ecr9lvfkV3ax1ZadNaP1QYi1xgu7W7TMBUVGixR4cFSU5gn//zTw/LKomflquFDzqklDYBn8NfpY3RQaX5VgMRefrv8clWB7P77v085Mkh/tQ5MjZVB2g+fGicD0+IkJTacX4Zodfoeqw9BwWfdndjk6LiTR8Q1HB1nrp84uawzId41qNpVtMVF19U1GnR99Gi+LH75rzJ01HiJTUhscki9a4C4GUge1HSpA6E1wOjl5v5uDtYckaoDn0tqzLl1CQLwHP5CfYD+OtWBhXsLyuRwUZXU1oVI3KW3yvaC+l+tOtvi8B4JMrRrexmc1l4u6NjO62MOgLOlocEMHg913/xQmzY55E8/el4GfOcGSe2R6LbtArALYcYL9BeqnuVWw4ueNO7Y16YsDw9yyrEtH8q0iePl1pFDJC0+glYXAACaQZjx8OyfepSRHnnUeNyLxpSUuAhzsjgdTFh+aJf8/je/ldGzvy/pCe49ZBgAAH9DmGllBWUOE2D0iKPGk6PpRGc6XbkGmC6JUeaIDpcKGmEAAGgxwkwr0DkqtussoHmlTbqQNMD06BhljjTSacsZ9wIAwPkjzLixGyn7eIU5dFrHwbgOQdW8onNTaIDRpR5NAQAA3Icwc54CI+NkR3GgrFyz/+QsqvX0UOmM5Bhz5JEeAgoAAFoHYeYcbdh/XOZ9Uiipd78g24r1aTxhZjXt2ylG+neOkYR2Yd6uIgAAbQJh5hy9tz1f1uRUSUBQiMSH1slFPZKlZ1I7c2ZnAADgOXzznqPvD02XMT0i5fALU2RkpxPSNyWGIAMAgBfw7XuOdP6Xuy6KlZr8fd6uCgAAbRphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKzm82Fmzpw5MnToUImOjpaOHTvKTTfdJDt27PB2tQAAgI/w+TDz4Ycfyj333CNr166VlStXSk1NjVxzzTVSXl7u7aoBAAAfECw+bsWKFU2uL1q0yLTQbNy4Ua644gqv1QsAAPgGnw8zX1dcXGyW8fHxp73d4XCY4lJSUuKxugEAAM/z+W6mxurq6uSBBx6Qyy67TPr379/sGJvY2NiGkpaW5vF6AgAAz7EqzOjYmW3btsmSJUuavc+MGTNM642r5OTkeLSOAADAs6zpZrr33ntl+fLlsnr1aklNTW32fmFhYaYAAIC2wefDjNPplClTpsjSpUvlgw8+kG7dunm7SgAAwIcE29C1tHjxYvnHP/5h5prJzc0163U8TEREhLerBwAAvMznx8w888wzZuzLiBEjJDk5uaG88sor3q4aAADwAVZ0MwEAAFjbMgMAAPBNCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNWsCDMLFiyQrl27Snh4uAwbNkzWrVvn7SoBAAAf4fNh5pVXXpHMzEx5+OGHZdOmTTJo0CAZM2aM5Ofne7tqAADAB/h8mJk3b55MnjxZJk2aJH379pWFCxdKZGSkPP/8896uGgAA8AHB3q7AN6murpaNGzfKjBkzGtYFBgbK6NGj5ZNPPjntYxwOhykuxcXFZllSUuL2+pWVlZnlwV1fiKOywm3bPXpwn1nqvrv+DXfZsWOHdXV2ve51dXVWPBet+XzYWOfWev1sfT5srLONryGfo56ts9bX3d+zru05nc4z39npww4dOqR74FyzZk2T9dOmTXNecsklp33Mww8/bB5DoVAoFApFrC85OTlnzAs+3TJzLrQVR8fYuOgviePHj0tCQoIEBAS4PTWmpaVJTk6OxMTEiL9h/+zn7/vI/tnP3/eR/Tt32iJTWloqKSkpZ7yvT4eZxMRECQoKkry8vCbr9XqnTp1O+5iwsDBTGouLi2vVeuoL6I9vUhf2z37+vo/sn/38fR/Zv3MTGxtr/wDg0NBQueiii+S9995r0tKi14cPH+7VugEAAN/g0y0zSruMJk6cKBdffLFccsklMn/+fCkvLzdHNwEAAPh8mPne974nR48elYceekhyc3Nl8ODBsmLFCklKSvJ21Ux3ls5/8/VuLX/B/tnP3/eR/bOfv+8j++cZAToK2EP/FgAAgNv59JgZAACAMyHMAAAAqxFmAACA1QgzAADAaoSZs/TEE0+YmYQfeOCBhnVVVVVyzz33mFmG27VrJ//93/99ykR/Nu/fs88+KyNGjDATIultRUVFYquv75/ODj1lyhTp3bu3RERESHp6utx3330N5/Tyl9fwrrvukh49eph97NChg4wfP162b98u/rJ/Lno8w3XXXWduf/PNN8Vf9k///nRd4/KTn/xEbNXca6jn3LvqqqskKirKfN5cccUVUllZKbbv3/79+095/VzltddeE394/XJzc+WOO+4wE9rq6zdkyBB5/fXXPVYnwsxZWL9+vfz5z3+WgQMHNlk/depUeeutt8yb8sMPP5TDhw/LzTffLP6yfxUVFXLttdfKL3/5S7HZ6fZPXystv/3tb2Xbtm2yaNEic+j///zP/4iNmnsNdfLJF154QbKysuSdd94xX/rXXHON1NbWij/sn4vOQ+Xu05b4yv5NnjxZjhw50lCefPJJ8ad91CCjnzP6vly3bp2537333mtOcGn7/ul0/41fOy2zZ882P341fPvD6/eDH/zAnMxy2bJlsnXrVvMdeMstt8hnn33mmYq566SQ/q60tNTZs2dP58qVK51XXnml8/777zfri4qKnCEhIc7XXnut4b5ZWVnm5FiffPKJ0/b9a+z99983+1VYWOi0TUv2z+XVV191hoaGOmtqapz+uo+ff/65eS13797t9Jf9++yzz5ydO3d2HjlyxOzb0qVLvVZXd+/fmV5Pf9jHYcOGOWfOnOm02dn8DQ4ePNh55513Ov1l/6Kiopwvvvhik/vHx8c7n3vuOY/Uza7I60XajTR27FgZPXp0k/V6qvaampom6/v06WO6K/SXhu375y/OZv+0i0mbuIODfX5OyXPaR51BW1tpunXrZn4x+sP+aevhbbfdJgsWLGj2vG22v34vv/yyOV9d//79zQl1dZ/9ZR/z8/Pl008/lY4dO8qll15qJkW98sor5aOPPhJ//BvU743Nmzdb1wJ8zzfsn75ur7zyium619MOLVmyxAzB0C5ST7Dr09pL9EXZtGmTaV77Ou0n1HNIff1klvrHqLfZvn/+4Gz2r6CgQB577DH58Y9/LP62j3/605/kwQcfNGFGxwitXLnSvHf9Yf+0q1c/THUskI3OtH8a1Lp06WLOHrxlyxaZPn26adJ/4403xB/2ce/evWb5yCOPmC5fnen9xRdflFGjRpnu3549e4o/fc783//9n2RkZJj3rC2WnGH/Xn31VTNjv44d1R+CkZGRsnTpUrngggs8Uj/CzBnoac3vv/9+88EfHh4u/ob9a3oqe/3V0bdvX/Oh6m/7OGHCBLn66qtNf71+YWh/9scff+zzr/uZ9k/76FetWuW5vnkvvH6Nw/WAAQMkOTnZfNHv2bPHDOy2fR/1l7xroLrrvHsXXnihOanw888/L3PmzBF/+ZzRAc2LFy+WWbNmiS1yWrB/uj96cMi7775rWhB1AL5+xvznP/8x79lW55HOLItpv7s+TUFBQQ1FrwcEBJjL77777mnHkaSnpzvnzZvntH3/Tpw4YfWYmZbuX0lJiXP48OHOUaNGOSsrK502OZvX0MXhcDgjIyOdixcvdtq+f/fee2/D5ca3BwYGmn59f3z9ysrKzH1WrFjhtMGZ9lHHbun1l156qcnjbrnlFudtt93m9KfXUMeV6DjL/Px8py2WtvD127ZtW5PH6efpXXfd5ZE60jJzBvrrR0dmN6a/HHRcjDb16piDkJAQ8wtCD8lW2vybnZ0tw4cPF9v3LygoSGzWkv3TFpkxY8aYE6Xpr3xfb6lwx2uoRzNpcTgcYvv+6a9A/UXfmP4S/P3vfy/jxo0Tf3z9dLyF0hYaG5xpH7t372660PSzs7GdO3dacbTP2byG2sV04403mikSbDHqDPvnGr/19SPPdL9drW6tjTBzBtHR0WbAXWN6DL32C7rW6yCuzMxMiY+PNwNHdd4SDTLf+ta3xB/2T8f+aNm9e7e5rm9qfZwOctZ9tnn/NMjooaD6x/jXv/7VXNei9MPGhjB3pn3U8Qg6ME/3U/fp4MGDZp4InXPm+uuvF394j55u0K++P3WQs+37p11J2i2hr5Wu0zEzOkZI52Bp7hB1G1/DadOmmbMvDxo0yIyZ+ctf/mLmQvr73/8u/rB/Sj9DV69eLW+//bbYJPoM+6cHwejYGP1RoV3Yul67mbRbavny5R6pI2HGDfQXoCZSbZnRX7r6K18HW/qLhQsXmjkRXPRDVOkRMT/84Q/FZjqgTY+iUF8fqLZv3z7p2rWr2E5bmrTfWudgKSwsNIPT9TVcs2aNOXoEvk0Haes4BH39dPC2tgbrZ83MmTPFn+gEbHr0iwY1PSJGQ41+GdowJqildPxPamqq+WHhT0JCQkxA+8UvfmFaQ8vKysznqQZST/1gCtC+Jo/8SwAAAK2AeWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwA8Qk99ERAQcErR6d0B4HxwbiYAHnPttdeac3o1ZsPJPAH4NlpmAHhMWFiYOcN146Jn8naZPn269OrVSyIjI6V79+4ya9Ysc0bexvbv33/aFp6ioqIW3+eRRx4xZ2Y+HT3br94XgD0IMwB8RnR0tCxatEi+/PJL+cMf/iDPPfecOSt9Y65z4+qZpI8cOSKvv/76KdtpyX0A+A/CDACPWb58ubRr184UHStz9dVXy7///e+G22fOnCmXXnqpdO3aVcaNGyc///nP5dVXX22yDVdLjatlJz4+/pR/pyX3AeA/CDMAPGbkyJGyefNmU9544w1JTk6WsWPHyqeffmpuf+WVV+Syyy4zAUQDj4ab7OzsJtsoKSkxy6ioqGb/nZbcZ+vWrebfiI2NlYyMDHniiSfctJcAPI0BwAA8RsPFBRdc0HD9+eefN6FGx6nU1dXJhAkTZPbs2TJmzBgTMpYsWSK/+93vmmzj8OHDEhgYaAJPc1pyn969e8uyZcuktrZW1q5dK5MnTzZ1Cw7mYxGwDX+1ALxGA4cWDRRr1qyRLl26yK9+9auG2w8cOHDKY9avXy99+vSR8PDwZrfbkvuEhoY2BCsNNk8//bRpMbr44ovPe78AeBbdTAA8xuFwSG5urilZWVkyZcoUKSsrk+uvv1569uxpupS0NWbPnj3yxz/+UZYuXdrw2OrqannppZdk3rx5MmnSpNNuvyX3aTxIuKqqSsrLy2XVqlVm0HH//v3dvs8AWh8tMwA8ZsWKFWacjOvIJQ0wixcvlhEjRph1U6dOlXvvvdeEHh1Lo4dm62HUrjEuelnXZWZmnnb7LbmPy5YtWyQiIsK0DHXu3Fl+9rOfya233mq6vADYJcDpOoYRAADAQnQzAQAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAEBs9v8Bi0tCHqDIZawAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGwCAYAAABLvHTgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAY7ZJREFUeJzt3Ql8FOX9P/DP3rnvi1vucIeAXLYKQkVFRUEuUQ7v/qhF698iba2iraBWpaioICAoiHhQxQOLB1Q5Q7gPkTMJkBDInWz2yGb/r2e2SVl2N2GXTWYy+bxfr4FknmT2yczOzHee5/s8q3E6nU4QERERqYxW7goQERERNQQGOURERKRKDHKIiIhIlRjkEBERkSoxyCEiIiJVYpBDREREqsQgh4iIiFRJD5Wrrq7G2bNnERkZCY1GI3d1iIiI6DKIafzKysrQsmVLaLWBtcmoPsgRAU6bNm3krgYREREFICcnB61btw7kV9Uf5IgWnJqdFBUVJXd1iIiI6DKUlpZKjRQ19/FAqD7IqemiEgEOgxwiIqKm5UpSTZh4TERERKrEIIeIiIhUiUEOERERqRKDHCIiIlIlBjlERESkSgxyiIiISJUY5BAREZEqMcghIiIiVWKQQ0RERKqk+hmPG0pJpR0WuwNhRh0iQwxXvkGHHTAXAmJix7BEIMAPI6NmqiwXsFsAUyQQnhCk92OBmGsUCFfm+9HucKCowi7NhpoQYeQH8AbIbrPAUV4AaLQwRSdDE4xjLa5lVVbX+9EUgebAZrWiqKISWvF+jI4Myn4sNttgrapGhEmPcJNCb9fFOYDDChijgMgkKI1i9tq8efMwe/ZszJw5E/Pnz5fW5eXl4YknnsCGDRukTyLt2rUr/vznP2Ps2LGyBjcHzpRgwXdHkVVgRteUSDz2m87onBQZ+JuwOBvIXA7s/wjQ6oD0qUCvcUB0q2BXn9SmNBfI3QP89CpQkgMk9QCu+yMQ3xEIiw9sm0VZQMYS4NBaQGcE+t8L9LgDiGoJpcgpNOO9bVn4an8ujDot7h7UDjf3SkFKdKjcVWtS7BdOwrljEUKOrAMMIbCkTYe2x+0wxrYKPLg5vRP4z4tA6RmgRV9g6JNAfCfAGAY1clZXI6egDMs3n8D6n4sQYtBhytXJGNmzJVLiAvsoocIKK3ZnF+O1748hr8SCtDYxmDmiM9onhEvbV4TibOBMJrDlNddDljjW1/4/IPYqICwOSqFxis8yl1lGRgbGjx8vfbbUsGHDaoOcG264AcXFxXj99deRkJCAVatW4emnn8bOnTvRt2/fy/6Ar+joaJSUlFzxZ1dV2h1YvSMbc9Yd8ih7c3I6buiRAp1W4/8bZelIoPSs+/rEbsDdnzDQobpvKDsWARvnuq8XLRrjVgCpt/jfAiMCnCUjgPJ89/UpvYG7PlREoCMCnDsWbsaFcpvb+l6torB46tVIiQqRrW5NLcAxLB3+3xa7/3G0TEfVuPdh8jfQsZYBm18D/vOC+3qNFrj7U6DjMKhR1vkSjH5zO4rNdrf1/dpEYeGk3kiOi/Zre2UWO97ceBwLNx53Wy/uLe/fNwCDOwahpfZKifvV5n8C299yXy8e0u/6COg0PDgvE4T7t+xt0OXl5Zg8eTIWL16M2NhYt7ItW7bgkUcewYABA9ChQwf85S9/QUxMDDIzM2Wp64UyK+Z+9bPXsj//6wDySy3+bdBRBex63zPAEc4fBk79FGBNqVkwXwD+85LnevHc8vUTQHGWf9ursrmCpksDHCFvn+sJXWa2Kgfe3XLSI8AR9p8pxd6cYlnq1dRU2SxwblngEeAIurO7gNy9/m+04jzwo7f3YzWwbiZQlge1sVgseGvjMY8AR8jMKcXPuaV+b1O8t9/c5B7gCI5qJ578dD/yy/y8zzQESzGw423P9dUO17Wn8CSUQvYgZ8aMGRg1ahRGjBjhUTZkyBB8+OGHKCwsRHV1NVavXi29qYYOHepze1arVYr+Ll6C5WxJJWyOaq9lhRU2FJo9L7x1qiwEDn7su3zP+4C13M9aUrNx4RhQXeW9TNxQKosCeD+u9V2++z1X3o+Misx2fLEv12f5mp05sFV5P0fpf6rKLsAouqh8MO1bCYcIev1x7pAroPFGBNz+vh+bgOIKC74+7Bko1lizJx/VPu4Zvhw6WyI9p3gjUiRKvARUje7MLtfDlDcFxwFr8O67TTonRwQtu3btkrqrvFmzZg0mTJiA+Ph46PV6hIWFYe3atejUqZPPbc6dOxdz5sxpkPrq6+mK8rurSiR1ipwHnxs0upr/iLzR1/HeEfx+79TzftSbXF0PMhJnmEHnuw4mnVbqraN6aOo+1tX6EGj8PdZ1vXcEFV7L6ns/hug1fr8f69qeoPX7PtMA6jvWGuUca9muWDk5OVKS8cqVKxES4r0P/amnnpJycr799lspD+cPf/iDlLuzf/9+n9sVycui/65mEa8TLClRoYj0kVzcOjYUsWH1HPhLiVEw/e71XT7gQcDAREryQST4GXwkcyZ0BkJi/NueGEXVb5rv8v731x9YNbD4CBPuGtDWZ/k9g9vVe5MgwBCVBGvvu32W2/tOh1bn5zNwYlffN7/knkCIezqCGsRFhWN8mu8RRZP6t/R7lFVqiygYdN4DmV6tohEbFoTRvFeqRRqg9fH+aJkOhFxZ/mswyXY1EHk1+fn5SE9Pl1ppxLJp0yYsWLBA+vr48eNSwvHSpUsxfPhw9OnTR0o67t+/P9544w2f2zWZTFKC0sVLsCRFmjB/YhouDaRNei3mT0hDsr8JjyLE73aL6w1zqS43Ai29rCeqEdkCuG2B6310MREY3/Y6ENvOv+2Ji7EY1SdGaF2q+2gguTvkJlpL70hvhS7JnsOSb+ndAp2TI2WpV1Oj0xugTb8HSOjiUWbrNhZOMRrKXxHJwGgv12ZjBHD7QiAiEWpjMBgwedBV6JAQ7lE2tk8i2sf7/5CaGGnC3DG9PdaLYeQv3tkbceEmyC4sDrjpRc/1pijglleAGN8PIs1mdJUYEp6V5Z4YOX36dKSmpmLWrFkQ1erduzcOHTqEbt261f7MyJEj0a5dOyxatKjRR1fVjLA6XWjGqh3Z+OVcGfq2icGd/dqgVUwoDHpt4MOAT2cAu5YDWgMw4H7XaJYI5c05QAocYVVy2jXku/gU0LIv0GeSq5VHdC8FQiTCZ29z5YTpQoABDwDJPRT1fhTDajNOFeLjzNMIMWhxz+CrkJociYRIBdwAmhBr4WkgazNMBz5EtSEU9n73w5nYDSExKQFusNyVf5PxDlB4Amh3jStwFjc9FXZX1cgtKMH2Exfw6b4LCDNqMW1gK3ROCkd8jH8jq2qUW6tc0yRszUJ2oRmDOsThtrRWaB0Tqozuqpq8PzFNgLj2iGtGmwFArzuBmPaAPjitTcG4fytiCHkNkVCclpYmDSG32+3o3r07WrRogX/84x9SXs6//vUvad6cL774AjfffLMsQU4Nh6MaVkc1THpdALk4PtgrXb28Bg6BJT/ZrUCV2TUhly5INxO72dW3Hmiw1Agq7VXS5GviPKTAWSvLodXqYDAFqXtcjBwVE8TpQxU5kWRDMZvN0Ot0MJqCc87YHdXSEqLXKSe4uZTN7LpWiO5xf7s4G+H+rZjJAL01A3711Vd48sknceutt0pDzUXC8fLlyy87wGlIOp0WYcHu+2f+DQXKYHItQd2m8idvCzUo9hLWpJhCgzwrsbjZBfmG1xSIwTHBJPLLFJ9jZgxT9ESPimrJaQgN1ZJDREREDUcVkwESERERNQQGOURERKRKDHKIiIhIlRjkEBERkSoxyCEiIiJVYpBDREREqsQgh4iIiFSJQQ4RERGpEoMcIiIiUiUGOURERKRKDHKIiIhIlRjkEBERkSoxyCEiIiJVYpBDREREqsQgh4iIiFSJQQ4RERGpEoMcIiIiUiUGOURERKRKDHKIiIhIlRjkEBERkSoxyCEiIiJVYpBDREREqsQgh4iIiFSJQQ4RERGpEoMcIiIiUiUGOURERKRKDHKIiIhIlRjkEBERkSoxyCEiIiJVYpBDREREqqSXuwLkYrE7kF9mgQYatIgKgV4fhPizshiosgCGMCAkCkpkKS2Q6qgxhsMUEXPF26uy22AvOw+NRgtjVBK0Oh0Ux2EHzAWARgOEJQLaZvKsUVkEVFkBYzhgipS7NtSU2MxAeb7rXIlqHZRzpthsg7WqGuFGHSJCDFdexSoHisx2aDVAQoQJGnF+k+wUE+TMmzcPs2fPxsyZMzF//nycOnUK7du39/qza9aswbhx46AWJy9UYNX2bHx9IBd6rQZ39G0lLW3jwwPboLkIyNsLbHwBKD4FJPcArpsNJHYFTBFQAkvpBWhy98K4+SVoi7PgSOwB+3VPwhHfBSHhgQVk9oJTqM5YitCf1wI6Ayy9p0LbawyMcW2gGEVZwM6lwMFPpTqi33Sg51ggqiVUy1wInN0FbHoBKDkNpPQBhj4JJHR2BTxEdblwFNjxNnBkPWAIAfreA3S/HYhtF9DmCits2J1dhNe/P4bcEgv6tInB74d3QofECIQa/H8ocjqdyCk0Y/nWU1h/4BxCDDpMGdwOI3ukICU6JKA6UvBonOIIySwjIwPjx49HVFQUhg0bJgU5DocD58+fd/u5RYsW4aWXXkJubi4iIi7vZl1aWoro6GiUlJRI21eaUxcqMHHRNuSVWtzWd06KwDtT+6Odv4GOeOLJXAZ88yfPsgnvA11Hyd5yYDWXAzuXwPT9X90LNBrYxq6Avtsov1tgRIBjeHckUJbntr46uSeqJnwIY1xrKCLAWfIboPyc+/rkXsDkNeoMdKzlwPa3gO+fc18vnnInrQE6/8b1NZGvAGfpDa5A+WKt0oE73/U70Cmz2PHWphN444djbutF68t79w3ENZ0S/K5iVkEFRr+xGcVmu9v6fu1isXByOpKjGOgEKhj3b9nbycvLyzF58mQsXrwYsbGxtet1Oh1SUlLclrVr10rB0OUGOEpntTuwOiPbI8ARjuaXY+vxAv83WnEe+PYZ72VfPAqU50JuGnM+TJsuuekJTieM6x+HveSs311U1aJ15JIAR9CeOwBn9lYooosqY4lngCOc2w/kbIcqiffjxuc914tnqy9mej1mRBJrGbB5vmeAI5zZBeTt83uTBeU2LNzoHuAI1U5g9qf7ke/lWlxfmsFbG497BDhCZlYRfs4t9buOFFyyBzkzZszAqFGjMGLEiDp/LjMzE3v27MF9991X589ZrVYp+rt4Uar8Miu+Oejlpvdfn+09i6IKm38bLc4GHD5+p+ICUBFA4BRkTtGiIW763oh+d5Gv4gd72QWYDv/LZ7lp/ypYK8shK/E3iS4qX3a/D9groToFx4Bqh/ey0rNApZcbGFHN9erI177L963xfR3x4ee8Uim+9ia70IySSv+2J4Kbrw/6DtTX7MxBtYigqHnm5KxevRq7du2Suqvqs2TJEnTr1g1Dhgyp8+fmzp2LOXPmoCkQTaQGne+mepNOC10d5V6JPI86X1QBibjauuuo0fr5thTdHXX83dU6E7RyJ/fWU0foTOIPh+rojHWXaxTwfqSm+f7R+3/OGHR1/7zWz65T8eN1bVPk57A3Vl6yXVVzcnKkJOOVK1ciJKTuPsvKykqsWrWq3lYcQSQvi/67mkW8jlK1iA7Bnf1854pMHNAGUf5m/Ue18j1yJbY9EBYPuWmiWwNGH12OcR1QHRrn1/ZMUUmwpE3zWW5Pvw8GUxhkJUZRiSRjXwbc77poq01ce8AQ6r0soQsQ5t+xpmYksiXQe7zv8r53+/3Q1jk5EkYfQUmPllGICfPvehsXbsT4/r4HNkwa0JajrJprkCO6n/Lz85Geng69Xi8tmzZtwoIFC6SvReJxjY8//hhmsxlTpkypd7smk0lKULp4USrRunBTzxbSyXWp67okoGeraP83GpkC3PG25xOOPgQYs8hVLjNNVApst73ptY620W8hJNa/BFyRpKzteQeqU3p7lNk73wxnSk/ITrQk9brTlWR8qdRbgWQF1LEhRCQDt4tjfcmFXkxrIN6PEUly1YyUzmAC+t3rGoV3qR53APGd/N5kUqQJ88Z6noNiGPlLd/ZGfIR/DxqiFWfywLbokOA5QGRseiu097KemsnoqrKyMmRlZbmtmz59OlJTUzFr1iz07Pm/i/7QoUORkJAgBTv+UvroKiG7wIzdOUVYu+uM1D01oX8bdG8ZhdaxAbY+iBFWIjdn5zLgws9Aq/5A2l1AdFtAf+XzQQSDtbIM2pIcIGMpDEVHYU3pB23aXdDEtoXeYAxsm4Wn4czZgZD9K6UuKnv6vXAm90RIjPyBnVseikgy3v0eoAtxteCIAEfNN3tbxf+GzhccBdoMAvpMBKLbADrFzGJBSlV4Ejj1E3BwratVsN80IDEViAlsaohya5U05Pu9rVnIKqzA4A7xuC2tJVrFhEEncggCkFtcie0nC/HprtMIM+owbUh7dE6O8DtoouDfvxUxhPziYCYtLU0aQl7j2LFj6NKlC7766ivceOONqgxyLh7eKE6xYExMJRGtYQ6LqxVHCbk4XjjsdjiqLNAZw6QRdcFgs1RIkwEaTD66SZTAbnblo6ixi8oXRxXgsAL6UNmnMaAmSExuKvLagjS3kt1RLS0heh20AQY3lzLbqqDXamEMxmSuhGDcvxX/GLV06VK0bt0aN9xwA9QuMljBTQ0RNOiU3VyqMxikJZiMIcr+m2u7a5ob0WrDlhsKVOiVz4h+aVdTfYnI/goz8v2tNIpqyWkITaklh4iIiFQ0GSARERFRQ2CQQ0RERKrEIIeIiIhUiUEOERERqRKDHCIiIlIlBjlERESkSgxyiIiISJUY5BAREZEqMcghIiIiVWKQQ0RERKrEIIeIiIhUiUEOERERqRKDHCIiIlIlBjlERESkSgxyiIiISJUY5BAREZEqMcghIiIiVWKQQ0RERKrEIIeIiIhUiUEOERERqRKDHCIiIlIlBjlERESkSgxyiIiISJUY5BAREZEqMcghIiIiVWKQQ0RERKrEIIeIiIhUiUEOERERqRKDHCIiIlIlBjlERESkSnq5K9BUlZSVwWJ3IMyoR2RExBVvz+6oRpHZBg00iA83QqvVXHkly/IAeyVgjAAiEq94cw5bJZximxoNtFGtodUr7+0j7ccKGzSaIO7HyiKgygoYwwFTZDCqSUFgdzhQVGGXjnVChFH6nwJQZQMqCwGNFghPlM7v5lDHYrMN1qpqhBt1iAgxoDmwVTlQZLZDJ66PQTpnavZjhEmPcJPy7gmKqdG8efMwe/ZszJw5E/Pnz69dv3XrVvz5z3/G9u3bodPpkJaWhm+++QahoaGy1LOktAwHcsuwYOMpZBVUomtyOB4b3gGdE8MRHh4e0DZPF5nxwY4cfLbnDPRaDSZe3Raj+7ZEi+gA/8bSXCBvP/DTK0BxFpDYDbjuCSC+MxCeENAmnReOQ5u5FJrD6wCdHtW9J6K613ho466CUuQUmrFqezbW7TsLg06LSQPa4NY+V7AfzYVA7h5g0wtAcTaQ3BMYOhtI7OIKHEnWY/3etix8tT8XRp0Wdw9qh5t7pSAl0GPdXBWdArYvAg5/DhhCgP73Ad1vB6JaQLF1vPoBoNttAdexsMKG3dlFeP37Y8gtsaBPmxj8fngndEiMQKhBBzVyOp3ILjRj2eZT2HDoHEIMOkwd0g4je6QgOSokoG0WVlixK6sIr/9wHHklFqS1icHMEZ3RPiFc2r5SaJzir5dZRkYGxo8fj6ioKAwbNqw2yBEBzo033igFP7feeiv0ej327t2L0aNHw2QyXda2S0tLER0djZKSEmn7V6KyshKrd2RhztfHPcrenNgTN/RsBZ2frRsiwLnzza3IK7W4re+SHIHl9w7w/wZdWQxkLgO+fcazbOxSoPtoKUjxh7PgODTvjgLKct3XJ3WHc+IqaOPaQ25iP45ZuAX5ZVa39d1aRGLZtKv9v/nZKoCMJcCGp9zXiyefiR8AXW5U5hNvMwlw7li4GRfKbW7re7WKwuKpVyMlwIt2syOCh8XXA+YC9/Ut+wGTVgKRCgh0Ck8C74g6Frqvb3U1MPE9v+tYZrHjrU0n8MYPx9zWiwbf9+4biGs6BfYQqHSnCipw+xubUWy2u62/ul0s3picjiQ/zxmxH9/4/hje+s8Jt/U6rQYr7x+IQR3ig1LvYNy/Zc/JKS8vx+TJk7F48WLExsa6lT322GP4/e9/jyeffBI9evRA165dpWDocgOcYLtQbsXcf5/0Wvbndb8gv6TCr+1VOaqxJiPHI8ARfjlXjm0nLrn4XI6K88APz3svW/9HoCTHr805bBZg5zKPAEfQ5B+C5tRmKKGLSrTgXBrgCIdzy7DzVFFg+/G7OZ7rxTPBuple9wc1TnP7u1tOegQ4wv4zpdibUyxLvZoc0f265TXPAEc4mwnk7oPsqizAlgWeAY5wJgPI3e/3JgvKbVi40T3AEaqdwOxP9yPfy7W4qbPYHVj4wzGPAEfIyCrCz3llfm/zQpkVb//oHuAIjmqnaz+WKWc/yh7kzJgxA6NGjcKIESPc1ufn50tdVElJSRgyZAiSk5Nx3XXX4aeffqpze1arVYr+Ll6C5WxxJWyOap9NoGLxh8jBWbfP981yzc7TqLBW+VdJ0T3l8FGPiguA+YJfmxM5OJqfv/BZrjnwEaoqvFyEGpHIwfl871mf5R/uzIHZVuX/E2S1j98pP+f95kANTuQTfFHnOZMDW5X3c5QuIgKHQ5/5Lt+1AnD4ec40dh13vw9UO/za5M95pdJzijeiO6ek0jMQaOqKzTasP5Dns/yjnTlSd5Y/9p/1vR9PXqhAiZeAqlkGOatXr8auXbswd+5cj7ITJ1xR4jPPPIMHHngA69evR3p6OoYPH46jR4/63KbYlmjeqlnatGkTtPrqdXV3T4imOn9oNRoY6timSaf1P3FWZ6znRf1MwxJdMjrfSXlO8XoaeftfRRVFXoYvJr1WSrTzSx1/s+tFldPn3JyIoyjyreo6Z9iLeLnndR3XCn2o/N2x9dVR5OdI74jLV9d7p+aarEaGOv5ukYfkbwKyOM+CeS9UZZCTk5MjJRmvXLkSISGe/YHV1a6nsYceegjTp09H37598eqrr0pdVkuXLvW5XZG/I/rvahbxOsEi+vojfWSPt44NRWyYfwFEXLgRkwe281k+ZchV/ifCRbX0PQIotj0Q6t4lWB9ddGtUp93l+wfSp0IfFg05xYebcNfAtj7Lpwy+CiZ/92NMW9doKq8v2BEIC06fM/knPsKEuwb4Ptb3DG5X742MAIQlAulTfJdffS+g1clfx773+C7vNx3Q+nesOydH+nwg6tEyCjFhBlWeM+P7+37Yn1jH+eRLt5ZR0iAZb3q3jkZMWD0P241ItqtBZmam1CUlWmdEQrFYNm3ahAULFkhfi+4poXv37m6/161bN2RnZ/vcrsjXEQlKFy/BkhQZhvnjuktJam6vqddi/p09kBwX49f2RPQssttFwuSlhqcmoVerAIKHqFbAba+5hlpeTB8CjH4diPVvNJRGpwO6j4EzpbdHmbPTb1Cd3AtyE61dt/Ruie4tPffjDd2TpeRjv0WkAHe85fk0awgF7lgERLren9S4xBPiHemtpMT8S93Su4V0E6PLIM5rEUAkdPEs6zUOSOgM2YkBEv2mea9L74kB1TEp0oR5Yz2vWWIY+Ut39pYCArUx6LRS8C9GPV1qXL/WuCohzO9tJkYY8fwYz/0oGgFeHNtbeoBHcx9dVVZWhqysLLd1osUmNTUVs2bNkhKNW7dujXvvvRfPPfdc7c+IFp2bbroJzz/vI7m2AUdX1YywOl1UiVU7svHLBQv6tgzDnf3bolV0GAymwA6sGH63J6cIq3fkSF1i4g3ZvUUUEiMDHCUiRliJBOOdS4HCE4AIUNImAzHtAGNgQ2yrC09Bc3oHNPs+hFN05fSdguqkHtDF+W6Jamx5JZXIzCqW+piNeteJnZoi9mOAFy6b2ZXjJPbjhV+ANgOBPhOB6LZ+j1Cj4BLnTMapQnyceRohBnGsr0JqciQSAj3WzVXpWSBrM7DnA1cAP+BBIKl7UObVCpqSM6467l0NGMNcdRTTYgRYx3JrlWsKgq1ZyCqswOAO8bgtrSVaxYQpqpsl2HKLK7H1RAH+tfuMNJ/N1MFXoXNyRMCBXbnFjuyiSqzYckq6Jw7pGI9b+rRE65jQ4MxPFqT7tyKGkNcYOnSoNA9OzRBy8f/TTz+NJUuWSOuXL1+Of/zjHzhw4AA6duwoS5BTw2GvgtVuk1qOxPw9wWCxV0mTAfrdteJLlR2wl7vmdKkvx+RyN2kukVqJ9KHKfWKutFdJfesmfZD2o0jAdFhdrWFyN+FTwx7r5koE9OK9rTc1mzqKUZliCdHrgnZTbgrMtirotVrpQVDp+zEY929FP44++uijsFgs0lDywsJC9OnTBxs2bLjsAKch6Qx6hBmCu/tCgrw96A2APja4m5Q5/+ZyhAZ7P4pWG7bcNI9j3VyJFpJmVkfRjdMc87fCjPpmtR8V1ZLTEBqqJYeIiIgajiomAyQiIiJqCAxyiIiISJUY5BAREZEqMcghIiIiVWKQQ0RERKrEIIeIiIhUiUEOERERqRKDHCIiIlIlBjlERESkSgxyiIiISJUY5BAREZEqMcghIiIiVWKQQ0RERKrEIIeIiIhUiUEOERERqRKDHCIiIlIlBjlERESkSgxyiIiISJUY5BAREZEqMcghIiIiVWKQQ0RERKrEIIeIiIhUiUEOERERqRKDHCIiIlIlBjlERESkSgxyiIiISJUY5BAREZEqMcghIiIiVWKQQ0RERKrEIIeIiIhUSS93BajhlJhtsFRVI8yoQ2SIAc2hjnZHNYoqbNBoNIgPN0Kr1aA5KDbbYFX4sW6ObFUOFJvt0vsxIcIo/U9EzbAlZ968edIF4NFHH61dN3ToUGndxcvDDz8saz2byg3vp2MX8MB7OzH69c34/Qe7sSenGBXWKiiqjkfP4/4V/6vj3iusY06hGa/8+xeMeXMLxr+9Fe/8dAK5JZVQM7Ef//PLedy33LUfZ67eg/2ni2FW0LFursT78aVvjuCOhVsw4e2tWLb5FPJKLHJXi6hZ0TidTqfclcjIyMD48eMRFRWFYcOGYf78+bVBTpcuXfDss8/W/mxYWJj0c5ertLQU0dHRKCkp8ev3mqpKWxVW7cjGc18c9ih7+55++E23ZNlbN8y2Kqzclo2/f+VeR/GQ+/bd/TAigDqeLjJjzMItyC+zuq3v1iISy6ZdjZToUKiNCGSWbz2FF9Yf8diP70zpj+tTk9hyIJPsQjPueGMzCipsbut7t4rC4qlXIzkqRLa6ETUVwbh/y96SU15ejsmTJ2Px4sWIjY31KBdBTUpKSu3SHAKVK3Gh3IYXvna/6dX406f7ca7Uoog6vvjNzx7rRbj957UHcK7M4ncX1art2R4BjnA4tww7TxVBjcR+fPnfv3jdj7OlY+25P6hxuqiW/nTSI8AR9p0pxb7TJbLUi6g5kj3ImTFjBkaNGoURI0Z4LV+5ciUSEhLQs2dPzJ49G2azuc7tWa1WKfq7eGlOzhRVwuao9lomLrqFZs8Lb2M7XWiG3eG9AfF8uVXKqfGH+PnP9571Wf7hzhyp9UhtThVUoKra+34UAV+RAo51c1RYYceX+3N9lq/ZmQNblfdzlIhUlHi8evVq7Nq1S+qu8uauu+5Cu3bt0LJlS+zbtw+zZs3CkSNH8Omnn/rc5ty5czFnzhw0V3pd3d0TOgUk4ga7jqJHxqjzHa+b9FroVNhtY6jjbxbU+Dc3BfW9H0MMWmhlf7wkah5kO9VycnIwc+ZMqaUmJMR7//SDDz6IkSNHolevXlKX1ooVK7B27VocP37c53ZFa4/ov6tZxOs0Jy2iQxBh8h67to0LQ2yYEXJrGROKcKPOa1m7eP/rGB9uwl0D2/osnzL4KpgM3l+vKWsTF4pQH39Xx8RwxIRzlJUcEiJMmHh1G5/lkwe0g55RDlGjkO1My8zMRH5+PtLT06HX66Vl06ZNWLBggfS1w+Hw+J2BAwdK/x87dszndk0mk5S3c/HSnCRFheDVCWm4tDFEtGaI9UpIeEyKMvms4/wJadLf4A+RpHxL75bo3tLzWN/QPVlKPlajpEgTXhnfR2o5uLSl4JXxaUiKlP9YN0eiJfLO/q3ROTnCo+zW3i3Qyct6IlLZ6KqysjJkZWW5rZs+fTpSU1OlbimRg3OpzZs341e/+hX27t2L3r17X9brNLfRVTUjrE4XVWLl9mwczS9D3zYxuLNfG7SKCYVBr1VkHdPbxmJsemu0jg2Fvp5uGF/ySiqRmVWMj3bmwKjX4p7B7ZCaEoXESBPUSuQanS6sxPvbs3D8fDn6t4vDHX1bXdF+pOAQ0xdknCrCJ5mnpcBTtCh2TYmUWnqIqHHu34oYQl5DDBlPS0uThpCLLqlVq1bh5ptvRnx8vJST89hjj6F169ZSi8/lao5BTg2HoxpWRzVMep0icnG8qXJUS4nSwaxjpb0KWo1G2mZzUbMfQ/Q62acIIHfN8f1IFAzBuH8rdsZjo9GIb7/9Vgp4Kioq0KZNG4wdOxZ/+ctf5K5ak6HTaRGm8Kd50doQ7BaHUINi39ZNaj9ScDTH9yORUiiqJachNOeWHCIioqZKFZMBEhERETUEBjlERESkSgxyiIiISJUY5BAREZEqMcghIiIiVWKQQ0RERKrEIIeIiIhUiUEOERERqRKDHCIiIlIlBjlERESkSgxyiIiISJUY5BAREZEqMcghIiIiVWKQQ0RERKrEIIeIiIhUiUEOERERqZI+kF/SarXQaDQ+yx0Ox5XUiYiIiEieIGft2rVX/spERERESgtyRo8e7fb9p59+ij179qBnz54YP358sOpGREREJF9OzgsvvIBJkyZh/fr1uO+++zBnzpwr3SQRERGR/EHO8uXL8c4772DHjh347LPPsGzZsiuvFREREZHcQc7Zs2cxaNAg6Wvx/5kzZ650k0RERETyBzliJJVe70rt0el0qK6uvvJaEREREcmReNy3b9/aIeSVlZW49dZbYTQa4XQ6r7Q+RERERPIFObfffrvPkVYXlxERERHJReNUefNLaWkpoqOjUVJSgqioKLmrQ0RERI10/9YH+sJ1YTBBREREcgsoyImJifH6sQ6iUUis58c6EBERkdwCCnKEjz/+GHFxccGtDREREZHcQc4111yDpKSkYNWDiIiISBlBzqFDh1BQUIDw8HCkpKRIQ8ibk5JKOyx2B8KMOkSGGKBIlcVAlQUwhAEhzJNStcoioMoKGMMBUyQUqSnUMdiqbEBlIaDRAuGJgJdufjXWsdhsg7WqGuEmHSJMBmXuR3Mh4LABxgjAFHHFm7NVOVBktkOrARIiTF5TOqgJBTnDhw+vzcHRarVITU3Fvffei8ceeyyg7c2bNw+zZ8/GzJkzMX/+fLcy8To333yz9PlY4hPQ5RymLoKbA2dKsOC7o8gqMKNrSiQe+01ndE6KRLgp4N0ZXOYiIG8vsPEFoPgUkNwDuG42kNg1KCczKYg41md3AZteAEpygJRewNDZQEJn18VbCcTNpLaOp4GUPsDQJ/9bx3CoVlEWsGMRcOgzQG8C+t8H9LgdiGoJxSg6BWxfBBz+HDCEuOrYXdSxRWCbq7Bhd04xXv/+KM4WW9C7dTRmDu+MDonhCDXqg1PHqx8Aut0WcB1RUQCc2Qn850Wg9CzQMh0YOguI7wwYQv3enLg/5RSasXzrKaw/cA4hBh2mDG6HkT1SkBIdElgdKWgCetedPHlSOrB2u10aaSU+2kF8dtVTTz2FqqoqPPHEE35tLyMjA2+//TZ69+7ttVwEPUqIiivtDny66zTmrDtUuy6v1IJNv5zHm5PTcUOPFOhEGC8nmxnYuwr45k//WydO5KMbgAnvA11HAdornuialMBWAWS+C3z3zCXH+t/AxNVAl5HytxxYy4GdS4Hvn7ukjuuBSWuAzr+Rv44NQdyY3xkOVFz437pvZgP71wATPwj8Bh3sOi6+HjAX/G/d+ieBfR8Bk1YCkf7Vsdxix7LNJ7Hg+2O16/IOWfDt4XNYfu8A/Lpzov91LDwJvCPqWPi/dV//0VXHie/5XUdYyoBtC4Ef/+H+fjzyFXDPWqDDUL+rmF1oxug3NqPYbK9d9/TnB/H53rNYODkdyVEMdOQU0N2uXbt2uOqqq9C5c2f069dPmvH4ueeew5tvvolFixb5ta3y8nJMnjwZixcvRmxsrEf5nj178PLLL2Pp0qWQ24UyK+Z+9bPXsj//6wDySy2QXcV54NuLbnoX++JRoDy3sWtEDXmsf/ib53ox9dUXM4GyXGXUcePzddQxD6ojuuS2vuke4NQ4uxvI3Q1F1HHLa+4BTo2zmUDuPr83eaHchtd/+F+AU6PaCcz+dD/O+Xt9FF3tWxa4Bzg1zmQAufv9riMq8oGfXvZc76wG1j3q9/tRpCy8tfG4W4BTIzOrCD/n1j3dCjW8oD7ST5w4ER9++KFfvzNjxgyMGjUKI0aM8Cgzm82466678MYbb0h5P5fDarVKrUsXL8FytqQSNof3z+YqrLCh0GyD7IqzXf3M3oiLrmiqJXUoOA5UV3kvExdrkcMgt4JjQLWPKSXEE7QS6hhs4qZ8aK3v8l3vuXJMZK/jZ77Ld60AHD7eWz4cOVcmBTTenC6qlLr6g1rH3e/7fm/5cu6gK8D2puikK4/RDyK4+fqg78Bozc4cVPvaKdQogj4ZYKdOnS57O6tXr8auXbuk7ipvRH7PkCFDPD46oi5z587FnDlz0BD09XRFyd5VJVWiniQ/ra6xakINTVdPsr9GAce6KdQx2ET3W11/tz5U/i7jy6mjn92IRn3df5PO327J+uoo8nOgCe770c/jIqpo0Pn+HZGfo8be2KZEG+hkgKJr6dKlZv3lyMnJkZKMV65ciZAQzz7Lzz//HN9//71HEnJ9RPKymAK6ZhGvEywpUaGI9JFc3Do2FLFhChhhFtXK98iV2PZAWHxj14gaSmw718g5b0RSb6gC5rGKa+87mTOhCxCmgDoGmxj9kz7Vd/nV9wJamQcphIk6Tqmnjv4FoJ0SI2D0ccPv1iISMWEG/+vY9x7f5f2m+x8sJqX6DnRSevt9zsSFGzG+fxuf5ZMGtFVEPmlzpr2SyQBFEHLx8sMPP0j/X47MzEzk5+cjPT0der1eWjZt2oQFCxZIX2/YsAHHjx+XAqeacmHs2LEYOtR3cpjJZJI+VuLiJViSIk2YPzFNGiLo9pp6LeZPSFNGgllkCnDH266hlhfThwBjFrnKSR0ixLF+y/OJWwQV4j0QmQzZRSQDt7/ppY5hrvdjhArn2hLBQdpdQGKqZ1mPsUBCV8hOp3MFECLQvFSvca4g2U+JkSa8eKfn4JFwow4v3dkH8REmP+uoB/pN816X3hMDqqP0frztNc/1YiTi7QuB8AS/NidacSYPbIsOCZ6jBMemt0J7L+upCXxApxgynpeXd0WTAZaVlSErK8tt3fTp06Wh6LNmzUJCQgIuXHBP3OvVqxf++c9/SonO7du3l+UDOsUIq9OFZqzakY1fzpWhb5sY3NmvDVrFhMJQT3Nto46wErk5O5cBF34GWvV3XXSj2wJ6hc7pQ4GPsBLHOmMJUHAUaDMI6DPBdazFTUIpdRTDqcUoq9o6TgSi2yinjg1B5BxlbXGNdhTdPwMeBJK6KSuwk+q4GdjzgSs4lurYHYgIYCSUSPuzViGnyIz3tmbhVEEFBraPx+i0lmgdGxZ4d37JGVcd964GjGGuOiZ2C7iO0og/MbIs4x1XHs5VvwZ63gnEtAm4Oz+3uBLbTxZKo2/F3GnThrRH5+QI/wM7Cvr9O+AgR7TYJCcnB3UyQNFCk5aW5rOLSjT7+TtPTkN9CrnDUQ2roxomvU4ZuTjeiM8Qc1hcrTjMxVE3kSTqsCoj36Mp17Eh2M2u3CMxV45SiQcjbfDqWOWolgZphOh10Abr+hjkOsJhdw3SCOL70Wyrgl6rrTc/iRT+KeQNMRlgU6PTaRFWR8KZIogmaR2bS5sF0SKi9FaRplDHhuArb0pJRAtJEOl1WmlRch2lQRr1DdTwU1igEx6SuicDrLFx48Y6ywNodCIiIqJmKqDuKl/ee+89PPvsszh69CiUoqG6q4iIiEil3VW+JgPs0aNHMDdJREREFJCgdpoaDAZpSDgRERGR3AJqyXE4HHj11VexZs0aZGdnw2Zzn6K8sFCFU7UTERGR+ltyxMcmvPLKK5gwYYLUV/aHP/wBY8aMkUZZPfOMjw+HJCIiIlJ6kCM+ikF8avjjjz8uzUQ8adIkvPPOO/jrX/+Kbdu2Bb+WRERERI0R5IjZjsXsw0JERITUmiPccsst+PLLLwPZJBEREZH8QU7r1q2Rm5srfd2xY0f8+9//lr4WnyYuPjuKiIiIqEkGOXfccQe+++476etHHnlEmgSwc+fOmDJlijTrMREREZEqJgMUeThbtmyRAh3x4ZlKwskAiYiImp5g3L+veJ4c0UW1bt065OfnS5UhIiIianLz5LRt2xa7d+9GfHy89P2GDRswatQoKQ9HDB//xz/+gQ8++ADjxo1rqPoSERERBb8l5/Tp09JEgDVeeuklafh4cXExioqK8NBDD+HFF1/0Z5NEREREDeKKuqsOHz4sJR7rdDqpJUd8raQP5yQiIqLm64qCHNGCExcXV/t9bGwsysrKglEvIiIiosYLcjQajbRcuo6IiIioSScei9Hm06ZNq53wz2Kx4OGHH0Z4eLj0vdVqbZhaEhERETVkkDN16lS37++++26PnxETAhIRERE1qSBn2bJlDVcTIiIioiC64skAiYiIiJSIQQ4RERGpEoMcIiIiUiUGOURERKRKDHKIiIhIlRjkEBERkSoxyCEiIiJVYpBDREREqsQgh4iIiFSJQQ4RERGpEoMcIiIiUiW/PruKGo7dUY0isw0aaBAfboRWq5G7StSUVBYBVVbAGA6YIqFITaGOzZDNakVRRSXEJSchOgoabTN59jUXAg4bYIwATBFXvj3x3hbvcY0WCE8ENAq8hlc1gToGmWLezfPmzYNGo8Gjjz5au+6hhx5Cx44dERoaisTERIwePRo///wz1OZ0kRnzvz2KMQu3YNxbW7DoPyeQW1Ipd7WoKTAXAce+A1ZNABYPAz65Dzi7G7CVQ1E3k2PfAqvG/7eODwBn9wC2Crlr1uxlny/Bi+sPY8yiXZi4dA/e/fEI8gpLoWoVBcAv3wCrxrnej2sfAvL2AfYAr7lOJ1B4Evj2GeCdEcC7o4CMxUBpLhTD+d86/vuvF9XxHWXVsYFonE7x18srIyMD48ePR1RUFIYNG4b58+dL6xctWoTU1FS0bdsWhYWFeOaZZ7Bnzx6cPHkSOp3usrZdWlqK6OholJSUSNtXYoBz55tbkVdqcVvfJTkCy+8dgBbRobLVjRROBAnbFwHfPeO+XjydTVwNdBkp/5OatRzY/hbw/XPu60W9Jq0BOv9G/jo24wDn9rd2oLDC5rY+rVUk3p7cB8lx0VAdSxmweT7w4z/c14uWjXvWAh2G+r9NETyIYEm0kFys9UBgwgogMgWyKzwBLL7es45tBwHjliujjg10/5a9Jae8vByTJ0/G4sWLERsb61b24IMP4tprr8VVV12F9PR0/O1vf0NOTg5OnToFNahyVGNNRo5HgCP8cq4c204UyFIvaiIqzgM//M1zvXhu+WImUJarjDpufL6OOubJUatmT3RRLf7xuEeAI+w5U4YDZ0qgShX5wE8ve653VgPrHvX//Wi3AD/N9wwehNPbgXMHIDt7JfDjK97rmL0NOHcQaiZ7kDNjxgyMGjUKI0aMqPPnKioqsGzZMrRv3x5t2rTx+XNWq1WK/i5elErk4Kzb5/tGtGbnaVRYqxq1TtSEFBwHqn28P8TFurIQsis4BlQ7vJeVnlVGHZuhwvJKfH3I90PUmj35qLKr8Nojbui+Oi+KTgKVxf5tT7x/D3/mu3zXe0B1NWRVWQQc/tx3+Z6VvveJCsga5KxevRq7du3C3Llzff7MwoULERERIS1ff/01NmzYAKPR6PPnxbZE81bNUldAJDetRgODzndTvUmnZQIy+abzfR5INJfXpYvmXsdmSPQQGnS+L/8hOo06exHrez/6nXStqXubhjAFdMdqAJ3Bd7EhVAF1VGGQI7qdZs6ciZUrVyIkJMTnz4murN27d2PTpk3o0qWLlLtjsXh279SYPXu21H9Xs4jXUaq4cCMmD2zns3zKkKsQauBNgHyIbee6iHqT0BkIjYPs4tq7LqLeJHQBwhRQx2YoITICE/om+Sy/6+qW0OlVOPg2KdV3UJLS2/9zJjwB6HuP7/J+U+UPIMITgLQ66pg+FWomW5CTmZmJ/Px8KddGr9dLiwhkFixYIH3tcLiauEVrTOfOnaXcnI8//lgaXbV27Vqf2zWZTFKC0sWLUonRZCN7pKBXK886Dk9NQq9WKkz8o+CJSAHueMvzIiqCijveBiKTIbuIZOD2N73UMQwYswiI8H2jpYajM+gxYUA7dEz0HDo9ulcCOib6CJ6bOvF+vO01z/ViGPntC10BgT9EC0n/6UB8J8+yPpO8r29sOgMw4H4gvqNnWdrdQFwHqJlso6vKysqQlZXltm769OnSaKpZs2ahZ8+eXvNtRHKy6MKaNm2aKkZXCXklFuzJKcLqHTnQ6zS4Z3A7dG8RhcRI3y1cRLUjrIqzgYwlQMFRoM0goM8EILotoNMrp45FWcDOpRfVcSIQ3UY5dWymcgtLsOPEBXyy9wJCDVpMHdhSGtmZEKPiBywx4q/olGsItcjDuerXQM87gZg2gDbAlvOSM0DWZmDvasAYBgx4yNVqJOaiUYqSM8CpH4F9a1xzVQ18CEjsqqw6NsD9WxFDyGsMHToUaWlp0hDyEydO4MMPP8QNN9wgzZFz+vRpaS6dzZs34/Dhw0hKSlJNkFPDYq+SJgM0sYuK/OWoAhxWQB8aQF5BI2kKdWymzGazNC2HaAlvNhx212SAwXw/2syuQEmv4P1oawJ1DOL9W7GPUSJP58cff5QCnqKiIiQnJ0tdVlu2bLnsAKepCTEo9nCQ0okWEaW3ijSFOjZTYWEq7Z6qrxunroTcQIhWHKUzNoE6BpGiWnIaQlNqySEiIiIVTQZIRERE1BAY5BAREZEqMcghIiIiVWKQQ0RERKrEIIeIiIhUiUEOERERqRKDHCIiIlIlBjlERESkSgxyiIiISJUY5BAREZEqMcghIiIiVWKQQ0RERKrEIIeIiIhUiUEOERERqRKDHCIiIlIlBjlERESkSgxyiIiISJUY5BAREZEqMcghIiIiVWKQQ0RERKrEIIeIiIhUiUEOERERqRKDHCIiIlIlBjlERESkSgxyiIiISJUY5BAREZEqMcghIiIiVWKQQ0RERKrEIIeIiIhUiUEOERERqZJe7go0WZXFQJUFMIQBIVFQovxSCyx2B8JNesRHmK58gw47YC4ENADCEgHtlcfIJWYbLFXVCDPqEBliuPI6NgBLaYF0rDWmCJjCo694e3a7HUVlFdJujI+KhFavQ7NQWQRUWQFjOGCKlLs2REFlq3KgyGyHVgMkRJig0YgzXGGqrK7zUKMFwhMBJdZRrUHOvHnzMHv2bMycORPz589HYWEhnn76afz73/9GdnY2EhMTcfvtt+O5555DdPSV32iuKLjJ3QtsegEoOgkkdgeGzQYSUwFTBJTgXGklDp0tw8KNx5BTWImuyRH43fDO6JgYjrjwAIOd4mxg5zLgwCeATg+kTwV63glEtwpsc2YbDpwpwT+/OyrVsVuLSDw6ogs6JUVIQZkSWEovQJO7ByGbX5L+fkdST9iunQVnfFeYwgO7SedcKMHKrafwxaECGHRa3NUvCbf2aY2UOGUGykEhAuOzu1znTMlpIKUPMPRJIKGzK+AhasKcTidyCs1YvvUU1h84hxCDDlMGt8PIHilIiQ6BIjidQNEpYNtbwJEvAUMoMOBBIPUWIKoF1EzjFEdIZhkZGRg/fjyioqIwbNgwKcg5cOCAFORMmzYN3bt3R1ZWFh5++GH07t0bH3/88WVvu7S0VAqKSkpKpO1fEXslkLkcWD/Ls2z8CtcbRivvU7loGVm1IxsvrD/iUfbapL64qUcK9Hqt/wHOkhuAslz39Uk9gLs/BqJa+rU5s60KK7dl4+9fHXZbLx4q3r67H0Z0S4ZWPA7JyGouAzLegemHZ9wLNBrY7lwJQ7eboPGzJUsEOGPezsD5Mqvb+u4tIrD0njSkxMkYvDcUazmw/S3g++fgcbAnrQE6/6ZZPE2SemUVVGD0G5tRbLa7re/XLhYLJ6cjOUoBgU7hCWDx9a5WnIu1HQSMWw5EpkCJgnH/lj0np7y8HJMnT8bixYsRGxtbu75nz5745JNPcOutt6Jjx464/vrr8fe//x3r1q1DVVWVTJXNBzY85b3si8eAsjzIraDChlc3HPVa9sznB3GmpNK/DTqqXIHdpQGOkH8QyNrsdx0vlNvw4jc/e6wX4faf1x7AuTIL5KapOA/Tpr95FjidMH79GGzFZ/zuohItOJcGOMKh3HJkniqEKlWcBzY+D68H+4uZijhniAIl0gHe2njcI8ARMrOK8HNuKWRnrwR+fMUzwBGytwHnDkLNZA9yZsyYgVGjRmHEiBH1/mxNNKfX++7OsFqtUvR38RI0oqndYfNeZi5wLTLLKaqEzVHtMwAqrPBRf18qC1xdVL7sfh+wVfi1ydOFZtgd3hsQz5dbUeRvHRuAs/AkUO0jmC4/5+qC8YPIwVl30Pf746M952GxyB/cBV3BMaDa4b2s9CxQqdLgjpoFEdx8fdB3oL5mZw6qq2XuLKksAg5/7rt8z0rXQ4dKyZr8sHr1auzatUvqrqrPhQsXpHycBx98sM6fmzt3LubMmYMGIXJR6iJzV5Vg0NXd9K/zuxtIC+jqSAjWmVxJbH7QB72ODaCuv1m09Ph5rDX1HBujXgOtGrttdMa6yzXynzNEgRKnrMit80Xk58h/Wmvqvp6J/Bz5K6m+lpycnBwpyXjlypUICam7z1K0xojWHpGb88wzl+RIXEIkL4sWn5pFvE7QRLYETD76BWPaAWFxkFuL6BBE+EjcbRsXhphQP0cwhScA/e/1XT7gAddJ4oeWMaEIN3q/ubWLD0NsWD03xkagiWnrOyk2viOqQ/071mIU1V39kn2W33N1CxhNQRgBpzRx7X2/PxK6KOKcIQpUXLgR4/u38Vk+aUBb+UdZhScAaff4LheDSFRMtiAnMzMT+fn5SE9Pl7qfxLJp0yYsWLBA+trhcDVxl5WV4cYbb0RkZCTWrl0Lg6Hum7TJZJK6tC5egiYiBRiz2LPlQm9yrY+UP0s9JSoUL4ztLQ1jvJhJr8WLd/ZG23g/R7OIE7T7aKBFH8+yLjd5X1+PpCgTXp2Q5rWO8yekIUkBiXqaqGRYb13o+YRjCIXttrcQEutfsrUYJn5bWmspyfhSI1Pj0S1FpUOqI5KB29/0sh/DgDGLgIgkuWpGdMVEK87kgW3RIcHzujo2vRXae1nf6HQGYMD90sOZh7S7gbgOUDPZRleJ4EWMmLrY9OnTkZqailmzZkmJx6IFZ+TIkVLg8tVXXyEsLMzv1wnq6KqaJK6iLCDzXeD8YaBVfyDtLiC6LaBXxjwvYoTVmeJKrNyejVMFFejRIhrj+rdG65hQhAY6PLs0Fzi9A9i1wtUFcfX9QEqvgG9SlbYqnC5y1fFofhnS28ZibHprtI4Nhb6O5t/GZDWXQ1uSJQ2dNxQdhbXF1dCmTZRaefSGwFqb8gpLsPNUoZSDY9JrpBYcEeAkxKpwZFUNkbMlzpmdS4GCo0CbQUCfiUB0m/q7gImagNziSmw/WYhPd52W5vyaNqQ9OidHBGd+smApOQOc+hHYt8bVSj3wISCxq2u+HIUKxv1bEUPIawwdOhRpaWnSEHLxx91www0wm81SC054+P8iYjFnjk6nkyfIqSFamhwWQB+iiFwcb+x2Byr+OxlgXf3G/m200tWSJVqvgqDKUS0lSpv0OmXk4njhsNvhqLJAZwy77PddfSotldBqtFIA32yIkXoOK6APDcpEkkRKI6bH0Gu1MPo7TUdjspld96wgXcMbUjDu34p9jBIJydu3b5e+7tSpk1vZyZMncdVVV0FW4manU0BTZB0MBh1iDEEOwPzMv6mPaLVRSsuNLzqDQVqCKTQkuPuxSRCtNmy5IRULMzaB97fR/x6RpkxRLTkNocFacoiIiKjBqGIyQCIiIqKGwCCHiIiIVIlBDhEREakSgxwiIiJSJQY5REREpEoMcoiIiEiVGOQQERGRKjHIISIiIlVikENERESqxCCHiIiIVIlBDhEREakSgxwiIiJSJQY5REREpEoMcoiIiEiVGOQQERGRKjHIISIiIlVikENERESqxCCHiIiIVIlBDhEREamSXu4KEJEyORwO2O12uauhGgaDATqdTu5qEDUrDHKIyI3T6UReXh6Ki4vlrorqxMTEICUlBRqNRu6qEDULDHKIyE1NgJOUlISwsDDekIMUOJrNZuTn50vft2jRQu4qETULDHKIyK2LqibAiY+Pl7s6qhIaGir9LwIdsX/ZdUXU8Jh4TES1anJwRAsOBV/NfmWuE1HjYJBDRB7YRdUwuF+JGheDHCIiIlIlBjlERESkSgxyiOiyTZs2DbfffrvbuvPnz6Nnz54YOHAgSkpKZKsbEdGlGOQQUcBEgHP99ddLI4f+/e9/Izo6Wu4qERHVYpBDRAG5cOEChg8fDpPJhA0bNtQGOK+88gp69eqF8PBwtGnTBv/3f/+H8vJyqWzjxo1S8q2vpcZPP/2EX//611LwJLbx+9//HhUVFbXlV111lcfv/r//9/9qy99880107NgRRqMRXbt2xXvvvedWd/Hz4mduuukm6TU6dOiAjz/+uLb81KlT0s/s2bOndt1TTz0lrZs/f37tup9//hm/+c1vpL+9ph5iwj8iUgYGOQGylBXCUngG1vIiuatC1OgKCgowYsQI6PV6KcC5+Mau1WqxYMECHDx4EMuXL8f333+PP/7xj1LZkCFDkJubKy2ffPKJtK7me7EIx48fx4033oixY8di3759+PDDD6Wg53e/+51bHZ599lm333366ael9WvXrsXMmTPx+OOP48CBA3jooYcwffp0/PDDD26/L4IW8Rp79+7F5MmTMXHiRBw+fNjr33v69GkpuKmZ66bGvffeKw0H37x5s1SHiwOg5sxSesF1fTQ3o+7LKitQlgeU54vZH9FcFJttOFdqQYW1CorkVIi5c+eKd4Vz5syZtevefvtt53XXXeeMjIyUyoqKivzebklJifS74v9gqCwtcFp++d7pWHqT0/lyqrNqxR1O66kdTkt5cLZPJKfKykrnoUOHpP+9mTp1qvPaa691pqWlOQ0Gg3PQoEHOqqqqOrf50UcfOePj4z3W//DDD9K5ean77rvP+eCDD7qt+/HHH51arba2Xu3atXO++uqrXl9vyJAhzgceeMBt3bhx45w333xz7ffidR9++GG3nxk4cKDzt7/9rfT1yZMnpZ/ZvXu39P2UKVOkel36uqGhoc6VK1fWfr9s2TJndHR0wPu3qassPu+0HPzK6Vw83HV9XDnRacvZ7bSYS52qVV3tdBaccDq/ftLpfKWH0/laf6dz+9tOZ8lZp5oVlFucGw7mOke//pNz4N+/dT60Yqfz0NkSZ6Wt7utBY9+/FdGSk5GRgbfffhu9e/d2Wy+mQRdPdH/605+gBNbKCmj2rYZp5e3QZm0GSs9Cd/w7GJeNAI5/B0eVQiNZoiD6z3/+g+rqaqkr59ixY3jxxRfdyr/99lupG6tVq1aIjIzEPffcI7X8iPP5coiWlXfffRcRERG1y8iRI6XXPHnyZL2/L1pjrrnmGrd14vtLW2kGDx7s8b23lpxdu3ZJrUPPPfecR1n79u2lssv929TMUlEMzfY3YVozETid4bo+/vIVDEuGQZOzA6pVdApYPAzYthAoyQEu/AJ89QSwZqqrZUeFyix2LNp0AvevyMSenGLklVqw/mAebnntJ+l7JZE9yBF99aKpePHixYiNjXUre/TRR/Hkk09i0KBBUAJNRT5M37uaxC9lWv84qkpcze1EaibyV7777jt0794dCxcuxDPPPCN1K9Xkstxyyy3SA4vojsrMzMQbb7whldlstsu+JoguJhFE1Swi8Dl69KiUZ9PYRLeXyPfx9nlTS5Yskf52EcyJYOzhhx9Gc6UzX4Bp6yueBc5qGL96DJaiM1AduwX4aT5Q6SVt4fR24NwBqNGFMive/vGEx3pHtROzP92P/DILlEL2IGfGjBkYNWqU1L8fDFarFaWlpW5LsDhLTgMOHxdqcwE0lQVBey0ipRJJxQkJCdLX48aNw5gxYzBlyhQpiBFBjWhxefnll6WHky5duuDs2bN+bT89PR2HDh1Cp06dPBaRSFyfbt26STkyFxPfi6DsYtu2bfP4XvzuxT7//HP88ssvbknNFxN/42233Yb+/ftj9+7dUp5Qc+XIOyQFNF4VZ0FTqawn/KCoLAQOf+a7fNd7QLWPfdKE7T9b6jPt6OSFCpSYlfOxJbJ+QOfq1aulpmDRXRUsc+fOxZw5c9AQNNp6dpeWH7hHzY9oqRHz5Ijzbvz48VIi7muvvYZbb71VCi7eeustv7Y3a9YsKXgQicb333+/NEpLBD0iwfn111+v9/efeOIJqR59+/aVHp7WrVuHTz/9VOpGu9hHH30kBSe/+tWvsHLlSuzYsUNqmbmY6IoTf4uvz/ISrVWia00Ed23btpU+eLPZ0tcdgGpUeX3UALo6/m5DmBjKB7Ux6epuH9FplfM3y9aSk5OTI42AEBeXkJCQoG139uzZ0oRkNYt4naCJagmYoryXxbRDdUhc8F6LqImIi4uTuptfeOEFWCwWaQi5+FoEPuL8Fg8e/hBdXZs2bZJaUMQwchGs/PWvf0XLli0v6/fFZIX//Oc/8Y9//AM9evSQ8v2WLVuGoUOHuv2cCMrEg5Z4vRUrVuCDDz7waO0RrUdTp071+jqifiIIW7VqlRTgNHfaxK6+b/jJPVEd4p6OoArhCUDfe3yX95uqyiCnW8so6H0EMr1bRyMmrP4W18aiEdnHcrzwv/71L9xxxx3Q6f4X3TscDmmeCTEEVXQ71ZSJuTWGDRuGoqIiv+egEN1VYg4LEfBERfkIUC5Tlc2K6mPfwfjRZPdmWb0JtsmfwdjePZGRqKkRQYpI7hUJtcF8+FAacZ0RCcOXzt7c0NS8f20WM5yHPofp84fcC4wRsE35AsbWfaFKIo1hxWig4Jj7+j6TgBv+5gqEVKbSVoV1+3Lxx49duXg1Ik16fPTwYKS2uLJ7bTDv37J1V4nRF/v373dbJ+aySE1NlZqrLw5+lEJvNMHa/jrYH9oC7FwGQ+ERWFPSoe07GdroNnJXj4hINsaQMFi73gzbgz9Bk7EEhpKTsLYaDG2f8dDFqLilK7o1MOVzQIy43bsaMIYBAx4CklJVGeAIoUY9bu6Zgp6torFiyymcLqrEkI7xuKVPS7SOcZ9LSm6yBTliNIJozr6Y6HuPj4+vXZ+XlyctYpiqIIIi8XuiaVg0kcvBFBoOhHaD48a/w2a3QG8MU2RARkTU2EzhUUB4Lzhufgm2KgsMxjBom8P1MboV0Hs8kHqLKzdTb4LaRYQY0L2FAc/d3hN2RzVC9DpoFZSLo4jE4/qIhMWLk4ivvfZa6X/Rvy4+KFBOOr1BWoio6ZGpl77Z0BkM0tLsiFacZsag00qLUsmWk9NYgpmTQ6R2as4ZUQLuX6LGvX8rN/wiIiIiugIMcoiIiEiVGOQQERGRKjHIISIiIlVikENERESqxCCHiIiIVIlBDhEpSonZhuP55didXYTj58ul7xvD1q1bpYk9R40a1SivR0TNfDJAImpezhZXYtYn+/Dj0Qu1667tnIB5Y3ujZQNPFy8+gfyRRx6R/j979uxlfyAoESkXW3KISBFEi82lAY7wn6MX8OQn+xq0Rae8vBwffvghfvvb30otOe+++26DvRYRNR4GOUSkCBfKbR4BzsWBjihvKGvWrJE+HLhr1664++67sXTpUn70A5EKMMghIkUotdjrLC+rp/xKiC4qEdwIN954ozSN/KZNmxrs9YiocTDIISJFiAqp+wMdI+spD9SRI0ewY8cOTJo0Sfper9djwoQJUuBDRE0bE4+JSBESIoxSkrHomrqUWC/KG4IIZqqqqtwSjUVXlclkwuuvvy59QCARNU1sySEiRYgOM0qjqERAczHx/Qtje0vlwSaCmxUrVuDll1/Gnj17ape9e/dKQc8HH3wQ9NckosbDlhwiUgwxTPy1SX2lJGORgyO6qEQLTkMEOMIXX3yBoqIi3HfffR4tNmPHjpVaeR5++OEGeW0ianhsySEiRREBTcekCKS1jZX+b6gARxBBzIgRI7x2SYkgZ+fOndi3b1+DvT4RNSy25BBRs7Vu3TqfZQMGDOAwcqImji05REREpEoMcoiIiEiVGOQQERGRKjHIISIiIlVikENERESqxCCHiIiIVIlBDhEREakSgxwiIiJSJQY5REREpEoMcoiIiEiVGOQQkbJUFgEXfgFO7wQuHHV934CmTZsGjUZTu8THx+PGG2/kZ1YRqQCDHCJSjpIzwEf3Aq9fDbwzHHi9P/Dxfa71DUgENbm5udLy3XffQa/X45ZbbmnQ1ySihscgh4iUQbTYfPY74MT37uuPfwd8/kiDtuiYTCakpKRIS1paGp588knk5OTg/PnzDfaaRNTw+CnkAbKUFQL2SmiMYTBFxF75Bh12wFwIaACEJQLaIMSflcVAlQUwhAEhUcqsY5DZHdUoqrC5uh3CjdBqRWUVRtqPBYBGo9j9KIuK854BzsWBjigPDcK5Vo/y8nK8//776NSpk9R1pXbWygrYK8R5rUFYdAq0+iDcFsR1osoKmCIBUwSaA1uVA0VmO8QlJyHCJF2DrlSx2QZrVTUiTHqEm4JwXKqsrocFjRYIT3Rdg1ROMUHOvHnzMHv2bMycORPz58+X1lksFjz++ONYvXo1rFYrRo4ciYULFyI5OVnW4EaTtxfGn16CtugkHIndYLt2NpwJXWEKDzCQKM4GMpcD+z8CtDogfSrQaxwQ3Sqw7ZmLgLy9wMYXgOJTQHIP4LrZQGLXwC84oo47lwEHPgF0elcde94ZeB0bQE6hGau2Z2PdvrMw6LSYNKANbu3TEi2iQ6EYRVnAzqXAwU8BnQHoNx3oORaIail3zeRnKb2y8ivwxRdfICLCdW5UVFSgRYsW0jqtygNQ24UTwPbFiPhlHWAIgSVtOjTdR8MU1zrw4EbkUv3nRaD0DNCiLzD0SSC+E2AMgxo5nU7p2rN86ymsP3AOIQYdpgxuh5E9UpASHRLQNgsrrNidXYzXvj+GvBIL0trEYOaIzmifEC5tP4BKAkWngG1vAUe+BAyhwIAHgdRbgKgWUDONUxwhmWVkZGD8+PGIiorCsGHDaoOc3/72t/jyyy/x7rvvIjo6Gr/73e+ki87mzZsve9ulpaXS75aUlEjbv9InHuxaDtOG2Z5lY96Fvvut0Pn7FCSCh6UjgdKz7usTuwF3f+J/EGEzA5nLgG/+5Fk24X2g6yj/Ww5EHZfcAJTluq9P6gHc/bEibtCni8wYs3AL8susbuu7tYjEsmlXI0UJgY4IcJb8Big/574+uRcweY0i9qN4sDh58iTat2+PkJDALtABE8nGIhfHl99lAAldGiTx+MyZM3jzzTel74uKiqSHqa+++go7duxAu3bt1LF/L2G/cAKGpSNcrYoXcbRMh23sewiN9zPQsZYBm18D/vOC+3rRanD3p0DHYVCjrIIKjH5jM4rNdrf1/drFYuHkdCRH+Xecyyx2vLnxOBZuPO62XqfV4P37BmBwxwT/K1l4Alh8vWeXb9tBwLjlQGQKlCgY92/ZH1NE0/DkyZOxePFixMb+ryla/FFLlizBK6+8guuvvx79+vXDsmXLsGXLFmzbtk2Wumoq8mH6/mmvZab1j6Oq5JIgoD6OKmDX+54BjnD+MHDqJ/8rKZr0v33Ge9kXjwLlAdRRtDJdGuAI+QeBrMsPOBuyi0q04Fwa4AiHc8uw81TDjs657C6qjCWeAY5wbj+Qs12OWimLaD7vONx7mVgvyhvqpcPDpe4psVx99dV45513pBYdcV1SI6u5HE4RkFwS4Ai6s7ugydsX2LXnx5c81zurgXUzgbI8qI3F7sBbG497BDhCZlYRfs71v/XxQrkNb25yD3AER7UTT366H/llFv82aK8EfnzFe05b9jbg3EGomexBzowZMzBq1CiMGDHCbX1mZibsdrvb+tTUVLRt2xZbt271uT3RrSWiv4uXYHGWnAYcNu+F5gJoKj0vGHWqLAQOfuy7fM/7gLXc/1YXX3WsuABU+FvHAlcXlS+73wdsFZCTyMH5fK+XQPG/PtyZA7OtCrISNxPRRVXXfhQXo+ZM5Nvc9ppnoCO+F+sbIR+nhsinEK3GlZXqPCYOcyGMoovKh5D9K2G3eT401OncIVdA401xVoNPBSAHEdx8fdB38LZmZw6qq/3rLDl0tkTqXfImq8CMEi8BVZ0qi4DDn/su37PS1Z2lUrLm5Ihcm127dkndVZfKy8uD0WhETEyM23qRjyPKfJk7dy7mzJnTIPXVaOvZXSKfxr8tAjqj72JR5u82RZ5HUOuorXubOpOrOVpGInfOqPNdB5NeC53cCXbi9RW+HxVBdM/eucTVKiBycETCvGjBaeAARzwc1VxXRHfV66+/LrUy33rrrVAjZz3Xnmp9iP+Js3VdywK69iif2EUi/88XkT/j726sa3uC/4MpNHVfe0R+jtzXxwYk21VVDM8UScYrV64Mat+0SF4WXV01i3idoBE5EyYf/YIx7VAdEuff9sITgH73+i4XiWHiDehXHVu5RjR4E9seCIv3v47966rjA/7XMcjiw024a2Bbn+VTBl8FUyDJesEkRlGJJGNfBtwP6E2NWSPlEgGNyL1p3d/1fyO04Kxfv15KNhbLwIEDpQevjz76CEOHDoUaGaOSYOl1t89ye9o06A31BC2XEgMbfAU6yT2BkMZriWssceFGjO/fxmf5pAFt/Q4WU1tEwaDz/ju9WkUjNqyeB1lv1/C0e3yXi0EkKiZbkCO6o/Lz85Geni5NvCWWTZs2YcGCBdLXosXGZrOhuLjY7ffOnTsnzWVR13wXIkHp4iVYtJEpsI1+2/OJW2+S1ofE+ZkkLN783W4BWqR5lnW5EWjpZX19RALZHd7qGAKMWeR/gpmoY/fRQIs+Xup4k/f1jUw82dzSuyW6t/Q81jd0T5aSj2Unkr173elKMr5U6q2umwDJQgxsEOMvahbRxS0SjseOHQu1MhhN0Pa7x2sit63bWFTFdfR/oxHJwOg3PNcbI4DbFwIRDZdTJRfR6jJ5YFt0SAj3KBub3koaDeWvxEgT5o7p7bFeDCN/8c7eiAv382FIZ3A9RMV7OaZpdwNxHaBmso2uKisrQ1ZWltu66dOnS3k3s2bNQps2bZCYmIgPPvig9mJz5MgRqVzk5AwaNKjRR1fVjLDSlriGUxsKj8Cakg5t38nQRLeB3hjgk3hpLnA6Qxq5Be1/35ApvYGIpMC2J0ZY1Qz5vvAz0Ko/kHYXEN0W0BuuoI47gF0rXE9rV4s69gq8jg0gr6QSmVnF+GhnDox6Le4Z3A6pKVHSRUMxRJK5SDLe/R6gC3EdaxHgKGQ/Kmn0jxopbf9aCnKArC0IOfghqg2hsKXfj+qEVITFBTisWOQQivybjHdcI3raXeOaDiOmrSq7q2rkFldi+8lCfLrrNMKMOkwb0h6dkyMQHxHYtafcWiUNS39vaxayC80Y1CEOt6W1QuuY0MDn/io5A5z6Edi3BjCGAwMfcrW+NWBC/5UKxv1bEUPIa4imYTHb6MVDyMUwTvGkJf7ARx55RFovRlhdrmAHOTUcVXY47BbojGHQ6YJ08kqJp6KTN0gXP4cDcFhcrTjaINZRtBIpuGul0l4FrUYDk17BF1W7GdDoFLcflXYTVhul7l9zeTF0Wj1MYUGauE+MynRYAX1os5rsUgxw0Gu10kNWsEaOiiVErwvexKY2s+t+oLBrT0PdvxUzGaA3r776qjTCQbTkXDwZoBLo9AZpCapg57aI4Evnf3NpnWTOv7kcoQZFv61dxCzURAoRFuE+wOOKiQlDxdLMhBn1Qe8Oqy8R2W/G5nXtUVRLTkNoqJYcIjVSakuDWnD/EjWzyQCJSHlU/uwjG+5XosbFIIeIahkMri5Ys9ksd1VUqWa/1uxnImpYza/TlIh8Ekn0YgJOMb2DEBYWFpRPU27uRAuOCHDEfhX7N2iDFYioTgxyiMhNzTxUNYEOBY8IcOqa54uIgotBDhG5ES03YubfpKQk6fPjKDhEFxVbcIgaF4McIvJK3JB5UyaipoyJx0RERKRKDHKIiIhIlRjkEBERkSrpm8vkW2LmRCIiImoaau7bVzKJpuqDHPFp54L4VHMiIiJqevdx8fEOgVD9Z1dVV1fj7NmziIyM5KRmQYqsRcCYk5PDzwJTEB4X5eKxUSYeF+Ufm+zsbOm+3bJlS+nDugOh+pYcsWNat24tdzVUR1wUeGFQHh4X5eKxUSYeF+USrTdXemyYeExERESqxCCHiIiIVIlBDvnFZDLh6aeflv4n5eBxUS4eG2XicWkex0b1icdERETUPLElh4iIiFSJQQ4RERGpEoMcIiIiUiUGOURERKRKDHKoXvPmzZNmnXz00Udr11ksFsyYMQPx8fGIiIjA2LFjce7cOVnr2dx4Oy5Dhw6V1l28PPzww7LWszl45plnPPZ7ampqbTnPF+UeG54z8jlz5gzuvvtu6bwIDQ1Fr169sHPnztpyMS7qr3/9K1q0aCGVjxgxAkePHvXrNRjkUJ0yMjLw9ttvo3fv3m7rH3vsMaxbtw4fffQRNm3aJH10xpgxY2SrZ3Pj67gIDzzwAHJzc2uXF198UZY6Njc9evRw2+8//fRTbRnPF+UeG4HnTOMrKirCNddcA4PBgK+//hqHDh3Cyy+/jNjY2NqfEcdhwYIFeOutt7B9+3aEh4dj5MiR0kPD5VL9xzpQ4MrLyzF58mQsXrwYf/vb32rXl5SUYMmSJVi1ahWuv/56ad2yZcvQrVs3bNu2DYMGDZKx1s33uNQICwtDSkqKLHVrzvR6vdf9zvNFucemBs+ZxvfCCy9In08lzoUa7du3d2vFmT9/Pv7yl79g9OjR0roVK1YgOTkZ//rXvzBx4sTLeh225JBPonl91KhRUhPhxTIzM2G3293Wi+bftm3bYuvWrTLUtHnxdVxqrFy5EgkJCejZsydmz54Ns9nc6HVsjkQzuvggwQ4dOkhBqPhwQYHni3KPTQ2eM43v888/R//+/TFu3DgkJSWhb9++0oNbjZMnTyIvL8/tvBGfZTVw4EC/zhu25JBXq1evxq5du6RukUuJN57RaERMTIzbehFhizKS57gId911F9q1aydd0Pft24dZs2bhyJEj+PTTTxu9rs2JuPC+++676Nq1q9TdMWfOHPz617/GgQMHeL4o+NhERkbynJHJiRMn8Oabb+IPf/gD/vSnP0nXtN///vfSuTJ16tTac0OcJ1dy3jDIIQ85OTmYOXMmNmzYgJCQELmrQ34clwcffLD2a5HEJxL2hg8fjuPHj6Njx46NWNvm5aabbqr9WuRJiRuruHGuWbNGSpgkZR6b++67j+eMTKqrq6WWnOeff176XrTkiMBT5N+IICdY2F1FHkTzen5+PtLT06W+bLGIZEmRACa+FpG0zWZDcXGx2++J0SLs15bvuDgcDo/fERd04dixYzLUuPkSrTZdunSR9rs4J3i+KPPYeMNzpnGIYLJ79+5u60SeWk1XYs25cekoRH/PGwY55EE8xezfvx979uypXUTELfqya74WGfHfffdd7e+I5l3x5hw8eLCsdW/Ox0Wn03n8jlhfc0Ghxk0OFy0BYr/369eP54tCj403PGcahxhZJc6Di/3yyy9SK1tNErIIZi4+b0pLS6VRVn6dN+IDOonqc9111zlnzpxZ+/3DDz/sbNu2rfP777937ty50zl48GBpIfmOy7Fjx5zPPvusdDxOnjzp/Oyzz5wdOnRwXnvttXJXU/Uef/xx58aNG6X9vnnzZueIESOcCQkJzvz8fKmc54syjw3PGfns2LHDqdfrnX//+9+dR48eda5cudIZFhbmfP/992t/Zt68ec6YmBjpuOzbt885evRoZ/v27Z2VlZWX/ToMciigIEe8yf7v//7PGRsbK70x77jjDmdubq6sdWzuxyU7O1u6OMfFxTlNJpOzU6dOzieeeMJZUlIidzVVb8KECc4WLVo4jUajs1WrVtL34gZag+eLMo8Nzxl5rVu3ztmzZ09p36empjoXLVrkVl5dXe186qmnnMnJydLPDB8+3HnkyBG/XkMj/gleAxQRERGRMjAnh4iIiFSJQQ4RERGpEoMcIiIiUiUGOURERKRKDHKIiIhIlRjkEBERkSoxyCEiIiJVYpBDREREqsQgh4iIiFSJQQ4RBdW0adOg0Whql/j4eNx4443Yt2+f3FUjomaGQQ4RBZ0IanJzc6VFfIqwXq/HLbfcIne1iKiZYZBDREFnMpmQkpIiLWlpaXjyySeRk5OD8+fPS+X79+/H9ddfj9DQUKml58EHH0R5eXnt74ufb9myJYxGI1q1aoVZs2ahurpaKtu4caPUQvTll1+id+/eCAkJwaBBg3DgwIHa3y8oKMCkSZOk3w0LC0OvXr3wwQcfuNVRbO/FF19Ep06dpPq2bdsWf//736Wyi1uiLl3E6xNR08Agh4galAhe3n//fSmYEAFNRUUFRo4cidjYWGRkZOCjjz7Ct99+i9/97ne1v3PDDTfgiy++wLFjx/DOO+9g0aJF0jYu9sQTT+Dll1+WtpGYmIhbb70VdrtdKrNYLOjXr58UCIngRwRR99xzD3bs2FH7+7Nnz8a8efPw1FNP4dChQ1i1ahWSk5OlsppWKLEIn3zySe33Q4YMaaQ9R0RXLLgfnE5Ezd3UqVOdOp3OGR4eLi3iMtOiRQtnZmamVL5o0SJnbGyss7y8vPZ3vvzyS6dWq3Xm5eV5bO/EiRPS7y9dulT6/ocffpC2uXr16tqfKSgocIaGhjo//PBDn/UaNWqU8/HHH5e+Li0tdZpMJufixYvr/XvEa4nXJKKmhy05RBR0w4YNw549e6RFtJ6IlpubbroJWVlZOHz4MPr06YPw8PDan7/mmmuk7qMjR47Urnv++eelrqYOHTpg7NixmDJlittrDB48uPbruLg4dO3aVdq24HA48Nxzz0ndVKIsIiIC33zzDbKzs6Vy8XNWqxXDhw9vhL1BRHLRy/bKRKRaIoAR3VM1RJdTdHQ0Fi9efNnbePjhhzFmzBhkZmbi0Ucflb4WwdPleOmll/DPf/4T8+fPlwIdUR+xDZvNJpWLXCAiUj+25BBRgxMJu1qtFpWVlejWrRv27t0r5ebU2Lx5s1QuWmNqiBaY1NRUTJ48Gb/61a+kvJiLbdu2rfbroqIi/PLLL9K2a7Y3evRo3H333VKrkWgNEuU1OnfuLAU6YuQXEakXgxwiCjrRFZSXlyctomvokUcekRKQRXKwCFrEiKipU6dKScE//PCDVC4Sg2sSfxcuXIiDBw/i1KlTUsLxhg0b0LdvX7fXePbZZ6UgRWxDzM2TkJCA22+/vTaIEb+zZcsW6fUfeughnDt3rvZ3xeuLEVt//OMfsWLFChw/flwKmpYsWdLIe4qIGhK7q4go6NavX48WLVpIX0dGRkotMmIU1dChQ6V1Ij9m5syZuPrqq6W8G5Fz88orr9T+vhgV9fTTT6OsrAxt2rTBn/70J9x7771uryFGRoltHD16VBqmvm7dOmnIufCXv/wFJ06ckHKBxPbF6CoRAJWUlNT+vhhVJebv+etf/4qzZ89K9RVdZESkHhqRfSx3JYiILpeYp0bk5oguqpiYGLmrQ0QKxu4qIiIiUiUGOURERKRK7K4iIiIiVWJLDhEREakSgxwiIiJSJQY5REREpEoMcoiIiEiVGOQQERGRKjHIISIiIlVikENERESqxCCHiIiIoEb/H2UA3v5/RI0kAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAAHwCAYAAABZrD3mAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAU35JREFUeJzt3Ql8FEX6P/4nkIQcZJKQyClBEASEhHMXUMQDvrKKrAv5q4uwePDDYxE5FCEqi7gc8YT1RhTcXdF4YFxcd3XxQBAROcSEFTBBNGA4TCCZ3IRk/q+n2BlnJpPpmUx3T1f35/16DWS6Zqqra6b7ma6uqo5wOBwOAgAAAKm0CncBAAAAIHgI4AAAABJCAAcAAJAQAjgAAICEEMABAAAkhAAOAAAgIQRwAAAACSGAAwAASMj0AZznqbHb7eJ/AFAX9i+A8DF9AK+oqKDExETxPwCoC/sXQPiYPoADAACYEQI4AACAhBDAAQAAJIQADgAAICHDBPDs7GyKiIig2bNnu5YdO3aM/vCHP1DHjh0pPj6eBg8eTOvXrw9rOQEgOOXVp+ngiUr6uugUHfy5UjwPJt1Mjttraf9RO3116CTtP2YXz72pUR9GqVOl7dWjnMd1qvPishrad9RO278vFevj51qLJAPYsWMHrVq1ijIyMjyWT506lcrKymjDhg2UmppKr732Gl1//fW0c+dOGjRoUNjKCwCB4YPY/PV5tKWgxLVsVK9Uys7MoM5JsYrpZlJUWkVZufm0tbDUtWxkzxRaNiGd0lLixXM16sModaq0vXqUs0inOv+xtIru97GepRPSqdv/1mPKM/DKykqaPHkyrV69mpKTkz3SvvjiC5o5cyb9+te/ph49etCDDz5ISUlJtGvXrrCVFwACw2cx3gdGtrmghBaszxNnQv7SzXQmztvqHUjY54Wl4sDP6Ur1FUh9qJGHHtvrK2iqXc7jOtU5b8v9zazngf9tq2kD+IwZM2jcuHE0ZsyYJmkXXXQRvfHGG3Ty5ElqbGyknJwcqq2tpcsuu6zZ/Orq6sTEEu4PAFBHMPtXSeXpJgdG9wPkqSr/6fx+s+Bt9T7Aux/oOV2pvgKpDzXy0GN7y2vqNS/nKZ3qnLdFaVtN2YTOAXn37t2iCd2XN998k2644QZKSUmhyMhIiouLo9zcXOrZs2ezeS5fvpwWL16sYakBtFVUVEQlJb4PKqHiS1FpaWktfn8w+5e91v+By157xm96hcL7ZaK0rZwe1Toi5PpQqnO96lRxe2u0L6ddrzrXYVsMF8APHz5Ms2bNoo0bN1JMTIzP1yxcuFBcA//oo4/Egefdd98V18C3bNlC6enpPt+TlZVFc+fOdT3nM4SuXbtqth0AagfvPn36Uk1NtSb5x8bG0f79+1ocxIPZv2wxUX7zssX4P/wkKLxfJkrbyulRrVuFXB9Kda5XnSpub6z25bTpVec6bIvhAjhfxz5x4oToWe7U0NBAmzdvpmeeeYYOHDgg/t+7dy/169dPpA8YMEAE72effZZeeOEFn/m2adNGPABkxGfeHLyH3bqIbJ3OUzVv+9EfaPuaxWIdLQ3gwexfqW2jRWcgbor0xsuT4/2n8/vNgreVOzVxk6o3Xs7pMZGtQq4PpTrXq06VtjcxNkrzcibrVOe8LUrbarpr4KNHj6b8/Hzas2eP6zF06FDRoY3/rq4+ewbSqpVnEVu3bi2uhwOYGQfvdmm9VX2o/YNASWJctOjJywdCd/z8kcwM6mCL8ZvO7zcL3lbu+cwHdHfOHtGcrlRfgdSHGnnosb3cu1vrcnbQqc55W5Y2sx5ermXP/wiHgW4jxJ3TBg4cSCtXrqT6+nq68MILqVOnTvT444+L6+DchD5v3jz65z//SVdffXVAeXITH99soby8nGw2m+bbABAK7hMyZMgQ+r8H1oqgq6aTRQdo49JbROuXe8tXKALZv7gnL3cG4muB3JzIZzXuB0aldDPhns/ceYqvv3ITLp8FciBxp0Z9GKVOlbZXj3Ie16nOubc5d1hz5sFn3loP2zPEOHBfoqKi6F//+hctWLCAxo8fL4abcee1v/71rwEHbwAIPz4Q+jsYKqWbCQcO7+ChRX0YpU6VtlePcnbQqc45WOs9d4GhAvimTZs8nvfq1QszrwEAABhxHDgAAAAEDwEcAABAQgjgAAAAEkIABwAAkBACOAAAgIQQwAEAACSEAA4AACAhBHAAAAAJIYADAABICAEcAABAQgjgAAAAEkIABwAAkBACOAAAgIQMdTcyALAej/s1x0ZSclzz92u219aTLTaKUuODv/2j0noCKYcSNcpphHWY6btRbuL6QgAHgLApKq2irNx82lpY6lo2smcKLZuQTmkp8eJ5cVkNzV+fR1sKSlyvGdUrlbIzMwK+/7LSegIphxI1ymmEdZjpu1Fs8vpCEzoAhO3syvsAzT4vLKX7c/NFOp89eR+A2eaCElqwPk+kh7qen05VK5ZDiRrlNMI6zPTdOG6vNX19IYADQFhw06j3Adr9QM3p3PTpfQB2PxBzeqjr4eZZpXIoUaOcRliHmb4bp6rMX19oQgeAsODAqZQe1TrC72sqautDX09NfUjvP/ua+pDLaYR1mOm7YVfIwwz1hQAOAGFhi4lUTI9q7b+RMCEmKvT1xEaF9P6zr4kKuZxGWIeZvhs2hTzMUF9oQgeAsEiOjxadknzh5Zye2jZadDryhZdzeqjr4QO9UjmUqFFOI6zDTN+N5Hjz1xcCOACEBQ8H4h7F3gdqZ09jTufhPtxj2PtAzM8fycwIaDiQ0nq6JMcplkOJGuU0wjrM9N3oYIsxfX1FOBwOB5mY3W6nxMREKi8vJ5vNFu7iAPi1e/duGjJkCP3fA2upXVpvVfM+WXSANi69hXbt2kWDBw82zP7lMdY3JlKcOTU31pevW3LTJ589hTQO3Md6AimHEjXKaYR1GIUa341yE9cXroEDQFjxAVkpUPIBN9SDrtJ6AimHEjXKaYR1mOm7kWji+kITOgAAgIQQwAEAACSEAA4AACAhBHAAAAAJIYADAABICAEcAABAQgjgAAAAEkIABwAAkBACOAAAgIQQwAEAACSEAA4AACAhBHAAAAAJIYADAABIyDABPDs7myIiImj27Nkey7dt20ZXXHEFxcfHi9sVjho1impqasJWTgAAACMwxO1Ed+zYQatWraKMjIwmwfs3v/kNZWVl0dNPP02RkZH0zTffUKtWhvndAQDB3NM5NpKS4zzv6ey8X7O9tp5ssVGUGt/09o9KeRSX1VB5TT3Za+opMTZK5NM5KTaociqVI5ByGoVRyhpqOQJ5f7kO22qUchgugFdWVtLkyZNp9erVtGTJEo+0OXPm0N13300LFixwLevdu3cYSgkALVFUWkVZufm0tbDUtWxkzxRaNiGd0lLiReCdvz6PthSUuNJH9Uql7MwMVwBWyuPH0iq630f60gnp1C0lPqByKpUjkHIahVHKGmo5Anl/sQ7bapRy+BL2U9kZM2bQuHHjaMyYMR7LT5w4Qdu3b6f27dvTRRddRB06dKBLL72UPv/887CVFQACx2fN3oGXfV5YKgKur4Me21xQQgvW54kzGqU8jpyqbhK8nekP/G8dSng9/srBZVAqp1EobYteZQ21HIG8v1yHbTVKOQx5Bp6Tk0O7d+8WTejevv/+e/H/Qw89RI8//jgNHDiQ/va3v9Ho0aNp79691KtXL5951tXViYeT3W7XcAsArCWY/YubvL0Dq3uA5SZv74Oe+8GPmyPrGxr95lFRe0ZxHUpnQLwef+Xg7VAqp1Ga0pW2Ra+yhlqOQN7PtN5Wo5TDcGfghw8fplmzZtG6desoJuaXa1lOjY2N4v/bb7+dbrnlFho0aBCtWLFCNKGvWbOm2XyXL19OiYmJrkfXrl013Q4AKwlm/+Lr1f5U1NYrpivlwde8Q1mHyEPhNaFuh56UtkWvsoZajkDeb9dhW41SDsMF8F27dolm8sGDB4vOafz47LPP6KmnnhJ/c5M5u/DCCz3e17dvXyoqKmo2X+7wVl5e7nrwDwUAUEcw+5ctxn8DX0JMlGK6Uh7cWSiUdYg8FF4T6nboSWlb9CprqOUI5P02HbbVKOUwXADnpvD8/Hzas2eP6zF06FDRoY3/7tGjB3Xu3JkOHDjg8b7vvvuOunXr1my+bdq0EcPN3B8AoI5g9q/k+GjRmcwXXs69xbmjjy+8PLVttGIeCTGRiutQwuvxVw4ug1I5jUJpW/Qqa6jlCOT9qTpsq1HKYbgAnpCQQP379/d48FjvlJQU8TePCZ83b544I3/77bepsLCQFi5cSPv376dp06aFq9gAECAe5sU9xb0DrLMHOV+b5l663gc/fv5IZoa4bqiUx7nJcaK3ua90Xh5ID2Bej79ycBmUymkUStuiV1lDLUcg70/UYVuNUo7mRDgcDgcZxGWXXSY6q61cudJjgpdnn32WTp48SQMGDKBHH32URo4cGXCe3MmGr9Vxcx/OxsHouFPnkCFD6P8eWEvt0tQdMnmy6ABtXHqLuHzFl67UEMj+5TGGOyZSnNH6GgfO1wq5uZHPWPyOA/eRh3McuDOPxBDGgTdXjkDKaRRGKWuo5Qjk/eU6bKtRymHoAK4FBHCQiRkDOACYdBw4AAAABA8BHAAAQEII4AAAABJCAAcAAJAQAjgAAICEEMABAAAkhAAOAAAgIQRwAAAACSGAAwAASAgBHAAAQEII4AAAABJCAAcAAJAQAjgAAICEIsNdAAAAJc5bNdpr68kWG0Wp8cHfqlEpDzXWocd26EWmsloVAjgAGBrf63v++jzaUlDiWjaqVyplZ2YEfM9vpTzUWIce26EXmcpqZWhCBwDD4rNA70DCNheU0IL1eSI91DyO22tDXoce26EXmcpqdQjgAGBY3ITrHUjcAwqnh5rHqarQ1xFqGdRYh1pkKqvVIYADgGHx9Vd/KhTSA8nDXnsm5HWEWgY11qEWmcpqdQjgAGBYtpgov+kJCumB5GGLiQx5HaGWQY11qEWmslodAjgAGFZq22jRecoXXs7poeaRHB/6OkItgxrrUItMZbU6BHAAMCwetsQ9n70DCj9/JDMjoGFNSnl0sMWEvA49tkMvMpXV6jCMDAAMjYctPT1pkOg8xddfuQmXzwKDCSRKeaixDj22Qy8yldXKWhTAW7VqRREREc2mNzQ0hFImAAAPHDhCDR5KeaixjlDLYCQyldWqWhTAc3Nz1S8JAAAAaBvAr732Wo/n77zzDu3Zs4f69+9P119/fUuyBAAAAD07sT3yyCM0adIk+uCDD2jatGm0ePHiULMEAAAArQP4X//6V3rppZfoq6++on/84x+0du1adUoGAAAA2gXw4uJiGj58uPib///pp59CzRIAAAC0DuDc4zwy8uyl9NatW1NjY2OoWQIAAIAWndgGDRrkGkZWU1ND48ePp+joaHI4HC3JDgAAAPQI4L/73e+a7ZHungYAAAAGCuCLFi1SvyQAEikqKqKSEt+3XAzFvn37VM8TAMypRQHcbrf7TbfZbC0tD4AUwbtPn75UU1Ot2Trq63DPZQDQIIAnJSX5nEqVr4HzckylCmbGZ94cvIfduohsnc5TNe+j+dto74YX6cwZ//eoBgBo8c1M3n77bWrXrp26pQGQCAfvdmm9Vc3TfvQHVfMDAPNqcQC/+OKLqX379uqWBgAAALQN4N9++y2VlpZSfHw8dezYUQwjAwAAAINP5DJ69Gjq168fde/eXQTx9PR0WrFiRYsLkp2dLa6fz5492+e19auuukqkv/vuuy1eBwDor7z6NB08UUlfF52igz9XiufhyMMIZKoLPcoaarpaeVjqDPzQoUMiqNbX14se6TydKs+FvnDhQtH5Zt68eUHlt2PHDlq1ahVlZGT4TF+5cqXf+48beVgQS01NpbS0NE3yBjCy4rIamr8+j7YU/LJvjeqVStmZGdQ5KVa3PIxAprrQo6yhpjM18rBcAO/WrZvH8yFDhojZ2C644AJ6+OGHgwrglZWVNHnyZFq9ejUtWbKkSTrfpvSJJ56gnTt3UqdOnUjGYUGxsXG0f/8+BHGwFD7T8T54ss0FJbRgfR49PWkQJcZFa56HEchUF3qU9bHrBoSUzmVgoeYhw3dHk2vgvvz+978XzerBmDFjBo0bN47GjBnTJIBXV1fTjTfeSM8++6y4zh6Iuro68Qh0zLrWw4K4V/H2NYvFOhDAQXbB7F8llaebHDzdD6KcrnQAVSMPI5CpLvQo66mq0NI5fxZqHjJ8d3SdyKVnz54B55OTk0O7d+8WTei+zJkzhy666KIm07X6s3z58hbfk1yLYUEAZhLM/mWvrfebXqGQrlYeRiBTXehRVnvtmZDSuQwOxTIo5yG7sE3kcvjwYZo1axZt3LiRYmJimqRv2LCBPvnkE/r666+DKltWVhbNnTvX48dG165dg8oDAELfv2wxUX7zSlBIVysPI5CpLvQoqy0mMqT0wMoQGXIeRhe2iVx27dpFJ06coMGDB7uWceDfvHkzPfPMM3TnnXfSwYMHxY8Fd5mZmXTJJZfQpk2bfObbpk0b8QAA9QWzf6W2jRYdhri50hsv53Q98jACmepCj7Imx4eW7izDKBXysOQwMp7I5dJLL/X5CHQYWn5+vuik5nwMHTpUdGjjvx944AHKy8vzSGc8VG3t2rUtLTYA6ISvL3JvXz5YuuPnj2RmBHT9UY08jECmutCjrB1sMSGlc/6JIa5Dlu+OISdySUhIoP79+3ss47xSUlJcy311XOOOYDz2HACMj4fqcG9f7jDE1xy52ZLPfII5eKqRhxHIVBd6lDXUdLXysGQA5zNo5zXvVq1aUZ8+fejWW28VHc8AAJycZ0vhzsMIZKoLPcoaarpaecjKEBO5ODV3XduJ1wkAAAAGmMgFAAAAJJzIBQAAAHTshe5LVFSUx7AwAAAAMNAZOI/X5uFcb775pphH/PRpz7u7nDx5Uq3yAQAAgFpn4DyV4pNPPkk33HADlZeXi5mZJk6cKHqjP/TQQy3JEgAAALQO4OvWrRN3D7vnnnsoMjKSJk2aRC+99BL96U9/oi+//LIlWQIAAIDWAfzYsWOUnp4u/m7btq04C2fXXHMNvf/++y3JEgAAALQO4Oeeey4dPXpU/H3++efTf/7zH/E331UM85ADAAAYNIBPmDCBPv74Y/H3zJkzxQQuvXr1oqlTp4rZ2AAAAMCAvdCzs7Ndf3NHNp7Y5YsvvhBBnCd0AQAAAIOPA+dm8/fee0/cGjQxMVGdUgEAAIB6Z+B8J7Cvv/5a3DGMbdy4kcaNGyeue/MQsscff5xef/11uu6667QqL/jAY/FLSpre81YNqamp4nMHAACJA/iRI0fEJC5Ojz32mBhCtmbNGnFXMr4e/uijjyKA6xy8+/TpSzU11ZrkHxsbR/v370MQBwAw01zo+/bto2XLllHr1q3Fcw7gw4cPV6tsEAA+8+bgPezWRWTrdJ6qeduP/kDb1ywW60AAB62UV58W92u219aTLTaKUuPNe/tHNbZVpvo6bq+lU1Vc1jNki42k5Lho6mCLUXUd5Qr1YeY6DymAl5WVUbt27VzPk5OTqaKiQo1yQZA4eLdL6x3uYgAEpbishuavz6MtBb9cAhrVK5WyMzOoc1IsmYka2ypTfRWVVlFWbj5tLSx1LRvZM4WWTUintJR4VdZRrFAfZq/zoDqxcTM5P7yXAQAEi89qvA+MbHNBCS1YnyfSzUKNbZWpvvjM2zt4s88LS+n+3HyRHqpyhfrgdZi9zoM6A3c4HHTzzTe7Jmupra2lO+64g+Ljz/6aqqur06aUAGA63CTpfWB0P0ByuhGaKY2yrTLVFzebewdv9yDO6aE2pZco1Aevw+x1HlQAv+mmmzyeT5kypclreDIXAAAlfD3RnwqFdKttq0z1xde8Q0kPbB31Ia3DDHUeVABfu3atdiUBAEuxxUT5TU9QSLfatspUX7aYyJDSA1tHVEjrMEOdhzyRCwBAS6S2jRadgXzh5ZxuFmpsq0z1lRwfLTqs+cLLOT1UqQr1weswe50jgANAWPC1Q+7J632A5OePZGYY5nquUbZVpvri69vc29w7iDt7oasxlCxRoT54HWav89DbMQAAWoiH4Tw9aZDoDMTXE7lJks9qwn1gNOq2ylRfPFTsiesH/jIOPCZSnBWrOQ68s0J9mL3OEcABIKz4QGiEg6Es2ypTfXGwVnvilmDrI9HEdY4mdAAAAAkhgAMAAEgITehgyruoMdxJDQDMDAEcTHkXNYY7qQGAmSGAg+nuosZwJzUAMDsEcAgr3EUNAKBl0IkNAABAQgjgAAAAEkIABwAAkBACOAAAgIQQwAEAACSEAA4AACAhBHAAAAAJGSaAZ2dnU0REBM2ePVs8P3nyJM2cOZN69+5NsbGxYjKOu+++m8rLy8NdVAAIQnn1aTp4opK+LjpFB3+uFM+DddxeS/uP2umrQydp/zG7eB7sOkIth1IZAn2NEerTSspVqC+j1rkhJnLZsWMHrVq1ijIyMlzLiouLxePxxx+nCy+8kH788Ue64447xLK33347rOUFgMAUl9XQ/PV5tKXglznvR/VKpezMDHGf5UAUlVZRVm4+bS0sdS0b2TOFlk1IF/ecDmQdoZZDqQyBvsYI9WklxSrUl5HrPOxn4JWVlTR58mRavXo1JScnu5b379+f1q9fT+PHj6fzzz+frrjiClq6dCm99957dObMmbCWGQCU8VmK94GPbS4ooQXr8wI6i+EzWO+gyD4vLKX7c/N9Hly91xFqOZTKwOmBvMYI9Wkl5SrUl9HrPOxn4DNmzKBx48bRmDFjaMmSJX5fy83nNpuNIiObL3ZdXZ14ONntdlXLa0X79u2TIk/QXjD7V0nl6SYHPvcDIKcnxkX7Xd+pqtNNgqJ7cCyvqVdcBwulHEpl4HSm9JoOthgKhRr1aSUlKtSX0es8rAE8JyeHdu/eLZrQlfBNKf785z/Tbbfd5vd1y5cvp8WLF6tYSuuqKecDUgRNmTJFs3XU1+GsQSbB7F/22nq/6RUK6Wfz8N/aZq9RXodDYR1K5VAsg0J6oK/Roz6txK7K98/YdR62AH748GGaNWsWbdy4kWJi/P8y5V/5fJbO18Ifeughv6/NysqiuXPnery3a9euqpXbSuqrK4jIQQNvnE/ndO+jat5H87fR3g0v4nKIZILZv2wxUX7zSlBIP5uH/0OULTb0dSi9RrEMCumBvkY5j9C31Upsqnz/jF3nYQvgu3btohMnTtDgwYNdyxoaGmjz5s30zDPPiGa61q1bU0VFBf3mN7+hhIQEys3Npago/xXWpk0b8QD1tG2fpvodw/h2nyCfYPav1LbRorMPNzV64+WcriQ5Plp0BONmaG+8PDE2KqB1hFIOpTJwuvNvpdeEQo36tJJUFerL6HUetk5so0ePpvz8fNqzZ4/rMXToUNGhjf/m4M2/7q+88kqKjo6mDRs2KJ6pA4Bx8LVB7qnLBzp3/PyRzIyArh3ydWPuxc1B0J2zdzf3AlZaR6jlUCoDpwfyGiPUp5UkqlBfRq/zsJ2B8xk19zR3Fx8fTykpKWK5M3hXV1fTq6++Kp47O8ycc845IsADgLFxgH160iDR2YevF3KTI5+1BHPg4yFYT1w/UHQE42vJ3BzNZ7TOoBjIOkIth1IZAn2NEerTSjqrUF9GrvOw90JvDndu2759u/i7Z8+eHmmHDh2i8847L0wlA4BgOM+CQ+E8yw1lHaGWQ6kMgb7GCPVpJYkq1JdR69xQAXzTpk2uvy+77DJyOJT6jwIAAFhT2CdyAQAAgOAhgAMAAEgIARwAAEBCCOAAAAASQgAHAACQEAI4AACAhBDAAQAAJGSoceBmptXtM3FbTgAAa0IAN8EtORluywkAYC0I4BLfkpPhtpwAANaEAC7xLTkZbssJAGBN6MQGAAAgIQRwAAAACaEJHQA0ddxe+8s9smMjKTlO3Xtkg7z0+G6UV58W9/K219aTLTaKUuO1uTWoXutxhwAOpqbFMDsM3QtcUWkVZeXm09ZCHo1x1sieKbRsQjqlpcSHtWxg/u9GcVkNzV+fR1sKSlzLRvVKpezMDOqcFKvKOvRcjzcEcDAlPYbvYeie8tmV9wGafV5YSvfn5tMT1w/EmbhF6fHdKK8+3SSoss0FJbRgfR49PWmQKmfIeq3HFwRwMCUth+9h6F5guGnU+wDtfqDmdARwa9Lju1FSebpJUHUPrpyuRmDVaz2+IICDqWkxfA9D9wLD1zVDSQfz0uO7Ya+t95teoZButPX4gl7oAKAJW0xkSOlgXnp8N2wxUX7TExTSjbYeXxDAAUATyfHRolOSL7yc08Ga9PhupLaNFh3JfOHlnK4GvdbjCwI4AGiCr2Fyj2LvA7WzpzGuf1uXHt+NxLho0QvcO7jy80cyM1S7Lq3XenxBGxYAaIaHA3GPYtdY35hIcXaF4A16fDc6J8WKXuDckYyvRXNzNp8Rqx1U9VqPNwRwANAUH5ARsCFc343EOO0DqZ7rcYcmdAAAAAkhgAMAAEgIARwAAEBCCOAAAAASQgAHAACQEAI4AACAhBDAAQAAJIQADgAAICEEcAAAAAkhgAMAAEgIARwAAEBCCOAAAAASQgAHAACQkGECeHZ2NkVERNDs2bNdy2pra2nGjBmUkpJCbdu2pczMTDp+/HhYywkAAGAEhrid6I4dO2jVqlWUkZHhsXzOnDn0/vvv01tvvUWJiYl011130cSJE2nr1q1hKysABOe4vfaXez7HRlJynOc9n8urT4v7KNtr68kWG0Wp8U1vy6j0mkDyUGKUPMzkp1PV4nO319RTYmwUJcREUpfkOF3rq9wg3y9TBvDKykqaPHkyrV69mpYsWeJaXl5eTi+//DK99tprdMUVV4hla9eupb59+9KXX35Jw4cPD2OpASAQRaVVlJWbT1sLS13LRvZMoWUT0iktJZ6Ky2po/vo82lJQ4kof1SuVsjMzqHNSrHiu9JpA8lBilDzM5MfSKrrfx2e/dEI6dQvwsw9VsUG+X6ZtQucm8nHjxtGYMWM8lu/atYvq6+s9lvfp04fS0tJo27ZtYSgpAAR75u0dvNnnhaXiwO7rwMg2F5TQgvV54qyHH/5ew+tQykOJ0jr0ysNsZ97ewdv52T+Qm09HTlVrXl/lAXwmeny/THsGnpOTQ7t37xZN6N6OHTtG0dHRlJSU5LG8Q4cOIq05dXV14uFkt9tVLjWAdQWzf3GzufcB3P1AXl5T3+TA6H6A5CZL5u81vA6lPJSaOvk1RsjDTLjZ3N9nX1F7RvP6KgngM9Hj+2XKM/DDhw/TrFmzaN26dRQT88v1sFAtX75cXC93Prp27apa3gBWF8z+xQdxfypq6xXT+ZqjP6Gu42we9YbIw0z4mneon33IZag1xvfLlAGcm8hPnDhBgwcPpsjISPH47LPP6KmnnhJ/85n26dOnqayszON93Au9Y8eOzeablZUlrp87H/xDAQDUEcz+ZYvx38CXEBOlmG5TeE2o6zibR5Qh8jAT7ugV6mcfchlijPH9MmUAHz16NOXn59OePXtcj6FDh4oObc6/o6Ki6OOPP3a958CBA1RUVEQjRoxoNt82bdqQzWbzeACAOoLZv5Ljo0WnJV94OfdK5s5AvvDy1LbR4uHvNbwOpTyUKK1DrzzMhAOfv8+ee6NrXV+pAXwmeny/TBnAExISqH///h6P+Ph4Meab/+bmuWnTptHcuXPp008/FWfst9xyiwje6IEOYHw8VIx7m3sfyJ290LkHL/fk9T5A8vNHMjPEtUV++HsNr0MpDyVK69ArDzPhoWJLm/nsefm5yXGa11diAJ+JHt8vUw8j82fFihXUqlUrMYELd5wZO3YsPffcc+EuFgAEiIeKPXH9wF/GgcdEirMa5zhwDuJPTxokOgPx9URukuSzGvcDo9JrAslDiVHyMBMeKsZBjj93Z33Y3MaB61FfnQ3y/bJEAN+0aZPHc+7c9uyzz4oHAMiJg7X7xC3enGdC/ii9JpA8lBglDzPhYN0lzPWVaJDvlynHgQMAAEDwEMABAAAkZKgmdC04HA7FCSd4OldWfuR7ajzToOr6K0/8dHb9x34QPXjVpmX+suatdf6y5l1x7Mez66isDGiCI+5oyjcYCnX/AoCW7V9KIhzOPdCkjhw5gslcAFqAx3krDcPE/gWg3f5FVg/gjY2NVFxc7PfXDp898EGIJ6Uw87hxq2ynlbZVy+0M5AwhkP1LL1b5zPWEOtWuPrt06RLyPmP6JnQehnbuuecG9FqrTPxile200raGazuD2b/0YpXPXE+oU3VxXarxgxed2AAAACSEAA4AACAhBPD/ze+8aNEiTXpDG4lVttNK22qV7QwE6kJ9qFNj16fpO7EBAACYEc7AAQAAJIQADgAAICEEcAAAAAkhgAMAAEgIARwAAEBCCOAAAAASCnsA/+mnn2jKlCmUkpJCsbGxlJ6eTjt37nSl8yi3P/3pT9SpUyeRPmbMGCooKAhrmQEAACwdwE+dOkUXX3wxRUVF0b///W/69ttv6YknnqDk5GTXax599FF66qmn6IUXXqDt27dTfHw8jR07lmpra8NZdAAAgLAK60QuCxYsoK1bt9KWLVt8pnPROnfuTPfccw/de++9rluwdejQgV555RX6/e9/r3OJAQAAjCGsZ+AbNmygoUOH0nXXXUft27enQYMG0erVq13phw4domPHjolmc6fExEQaNmwYbdu2zWeedXV14pZtzgcH/J9//ln8GACA0GD/AjCOsAbw77//np5//nnq1asXffjhh3TnnXfS3XffTX/9619FOgdvxmfc7vi5M83b8uXLRZB3PpKSksSPg4qKCh22CMDcsH8BGEdYm9Cjo6PFGfgXX3zhWsYBfMeOHeIMm5fzNfLi4mLRic3p+uuvF/dSfeONN3yeIfDD+wbqfKaA+9kChAb7F4BxhPUMnIPyhRde6LGsb9++VFRUJP7u2LGj+P/48eMer+HnzjRvfJcX583ncRN6AHVh/wIwjrAGcD67PnDggMey7777jrp16yb+7t69uwjUH3/8sccvfu6NPmLECN3LCwAAYBSR4Vz5nDlz6KKLLqJly5aJZvGvvvqKXnzxRfFg3Ew+e/ZsWrJkibhOzgF94cKFomf67373u3AWHQAAwLoB/Fe/+hXl5uZSVlYWPfzwwyJAr1y5kiZPnux6zX333UdVVVV02223UVlZGY0cOZI++OADiomJIaMrrz5NJZWnyV5bT7bYKEqNj6bEuOhwFwss+JkWl9VQeU092WvqKTE2SpS9c1JsuIsFALJ2YtMDN7lzb1m9O9nwAXP++jzaUlDiWjaqVyplZ2bgwCkpWT/TH0ur6P7cfNpaWOpaNrJnCi2dkE7dUuKl3L8AwABTqZr1LM37QM82F5TQgvV5Ih3kIutnyj86vIM3+7ywlB7IzRfpACAnBHANcBOr94He/YDP6SAXWT9Tbjb3Dt7uQZzTAUBOCOAa4Ouj/lQopIPxyPqZ8jVvGcsNAMoQwDVgi4nym56gkA7GI+tnyp3VZCw3AChDANdAatto0bnJF17O6SAXWT9T7nHOHdZ84eWcDgByQgDXAA8r4p7J3gd8fv5IZoYUw47AHJ8p947n3ubeQdzZC93IvecBwD8MI9NhzDBfZ+SmSj5LM+qBHsz9mTrHgTvLzWfeagRvDCMDsOhELmafmIPz0fLgrmXZZZ2wRC/iV28ESYODNc62AczF0gFc1ok5tC67zPWiJdQLABiJZa+Byzoxh9Zll7letIR6AQCjsWwAl3ViDq3LLnO9aAn1AgBGY9kALuvEHFqXXeZ60RLqBQCMxrIBXNaJObQuu8z1oiXUCwAYjWUDuKwTc2hddpnrRUuoFwAwGssGcFkn5tC67DLXi5ZQLwBgNJafyOW4vZZOVfF45zNki42k5Lho6mCLIatPKiLrhCVak7VetBrXj4lcAMIH48AlHter5UQxWk9CIysZ60X27zkA+GbZJnSM6wUrwPccwLwsG8AxrhesAN9zAPOybADHuF6wAnzPAczLsgEc43rBCvA9BzAvywZwjOsFK8D3HMC8LBvAMa4XrADfcwDzsvw4cFnH9QIEQ6vvOcaBA4SPpceBuxO/YiLkmDxDj/xlzVtmWtZL7ZlGqm9opNMNDqpvbBTPE1XJGQDCxdIBXMsJLrSePEPWsmNSEf3rpai0irJy82lrYalr2cieKbRsQjqlpcSHlDcAhI9lr4FrOcGF1pNnyFp2TCqif73wVMHewZt9XlhK9+fmi3QAkJNlA7iWE1xoPXmGrGXHpCL61wvP8+8dvN2DOKcDgJwsG8C1nOBC68kzZC07JhUJR52fCSkdAIzLsgFcywkutJ48Q9ayY1KRcNR5ZEjpAGBclg3gWk5wofXkGbKWHZOK6F8vyfHRosOaL7yc0wFATpYN4FpOcKH15Bmylh2TiuhfL3xve+5t7h3Enb3QOR0A5BTWiVweeughWrx4scey3r170/79+8Xfl112GX322Wce6bfffju98MILUkzkovUkMVrmz72TuYMTXyO1xUZScly0agd7LfOWeay2bnUeEynOvNXIGxO5AIRP2C+A9evXjz766CPX88hIzyJNnz6dHn74YdfzuLg4VdfPB1+tzvy0zFvL/DEO3Hz1wsFalh9JACBJEzoH7I4dO7oeqamezYgcsN3T8StfWxgH7hvqBQCMJuwBvKCggDp37kw9evSgyZMnU1FRkUf6unXrRFDv378/ZWVlUXV1td/86urqRLOe+wMCh3HgvqFezsL+BWAcYQ3gw4YNo1deeYU++OADev755+nQoUN0ySWXUEVFhUi/8cYb6dVXX6VPP/1UBO+///3vNGXKFL95Ll++XFyTcz66du2q09aYA8aB+4Z6OQv7F4BxhPUa+FVXXeX6OyMjQwT0bt260ZtvvknTpk2j2267zZWenp5OnTp1otGjR9PBgwfp/PPP95knB/q5c+e6nvMZAg4ygcM4cN9QL6HvX9y6VlLiu6UhVNxKl5aWpkneAEYV9k5s7pKSkuiCCy6gwsJCn+kc4BmnNxfA27RpIx4Q2phkbrrVahy4FnlrDfUS2v7FwbtPn75UU+P/ElhLxcbG0f79+xDEwVIMFcArKyvF2fUf/vAHn+l79uwR//OZOGg7Jpk7T7kHFDXHgWuRt9ZQL6HhM28O3sNuXUS2Tuepmrf96A+0fc1isQ4EcLCSsAbwe++9l8aPHy+azYuLi2nRokXUunVrmjRpkgjkr732Gl199dWUkpJCeXl5NGfOHBo1apRobgft8LClpycN0mSMuZZ5aw31EjoO3u3Seoe7GACmENYAfuTIERGsS0tL6ZxzzqGRI0fSl19+Kf6ura0V48NXrlxJVVVV4jpbZmYmPfjgg+EssmVoPYadiRmEIkhKWpS99kwj1Tc00ukGB9U3NorniequAgBMJKwBPCcnp9k0Dtjes7CB/DCRi29FpVVN7tvtnO40LSU+pLwBwJzCPg4crEPmCUu0LDtPc+odvJ33674/N1+kAwB4QwAH3cg0YYmeZec5yr2Dt3sQ53QAAG8I4KAbmSYs0XcilzMhpQOANSGAg25kmrBE34lcIkNKBwBrQgAH3TgnLPHFaBOW6Fl2vrWn9/26nXg5pwMAeEMAB904JyzxDoQyTFiiZdn5Np/c29w7iDt7oeM2oADgC9rmQFcyT1iiZdl5qNgT1w8UHdb4mjc3m/OZN4I3ADTH8gGch//wAZk7Kdlioyg1Xr1gwsN/XAfk2EhKjsMBWfaJXLSc4Ia/G1p9P7T8ngNAeFg6gGNiDv3JPJGLrFDnAOZk2WvgmJhDfzJP5CIr1DmAeVk2gGNiDv3JPJGLrFDnAOZl2QCOiTn0J/NELrJCnQOYl2UDOCbm0J/ME7nICnUOYF6WDeCYmEN/Mk/kIivUOYB5WTaAY2IO/ck8kYusUOcA5mXNttz/4SE0yyamU0XtGbLX1FNibBS1jYmkTioMrZF9Yg6txrBznT923QBpx8fLOJ6a65yDeHlNvWsCGv6uq/E9B4DwsXQA/7G0Sgzr8h6rvXRCOnVTYay2lhNzaEnLMewyj0mWteyYkwDAnCzbhP7Tqeomwds5zOuB3HyRbkVajmGXeUyyrGXHnAQA5mXZAM7Nt/7Galt1qJeWY9hlHpMsa9kxJwGAeVk3gNdgfKzeY9hlHpMsa9kxJwGAeVk2gHMHJH+sOj5WyzHsMo9JlrXsmJMAwLysG8BjIv2O1bbqgU3LMewyj0mWteyYkwDAvCwbwLskx4ne5r7GavNyTrciLcewyzwmWdayY04CAPOy5mnm//BQMT748nVA5/hYPvO2avDWYww7D7d6etIg0enLWed89mrUAGiGsss+JwEA+GbpAM44WHcJdyEMSMsx7BzwjB70zFZ2WeckAIDmWbYJHQAAQGYI4AAAAFYJ4Js3b6YzZzB+FAAAQKoAfvnll9PJkyfVLw0AAABoF8AdDkdL3gYAAADh7oW+bds2Sk5O9pk2atSoUMoEAAAAWgXwCRMm+FweERFBDQ0NLc0WAAAAtOyFfuzYMWpsbGzyCCZ4P/TQQyLguz/69OnjSq+traUZM2ZQSkoKtW3bljIzM+n48eMtLTIYBN968+CJSvq66BQd/LlS9Vtxap0/AIC0Z+AcaNXSr18/+uijj34pUOQvRZozZw69//779NZbb1FiYiLdddddNHHiRNq6datq6wd9FZfVNLmvNk9HytOU8kxnRs8fAMAowt6JjQN2x44dXY/U1LNzTZeXl9PLL79MTz75JF1xxRU0ZMgQWrt2LX3xxRf05ZdfqrZ+0A+fCXsHV+f9tBeszwv5TFnr/AEApA/g3FTevn17VQpQUFBAnTt3ph49etDkyZOpqKhILN+1axfV19fTmDFjXK/l5vW0tDTRga45dXV1ZLfbPR5gDDyHuHdwdQ+ynG7k/AH7F4D0AXz58uW0Zs2aJst52SOPPBJwPsOGDaNXXnmFPvjgA3r++efp0KFDdMkll1BFRYW4xh4dHU1JSUke7+nQoYNI81c2bm53Prp27Rrk1oFW7LX1ftP5BiFGzh+wfwFIH8BXrVrl0dnM/Xr2Cy+8EHA+V111FV133XWUkZFBY8eOpX/9619UVlZGb775JrVUVlaWaH53Pg4fPtzivEBdtpgov+l8dy8j5w/YvwCkD+B8BtypU6cmy8855xw6evRoiwvDZ9sXXHABFRYWiuvhp0+fFgHdHfdC57TmtGnThmw2m8cDjIFvvel9P20nXs7pRs4fsH8BSB/AudnMV09wXsbXs1uqsrKSDh48KH4ccKe1qKgo+vjjj13pBw4cENfIR4wY0eJ1QPjwbTi5N7h3kOXnfF/2UG/TqXX+AADSDyObPn06zZ49W3Qy4x7ijAPtfffdR/fcc0/A+dx77700fvx46tatGxUXF9OiRYuodevWNGnSJHF9bdq0aTR37lxq166d+KU/c+ZMEbyHDx/ekmKDAfBQrqcnDRIdyviaNDdr85mxWsFV6/wBAKQO4PPmzaPS0lL64x//KJq5WUxMDM2fP19cIwvUkSNHRLDmvLj5feTIkWKIGP/NVqxYQa1atRITuHDvV75O/txzz7WkyGAgHEy1DKha5w8AIPVELtzbfOHChbRv3z6KjY2lXr16ietjwcjJyfGbzj8Knn32WfEAAAAAFeZCZzy96a9+9atQsgAAAPDAfZ1KSnzP6aCG1NRUMaeIZQP4zp07xXAvrmhnM7rTO++8o0bZAADAYjim9OnTl2pqqjVbR2xsHO3fv0/6IN6iAM5N31OnThXXpP/zn//QlVdeSd99950Y4tXcXcoAAACU8Jk3B+9hty4iW6fzVM/ffvQH2r5msViPJQP4smXLRAczvlNYQkIC/eUvf6Hu3bvT7bff7nN8OAAAQDA4eLdL6x3uYphvHDiP1R43bpz4m6c7raqqEh3b+O5hL774otplBAAAADUCeHJyspivnHXp0oX27t0r/uZZ06qrtbtuAQAAACE0oY8aNYo2btxI6enpYi7zWbNm0SeffCKWjR49uiVZAgAAgNYB/JlnnqHa2lrx9wMPPCCmPOX7dPOEKw8++GBLsgSQAt9TnGd54zuf2WKjKDVejkljZC03AKgcwHlqUyeeKW3BggUtyQZAKsVlNTR/fZ7HPcd5nnWef52ncDUqWcsN1hyrzZODgcbjwBsaGig3N9dV2RdeeCFde+21FBkZ0twwAIY9g/UOgmxzQQktWJ8n5l834hmtrOUGY9NjrHZ9nef8ItBUi6Ltf//7X/rtb38rbivau/fZbv48tSrPYf7ee+9R//79W5ItgGFx87N3EHQPhpxuxEAoa7nBumO1j+Zvo70bXqQzZ86omq8ZtSiA/7//9/+oX79+YjY27pHOTp06RTfffDPddttt4no4gJnwtWN/+M5nRiRrucG6Y7V5ohXQMIDv2bPHI3gz/nvp0qWYGx1MyRYT5Tedb1tqRLKWGwA0Ggd+wQUXiGlTvZ04cYJ69uzZkiwBDI3vKc4dv3zh5ZxuRLKWGwA0CuDLly+nu+++m95++21xT29+8N+zZ88W18LtdrvrAWAGfJ2Ye217B0N+/khmhmGvI8tabgDQqAn9mmuuEf9ff/31YgpV5nA4xP/jx493Pec07q0O8o3tlTVvLfGQK+61zWXna8fc/MxnsEavF63LbRRaDT8yy60nwXxaFMA//fRT9UsChhnbK2veeuCgp0Xg07petCq3EdSUlxJRBE2ZMkWT/M1y60kwnxYF8EsvvVT9koAhxvbKmrfMUC+hqa/m+zI4aOCN8+mc7n1UzdtMt54E82nxrCuvvvqqaB7n+4Jv3ryZ1q9fT4MHDxZDyUDesb2y5i0z1Is62rZPw+0nwVJaFMB56lS+bWhcXBzt3r2bcnJy6OKLL6a1a9eK3unz589Xv6Sgy9heWfOWGeoFAHTrhc5n36+//jpt2bJF3Nhk5cqV9M4779Dzzz9Pa9asaVFBwBhje2XNW2aoFwDQLYD//PPPYia27t27U0xMDA0ZMkQsv+SSS+jw4cMtKggYY2yvrHnLDPUCALoFcB5W4bwLDd8+tH379uLvqqoqSkhIaFFBwBhje2XNW2aoFwDQ7Ro4d1wrKysTf2dlZbmWf/bZZ5hKVSdaju2VNW+ZoV4AQJcAzjOx+XLnnXeKB+hDy7G9suYtMy3rRdbJcwCgeSHdvJuvhR84cED8zbcV5duJAoCxyD55DgCoeA2cr3Xfeuut1LlzZxo1apR48N/Tpk2j6mrtbvAOAOpOEsPpAGChAD537lxxvXvDhg3iWjg//vGPf4hl99xzj/qlBADNJokBAAs1ofOsa3z3scsuu8y17Oqrr6bY2FhxgxMeDw4A4YdJYgDMq0UBnJvJO3To0GQ5DydDEzqAcWCSGHXgTmdgmgA+YsQIWrRoEf3tb38TE7mwmpoaWrx4sUgDAGNNEsPN5d4wSYwy3OkMTBfA//KXv9DYsWPp3HPPpQEDBohl33zzDbVp04b+85//qF1GAAhxkhjusOYexDFJTGBwpzMwXQDv378/FRQU0Lp162j//v1i2aRJk2jy5MniOnhLZGdni0lhZs2aJeZWZ3yNnTvGubv99tvphRdeaNE6wBjjhrUek4wxz554qBgH8fKaerLX1FNibJSol04YQhYw3OkMTBPAS0tLKSUlhaZPn05FRUX00ksvifHgO3fuFPOhB2vHjh20atUqysjIaJLG63j44Yddz/kOaCDvuGGtxyRjzHNTRaVVlJWbT1sLuTn4rJE9U2jZhHRKS4kPa9kAQKdhZPn5+XTeeeeJzmp9+vShPXv20K9//WtasWKFuL3o5ZdfTu+++25QBaisrBRn7qtXr6bk5OQm6RywO3bs6HrYbLag8gfjjBvWekwyxjw3ddxe2yR4s88LS+n+3HyRDgAWCOD33Xcfpaen0+bNm0Xz9jXXXEPjxo2j8vJyOnXqlGje5qbwYMyYMUPkMWbMGJ/p3EzPPTW52Z6b2JV6udfV1ZHdbvd4gDHGDWs9Jhljnps6VXW6SfB2D+KcHgzsXwCSNqFzU/cnn3wimrq58xqfdf/xj3+kVq3O/g6YOXMmDR8+POD8cnJyaPfu3SJfX2688Ubq1q2bmOUtLy+P5s+fL5rq+d7j/uZp597wYLxxw1qPScaY56bstWdCSveG/QvMYp8JhgYGFcBPnjwpmrFZ27ZtKT4+3qPZm/+uqOBem8r4vuHcYW3jxo2uoWjebrvtNtfffObfqVMnGj16NB08eJDOP/98n+/hs3SeKc6JzxC6du0a8DZanZbjhrUek4wxz03ZYiJDSveG/QtkV2OioYFBd2KLiIjw+zxQu3btohMnTtDgwYNdyxoaGkTz/DPPPCOa6lq3bu3xnmHDhon/CwsLmw3gPJSNH2C8ccNaj0nGmOemkuOjRYc1bi73xss5PRjYv0B29SYaGhh0AL/55ptdO3BtbS3dcccd4kyccdANFJ9Jc6c4d7fccovoHMdN5d7Bm3GnOcZn4iDfuGGtxyRjzHNTHWwxorc5d1j73EcvdE4HsKK2JhgaGFQAv+mmmzye+2qCmDp1akB5JSQkiI5p7viHAA9P4+XcTP7aa6+JOdZ5GV8DnzNnjrjzma/hZqAeHm719KRBotMXXzfmpmc+e1UjAGqZtx75y4iHij1x/UDRYY2veXOzOZ95I3gDkHUC+Nq1a0kv0dHR9NFHH4lJXfj2pXydLTMzkx588EFV1yPzpB88BMh1UI6NpOQ49Q7KXAda1YOWeeuRv1a0/C7y9wIBG8BcWjSRi1Y2bdrk+psDtvcsbGqTedIPTM5hLjJ/FwFAovuBm4HMk35gcg5zkfm7CADhY9kALvOkH2pPzgHhJfN3EQDCx7IBXOZJP9SenAPCS+bvIgCEj2UDuMyTfqg9OQeEl8zfRQAIH8sGcOekH74YfdIP5+QcvrRkcg4IL5m/iwAQPpYN4M5JP7wPnDJM+uGcnMM7iGNyDjnJ/F0EgPCxdFurzJN+YHIOc5H5uwgA4WHpAC7zpB9NtGxKejDQZCum+S4CgC4sH8BlhYlc9IfJVgDASCx7DVxmmMhFf5hsBQCMBgFcQpjIRX+YbAUAjAYBXEKYyEV/mGwFAIwGAVxCmMhFf5hsBQCMBgFcQpjIRX+YbAUAjAYBXEKYyEV/mGwFAIzG8m2tWo7r1RImctH/M+WhYo9dN+CXOo+NpOQ49eqcRw9olTcAmI+lA7js43r54I4DvH6fqZZ5Y1w/AATLsk3oGNdrPlp+plrmjXH9ANASlg3gGNdrPlp+plrmjXH9ANASlg3gGNdrPlp+ptrmjXH9ABA8ywZwjOs1Hy0/U23zxrh+AAieZQM4xvWaj5afqZZ5Y1w/ALSEZQM4xvWaj5afqZZ5Y1w/ALSEpdvmeOjP05MGiQ5IfA2Tm0H5TArBW15afqZa5o1x/QAQLEsHcMYHX1kDtqyT0OjFwf9ESPp9UbncAGA+lg/gspJ9EhqtyFovmMgFAIJl2WvgMsMkNOaqF0zkAgAtgQAuIUxCY656wUQuANASCOASwiQ05qoXTOQCAC2BAC4hTEJjrnrBRC4A0BII4BLCJDTmqhdM5AIALYEALiFMQmOuesFELgDQEoZpm8vOzqasrCyaNWsWrVy5Uiyrra2le+65h3Jycqiuro7Gjh1Lzz33HHXo0IGsPpaah0Q9dt2AXyb+iI2k5DhM/KH15Dw8TK28pp7sNfWUGBslvjNqDE/DRC4AIGUA37FjB61atYoyMjI8ls+ZM4fef/99euuttygxMZHuuusumjhxIm3dutXSY4ZlL7vWtJps5cfSKjGsy3us9tIJ6dRNhbHaHKwRsAFAmib0yspKmjx5Mq1evZqSk5Ndy8vLy+nll1+mJ598kq644goaMmQIrV27lr744gv68ssvLTtmWPayy4p/MHkHb+cwrwdy80U6AIClzsBnzJhB48aNozFjxtCSJUtcy3ft2kX19fViuVOfPn0oLS2Ntm3bRsOHD/eZHze188PJbre3eMywUZvSZS67rLjZ3N9YbU63QstHoPsXBG7fvn2a5Z2amiqOmWBOYQ3gfG179+7dognd27Fjxyg6OpqSkpI8lvP1b05rzvLly2nx4sWmHTMse9llxde8/bFKnQe6f4GymnL+QRhBU6ZM0WwdsbFxtH//PgRxkwpbAD98+LDosLZx40aKiVHvuh93hJs7d67HGULXrl1NM2ZY9rLLijur+WOVOg90/wJl9dUV4pY7A2+cT+d076N6/vajP9D2NYuppKQEAdykwhbAuYn8xIkTNHjwYNeyhoYG2rx5Mz3zzDP04Ycf0unTp6msrMzjLPz48ePUsWPHZvNt06aNeAQ6ZpibnGUaMyx72WXFPc65wxo3l3vj5ZxuBYHuXxC4tu3TqF1a73AXAyQUtk5so0ePpvz8fNqzZ4/rMXToUNGhzfl3VFQUffzxx673HDhwgIqKimjEiBGWHTMse9llxde3lzYzVpuXW+H6NwAYS9jOwBMSEqh///4ey+Lj4yklJcW1fNq0aaK5rl27dmSz2WjmzJkieDfXgc1oY4a1JHPZZcVDxR79/waIDmvOOuczbwRvALBkL3R/VqxYQa1ataLMzEyPiVy04OB/IkgqtWcaqb6hkU43OKi+sVE8TyTj03ryHC3zb90q4n9fkwiKiDj73OqTCgFAeBgqgG/atMnjOXdue/bZZ8VDCzJPhlJUWtXkHtLOqTd5Vi+j0rrOtcxfyzqX+bsI1humpuXQN5A0gBtpMhRunjbq2c9xe22TQMK4gxVPNsJTchpxRi+t61zL/LWsc5m/i2DtYWr1dZg0KpwsG8BlngyF58v2N6kIpxsxgGtd51rmr2Wdy/xdBGsOUzuav432bniRzpzBverDybIBXObJUPhmF6Gkm7XOtcxfyzqX+bsI1hymxmPMIfzCPhd6uMg8GQrfqSqUdLPWuZb5a1nnMn8XASB8LBvAnZOh+GL0yVD4NpPe45GdeDmnW7HOtcxfyzqX+bsIAOFj2QAu82QofK11WTOTivByI17/1qPOtcxfyzqX+bsIAOFjzLZWncg8GQoPW+Kez9x5iq+/chMunwUaNXjrVeda5q9lncv8XQSA8LB0AJd9IhcOHFoFbC0nFeF8tAxMWuYfE9mKolrzI4KiIluJ5zJMzINJYgDMx9IBHJNn+IZ68Q2TxACAkVj2GrjS5BmcbkWoF/3rRWmSGE43YrkBILwsG8ADmTzDilAv+tdLIJPEtBQ+TwDzsmwAx+QZvqFefMMkMQBgNJYN4Jg8wzfUi2+YJAYAjMayARyTZ/iGevENk8QAgNFYNoBj8gzfUC++YZIYADAaSw8j4yE0fHArr6kne009JcZGiTGynVQaWsO9h12TfsRGUnKcuhOtaDW2V+tJRWQdk6zl90XrSWIeu26Apt9FANCfpQO4lmNvtcxbj7G9Wk2GIvOYZK0/U60m5pG5zgGgeZZtQtdy7K2Wecs8tlfWcuvxmWpF5joHAP8sG8C1HHurZd4yj+2Vtdx6fKZakbnOAcA/ywZwbcfeape3zGN7ZS23Hp+pVmSucwDwz7IBXNuxt9rlLfPYXlnLrcdnqhWZ6xwA/LNsANdy7K2Wecs8tlfWcuvxmWpF5joHAP8sG8C1HHurZd4yj+2Vtdx6fKZakbnOAcA/Y7b76UTLsbda5q3HWG2tyFpuPT5Trchc5wDQPEsHcC3H3mqdt5ZjtbUma7n1+Ey1InOdA4Bvlm1CBwAAkBkCOAAAgIQQwAEAACRk+mvgDodD/G+328NdFACpJCQkUEREhCr7V2Vlpfi//Mj31HimQcVSElWe+OlsGY79QG3atEHeOuQva95a519x7Mez66isVNwnAtm/lEQ4nHugSR05coS6du0a7mIASKe8vJxsNpvf12D/AtBu/yKrB/DGxkYqLi72+2uHfynxQejw4cMhV6iRWWU7rbStWm5nIGcIgexferHKZ64n1Kl29dmlS5eQ9xnTN6G3atWKzj333IBey19QK3xJrbKdVtrWcG1nMPuXXqzymesJdaourks1fvCiExsAAICEEMABAAAkhABOJHoiLlq0SJMej0Zile200rZaZTsDgbpQH+rU2PVp+k5sAAAAZoQzcAAAAAkhgAMAAEgIARwAAEBCCOAAAAASMn0Az87OFgPmZ8+e7VpWW1tLM2bMoJSUFGrbti1lZmbS8ePH/ebDff3+9Kc/UadOnSg2NpbGjBlDBQUFZNTtPHnyJM2cOZN69+4typuWlkZ33323mL7Pn5tvvlnk4/74zW9+Q0b+PC+77LImZb7jjjtM9Xn+8MMPTbbR+Xjrrbek/TyNsn9b2UMPPdTkO9KnTx9XOuozeD/99BNNmTJF1BkfX9LT02nnzp2qH39MHcB37NhBq1atooyMDI/lc+bMoffee08c+D777DMxFeTEiRP95vXoo4/SU089RS+88AJt376d4uPjaezYseLLbcTt5G3ix+OPP0579+6lV155hT744AOaNm2aYn58gD969Kjr8frrr5ORP082ffp0jzLz52Wmz5OnX3TfPn4sXrxYHFCvuuoqKT9PI+3fVtevXz+P78jnn3/uSkN9BufUqVN08cUXU1RUFP373/+mb7/9lp544glKTk5W//jjMKmKigpHr169HBs3bnRceumljlmzZonlZWVljqioKMdbb73leu2+fft4KJ1j27ZtPvNqbGx0dOzY0fHYY4+5lnE+bdq0cbz++usOI26nL2+++aYjOjraUV9f3+xrbrrpJse1117rMBp/26m03Wb9PAcOHOi49dZb/eZn1M/TSPu31S1atMgxYMAAn2moz+DNnz/fMXLkSF2OP6Y9A+cmn3HjxommCXe7du2i+vp6j+XcXMRNzNu2bfOZ16FDh+jYsWMe70lMTKRhw4Y1+55wb6e/u99ERvqfAn/Tpk3Uvn170fx+5513UmlpKYWb0nauW7eOUlNTqX///pSVlUXV1dXN5mWGz5O/x3v27AmoRcWIn6eR9m8g0XzbuXNn6tGjB02ePJmKiorEctRn8DZs2EBDhw6l6667Tux3gwYNotWrV2ty/DHlzUxycnJo9+7doonNG1dcdHQ0JSUleSzv0KGDSPPFuZxfE+h7wr2d3kpKSujPf/4z3XbbbYrNrdw81r17dzp48CDdf//9oomWv1itW7cmI27njTfeSN26dRMHoLy8PJo/fz4dOHCA3nnnHdN+ni+//DL17duXLrroIuk+T6Pt31bHgYMvsfEPPOelmUsuuURcekN9Bu/777+n559/nubOnSv2N/6ecv8jrsebbrpJ1eOP6QI436Zt1qxZtHHjRoqJiSGzCmY7+RZ2fLZy4YUXig4r/vz+9793/c0dL/j64vnnny/O4kaPHk1G3E73HyVcZu4YwmXlgMVlN9vnWVNTQ6+99hotXLhQMV+jfZ6hssr+rSf3PhT8/eCAzj+I33zzTdHBCoLDt9jlM/Bly5aJ53wGzj+G+Ho3B3A1ma4JnZt8Tpw4QYMHDxZNxfzgjhfcYYD/5l85p0+fprKyMo/3ca/Kjh07+szTudy756W/94R7OxsaGsTrKioqxFkY3685NzdXdKwIBjepcdN0YWEhGXk73fEBiDVXZpk/T/b222+LSwRTp04Nej3h/jyNuH+DJz7bvuCCC8R3hOsM9RkcPoHgkyV33FrmvCyh5vHHdAGczyry8/PF9UHng38N8XUd598cxD7++GPXe7i5lSt3xIgRPvPk5keuWPf38Fkt9x5s7j3h3k5uHuUyXnnllaLphq/LtOSM5ciRI+KaKX8pjbqd3ng5a67Msn6e7s3nv/3tb+mcc86R7vM04v4NniorK0XrFX9HhgwZgvoMEvdA5zpy991334lWDdWPPw4L8O7Ne8cddzjS0tIcn3zyiWPnzp2OESNGiIe73r17O9555x3X8+zsbEdSUpLjH//4hyMvL0/07O3evbujpqbGYcTtLC8vdwwbNsyRnp7uKCwsdBw9etT1OHPmjM/t5J699957r+hdeujQIcdHH33kGDx4sOjtW1tb6zDidvK2Pfzww+Jz5DLz59OjRw/HqFGjTPV5OhUUFDgiIiIc//73v32+R8bPMxz7N/zinnvucWzatEl8R7Zu3eoYM2aMIzU11XHixAmRjvoMzldffeWIjIx0LF26VOyv69atc8TFxTleffVV1Y8/lgzgXEl//OMfHcnJyaJiJ0yYIAKbO/5ts3btWo+u/wsXLnR06NBBdPcfPXq048CBAw6jbuenn34qtsHXg3dUX9tZXV3tuPLKKx3nnHOOGDrSrVs3x/Tp0x3Hjh1zGHU7i4qKRLBu166d+Fx69uzpmDdvnvgBY6bP0ykrK8vRtWtXR0NDg8/3yPh5hmP/hl/ccMMNjk6dOokhpl26dBHP+YexE+ozeO+9956jf//+4tjSp08fx4svvuiRrtbxB7cTBQAAkJDproEDAABYAQI4AACAhBDAAQAAJIQADgAAICEEcAAAAAkhgAMAAEgIARwAAEBCCOAAAAASQgAHRTfffDNFREQ0eZx77rnhLhqA1PtSSkqKuNkQ3wYXIFgI4BAQPsjwvYLdH19//XW4iwUg9b7EN7Tgu6hdc8014S4WSAgBHALSpk0bcQcd94f73bDmz58vbkEYFxcnblnJ96qur6/3yOOHH37weSbvfqtCpdfw/cwHDhzos4zvvvuueC2ALPsSf5cXLFgg7nP+888/i3S+29oVV1wh7sXNZ+h8v3u+Q5gTv75z587iLoNdunQR+x7fg5rxfd55H3j//ffFvb35DoTDhw8X96N24rvRTZo0SbyX91e+T/zrr7/uUUbO79FHH6WePXuK8qalpdHSpUtFmq/90/ng9YN+EMBBFXy/8VdeeYW+/fZb+stf/kKrV6+mFStWeLzGOe3+Rx99JM4+1q9f3ySfQF4DYBYcmF999VURKDlYV1VV0dixYyk5OZl27NhBb731ltgX7rrrLtd7+BbB//znP8X9ul966SV68cUXRR7u5s2bR0888YTIg39ojx8/3vWDura2VtwmlIM8B3b+gfCHP/yBvvrqK9f7s7KyKDs7W/wQ5336tddeE/daZ+6tcIz3Uefziy66SKeaA6EFN1oBi7npppscrVu3dsTHx4sH37GIbzn44YcfNvuexx57zDFkyBCPZXy3Hf7K7d271+OOaadOnQr4NYsWLXIMGDDA5zpzc3PFawFk2Zf4+8p3Atu1a5dI57tW8V2/KisrXe95//33Ha1atfJ5F7nvv/9evH/NmjUe+0tOTo7rNaWlpY7Y2FjHG2+80Wy5xo0bJ24ryux2u7hD1urVqxW3h9fF64TwwBk4BOTyyy+nPXv2iMc777xDnTp1onHjxomb0LM33nhD3MiemwXbtm1LDz74IBUVFXnkwTetZ/Hx8c2uJ5DXcBMjryMxMZH69u0rzhQAZNyX+KyXz7ivuuoq+vHHH2nfvn00YMAAj+8/71fcpH3gwAHXsmXLlrkuV2VmZtLUqVM91jFixAjX3+3ataPevXuLvFlDQwP9+c9/Fk3nnMb70ocffujaX/l1dXV1NHr0aB1qA0IRGdK7wTL4gMLNfE5r1qwRgZyvO/PBZfLkybR48WJxMOLAmpOTI5rw3BUXF1OrVq1EkG9OIK/hg9GGDRvEgejLL7+k6dOni7JxZyAA2fYlbgbnfYYvOwXqjjvuoIkTJ9KuXbto9uzZ4m/+YRCIxx57TFzmWrlypQjiXB7O4/Tp0yKdr72DHHAGDi3CQZYfHES/+OIL6tatGz3wwAM0dOhQ6tWrlzib8MbX4/r06SM61jQnkNdw5x0+AHIgv+mmm8QZC5/NAMiIO3/xvlRTUyNalL755htxLdxp69atIp2/70585sz7Cf9wHjlyZJO+IvzD1unUqVP03Xffibyd+V177bU0ZcoUse/wWTynO/H+y0Gce8iDsSGAQ0C4Se3YsWPiwU1sM2fOFB1wrr76arHDc/Mbn3UfPHiQnnrqKcrNzXW9l3/Z//3vf6cnn3ySbrnlFp/5B/IaJ770xh1x+CD3ySefiE42/fv3V32bAfTcl7ijGQdk/vHKP0y5g9mnn34q0rmTmbMT2XPPPUf//e9/xYgN7ry2ceNGGjRokMc6Hn74YRGAOQ8ee56amkq/+93vRBrvr/we/uHN67/99tvp+PHjrvfy+rln+3333Ud/+9vfxD7NPwhefvllnWsKFIXp2jtI1vGGvyrOR0JCgmPw4MGO119/3fWaefPmOVJSUhxt27Z13HDDDY4VK1Y4EhMTRdrOnTsdPXr0cCxfvtzR0NDgeo97B7VAXuPsxOYsB3fs6dq1q2PhwoUiDZ3YQMZ96Ve/+pXj7bffdr0mLy/PcfnllztiYmIc7dq1c0yfPt1RUVHhSr/66qsdqampoqNZz549HUuXLnU0NjZ67C/vvfeeo1+/fo7o6GjHr3/9a8c333zj0ant2muvFftq+/btHQ8++KBj6tSpYpkT74NLlixxdOvWzREVFeVIS0tzLFu2rMn2oBNbeEXwP8phHgAAjI7HYfO1cG42T0pKCndxQGNoQgcAAJAQAjgAAICE0IQOAAAgIZyBAwAASAgBHAAAQEII4AAAABJCAAcAAJAQAjgAAICEEMABAAAkhAAOAAAgIQRwAAAACSGAAwAAkHz+f4Ar3ndRDgcBAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 500x500 with 6 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGiCAYAAAB6c8WBAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAALEJJREFUeJzt3Ql4VNXZwPF3JitrSAhhCasiRPYaUBE3lIoVKBYriEsim6LVyvKxpCwBFIJiAVtRBIq4ApaCleIDIqBWQZEAAoJgEGRNCISQsCUhc7/nHJuBmQRJwiQzk/P/Pc8tc+/cuXOmzuS+9z3vOddmWZYlAADAWHZvNwAAAHgXwQAAAIYjGAAAwHAEAwAAGI5gAAAAwxEMAABgOIIBAAAMRzAAAIDhCAYAADAcwQAAAIYjGAAAwEd88cUX0qNHD6lXr57YbDb58MMPr/iazz77TG644QYJCQmRpk2byoIFC0r8vgQDAAD4iDNnzkjbtm1l1qxZxdp/37590q1bN+ncubNs3bpVhgwZIgMHDpRVq1aV6H1t3KgIAADfozIDy5Ytk/vvv/+y+4waNUpWrFghO3bscG576KGHJDMzU1auXFns9yIzAABAGcrJyZGsrCyXRW3zhA0bNkiXLl1ctnXt2lVvL4lA8RErgpp7uwmAz0m6d463mwD4pC+X3+E356Rvx/SViRMnumxLTEyUCRMmXPWxU1NTpXbt2i7b1LoKOM6dOyeVKlXyr2AAAABfYQuyeexYCQkJMmzYMJdtqtjPlxAMAABQhtSJv6xO/nXq1JG0tDSXbWq9evXqxc4KKAQDAAC4sQd6LjNQljp27Cgff/yxy7bVq1fr7SVBMAAAgBtbkHfq60+fPi0pKSkuQwfVkMGIiAhp2LCh7nI4fPiwvP322/r5wYMHy6uvviojR46U/v37y9q1a+WDDz7QIwxKgmAAAAAfyQxs2rRJzxlQoKDWID4+Xk8mdPToUTlw4IDz+SZNmugT/9ChQ+WVV16R+vXry7x58/SIgpIgGAAAwEfceeed8mvT/xQ1u6B6zZYtW67qfQkGAAAow9EE/oBgAAAAPy0g9BRmIAQAwHBkBgAAcEM3AQAAhrPTTQAAAExCZgAAADe2ALMyAwQDAAC4sRsWDNBNAACA4cgMAADgxmY3KzNAMAAAgBtbgFmJc4IBAADcUDMAAACMQmYAAAA31AwAAGA4O90EAADAJGQGAABwwwyEAAAYzmY3K3Fu1qcFAACFkBkAAMANowkAADCc3bCaAboJAAAwHJkBAADc0E0AAIDhbIaNJiAYAADA8MyAWaEPAAAohMwAAACGjyYgGAAAwA3dBAAAwChkBgAAcMNoAgAADGejmwAAAJiEzAAAAIZnBggGAAAwPBigmwAAAMORGQAAwA2jCQAAMJydGQgBADCbjZoBAABgEjIDAAC4oWYAAADD2egmAAAAJiEzAACA4ZkBggEAAAyvGTDr0wIAgELIDAAA4IZuAgAADGejmwAAAJiEzAAAAO5sdBMAAGA0GzUDAACYzUbNAAAAMAmZAQAA3NBNAACA4Wx0EwAAAJOQGQAAwA3dBAAAGM5mWDBANwEAAIYjMwAAgDvDCggJBgAAcGMzbDpis0IfAABQCJkBAAAMn2eAYAAAAMNHExAMAADgzrDMgFmfFgAAFEIwAABAEd0EnlpKatasWdK4cWMJDQ2Vm266STZu3Pir+8+cOVOaN28ulSpVkgYNGsjQoUPl/PnzJXpPugkAAHBjs3nnWnnx4sUybNgwmT17tg4E1Im+a9eusnv3bomKiiq0//vvvy+jR4+W+fPnyy233CJ79uyRxx9/XA+NnD59erHft1Sf1m63S0BAwGUXAABQcuoEPmjQIOnXr5+0aNFCBwWVK1fWJ/uirF+/Xjp16iQPP/ywzibcc8890rdv3ytmEzySGVi2bFlpXgYAgH+we240QU5Ojl4uFRISopdL5ebmSnJysiQkJFxsht0uXbp0kQ0bNhR5bJUNePfdd/XJ/8Ybb5SffvpJPv74Y3nsscfKPhjo2bOny/rSpUtl69at0qpVK+ndu3dpDgkAQIWcZyApKUkmTpzosi0xMVEmTJjgsu348eOSn58vtWvXdtmu1n/44Ycij60yAup1t956q1iWJRcuXJDBgwfLX/7ylxK18ao/7YsvvqhTEitXrpQBAwYU+sAAAJgsISFBTp065bJcevV/NT777DOZMmWKvPbaa7J582Z9cb5ixQp5/vnny7eA8K233pJ58+bplMTatWulf//+OuIBAMBf2TzYTVBUl0BRIiMjdd1dWlqay3a1XqdOnSJfM27cOH3+HThwoF5v3bq1nDlzRp544gkZM2aM7mYol8zAkSNH5Oabb9aP1b+HDx++2kMCAOBdNrvnlmIKDg6W2NhYWbNmjXObw+HQ6x07dizyNWfPni10wi8o5FfdBuWWGVD9G4GBgc4GqIYDAICSU8MK4+PjpX379rogUA0tVFf6anSBEhcXJ9HR0boOQenRo4cegfCb3/xGD0VMSUnR2QK1vSSj+0oVDKg3Lbi947lz5/SbqoimJFEIAAC+yualexP06dNH0tPTZfz48ZKamirt2rXTNXkFRYUHDhxwyQSMHTtWn4/VvyozX6tWLX1Onjx5cone12aV4gx+pSLB0tQMrAhqXuLXABVd0r1zvN0EwCd9ufyOMj1+1sxhHjtW9SHFn/zHW0qVGaBAEABQkdn+l/02RamCgaysrF99vnr16qVtDwAA8IdgoEaNGkVGTarHQW1XRYUAAPgtu1n38Sv1aIIlS5ZIRESEZ1sDAIDBBYR+FwyoGyMUdQcl+KeIW9vLNcMHSNgNrSS0XpRseuBpSfvo4lhXwN/1uq+e9O3VQCLCg2XvvtMy440U2fVj9mX379wpUgY+2kTqRIXKoSNn5fUF++Tr5Azn8/37NpK7b4+SqMgQuXDBIbtTTsucd/bJzj0Xjzl1bEu57pqqUiMsWLJP58mm7zLl9QU/yYmM3DL/vEBJlDoPsnPnTtm1a5ce5qBurgD/FlClsmRt2y07/sx00qh47rq1ljwz8Fp5c+F+GTAkWVL2nZbpk1pLjbCgIvdvFVNdEke0kP98clT6P5cs//36hCSNaSlNGlZ27nPwyDmZMftHiX9mkzw9aqscPXZepk9qIzWqXzzm5u2ZMv7FnfLw4I0yNmmnRNcJlRdGtyiXzwz/m3TIm0rdyrvvvltatmwpTZo0kSpVqugpEGfMmOHZ1qHcpK/6QvYkzpS0f3/q7aYAHvfQ/fVl+aqj8vGaNNl/8KxMe+1HOZ/jkO6/LXqK1wd/Hy3fbM6QhcsOyc+Hzsq89/bLnr2n5YHu0c59Vn9+TF/pH0k7L/sOnJW/z9srVasEyrWNqzj3+eDfh+X73dmSlp4jO37IkneXHJSWzatLQIBZKWi/ZLd5bqmo3QT79u3TxYJ5eXl6ZIGakljdPlHNeqTumDRixAjPtxQASiEw0CbNmlaTd5YccG5Ts6ts2npSn5gvlxlY9OEhl23fbMmQ22+OvOx79Ly3rmSfviAp+08XuU+1qoFyz51ROijIz2eCNlSAYKBRo0Yu62ouZTXjUbNmzWTSpElXDAaKurdznuWQID9JpwDwH2HVgyQwwCYZJ/Nctmdk5kmj+hfT/peKqBEsJzNduz9PZubp7Ze6pUOETBjRQkJD7HLiZK4MHb9NTmVdcNnnqfgm0qt7tFQKDdCBwMhJ2z322VB2bIadjzz6aR966CFZvHjxFfdTcyqHhYW5LB84LhbmAIA/2LwtU/o9t0meGrlFvknOkEmjri9Uh/D+soO67mDIuG3icFgydmiM19qLErCb1U1QqmBAdQ0Utaj7FDRt2rRU93bubWeYIgDPO5WVJxfyLYkIdz1JR9QI0lfzRcnIzJVwtyxAeI0gvf1Squ7g8NHzui5g6t/36PS/ex2CyhSoYkPVLZH40k65pUPNy3ZPAEZNOlTUvZ3pIgBQFi5csGRPSrbEtgnXowIU9ecrtm24LF1R9C3XVTq/fdtw+edHF5/v0C5cb/81dptNgoMu/7fM/r+rxOAg/7haNJmNSYeKh0mHKt7QwipNGzrXKzepL9Xbxkhuxik5f/CoV9sGXC1VDDhmaIz8kJItu/ZkS++eqg/fLis+TdXPjx3aXNJP5Mobb+/T6yoIeDWprR6FsH7TCelyW5TENK0mL726Rz+vagTiejeSrzYel+MZuXo4Ya9u9SSyZois+ypd79OiWTWJua6abNt5ShcWRtetJAMfaSyHjpy7YlABH2AzK2Bj0iFoYbGtpOOad5zrLV7+i/734NtLZduABC+2DLh6a79M13356mSsJh1K+em0DE/crosCldq1QsVxSYG/OllPfHmXDHq0iTwR10SfwBMmf6+HECqq779R/Uryu7tb6gLFrKw8PYHRn0Zvde6juhDu6BgpAx5uLKGhAXLiZI58k3xSxi/eKXkXGE3g8+xmZQZKdQtjdS/ltWvX6vsrqzkG6tSpI8HBrv1rJcUtjIHCuIUx4J1bGJ9d4LkJ2Co/nlhxMwNq0qGCGgEVHMTExEj//v1l6NChnm0hAADlzUY3wRUx6RAAoCKzGdZN4JVJhwAAQAXoJrjcpEPqfgUAAPg1G5mBUgsKCpIbbrjBk4cEAKD82akZuCI1qZC6Q+EHH3xQ5C2MMzKYWhgAAH9RqjzIxIkTZfr06dKnTx89lfCwYcOkV69eelTBhAkTPN9KAADK+UZFNg8t/qBUrXzvvfdk7ty5Mnz4cAkMDJS+ffvKvHnzZPz48fL11197vpUAAJQnOzcquqLU1FRp3bq1fly1alWdHVC6d+8uK1as8GwLAQCA7wUD9evXl6NHf5mv/tprr5VPPvlEP/72228L3YAIAAC/Y7N7bvEDpWrlH/7wB1mzZo1+/Oyzz+rJhq677jqJi4vTsxACAOD3MxDaPLRU1NEEU6dOdT5WRYRqEqL169frgEBNPgQAgF+z+8cVvadc9adVXQPLly+XY8eOSVhYmGdaBQAAfDMz0LBhQ9myZYvUrFlTr69evVq6deum6wTUsMKXX35ZFi5cKA8++GBZtRcAgLJnIzNwWYcOHdITDhWYNm2aHlaYmZkpJ0+elCeffFJeeumlsmgnAADlx87QwmLbtWuXLiAMCAjQmQH1+Mcff/Rc6wAAgG/fm0BlBCIiIpzr4eHhkp2d7Yl2AQDgPTazuglKFAzYbDa9uG8DAKBCsZl1bitRMGBZljz++OPOiYXOnz8vgwcPlipVquj1nJycsmklAADwjWAgPj7eZf3RRx8ttI+aeAgAAL9mp5vgst58882yawkAAL7CZlY3gVmhDwAA8OxoAgAAKiSbWdfKBAMAALijZgAAAMPZqBkAAAAGITMAAIA7agYAADCcjW4CAABgEDIDAAC4YzQBAABms+gmAAAAJiEzAACAO0YTAABgOJtZwYBZnxYAABRCZgAAAMMLCAkGAAAwvJuAYAAAAHeGZQbMCn0AAEAhZAYAAHDHDIQAAJjNopsAAACYhMwAAADuGE0AAIDZLMOCAbM+LQAAKITMAAAA7gwrICQYAADA8G4CggEAAAzPDJgV+gAAgELIDAAA4I5uAgAAzGbRTQAAALxl1qxZ0rhxYwkNDZWbbrpJNm7c+Kv7Z2Zmyp/+9CepW7euhISESLNmzeTjjz8u0XuSGQAAwEe6CRYvXizDhg2T2bNn60Bg5syZ0rVrV9m9e7dERUUV2j83N1d++9vf6ueWLFki0dHR8vPPP0uNGjVK9L4EAwAAuLHEO90E06dPl0GDBkm/fv30ugoKVqxYIfPnz5fRo0cX2l9tz8jIkPXr10tQUJDeprIKJUU3AQAAZSgnJ0eysrJcFrWtqKv85ORk6dKli3Ob3W7X6xs2bCjy2B999JF07NhRdxPUrl1bWrVqJVOmTJH8/PwStZFgAACAIiYd8tSSlJQkYWFhLova5u748eP6JK5O6pdS66mpqVKUn376SXcPqNepOoFx48bJX//6V3nhhRekJOgmAACgDGsGEhISdB3ApVShnyc4HA5dLzBnzhwJCAiQ2NhYOXz4sEybNk0SExOLfRyCAQAAypA68Rfn5B8ZGalP6GlpaS7b1XqdOnWKfI0aQaBqBdTrClx//fU6k6C6HYKDg4vVRroJAAAoYp4BTy3FpU7c6sp+zZo1Llf+al3VBRSlU6dOkpKSovcrsGfPHh0kFDcQUAgGAAAow5qBklDdCXPnzpW33npLdu3aJU899ZScOXPGObogLi5OdzsUUM+r0QTPPfecDgLUyANVQKgKCkuCbgIAANx5aQbCPn36SHp6uowfP16n+tu1aycrV650FhUeOHBAjzAo0KBBA1m1apUMHTpU2rRpo+cZUIHBqFGjSvS+NsuyLPEBK4Kae7sJgM9JuneOt5sA+KQvl99RpsfP2P6lx44V0fpW8XVkBgAAcFPS9L6/IxgAAMBHZiD0FrNCHwAAUAiZAQAA3NBNAACA6Wx0EwAAAIOQGQAAwI1l2LUywQAAAG5KMo1wRWBW6AMAAAohMwAAgBtGEwAAYDjLsEmHCAYAADA8M2DWpwUAAIWQGQAAwPDRBAQDAAAYXjNANwEAAIYjMwAAgOEFhAQDAAC4oZsAAAAYhcwAAABu6CYAAMBwFt0EAADAJGQGAABwQzcBAACGswzrJvCZYCDp3jnebgLgcxJWPuHtJgA+aneZHt0ybDpis/IgAADAdzMDAAD4CssyKzNAMAAAgBvLsMS5WZ8WAAAUQmYAAAA3jCYAAMBwlmHBAN0EAAAYjswAAACGZwYIBgAAMDwYoJsAAADDkRkAAMANkw4BAGA4y7BuAoIBAAAMDwaoGQAAwHBkBgAAMDwzQDAAAIDhBYR0EwAAYDgyAwAAuHHQTQAAgNksw4IBugkAADAcmQEAAAwvICQYAADADd0EAADAKGQGAABwQzcBAACGswzrJiAYAADA8MwANQMAABiOzAAAAG4cYhaCAQAA3NBNAAAAjEJmAAAAN4wmAADAcBbdBAAAwCRkBgAAcEM3AQAAhnNYYhS6CQAAMByZAQAA3NBNAACA4SzDRhMQDAAA4MaiZgAAAJiEYAAAADcOsXlsKalZs2ZJ48aNJTQ0VG666SbZuHFjsV63aNEisdlscv/995f4PQkGAAAoombAU0tJLF68WIYNGyaJiYmyefNmadu2rXTt2lWOHTv2q6/bv3+//N///Z/cdtttUhoEAwAA+Ijp06fLoEGDpF+/ftKiRQuZPXu2VK5cWebPn3/Z1+Tn58sjjzwiEydOlGuuuaZU70swAABAEQWEnlpycnIkKyvLZVHb3OXm5kpycrJ06dLFuc1ut+v1DRs2yOVMmjRJoqKiZMCAAVJaBAMAABQxz4CnlqSkJAkLC3NZ1DZ3x48f11f5tWvXdtmu1lNTU6UoX375pfzjH/+QuXPnytVgaCEAAGUoISFB1wFcKiQk5KqPm52dLY899pgOBCIjI6/qWAQDAACU4b0J1Im/OCd/dUIPCAiQtLQ0l+1qvU6dOoX237t3ry4c7NGjh3Obw+HQ/wYGBsru3bvl2muvLVYb6SYAAMAHRhMEBwdLbGysrFmzxuXkrtY7duxYaP+YmBjZvn27bN261bn8/ve/l86dO+vHDRo0KPZ7kxkAAMBHqO6E+Ph4ad++vdx4440yc+ZMOXPmjB5doMTFxUl0dLSuOVDzELRq1crl9TVq1ND/um+/EoIBAAB8ZDriPn36SHp6uowfP14XDbZr105WrlzpLCo8cOCAHmHgaTbL8o0ZmG/t8bm3mwD4nISVT3i7CYBP6pa3u0yP/5/NFzx2rO43+P51t++3EACAcmb5xGVy+aGAEAAAw5EZAADATUnvKeDvCAYAACjDeQb8Ad0EAAAYjswAAACGFxASDAAA4EbdYMgkdBMAAGA4MgMAABheQEgwAACA4TUDdBMAAGA4MgMAABieGSAYAADAjYMZCAEAMJtlWGaAmgEAAAxXqmDgiy++kAsXPHevZwAAfC0zYHloqbDBQOfOnSUjI8PzrQEAwEfmGXB4aKmwwYDlL6EOAAAouwLCDRs2SHh4eJHP3X777aU9LAAAXmcxmqB4/vCHPxS53WazSX5+/tW0CQAAr7IMS4CXejRBamqqOByOQguBAAAABmQG1NU/AAAVlcOwzECpggEKCAEAFZll2GmuVMGA6g4AAAAG1wwkJSXJ/PnzC21X21588UVPtAsAAK+xmHToyt544w2JiYkptL1ly5Yye/ZsT7QLAACvcRg26VBgaUcS1K1bt9D2WrVqydGjRz3RLgAAvMbyk5O4VzMDDRo0kK+++qrQdrWtXr16nmgXAADw5czAoEGDZMiQIZKXlyd33XWX3rZmzRoZOXKkDB8+3NNtBACgXDkMq5MvVTAwYsQIOXHihDz99NOSm5urt4WGhsqoUaMkISHB020EAKBcWYZ1E5R60iE1amDcuHGya9cuqVSpklx33XUSEhLi+RYCAADfvDeBUrVqVenQoYPnWgMAgA+wyAwUz6ZNm+SDDz6QAwcOOLsKCixdutQTbQMAwCschgUDpRpNsGjRIrnlllt0F8GyZct0IeH3338va9eulbCwMM+3EgAA+FYwMGXKFJkxY4YsX75cgoOD5ZVXXpEffvhBevfuLQ0bNvR8KwEAKEeWZXlsqbDBwN69e6Vbt276sQoGzpw5o4sKhw4dKnPmzPF0GwEAKFeWYdMRl6pmIDw8XLKzs/Xj6Oho2bFjh7Ru3VoyMzPl7Nmznm4jSqDXffWkb68GEhEeLHv3nZYZb6TIrh9/+W9VlM6dImXgo02kTlSoHDpyVl5fsE++Ts5wPt+/byO5+/YoiYoMkQsXHLI75bTMeWef7Nxz8ZhTx7aU666pKjXCgiX7dJ5s+i5TXl/wk5zIcK0lAfxNxK3t5ZrhAyTshlYSWi9KNj3wtKR9tMbbzQJ8IzNw++23y+rVq/XjBx98UJ577jk9EVHfvn3l7rvv9nQbUUx33VpLnhl4rby5cL8MGJIsKftOy/RJraVGWFCR+7eKqS6JI1rIfz45Kv2fS5b/fn1Cksa0lCYNKzv3OXjknMyY/aPEP7NJnh61VY4eOy/TJ7WRGtUvHnPz9kwZ/+JOeXjwRhmbtFOi64TKC6NblMtnBspSQJXKkrVtt+z480RvNwVemHTI4aGlwmYGXn31VTl//rx+PGbMGAkKCpL169fLAw88IGPHjvV0G1FMD91fX5avOiofr0nT69Ne+1E6dqgp3X9bR95dcrDQ/g/+Plq+2ZwhC5cd0uvz3tsvHdqFywPdo+Xl137U21Z/fszlNX+ft1d63FNXrm1cRZK3ZeptH/z7sPP5tPQc/V4qqAgIsEl+vp/kyIAipK/6Qi8wj2XYn65SBQMRERHOx3a7XUaPHu3JNqEUAgNt0qxpNXlnyQGXL/OmrSelZfPql80MLPrwl0CgwDdbMuT2myMv+x49760r2acvSMr+00XuU61qoNxzZ5Ts+CGLQACA33IY9uer1PMM5Ofn62GFanih0qJFC+nZs6cEBl75kDk5OXq5lCM/V+wBwaVtjvHCqgdJYIBNMk7muWzPyMyTRvUvpv0vFVEjWE5muvbrn8zM09svdUuHCJkwooWEhtjlxMlcGTp+m5zKuuCyz1PxTaRX92ipFBqgA4GRk7Z77LMBAHywZkDNKdCsWTOJj4/XAYFa1GM1JbEqJrySpKQkPR/BpcuhlPdK0xSUg83bMqXfc5vkqZFb5JvkDJk06vpCdQjvLzuo6w6GjNsmDoclY4fGeK29AHC1LMNGE5QqGBg4cKC0bNlSDh06JJs3b9bLwYMHpU2bNvLEE09c8fXqZkanTp1yWeo3faQ0TcH/nMrKkwv5lkSEu56kI2oE6av5omRk5kq4WxYgvEaQ3n6p8zkOOXz0vHy/O1um/n2PTv+rOgTX97+giw1Vt0TiSzvllg41L9s9AQC+znJYHlsqbDCwdetWfXWvhhgWUI8nT54sW7ZsueLr1Q2Nqlev7rLQRXB1LlywZE9KtsS2ufjfxGYTiW0bLt/vziryNSqd377txf0VVUCotv8au80mwUGX/+rY7Tb9b3DQL/8CACpgzYDqIkhLS9PZgUsdO3ZMmjZt6qm2oYRUMeCYoTHyQ0q27NqTLb17qj58u6z4NFU/P3Zoc0k/kStvvL1Pr//zo8PyalJbPQph/aYT0uW2KIlpWk1eenWPfl7VCMT1biRfbTwuxzNy9XDCXt3qSWTNEFn3Vbrep0WzahJzXTXZtvOULiyMrltJBj7SWA4dOXfFoALwh6GFVZpenFW1cpP6Ur1tjORmnJLzB496tW0oWw7/uKD3bjCgsgJ//vOfZcKECXLzzTfrbV9//bVMmjRJ39o4K+viSUBd9aN8rP0yXfflq5OxmnQo5afTMjxxuy4KVGrXCnX5gquT9cSXd8mgR5vIE3FN9Ak8YfL3su/ALxNHqb7/RvUrye/ubqkLFLOy8vQERn8avdW5j+pCuKNjpAx4uLGEhgbIiZM58k3ySRm/eKfkXTDs14QKJyy2lXRc845zvcXLf9H/Hnx7qWwbkODFlqGsWYb9+bJZpZg4WQ0ndB5A5aL/N4+z+7p6rEYdFMetPT4vaTOACi9h5ZVrcAATdcvbXabHf3GJ52YLGvXHUvXI+35mYN26dZ5vCQAAPsJhWD9BqYKBO+64w/MtAQDAR1hmxQKlG02gvPvuu/LWW2/p7oDPP/9c1xAsWLDAs60DAAC+mRlQ0w+rWxVXrlxZzzGwaNEi6dSpk7z55pt6lMGoUaM831IAAMqJRWageFmBhQsXyn//+19906KZM2fK0qVL5fXXX5f58+d7vpUAAJQjh2V5bKmwmYH09HQ9x0D9+vUlNDRUYmNj9fbbbrtNz0QIAIA/s/zk1sNezQxERkbK8ePH9WN1y+KoqCj9+MyZM1KtWjXPthAAAPheZiAuLk4yMzOd9xkooAoJO3To4LnWAQDgBZafpPe9PgNhUZ566im9AADgzxyGdROUKhi4tHZg9+5fZoFq3ry51KpVy1PtAgAAvlwzoGoD+vfvL/Xq1ZPbb79dL+rxgAED5OzZX+asBwDAn7sJLA8tFTYYGDZsmK4P+Oijj3TtgFr+/e9/623Dhw/3fCsBAChHDstzS4XtJvjXv/4lS5YskTvvvNO57b777pNKlSpJ79699XwDAACgAgcDqiugdu3ahbarIYZ0EwAA/J3lL5f03uwm6NixoyQmJsr58+ed286dOycTJ07UzwEA4M8sy3NLhc0MvPLKK9K1a1c9A2Hbtm31tu+++05CQkLkk08+8XQbAQCArwUDrVq1kh9//FHee+89+eGHH/S2vn37yiOPPKLrBgAA8GcOugmu7MSJE/qOhYMGDZLnnntOqlSpoucb2LRpk+dbCABAObMYWnh527dvl8aNG+tCwZiYGNm6davceOONMmPGDH1L486dO8uHH35Ydq0FAKCcblRkeWipcMHAyJEjpXXr1vLFF1/oYYXdu3eXbt26yalTp+TkyZPy5JNPytSpU8uutQAAVHCzZs3SF97qrsA33XSTbNy48bL7zp07V98xODw8XC9dunT51f09Egx8++23MnnyZOnUqZO8/PLLcuTIEXn66afFbrfr5dlnn3XWEAAA4K8cluWxpSQWL16sJ/ZTI/Y2b96si/RVwf6xY8eK3P+zzz7TNXvr1q2TDRs2SIMGDeSee+6Rw4cPl10wkJGRIXXq1NGPq1atqmsFVCRSQD3Ozs4uUQMAAKjINQM5OTmSlZXlsqhtRZk+fbqux+vXr5+0aNFCZs+erWv05s+fX+T+qpBfXZS3a9dOd9/PmzdPHA6HrFmzpmwLCG0226+uAwAA1zv9hoWFuSxF3f03NzdXkpOTdaq/gMq6q3V11V8cauK/vLw8iYiIkDIdWvj444/r+QQUNenQ4MGDdYZAuVykAwCAqUMLExISdOr/UgXn0UsdP35c8vPzC83wq9aL2wU/atQofePASwMKjwcD8fHxLuuPPvpooX3i4uJK1AAAAHyN5cERgerEX9TJ39NUAf+iRYt0HYEqPiyzYODNN98sadsAAEAxREZGSkBAgKSlpblsV+sF9XqXo4r6VTDw6aefSps2baRcJh0CAKCi36jI8tBSXMHBwRIbG+tS/FdQDPhr9/156aWX5Pnnn5eVK1dK+/bty286YgAAKjKHl2YOVLUFqktendTVpH4zZ86UM2fO6NEFBV3x0dHRzgLEF198UcaPHy/vv/++npsgNTXVOeJPLcVFMAAAgI/o06ePpKen6xO8OrGrIYPqir+gqPDAgQN6hEGB119/XY9C+OMf/+hyHDVPwYQJE4r9vgQDAAC4KUl639OeeeYZvRRFFQdeav/+/R55T4IBAAB8KBjwBoIBAADcGBYLMJoAAADTkRkAAMAN3QQAABjO8tLQQm+hmwAAAMORGQAAoAxvVOQPCAYAAHBDNwEAADAKmQEAANwwmgAAAMNZhgUDdBMAAGA4MgMAAPjILYy9hWAAAADDuwkIBgAAcMPQQgAAYBQyAwAAuGEGQgAADGcZFgzQTQAAgOHIDAAAYHgBIcEAAABuLIdDTEI3AQAAhiMzAACAG0YTAABgOMuwmgG6CQAAMByZAQAADJ9ngGAAAAA3BAMAABjOYTG0EAAAGITMAAAAbugmAADAcJZhwQDdBAAAGI7MAAAAhk86RDAAAIAbBzcqAgAAJiEzAACA4QWEBAMAALixmHQIAACYhMwAAABu6CYAAMBwFsEAAABmc1AzAAAATEJmAAAAN3QTAABgOIsZCAEAgEnIDAAA4IZuAgAADGcxmgAAAJiEzAAAAG4cdBMAAGA2i9EEAADAJGQGAABww2gCAAAMZxk2moBgAAAAwzMD1AwAAGA4MgMAABg+msBmWZZZuRD8qpycHElKSpKEhAQJCQnxdnMAn8DvAhUdwQBcZGVlSVhYmJw6dUqqV6/u7eYAPoHfBSo6agYAADAcwQAAAIYjGAAAwHAEA3ChiqMSExMpkgIuwe8CFR0FhAAAGI7MAAAAhiMYAADAcAQDAAAYjmAAAADDEQwAAGA4ggE/9vjjj4vNZiu01K9f39tNA8r9+1+zZk259957Zdu2bd5uGuB3CAb8nPrjd/ToUZdly5Yt3m4WUO7f/zVr1khgYKB0797d280C/A7BgJ9Tk6DUqVPHZalVq5bz+VGjRkmzZs2kcuXKcs0118i4ceMkLy/P5Rj79+8vMsOQmZlZ7H0mTJgg7dq1K7KNH374od4XKMvvv/r+jR49Wg4ePCjp6en6+e3bt8tdd90llSpV0pmDJ554Qk6fPu18vdq/Xr16EhwcLNHR0fr34vjfrWs/++wz/b1dsWKFtGnTRkJDQ+Xmm2+WHTt2OF9/4sQJ6du3r36t+o21bt1aFi5c6NJGdbyXXnpJmjZtqtvbsGFDmTx5sn6uqN9UwaLeHygvBAMVXLVq1WTBggWyc+dOeeWVV2Tu3LkyY8YMl30K5p369NNP9RXWv/71r0LHKc4+gDepk/y7776rT7rqxH/mzBnp2rWrhIeHy7fffiv//Oc/9ff3mWeecb7mnnvukf/85z+SkpIi8+bNkzlz5uhjXGrEiBHy17/+VR9DBdo9evRwBtTnz5+X2NhYHTCoIEEFG4899phs3LjR+Xp12+OpU6fqQFz9Dt9//32pXbu2fu7SjJ6iflcF67fccks5/T8H/PJHHn4qPj7eCggIsKpUqaKX6Ohoq0uXLtaqVasu+5pp06ZZsbGxLtt2796tzvTWjh079Pq6dev0+smTJ4u9T2JiotW2bdsi33PZsmV6X6Asv//qO1a3bl0rOTlZPz9nzhwrPDzcOn36tPM1K1assOx2u5WamlroeD/99JN+/fz5812+44sWLXLuc+LECatSpUrW4sWLL9uubt26WcOHD9ePs7KyrJCQEGvu3LlX/DzqvdR7At5AZsDPde7cWbZu3aqXpUuXSt26daVbt27yzTff6OcXL14snTp10mnUqlWrytixY+XAgQOF7tWuVKlS5bLvU5x9VEpWvYe67/v111+vr4aA8vr+q6txlQn43e9+Jz///LPs2rVL2rZt6/KdVb8FlbbfvXu3c9uUKVOc3WgPPPCAxMXFubxHx44dnY8jIiKkefPm+thKfn6+PP/887p7QD2nvv+rVq1y/sbUfjk5OXL33XeXw/8bQOkFXsVr4QPUHzqVFi0wf/58HRSofnr1R++RRx6RiRMn6j+S6iS9aNEinfK81JEjR8Rut+uA4XKKs4/6I/nRRx/pP5Bff/21DBo0SLdNFXUB5fH9V6l+9T1X3WHFNXjwYOnVq5ckJyfLkCFD9GMVZBTHtGnTdPfbzJkzdUCg2qOOkZubq59XtQqAPyAzUMGoE7Za1Al5/fr10qhRIxkzZoy0b99errvuOn3F5E71hcbExOgCqcspzj6qCEv9YVZBQXx8vL4qU1dsQHlRhXfq+3/u3Dmdnfruu+907UCBr776Sj+vvqMF1BW9+m6rwPnWW28tVA+jAtsCJ0+elD179uhjFxyvZ8+e8uijj+rvu8ouqOcLqN+cCgjUSAfAlxEM+DmVgkxNTdWLSkk+++yzupDqvvvu03+IVLpSZQP27t0rf/vb32TZsmXO16qrl3feeUemT58u/fr1K/L4xdmngOr2VAVV6o/v2rVrdbFUq1atPP6ZgSt9/1WRnzq5q+BVBaaquG/dunX6eVXgV1DA99prr8n333+vR8uowsHVq1fLb37zG5f3mDRpkj6Zq2OouQ0iIyPl/vvv18+p35h6jQq81fs/+eSTkpaW5nyten81QmHkyJHy9ttv69+hCi7+8Y9/lPP/U8AVeKVSAR4roFL/CQuWatWqWTfccIO1cOFC5z4jRoywatasaVWtWtXq06ePNWPGDCssLEw/t2nTJuuaa66xkpKSrPz8fOdrLi0OLM4+BQWEBe1QBVoNGjSwxo0bp5+jgBDl9f3v0KGDtWTJEuc+27Ztszp37myFhoZaERER1qBBg6zs7Gzn8/fdd58VGRmpi/yaNm1qTZ482XI4HC7f8eXLl1stW7a0goODrRtvvNH67rvvXAoKe/bsqX9fUVFR1tixY624uDi9rYD63bzwwgtWo0aNrKCgIKthw4bWlClTCn0eCgjhTTb1P1cKGADANGqcv6odUF0DNWrU8HZzgDJFNwEAAIYjGAAAwHB0EwAAYDgyAwAAGI5gAAAAwxEMAABgOIIBAAAMRzAAAIDhCAYAADAcwQAAAIYjGAAAQMz2/y6GrsqAv5cuAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# Генерация фиктивных данных\n",
"np.random.seed(42)\n",
"size = 100 # Одинаковый размер для всех колонок\n",
"\n",
"df = pd.DataFrame({\n",
" \"Категория\": np.random.choice([\"A\", \"B\"], size=size),\n",
" \"Баллы\": np.random.randint(40, 49, size=size),\n",
" \"Возраст\": np.random.randint(37, 60, size=size)\n",
"})\n",
"\n",
"# Boxplot\n",
"sns.boxplot(x=\"Категория\", y=\"Баллы\", data=df)\n",
"plt.show()\n",
"\n",
"# Histplot\n",
"sns.histplot(df[\"Баллы\"], bins=20, kde=True)\n",
"plt.show()\n",
"\n",
"# Scatterplot\n",
"sns.scatterplot(x=\"Возраст\", y=\"Баллы\", hue=\"Категория\", data=df)\n",
"plt.show()\n",
"\n",
"# Pairplot\n",
"sns.pairplot(df.drop(columns=[\"Категория\"]), hue=None) # Убираем категориальный столбец\n",
"plt.show()\n",
"\n",
"# Heatmap (удаляем нечисловой столбец)\n",
"sns.heatmap(df.drop(columns=[\"Категория\"]).corr(), annot=True, cmap=\"coolwarm\")\n",
"plt.show()\n"
]
},
{
"cell_type": "markdown",
"id": "5f8e5763-c99a-4b69-a446-1596c5083f07",
"metadata": {},
"source": [
"# Задание 5"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "91c889aa-5131-4504-b410-1f69cb353ad7",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Обработка DataFrame...\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"Анализ данных: 0%| | 0/100 [00:00<?]\u001b[A\n",
"Анализ данных: 5%|█▉ | 5/100 [00:00<00:01]\u001b[A\n",
"Анализ данных: 10%|███▊ | 10/100 [00:00<00:01]\u001b[A\n",
"Анализ данных: 15%|█████▋ | 15/100 [00:00<00:01]\u001b[A\n",
"Анализ данных: 20%|███████▌ | 20/100 [00:00<00:01]\u001b[A\n",
"Анализ данных: 25%|█████████▌ | 25/100 [00:00<00:01]\u001b[A\n",
"Анализ данных: 30%|███████████▍ | 30/100 [00:00<00:01]\u001b[A\n",
"Анализ данных: 35%|█████████████▎ | 35/100 [00:00<00:01]\u001b[A\n",
"Анализ данных: 40%|███████████████▏ | 40/100 [00:00<00:01]\u001b[A\n",
"Анализ данных: 45%|█████████████████ | 45/100 [00:00<00:01]\u001b[A\n",
"Анализ данных: 50%|███████████████████ | 50/100 [00:01<00:01]\u001b[A\n",
"Анализ данных: 55%|████████████████████▉ | 55/100 [00:01<00:00]\u001b[A\n",
"Анализ данных: 60%|██████████████████████▊ | 60/100 [00:01<00:00]\u001b[A\n",
"Анализ данных: 65%|████████████████████████▋ | 65/100 [00:01<00:00]\u001b[A\n",
"Анализ данных: 70%|██████████████████████████▌ | 70/100 [00:01<00:00]\u001b[A\n",
"Анализ данных: 75%|████████████████████████████▌ | 75/100 [00:01<00:00]\u001b[A\n",
"Анализ данных: 80%|██████████████████████████████▍ | 80/100 [00:01<00:00]\u001b[A\n",
"Анализ данных: 85%|████████████████████████████████▎ | 85/100 [00:01<00:00]\u001b[A\n",
"Анализ данных: 90%|██████████████████████████████████▏ | 90/100 [00:01<00:00]\u001b[A\n",
"Анализ данных: 95%|████████████████████████████████████ | 95/100 [00:01<00:00]\u001b[A\n",
"Анализ данных: 100%|█████████████████████████████████████| 100/100 [00:02<00:00]\u001b[A\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Кастомный стиль с цветами...\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"\u001b[36mЗагрузка данных\u001b[0m: 0%| | 0/100 [00:00<?, ?it/s]\u001b[0m\u001b[A\n",
"\u001b[36mЗагрузка данных\u001b[0m: 5%| | 5/100 [00:00<00:01, 49.18it/s]\u001b[0m\u001b[A\n",
"\u001b[36mЗагрузка данных\u001b[0m: 10%|█ | 10/100 [00:00<00:01, 48.70it/s]\u001b[0m\u001b[A\n",
"\u001b[36mЗагрузка данных\u001b[0m: 15%|██ | 15/100 [00:00<00:01, 48.43it/s]\u001b[0m\u001b[A\n",
"\u001b[36mЗагрузка данных\u001b[0m: 20%|██ | 20/100 [00:00<00:01, 48.36it/s]\u001b[0m\u001b[A\n",
"\u001b[36mЗагрузка данных\u001b[0m: 25%|███ | 25/100 [00:00<00:01, 48.10it/s]\u001b[0m\u001b[A\n",
"\u001b[36mЗагрузка данных\u001b[0m: 30%|████ | 30/100 [00:00<00:01, 48.19it/s]\u001b[0m\u001b[A\n",
"\u001b[36mЗагрузка данных\u001b[0m: 35%|████ | 35/100 [00:00<00:01, 48.18it/s]\u001b[0m\u001b[A\n",
"\u001b[36mЗагрузка данных\u001b[0m: 40%|█████ | 40/100 [00:00<00:01, 48.16it/s]\u001b[0m\u001b[A\n",
"\u001b[36mЗагрузка данных\u001b[0m: 45%|██████ | 45/100 [00:00<00:01, 47.94it/s]\u001b[0m\u001b[A\n",
"\u001b[36mЗагрузка данных\u001b[0m: 50%|███████ | 50/100 [00:01<00:01, 47.97it/s]\u001b[0m\u001b[A\n",
"\u001b[36mЗагрузка данных\u001b[0m: 55%|███████ | 55/100 [00:01<00:00, 48.08it/s]\u001b[0m\u001b[A\n",
"\u001b[36mЗагрузка данных\u001b[0m: 60%|████████ | 60/100 [00:01<00:00, 48.04it/s]\u001b[0m\u001b[A\n",
"\u001b[36mЗагрузка данных\u001b[0m: 65%|█████████ | 65/100 [00:01<00:00, 47.99it/s]\u001b[0m\u001b[A\n",
"\u001b[36mЗагрузка данных\u001b[0m: 70%|█████████ | 70/100 [00:01<00:00, 48.02it/s]\u001b[0m\u001b[A\n",
"\u001b[36mЗагрузка данных\u001b[0m: 75%|██████████ | 75/100 [00:01<00:00, 48.02it/s]\u001b[0m\u001b[A\n",
"\u001b[36mЗагрузка данных\u001b[0m: 80%|███████████ | 80/100 [00:01<00:00, 48.09it/s]\u001b[0m\u001b[A\n",
"\u001b[36mЗагрузка данных\u001b[0m: 85%|███████████ | 85/100 [00:01<00:00, 47.97it/s]\u001b[0m\u001b[A\n",
"\u001b[36mЗагрузка данных\u001b[0m: 90%|████████████ | 90/100 [00:01<00:00, 48.01it/s]\u001b[0m\u001b[A\n",
"\u001b[36mЗагрузка данных\u001b[0m: 95%|█████████████ | 95/100 [00:01<00:00, 47.94it/s]\u001b[0m\u001b[A\n",
"\u001b[36mЗагрузка данных\u001b[0m: 100%|█████████████ | 100/100 [00:02<00:00, 48.03it/s]\u001b[0m\u001b[A\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Динамическое обновление описания...\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"Идёт скачивание: 0% | | 0/100\u001b[A\n",
"Идёт скачивание: 5% |███▌ | 5/100\u001b[A\n",
"Идёт скачивание: 10% |██████▉ | 10/100\u001b[A\n",
"Идёт скачивание: 15% |██████████▎ | 15/100\u001b[A\n",
"Идёт скачивание: 20% |█████████████▊ | 20/100\u001b[A\n",
"Идёт скачивание: 25% |█████████████████▎ | 25/100\u001b[A\n",
"Идёт скачивание: 30% |████████████████████▋ | 30/100\u001b[A\n",
"Идёт скачивание: 35% |████████████████████████▏ | 35/100\u001b[A\n",
"Идёт скачивание: 40% |███████████████████████████▌ | 40/100\u001b[A\n",
"Идёт скачивание: 45% |███████████████████████████████ | 45/100\u001b[A\n",
"Идёт скачивание: 50% |██████████████████████████████████▌ | 50/100\u001b[A\n",
"Половина пройдена!: : 50% |████████████████████████████████ | 50/100\u001b[A\n",
"Половина пройдена!: : 55% |███████████████████████████████████▏ | 55/100\u001b[A\n",
"Половина пройдена!: : 60% |██████████████████████████████████████▍ | 60/100\u001b[A\n",
"Половина пройдена!: : 65% |█████████████████████████████████████████▌ | 65/100\u001b[A\n",
"Половина пройдена!: : 70% |████████████████████████████████████████████▊ | 70/100\u001b[A\n",
"Половина пройдена!: : 75% |████████████████████████████████████████████████ | 75/100\u001b[A\n",
"Половина пройдена!: : 80% |███████████████████████████████████████████████████▏ | 80/100\u001b[A\n",
"Почти готово!: : 80% |███████████████████████████████████████████████████████▏ | 80/100\u001b[A\n",
"Почти готово!: : 85% |██████████████████████████████████████████████████████████▋ | 85/100\u001b[A\n",
"Почти готово!: : 90% |██████████████████████████████████████████████████████████████ | 90/100\u001b[A\n",
"Почти готово!: : 95% |█████████████████████████████████████████████████████████████████▌ | 95/100\u001b[A\n",
"Почти готово!: : 100% |████████████████████████████████████████████████████████████████████| 100/100\u001b[A"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Все задачи выполнены!\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"import pandas as pd\n",
"import time\n",
"from tqdm import tqdm\n",
"from colorama import Fore, Style\n",
"\n",
"# 1 Прогресс-бар при обработке DataFrame\n",
"df = pd.DataFrame({\n",
" \"ID\": range(1, 101),\n",
" \"Значение\": range(100, 0, -1)\n",
"})\n",
"\n",
"print(\"\\nОбработка DataFrame...\\n\")\n",
"for index, row in tqdm(df.iterrows(), total=df.shape[0], desc=\"Анализ данных\", \n",
" ncols=80, bar_format=\"{desc}: {percentage:3.0f}%|{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}]\"):\n",
" time.sleep(0.02) # Симуляция обработки\n",
"\n",
"# 2 Кастомный стиль с цветами\n",
"print(\"\\nКастомный стиль с цветами...\\n\")\n",
"for i in tqdm(range(100), desc=f\"{Fore.CYAN}Загрузка данных{Style.RESET_ALL}\", \n",
" ascii=\" █\", ncols=70, bar_format=\"{l_bar}{bar} {r_bar}\"):\n",
" time.sleep(0.02)\n",
"\n",
"# 3 Динамическое обновление прогресс-бара\n",
"print(\"\\nДинамическое обновление описания...\\n\")\n",
"pbar = tqdm(range(100), desc=\"Идёт скачивание\", ncols=100, \n",
" bar_format=\"{desc}: {percentage:3.0f}% |{bar}| {n_fmt}/{total_fmt}\")\n",
"\n",
"for i in pbar:\n",
" time.sleep(0.02)\n",
" if i == 50:\n",
" pbar.set_description(\"Половина пройдена!\")\n",
" elif i == 80:\n",
" pbar.set_description(\"Почти готово!\")\n",
"\n",
"print(\"\\nВсе задачи выполнены!\")"
]
},
{
"cell_type": "markdown",
"id": "37e1d549-34d5-490a-a0c8-ab15162a2f4a",
"metadata": {},
"source": [
"# Задание 6"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "355434cb-3797-4092-95ff-54434bdc8d23",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 4113 entries, 0 to 4112\n",
"Data columns (total 12 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 Country 4113 non-null object \n",
" 1 first_seq 4113 non-null object \n",
" 2 num_seqs 4113 non-null int64 \n",
" 3 last_seq 4113 non-null object \n",
" 4 variant 4113 non-null object \n",
" 5 censure_date 4113 non-null object \n",
" 6 duration 4113 non-null int64 \n",
" 7 censored 4113 non-null bool \n",
" 8 mortality_rate 4113 non-null float64\n",
" 9 total_cases 4113 non-null float64\n",
" 10 total_deaths 4113 non-null float64\n",
" 11 growth_rate 3585 non-null float64\n",
"dtypes: bool(1), float64(4), int64(2), object(5)\n",
"memory usage: 357.6+ KB\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAIjCAYAAAD1OgEdAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAStNJREFUeJzt3QecXGW5P/B3WzYFkgCBECSEUKQjSJMiUgJBygXBgiJE6QhI8YLwlw4aQaQjEbmAekGKCnLpkFAEokBooSOGIiUBgSSUJJvd+X+ek511N40kZDNnzn6/OszOzNkz787Zzexvn/d9Tk2pVColAAAAFqrahbs7AAAAgrAFAADQCYQtAACATiBsAQAAdAJhCwAAoBMIWwAAAJ1A2AIAAOgEwhYAAEAnELYAAAA6gbAFAMzWKaeckmpqaio9DICqJWwBdLIrr7wy+4W1fOnevXv6/Oc/nw477LA0fvz4Sg+PHLn33ns7fK/M7fJp3nzzzSwsPfHEE2lRjn/33XdPyy67bOrWrVtaZpll0i677JL+/Oc/L7IxAORJfaUHANBVnHbaaWnw4MFpypQp6YEHHkiXXHJJuvXWW9PTTz+devbsWenhkQNrrLFG+v3vf9/hvuOPPz4ttthi6Sc/+cl87SvC1qmnnppWXHHFtN5666XOdvLJJ2ff46uuumo66KCD0qBBg9K///3v7Ht8jz32SFdddVX6zne+0+njAMgTYQtgEfnqV7+aNtxww+zj/fffPy211FLpnHPOSX/5y1/St7/97UoPjxzo379/+u53v9vhvp///OepX79+s9yfJ3/84x+zoPX1r389XX311amhoaHtsWOOOSbdcccdqampqaJjBKgE0wgBKmSbbbbJrseNG5ddv/fee+m///u/0zrrrJNVMnr37p0FtCeffHKWz43qWEwRi+mIMS1xwIAB2fStl19+OXv8lVdemesUtK222mqWqWvXXntt+n//7/9lU8B69eqV/uu//iu9/vrrszz33//+97TDDjukPn36ZBW5r3zlK+nBBx+c7dcYzzO754+xz+x///d/0wYbbJB69OiRllxyybTnnnvO9vnn9rW119LSks4777y01lprZa9RBJmouLz//vsdtovKz8477zzL88Q0z5n3Obux/+IXv5jlNQ1Tp07Nqj2rrLJKamxsTAMHDkzHHntsdv9n9c9//jN94xvfyF6nOAZf+tKX0i233NLhmG600UbZx9///vfbXp+Y0hr++te/Zp+/wgortI3tqKOOSp988skCjefEE0/MxnL55Zd3CFplQ4cObXuNp02blk466aTsWMf3UHyvffnLX0733HPPLJ93zTXXZNstvvji2c9D/Gycf/75Hbb54IMP0pFHHpl9DfG1xOt95plnZsd/fvcFsLCpbAFUSDkYRYWr/Av0jTfemP0SHNMNYz3Xr3/96yzMPPvss2m55ZbLtmtubs5+cR05cmQWSI444og0efLkdNddd2VTEldeeeW254iK2Y477jjLtLTZ+elPf5r9Qv7jH/84TZgwIQsqQ4YMydb8RAAKo0aNygJg/NIaQaK2tjZdccUVWXCMX+A33njjWfa7/PLLp+HDh2cff/jhh+mQQw6Z7XPHL+zf/OY3s6rfO++8ky688MK05ZZbpscffzz17dt3ls858MADs1/SQ6wJuuGGGzo8HsEqwkWEjR/+8IdZqL3ooouy/UU4nF0omF/xi375a2svftGPsBrTRWOcMT1w7Nix6dxzz00vvvhidpwXVHxfbLbZZunjjz/Ovq74/vntb3+bPV9UmL72ta9lzxeVpgg17V+n+Lxw/fXXZ58fxyI+/+GHH85e73/961/ZY/PjpZdeSs8//3zad999syDzaSZNmpQuu+yy7HvzgAMOyL53/+d//icLZDGO8pTH+H6ObbbddtssPIXnnnsuO3bxPR/ia4ifjzfeeCM73hEeH3rooex7/K233sq+h+d1XwCdogRAp7riiitK8c/t3XffXXrnnXdKr7/+eumaa64pLbXUUqUePXqU/vWvf2XbTZkypdTc3Nzhc8eNG1dqbGwsnXbaaW33XX755dn+zjnnnFmeq6Wlpe3zYptf/OIXs2yz1lprlb7yla+03b7nnnuybT/3uc+VJk2a1Hb/ddddl91//vnnt+171VVXLQ0dOrTtecLHH39cGjx4cGm77bab5bk222yz0tprr912O77+2OfJJ5/cdt8rr7xSqqurK/30pz/t8Lljx44t1dfXz3L/Sy+9lO3jt7/9bdt9sb/2b2l//etfs9tXXXVVh8+9/fbbZ7l/0KBBpZ122mmWsR966KEd9hlmHvuxxx5bWmaZZUobbLBBh9f097//fam2tjYbR3sjRozI9vHggw+W5tXMx+vII4/M9tF+35MnT86OwYorrtj2PfTII49k28X338zimM1s+PDhpZqamtKrr746x9d1dv7yl79k25x77rnz9PVMnz69NHXq1A73vf/++6X+/fuX9t1337b7jjjiiFLv3r2z7efk9NNPL/Xq1av04osvdrj/uOOOy76nXnvttXneF0BnMI0QYBGJKtHSSy+dTXeKilRMFYxqzOc+97ns8ZgCFZWicvUqmgvENquttlp67LHH2vbzpz/9KVvDc/jhh8/yHJ+lTfc+++zToTIR629iemI0OAhR4YoqRjQ5iLG9++672eWjjz7KKgb333//LFO3YrpjTOGbm6hKxedFVau8z7jEdMZotjDz9LKYhlZ+veYkqjMxRW277bbrsM+oyMVrOvM+Yz1R++3iEmOfm6imRDUoKnKxz5mfP6pLq6++eod9lqeOzm7K3LyK4xEVxC222KLtvnj+qGDFFMuogn6acqUyxPGLsUXVK/JkVP7mR1SqwrxUtUJdXV3WqTDEcY/ps9OnT8/WM7b/Po9qZowtqlJzEq9zVO2WWGKJDq9z/KzFz1B8T87rvgA6g2mEAIvIxRdfnK2xqq+vz9YPRYgqh6vyL56xhuRXv/pVNuUtflksK081LE8/jM+N/SxMEWxmDm6x/iV+gQ8RtMKwYcPmuI+JEydmv/iWxS++M+93ZrHf+CV/TtvNPN0vpu6FmQPOzPuMsUTr8dmJaZLt3XnnnVkQnh8xjTKmdsb0tZi+N/PzxzS1Oe1z5uefH6+++mraZJNNZrk/wl358bXXXnuu+3jttdeyKYY33XTTLGvY4nWbH7H+KcR0wHkV0x5/+ctfZtMP2zfOiOmzZT/4wQ/Sddddl01bjT9IbL/99lkgj/WC7V/np5566lNf53nZF0BnELYAFpGoRpS7Ec7Oz372s6xKEmtfTj/99KzhQISxWPw/c8WoEspjiIYQc2ol3j4ARQUq1s1EdenT9hvB7rbbbsuqHnPbZ3j77bez66h8zW2fEbSi3fjszPzLeYSXM844o8N9sb4rOkXOTgSpWA8WTT1mt/Yrnj8aMES3ydmJ6malRIiPYxIVpVifF9W3aFIRlbrvfe978/29Fp8fYk3avIjXLJ5nt912yzoVxnGK4x5r38rrGEPcH9XU6GQY3xtxifWBUYGNsBZirPG1ROOR2Yk/bszrvgA6g7AFkBNRHdl6662zZgEzV3Ji2mBZNMCIjoBREVgYTR7KypWrsqg2/eMf/0jrrrtu2/OWKxkxTevTRBfFGOPcAmZ5v/FcUdUo/3I8NzFNLsJZVPfmts+77747bb755h2mzM1JvL4zf01za2IRDRgicH7rW9+a4/PH1x/TKz/L1M7ZifNXvfDCC7PcH1Wi8uNhTs8boSiadETIiLBRtqBT7OKYxbGIYBqV2blVHMvf5yuttFI2fbT9GKNSOLOYbhgnRY5LBKuoUEXTmPijRFRd43WOpivz8v34afsC6AzWbAHkRPx1f0YPho5rUqLi0F6cIDam50XlZWYzf/78+N3vftdhKlj8UhyVqZh6FWK9U/xye/bZZ2e/4M4sOgjOPPb4mmbXVr29aFkf28UJeGcef9yO9WFlsbYn1qxFlXBuv9THFLGo4ESFcGaxj/JUxAUxevToLFjE+a/mFGji+eO4/eY3v5nlsWivHuuHFlR0l4yufTGOstjfpZdemrWxX3PNNbP7oloVZv5ay9XD9q91fPxZ2qDHsYvjFJ0k4/WdWUzTvPnmm+f4/PHHg/ZfT2h/3ENUecvBv9w+P17n+LyoWM0svu7yWOZlXwCdQWULICcilES77mhVHs0KogIR0+CiCtBeVCMiGB199NHZL93RICB+2Y5KTvy1ftddd12g549pi9F0IZ4/2otH2+z4i3+05y7/ghotuyN8xbmrYrtY/xKhIho+RMXr//7v/7KxxPq0Cy64IKt6xDmfysohLdbZxC/Jm266aRbgYgpfVItifVhML4tmC7FuLRqIROOHOP9YfH1RhYjPjeeZm2gHHmupYmpaTB+LNTpRBYzqXYTACBbRAGRBRHCIqWtzq6bsvffe2Rqhgw8+OHttosIW4S+qT3F/hINPq/jNyXHHHZf+8Ic/ZMchWr/HcYsqVbxeEUTL6wDjdY3GECNGjMhezwhfMV0ypv3FY/GaxrGL4xafN/ParfkRFb74fo0W/tFgI9qsR4UtQs7tt9+enaYgTnZc/j6Pqla0qN9pp52ycccYIyS2D/ER3GKqYzQVidMHxFq0aEgSFcXy+rSYhhjrzmKfMTUx/iAQ338xlvhjQXw/RdVyXvYF0Ck6pcchALO0fo9W3HMTrd9/9KMflQYMGJC1hN98881Lo0ePztp+t2/9XW7d/ZOf/CRr993Q0FBadtllS1//+tdLL7/88gK3fv/DH/5QOv7447NW5vH80Q69fRvwsscff7y0++67Z63roy19tE7/5je/WRo5cmSH5/60y7Bhwzrs909/+lNpiy22yFp5x2X11VfP2q+/8MIL2eOHH354acstt8zat89sTi3KL7300qwte3w9iy++eGmdddbJ2rW/+eabC9z6PdqjjxkzpsP9sztG06ZNK5155pnZ6x2v0xJLLJGN5dRTTy1NnDixNK9mPl4hjnMc7759+5a6d+9e2njjjUs333zzbNuyr7nmmlkL/fZt4J999tnSkCFDSosttlipX79+pQMOOKD05JNPztIqfl5av7cX3wO77rpr9j0Uz7n00kuXdtlll2wcZXHagJ/97GfZ6x6vy/rrr5+NPb4f4r6yP/7xj6Xtt98+21e3bt1KK6ywQumggw4qvfXWWx2eM9rex/ftKquskm0XX0+ccuDss8/OjsH87AtgYauJ/3ROjAOgGkTlKdaKRcVnQas97UU1IdZfRcUiprXNzimnnJJtF00mAKCorNkCAADoBNZsAbBQReOKvfbaa64NLKI5QZyjCgCKTNgCYKGKhgRxLqVP60AIAEVnzRYAAEAnsGYLAACgEwhbAAAAncCarXnQ0tKS3nzzzeykkDU1NZUeDgAAUCGxCmvy5MlZo6fyieTnRNiaBxG0Bg4cWOlhAAAAOfH666+n5Zdffq7bCFvzICpa5Re0d+/elR4OAABQIZMmTcoKMeWMMDfC1jwoTx2MoCVsAQAANfOwvEiDDAAAgE4gbAEAAHQCYQsAAKATCFsAAACdQNgCAADoBMIWAABAJxC2AAAAOoGwBQAA0AmELQAAgE4gbAEAAHQCYQsAAKATCFsAAACdQNgCAADoBMIWAABAJxC2AAAAOoGwBQAA0AmELQAAgE5Q3xk7pfM8/cbE9MA/3k2D+/VKQ9dattLDAQAA5kBlq8o89tr76ee3PZ/+8sQblR4KAAAwF8JWlelWN+OQTZveUumhAAAAcyFsVZlu9TMO2VRhCwAAck3YqjLCFgAAVAdhq8qYRggAANVB2KoyjQ112bWwBQAA+SZsVWtlq1nYAgCAPBO2qnTNlsoWAADkm7BVZRqFLQAAqArCVtV2I2yu9FAAAIC5ELaqjMoWAABUB2GrWtdsaZABAAC5JmxVaTfCpuZSamkpVXo4AADAHAhbVVrZCqpbAACQX8JWFYetqdZtAQBAbglbVTqNMGiSAQAA+SVsVZmamhpNMgAAoAoIW1WosbW6pbIFAAD5JWxVobbKlrAFAAC5JWxVIWELAADyT9iq4rA1dXpzpYcCAADMgbBVhRpVtgAAIPeErWqubOlGCAAAuSVsVfG5tlS2AAAgv4StKqRBBgAA5J+wVYW61ddl11OFLQAAyC1hqwqZRggAAPknbFWhxoZy2NL6HQAA8krYqkKN5cqWboQAAJBbwlYV0iADAADyT9iqQsIWAADkn7BVxQ0ydCMEAID8EraquEGGsAUAAPklbFWhbnUzzrOlQQYAAOSXsFWFrNkCAID8E7aqkLAFAAD5J2xVcdia6qTGAACQW8JWNZ/UWGULAAByS9iq4m6EGmQAAEB+CVtVfJ4tlS0AAMgvYasKaZABAAD5J2xVdYMMYQsAAPJK2KpCphECAED+CVtVqLGhLrtW2QIAgPwStqq5sqUbIQAA5JawVYU0yAAAgPwTtqpQo7AFAAC5J2xVdTfC5koPBQAAmANhq4rXbLWUUppu3RYAAOSSsFWFGhv+c9g0yQAAgHwStqq4shWs2wIAgHwStqpQfV1tqq2Z8bGwBQAA+SRsVX2TDGELAADySNiq8qmEwhYAAOSTsFWlGhvqsmvTCAEAIJ+ErSqvbOlGCAAA+SRsVanG1jVbKlsAAJBPwlaVN8gQtgAAIJ+ErWoPW83NlR4KAAAwG8JWtXcjbFLZAgCAPBK2qlRjgwYZAACQZ8JWlXKeLQAAyDdhq0ppkAEAAPkmbFWpbvVOagwAAHkmbFUp0wgBACDfKhq2mpub04knnpgGDx6cevTokVZeeeV0+umnp1Kp1LZNfHzSSSelAQMGZNsMGTIkvfTSSx32895776W99tor9e7dO/Xt2zftt99+6cMPP+ywzVNPPZW+/OUvp+7du6eBAwems846KxWiQYawBQAAuVTRsHXmmWemSy65JF100UXpueeey25HCLrwwgvbtonbF1xwQRoxYkT6+9//nnr16pWGDh2apkyZ0rZNBK1nnnkm3XXXXenmm29O999/fzrwwAPbHp80aVLafvvt06BBg9KYMWPSL37xi3TKKaekSy+9NFV7Zct5tgAAIJ/qK/nkDz30UNp1113TTjvtlN1eccUV0x/+8If08MMPt1W1zjvvvHTCCSdk24Xf/e53qX///unGG29Me+65ZxbSbr/99vTII4+kDTfcMNsmwtqOO+6Yzj777LTccsulq666Kk2bNi1dfvnlqVu3bmmttdZKTzzxRDrnnHM6hLKyqVOnZpf2YS1vGjXIAACAXKtoZWuzzTZLI0eOTC+++GJ2+8knn0wPPPBA+upXv5rdHjduXHr77bezqYNlffr0SZtsskkaPXp0djuuY+pgOWiF2L62tjarhJW32XLLLbOgVRbVsRdeeCG9//77s4xr+PDh2fOULzHtMG90IwQAgHyraGXruOOOy6pGq6++eqqrq8vWcP30pz/NpgWGCFohKlntxe3yY3G9zDLLdHi8vr4+Lbnkkh22iXVhM++j/NgSSyzR4bHjjz8+HX300W23Y4x5C1z/mUYobAEAQB5VNGxdd9112RS/q6++um1q35FHHplN/Rs2bFjFxtXY2Jhd8qxc2ZraJGwBAEAeVTRsHXPMMVl1K9ZehXXWWSe9+uqr2TS+CFvLLrtsdv/48eOzboRlcXu99dbLPo5tJkyY0GG/06dPzzoUlj8/ruNz2ivfLm9TbcprtqaqbAEAQC5VdM3Wxx9/nK2tai+mE7a0zAgQMfUvwlCs62o/pS/WYm266abZ7bj+4IMPsi6DZaNGjcr2EWu7yttEh8Kmpqa2baJz4WqrrTbLFMJq4aTGAACQbxUNW7vssku2RuuWW25Jr7zySrrhhhuyDoFf+9rXssdramqyaYVnnHFGuummm9LYsWPTPvvsk00z3G233bJt1lhjjbTDDjukAw44IOti+OCDD6bDDjssq5bFduE73/lO1hwjzr8VLeKvvfbadP7553dYl1VtNMgAAIB8q+g0wmjRHic1/sEPfpBNBYxwdNBBB2UnMS479thj00cffZS1aI8K1hZbbJG1eo+TE5fFuq8IWNtuu21WKdtjjz2yc3OVRUfBO++8Mx166KFpgw02SP369cueY3Zt36uFsAUAAPlWU4qTWTFXMXUxAtvEiRNT7969Ux7c/vTb6eD/HZO+uELf9OcfbF7p4QAAQJcwaT6yQUWnEbLgGhu0fgcAgDwTtqpUY/k8W6YRAgBALglbVcqaLQAAyDdhq0oJWwAAkG/CVrWHLWu2AAAgl4StKtWtdc3W1CZhCwAA8kjYqlKNDXXZ9VSVLQAAyCVhq8orW7Fmy6nSAAAgf4StKl+zFZqahS0AAMgbYatKNbYLW5pkAABA/ghbVT6NMExtaq7oWAAAgFkJW1WqtrYmNdTVZB+rbAEAQP4IWwVpkgEAAOSLsFWEExsLWwAAkDvCVgHC1lRhCwAAckfYKkJly5otAADIHWGrAGu2pjYJWwAAkDfCVhVrrK/LrlW2AAAgf4StKqZBBgAA5JewVcWELQAAyC9hq4o1tjXIaK70UAAAgJkIW1VMgwwAAMgvYauKNTZo/Q4AAHklbBWgsmXNFgAA5I+wVYAGGVOFLQAAyB1hq4rpRggAAPklbFWxbnVOagwAAHklbBVhGqFuhAAAkDvCVhVzni0AAMgvYauKWbMFAAD5JWwVobIlbAEAQO4IW0WobGmQAQAAuSNsFeCkxhpkAABA/ghbVayxQWULAADyStgqwHm2plqzBQAAuSNsVTHdCAEAIL+ErSombAEAQH4JWwVokGHNFgAA5I+wVYDK1tTpzZUeCgAAMBNhq4o5qTEAAOSXsFXFhC0AAMgvYauKaZABAAD5JWwVIWxpkAEAALkjbBWgG2FTcym1tJQqPRwAAKAdYauKNTbUtX2sugUAAPkibBWgshWmWrcFAAC5ImxVsYa6mraPNckAAIB8EbaqWE1NjSYZAACQU8JWlWtsnUqosgUAAPkibFW5cmVr6vTmSg8FAABoR9iqco1ObAwAALkkbFW5+nbn2gIAAPJD2Kpy9a0dCZud1BgAAHJF2Kpy9bUzwtb0FtMIAQAgT4StKldXO+MQTjeNEAAAckXYKsiJjU0jBACAfBG2qlxd6zTCJic1BgCAXBG2CrJmS2ULAADyRdiqcvXlNVvCFgAA5IqwVZDW77oRAgBAvghbBVmzpRshAADki7BVkGmE1mwBAEC+CFsFaZDRJGwBAECuCFtVrq58ni2t3wEAIFeErSrXUF6zpbIFAAC5ImxVuTqt3wEAIJeErSrnpMYAAJBPwlZRzrOl9TsAAOSKsFWQypaTGgMAQL4IW1XOmi0AAMgnYavKNZRbvwtbAACQK8JWlasrn9TYebYAACBXhK0qV1834xCqbAEAQL4IWwVpkNGkGyEAAOSKsFWQaYTNuhECAECuCFsFaZChGyEAAOSLsFWU1u+mEQIAQK4IWwVZs6VBBgAA5IuwVeXq26YRWrMFAAB5ImwVpLJlGiEAAOSLsFWUNVumEQIAQK4IWwXpRmjNFgAA5EvFw9Ybb7yRvvvd76allloq9ejRI62zzjrp0UcfbXu8VCqlk046KQ0YMCB7fMiQIemll17qsI/33nsv7bXXXql3796pb9++ab/99ksffvhhh22eeuqp9OUvfzl17949DRw4MJ111lmpSOfZamq2ZgsAAPKkomHr/fffT5tvvnlqaGhIt912W3r22WfTL3/5y7TEEku0bROh6IILLkgjRoxIf//731OvXr3S0KFD05QpU9q2iaD1zDPPpLvuuivdfPPN6f77708HHnhg2+OTJk1K22+/fRo0aFAaM2ZM+sUvfpFOOeWUdOmll6ZqpxshAADkU30ln/zMM8/MqkxXXHFF232DBw/uUNU677zz0gknnJB23XXX7L7f/e53qX///unGG29Me+65Z3ruuefS7bffnh555JG04YYbZttceOGFaccdd0xnn312Wm655dJVV12Vpk2bli6//PLUrVu3tNZaa6UnnnginXPOOR1CWdnUqVOzS/uwllf11mwBAEAuVbSyddNNN2UB6Rvf+EZaZpll0vrrr59+85vftD0+bty49Pbbb2dTB8v69OmTNtlkkzR69OjsdlzH1MFy0AqxfW1tbVYJK2+z5ZZbZkGrLKpjL7zwQlZdm9nw4cOz5ylfIhDmVZ3W7wAAkEsVDVv//Oc/0yWXXJJWXXXVdMcdd6RDDjkk/fCHP0y//e1vs8cjaIWoZLUXt8uPxXUEtfbq6+vTkksu2WGb2e2j/XO0d/zxx6eJEye2XV5//fWUV1q/AwBAPlV0GmFLS0tWkfrZz36W3Y7K1tNPP52tzxo2bFjFxtXY2JhdqoFphAAAkE8VrWxFh8E111yzw31rrLFGeu2117KPl1122ex6/PjxHbaJ2+XH4nrChAkdHp8+fXrWobD9NrPbR/vnqFb1Wr8DAEAuVTRsRSfCWDfV3osvvph1DSw3y4gwNHLkyA7NKmIt1qabbprdjusPPvgg6zJYNmrUqKxqFmu7yttEh8Kmpqa2baJz4Wqrrdah82E1t363ZgsAAPKlomHrqKOOSn/729+yaYT/+Mc/0tVXX521Yz/00EOzx2tqatKRRx6ZzjjjjKyZxtixY9M+++yTdRjcbbfd2iphO+ywQzrggAPSww8/nB588MF02GGHZZ0KY7vwne98J2uOEeffihbx1157bTr//PPT0UcfnapdQ3kaoTVbAACQKxVds7XRRhulG264IWtIcdppp2WVrGj1HufNKjv22GPTRx99lLVojwrWFltskbV6j5MTl0Vr9whY2267bdaFcI899sjOzVUWHQXvvPPOLMRtsMEGqV+/ftmJkmfX9r16K1vCFgAA5ElNKU5mxVzF1MUIbNGZsHfv3ilPXho/OW137v1pyV7d0mMnblfp4QAAQKFNmo9sUNFphCy8ylZTszVbAACQJ8JWlSu3fteNEAAA8kXYqnLl1u/WbAEAQL4IW1WuvtwgwzRCAADIFWGrIGu2orDVoroFAAC5IWxVufq6/xzCZo0lAQAgN4StgkwjDE5sDAAA+SFsFWQaYZjeYt0WAADkhbBV5RraTyO0ZgsAAHJD2Kpy7Qpbqck0QgAAyA1hq8rV1NS0rdtS2QIAgPwQtgp0YuMm59oCAIDcELYKoL52xmFU2QIAgPwQtgrUkXC6sAUAALkhbBVAQ+s0Qq3fAQAgP4StIlW2dCMEAIDcELYKwJotAADIH2GrQN0ITSMEAID8ELYKwDRCAADIH2GrABpMIwQAgNwRtgpU2WoStgAAIDeErQKt2Wq2ZgsAAHJD2CqAemu2AACgGGFrpZVWSv/+979nuf+DDz7IHqMyrd+nm0YIAADVHbZeeeWV1NzcPMv9U6dOTW+88cbCGBcL0o1Q2AIAgNyon5+Nb7rppraP77jjjtSnT5+22xG+Ro4cmVZcccWFO0Lm/TxbzdZsAQBAVYat3XbbLbuuqalJw4YN6/BYQ0NDFrR++ctfLtwRMu9rtlS2AACgOsNWS2u3u8GDB6dHHnkk9evXr7PGxXyoc54tAACo7rBVNm7cuIU/EhZYg2mEAABQjLAVYn1WXCZMmNBW8Sq7/PLLF8bYmEcaZAAAQEHC1qmnnppOO+20tOGGG6YBAwZka7io/Jot0wgBAKDKw9aIESPSlVdemfbee++FPyLmW33djDVbTU5qDAAA1X2erWnTpqXNNtts4Y+Gz1jZsmYLAACqOmztv//+6eqrr174o2GBWLMFAAAFmUY4ZcqUdOmll6a77747rbvuutk5tto755xzFtb4mAcNrdMIp5tGCAAA1R22nnrqqbTeeutlHz/99NMdHtMsY9FT2QIAgIKErXvuuWfhj4QFZs0WAAAUZM0W+VLfelJj3QgBAKDKK1tbb731XKcLjho16rOMiflUVzsjMzvPFgAAVHnYKq/XKmtqakpPPPFEtn5r2LBhC2tszKMGa7YAAKAYYevcc8+d7f2nnHJK+vDDDz/rmJhPda3TCKc3W7MFAACFXLP13e9+N11++eULc5fMV4MMlS0AAChk2Bo9enTq3r37wtwl86C+dc1Wk7AFAADVPY1w991373C7VCqlt956Kz366KPpxBNPXFhjYz67EWr9DgAAVR62+vTp0+F2bW1tWm211dJpp52Wtt9++4U1Nub3pMZavwMAQHWHrSuuuGLhj4QF1tA6jVA3QgAAqPKwVTZmzJj03HPPZR+vtdZaaf31119Y42JBKlvCFgAAVHfYmjBhQtpzzz3Tvffem/r27Zvd98EHH2QnO77mmmvS0ksvvbDHyVxYswUAAAXpRnj44YenyZMnp2eeeSa999572SVOaDxp0qT0wx/+cOGPknnrRmjNFgAAVHdl6/bbb0933313WmONNdruW3PNNdPFF1+sQUYFpxE6zxYAAFR5ZaulpSU1NDTMcn/cF49RmZMaW7MFAABVHra22WabdMQRR6Q333yz7b433ngjHXXUUWnbbbddmONjPtZsTW8WdAEAoKrD1kUXXZStz1pxxRXTyiuvnF0GDx6c3XfhhRcu/FEyT2u2TCMEAIAqX7M1cODA9Nhjj2Xrtp5//vnsvli/NWTIkIU9PuaB1u8AAFDlla1Ro0ZljTCiglVTU5O22267rDNhXDbaaKPsXFt//etfO2+0zFaDaYQAAFDdYeu8885LBxxwQOrdu/csj/Xp0ycddNBB6ZxzzlmY42MeqGwBAECVh60nn3wy7bDDDnN8PNq+jxkzZmGMiwVYszXdebYAAKA6w9b48eNn2/K9rL6+Pr3zzjsLY1wsSDdClS0AAKjOsPW5z30uPf3003N8/KmnnkoDBgxYGONiAc6z1ewcZwAAUJ1ha8cdd0wnnnhimjJlyiyPffLJJ+nkk09OO++888IcH/Ogvs40QgAAqOrW7yeccEL685//nD7/+c+nww47LK222mrZ/dH+/eKLL07Nzc3pJz/5SWeNlU+pbJlGCAAAVRq2+vfvnx566KF0yCGHpOOPPz6VSjN+uY828EOHDs0CV2xDZboROqkxAABU8UmNBw0alG699db0/vvvp3/84x9Z4Fp11VXTEkss0TkjZJ4bZDRZswUAANUbtsoiXMWJjMlP6/coNLa0lFJta6ULAACokgYZ5HsaYbBuCwAA8kHYKoCG1mmEYbqphAAAkAvCVgGobAEAQP4IWwVasxWanWsLAAByQdgqSGWrprW4pSMhAADkg7BVsBMbO9cWAADkg7BVsHVb000jBACAXBC2CqKhdd2WBhkAAJAPwlZB1LW2f2+2ZgsAAHJB2CrYmq0m0wgBACAXhK2CtX/XIAMAAPJB2CpagwxhCwAAckHYKoj61jVb05ut2QIAgDwQtgq2ZktlCwAA8kHYKghrtgAAIF+ErYJNI2wyjRAAAHJB2CrYNEKVLQAAyAdhqyB0IwQAgHypTznx85//PB1//PHpiCOOSOedd15235QpU9KPfvSjdM0116SpU6emoUOHpl/96lepf//+bZ/32muvpUMOOSTdc889abHFFkvDhg1Lw4cPT/X1//nS7r333nT00UenZ555Jg0cODCdcMIJ6Xvf+16qZvF1v/vuu223p3zycXb90j9eTktPffMz7btfv35phRVW+MxjBACAriwXYeuRRx5Jv/71r9O6667b4f6jjjoq3XLLLen6669Pffr0SYcddljafffd04MPPpg93tzcnHbaaae07LLLpoceeii99dZbaZ999kkNDQ3pZz/7WbbNuHHjsm0OPvjgdNVVV6WRI0em/fffPw0YMCALb9UatFZfY430ycczAlZY5ls/TT1W/EL68fH/L3383P2faf89evZMzz/3nMAFAACfQU2pVKrovLMPP/wwffGLX8wqVmeccUZab731ssrWxIkT09JLL52uvvrq9PWvfz3b9vnnn09rrLFGGj16dPrSl76UbrvttrTzzjunN998s63aNWLEiPTjH/84vfPOO6lbt27ZxxHYnn766bbn3HPPPdMHH3yQbr/99tmOKapocSmbNGlSVhGLMfXu3TtV2mOPPZY22GCDtNePf5H6r7Bydt9fJ9SnCVNq04ZLTU+Dei14k4zxr72crjrzmDRmzJjsuAAAAKlDNohC0Lxkg4pXtg499NCs8jRkyJAsbJXFL/tNTU3Z/WWrr756Vm0ph624XmeddTpMK4xqVUwrjCmD66+/frZN+32UtznyyCPnOKaYhnjqqaemvIugtfyqa2Uf9/zojZSmfJz6LrNcWn65PpUeGgAAdHkVbZARa7GiShPhZmZvv/12Vpnq27dvh/sjWMVj5W3aB63y4+XH5rZNJNJPPvlktuOKtWORVMuX119/PeVdbc2MBhn6YwAAQD5UrLIVASaaYdx1112pe/fuKU8aGxuzSzVpC1vSFgAAdO3KVkwTnDBhQrYuKDoHxuW+++5LF1xwQfZxVJ+mTZuWra1qb/z48VlDjBDXcXvmx8uPzW2bmF/Zo0ePVBS1rUeypbJL8AAAgEqHrW233TaNHTs2PfHEE22XDTfcMO21115tH0dXwegeWPbCCy9knfg23XTT7HZcxz4itJVFpSyC1Jprrtm2Tft9lLcp76MoypUtWQsAALr4NMLFF188rb322h3u69WrV1pqqaXa7t9vv/2y82MtueSSWYA6/PDDs5AUzTHC9ttvn4WqvffeO5111lnZ+qw4h1Y03ShPA4yW7xdddFE69thj07777ptGjRqVrrvuuqxDYZG0Zq3ULG0BAEAuVLwb4dyce+65qba2Nu2xxx4dTmpcVldXl26++eas+2CEsAhrcVLj0047rW2bwYMHZ8Eqztl1/vnnp+WXXz5ddtllVXuOrTmpU9kCAIBcyVXYuvfeezvcjsYZF198cXaZk0GDBqVbb711rvvdaqut0uOPP56KrKatG6G0BQAAqau3fmfhqW2dRihsAQBAPghbBVHbmrZ0fgcAgHwQtgriPyc1lrYAACAPhK2iTSNU2gIAgFwQtgpX2ar0SAAAgCBsFe6kxtIWAADkgbBVsGmETmoMAAD5IGwVrrJV6ZEAAABB2CqI1qylGyEAAOSEsFUQbefZaqn0SAAAgCBsFYTzbAEAQL4IW0U7z5awBQAAuSBsFYTzbAEAQL4IWwVhGiEAAOSLsFUQphECAEC+CFsF60YoawEAQD4IWwXhPFsAAJAvwlbR1mw5zxYAAOSCsFUQGmQAAEC+CFsFoUEGAADki7BVEM6zBQAA+SJsFYRphAAAkC/CVsGmEcpaAACQD8JWQdS0VraazSMEAIBcELYKoq7tpMbCFgAA5IGwVbiTGld6JAAAQBC2CkKDDAAAyBdhqyCcZwsAAPJF2Crgebas2wIAgMoTtgqitlzaiiYZFR0JAAAQhK2CaJe1TCUEAIAcELYKNo0wtLRUdCgAAICwVcywZc0WAABUnrBVyGmElRwJAAAQhK2CqGk/jVBlCwAAKk7YKpA6JzYGAIDcELYKpFzcMo0QAAAqT9gq5ImNpS0AAKg0YatAaluPZovSFgAAVJywVcjKVqVHAgAACFsFYhohAADkh7BVwHNtyVoAAFB5wlYBz7XVLG0BAEDFCVuFrGwJWwAAUGnCVoHUtqYtDTIAAKDyhK0iNsiQtgAAoOKErQJOI9SNEAAAKk/YKhDn2QIAgPwQtgrEebYAACA/hK0CMY0QAADyQ9gqYGVL1gIAgMoTtgqkNWs5qTEAAOSAsFUgda3zCEstlR4JAAAgbBVIjQYZAACQG8JWgWiQAQAA+SFsFYjzbAEAQH4IWwXiPFsAAJAfwlaBmEYIAAD5IWwViGmEAACQH8JWEcOWtAUAABUnbBVITevRNIsQAAAqT9gqEA0yAAAgP4StAtEgAwAA8kPYKhANMgAAID+ErQIxjRAAAPJD2CoQ0wgBACA/hK0CMY0QAADyQ9gqkNrW0lZJ2gIAgIoTtgqktbCVmk0jBACAihO2CqSuNW3JWgAAUHnCVoGobAEAQH4IWwVskCFrAQBA5QlbBeI8WwAAkB/CVoHUtXYjbNaNEAAAKk7YKpCGuhlhq6m5pdJDAQCALk/YKpD6uhmHs6lZZQsAACpN2CoQlS0AAMgPYatAGlorW9NVtgAAoOKErQJpqC1PI2xJJR0JAQCgooStAk4jjJilIyEAAFSWsFXABhmhSdgCAICKErYKdp6t1lNtaZIBAABdOWwNHz48bbTRRmnxxRdPyyyzTNptt93SCy+80GGbKVOmpEMPPTQttdRSabHFFkt77LFHGj9+fIdtXnvttbTTTjulnj17Zvs55phj0vTp0ztsc++996YvfvGLqbGxMa2yyirpyiuvTEWkSQYAAORDRcPWfffdlwWpv/3tb+muu+5KTU1Nafvtt08fffRR2zZHHXVU+r//+790/fXXZ9u/+eabaffdd297vLm5OQta06ZNSw899FD67W9/mwWpk046qW2bcePGZdtsvfXW6YknnkhHHnlk2n///dMdd9yRihq2VLYAAKCy6iv55LfffnuH2xGSojI1ZsyYtOWWW6aJEyem//mf/0lXX3112mabbbJtrrjiirTGGmtkAe1LX/pSuvPOO9Ozzz6b7r777tS/f/+03nrrpdNPPz39+Mc/Tqecckrq1q1bGjFiRBo8eHD65S9/me0jPv+BBx5I5557bho6dGgqEufaAgCAfMjVmq0IV2HJJZfMriN0RbVryJAhbdusvvrqaYUVVkijR4/Obsf1OuuskwWtsghQkyZNSs8880zbNu33Ud6mvI+ZTZ06Nfv89pfqq2yZRggAAJWUm7DV0tKSTe/bfPPN09prr53d9/bbb2eVqb59+3bYNoJVPFbepn3QKj9efmxu20SI+uSTT2a7lqxPnz5tl4EDB6ZqUd9a2ZqusgUAABWVm7AVa7eefvrpdM0111R6KOn444/Pqmzly+uvv56qhcoWAADkQ0XXbJUddthh6eabb073339/Wn755dvuX3bZZbPGFx988EGH6lZ0I4zHyts8/PDDHfZX7lbYfpuZOxjG7d69e6cePXrMMp7oWBiXatRQq0EGAACkrl7ZKpVKWdC64YYb0qhRo7ImFu1tsMEGqaGhIY0cObLtvmgNH63eN9100+x2XI8dOzZNmDChbZvobBhBas0112zbpv0+ytuU91HIBhktwhYAAHTZylZMHYxOg3/5y1+yc22V11jFOqmoOMX1fvvtl44++uisaUYEqMMPPzwLSdGJMESr+AhVe++9dzrrrLOyfZxwwgnZvsvVqYMPPjhddNFF6dhjj0377rtvFuyuu+66dMstt6SiqTeNEAAAcqGila1LLrkkWxO11VZbpQEDBrRdrr322rZtoj37zjvvnJ3MONrBx5TAP//5z22P19XVZVMQ4zpC2He/+920zz77pNNOO61tm6iYRbCKatYXvvCFrAX8ZZddVri27+0rWxpkAABAF65sxTTCT9O9e/d08cUXZ5c5GTRoULr11lvnup8IdI8//ngqOg0yAAAgH3LTjZCFHbZUtgAAoJKErYIpn2dL2AIAgMoStgpa2ZpuGiEAAFSUsFUwDbUqWwAAkAfCVlHXbLWobAEAQCUJWwWjQQYAAOSDsFUwGmQAAEA+CFsF4zxbAACQD8JWwTS0Vramq2wBAEBFCVsFrWxFf4xmTTIAAKBihK2CrtkK1m0BAEDlCFsFU1dTk2pa85awBQAAlSNsFUxNTU1qqJ1xWKdrkgEAABUjbBW4SYbKFgAAVI6wVUD12r8DAEDFCVtFrmy1qGwBAEClCFuFPrGxsAUAAJUibBU4bGmQAQAAlSNsFZAGGQAAUHnCVqGnEapsAQBApQhbBVSvsgUAABUnbBWQNVsAAFB5wlYBNdTqRggAAJUmbBWQ82wBAEDlCVsFpEEGAABUnrBVQBpkAABA5QlbBaRBBgAAVJ6wVehphCpbAABQKcJWkRtkCFsAAFAxwlYB1WuQAQAAFSdsFVBD7YzK1nSVLQAAqBhhq8hrtlpUtgAAoFKErQKHreaWUmopCVwAAFAJwlaBG2QETTIAAKAyhK0CqmtdsxWcawsAACpD2Cqgmpoa7d8BAKDChK3Cn9hYZQsAACpB2Cp82FLZAgCAShC2CqreNEIAAKgoYaugGmpnHNrpzrUFAAAVIWwVlAYZAABQWcJWQWmQAQAAlSVsFZQ1WwAAUFnCVkHpRggAAJUlbBWUaYQAAFBZwlbBG2RMV9kCAICKELYKSmULAAAqS9gqKGu2AACgsoStgtKNEAAAKkvYKqiG2hmHdrpphAAAUBHCVsEbZDS1qGwBAEAlCFsFpUEGAABUlrBVUBpkAABAZQlbBW+QYc0WAABUhrBVUCpbAABQWcJWwRtkTG8ppVJJdQsAABY1Yavgla2gSQYAACx6wlZB1dfOqGwFUwkBAGDRE7YKqqampi1wxVRCAABg0RK2CkyTDAAAqBxhqws0yRC2AABg0RO2ukRlyzRCAABY1IStAuveUJddT57SVOmhAABAlyNsFdiyvbtn129NnFLpoQAAQJcjbBXYgL7CFgAAVIqwVWAD+swIW+99NC1NaWqu9HAAAKBLEbYKrGe3+tS3Z0P2seoWAAAsWsJWF6luvfnBJ5UeCgAAdCnCVsEt16dHdq2yBQAAi5awVXDL9Z0Rtt6eNCU1tzjfFgAALCrCVsEt0bMhda+vzYLWO5OnVno4AADQZQhbBVdTU5MGtFa33pxo3RYAACwqwlYXapLx1gfWbQEAwKIibHWhJhlR2SqVrNsCAIBFQdjqAvr3bky1NSl9PK05TZoyvdLDAQCALkHY6gLq62rTMouXpxJatwUAAIuCsNVFDOjbenJj59sCAIBFQtjqYuu2Xnh7cnrtvY8rPRwAACg8YauLGNyvV1quT/c0rbkl3fjEG+npNyZWekgAAFBowlYXUVdbk762/ufSav0XT9GQcOTzE9L9L72Tpk1vqfTQAACgkOorPQAWbaOMoWv1T0v0bEh/G/deevy1D9LYf01MqyyzWFpjQO80cIkZUw0BAIDPTtjqYmpqatImKy2VluzVLT308r/TB580peffnpxdujfUpiXr69PiX9w5vTqxKa1fKmXbAwAA869LTSO8+OKL04orrpi6d++eNtlkk/Twww+nrmrV/ounfTYdlL654fJp7c/1To31tWlKU0t685PatOR2B6ej7ng3bXjG3ekHV41Jvx/9SlYB+3iac3QBAMC86jKVrWuvvTYdffTRacSIEVnQOu+889LQoUPTCy+8kJZZZpnUFUXVakCfHtllq88vkyZMnpKeeemV9OgTT6XeK62f/v3RtHTr2LezS1m/nrVpucXqU69utalHfU3qXl+TejTE9YzbjfU1qb42pZpUk51IOUxvKaXmlhnXsUSssWfP1GvxPml6cyk1Nbe0Xjp+HAW1pXp1S/0Wa0xLLdYtLde3Rxq0VM/Uf/Huqba8YwAAyLEuE7bOOeecdMABB6Tvf//72e0IXbfccku6/PLL03HHHZe6umigEaHr/ebxacJ1J6UJtfWpccCqqXGFdVL3FdZN3ZZeMdX16pve/bglvfvxtM/4bJNSSv8JcPOjW11KS/esS30a61Lvxtq0eGNtFvjqalIW7hbr1TMt0bdvqq+tSXVxZ0pZQ5AZ16Xs45ZSSqX4X3b9n/vL95Ufb/1/amkpZfe1lEpp0uTJ6aOPP2nbfsb9M54jHo/ta2tmBM3/XGbcjtHUtN4ufxzX8Vh83kdTp6emUm36ZHopqzJm162X9tvG19azoSb1qK9N3RvKX/uMfWbP0/q8cU/b1xehd3pzqqmtm/E1lV+L1tdnxsetr0OH+0upuZTaxhGXpnavR1x3q6tJ3WpT6tFQm4XtxroZobt763X5dsNnCMk9e/ZMvfv0SdVm0sSJ6eOP53yqhdZvzc/0uvTp3TsVzWd9XarZxOx7ZvYnn4+fuaa2P1zN+ONV/HEqruPnN/5tqG/9NyL+TY8/fGUft94Xt3sv1iv1XaJvyqPyv9XMn/bvbeX3obiv7d/50n9uh+z9ou19qib7A2aH96rs+tP/vZ7xTHMb18L7+j7r83zaJvO2j84fx7zsaF728Wlj+bSvZd728dnHMU9jaf2+jj/az7gupQO3XCkNXLJnqhZdImxNmzYtjRkzJh1//PFt99XW1qYhQ4ak0aNHz7L91KlTs0v7N78waVKEhMr78MMPs+t/vfRMmvrJwj1n1ivPPp5dbzR0j7T84FVb752SUsvzqWlyXZpS05im1nRLzakutaTa1FxTm1rKH7fenvFjM+MX/RD31LRepnw0Kb37+riUWqan1NKcSs3TUyk+bm7OruN23J9qalNdz96ptkefVNurT6rvvXSqX3zpNKWuPr3+cUqvz/WreHWhviYAAOTDdqsunvrUL1HRMZQzwaf9MaDLhK133303NTc3p/79+3e4P24///zzs2w/fPjwdOqpp85y/8CBA1OeXHfeiZ2270duuzY90ml7BwCA+feV81JuTJ48OfX5lJk3XSJsza+ogMX6rrKWlpb03nvvpaWWWioX3fkiTUfwe/3111PvAk4hqhaOQ+U5BvngOOSD45APjkM+OA75MKmgxyEqWhG0lltuuU/dtkuErX79+qW6uro0fvz4DvfH7WWXXXaW7RsbG7NLe3375m+Oe3zTFukbt1o5DpXnGOSD45APjkM+OA754DjkQ+8CHodPq2h1qdbv3bp1SxtssEEaOXJkh2pV3N50000rOjYAAKCYukRlK8S0wGHDhqUNN9wwbbzxxlnr948++qitOyEAAMDC1GXC1re+9a30zjvvpJNOOim9/fbbab311ku33377LE0zqkFMcTz55JNnmerIouU4VJ5jkA+OQz44DvngOOSD45APjY5DqinNS89CAAAA5kuXWLMFAACwqAlbAAAAnUDYAgAA6ATCFgAAQCcQtnLq4osvTiuuuGLq3r172mSTTdLDDz881+2vv/76tPrqq2fbr7POOunWW29dZGMtqvk5BldeeWWqqanpcInP47O5//770y677JKdoT1e0xtvvPFTP+fee+9NX/ziF7POR6usskp2bFi0xyGOwcw/D3GJTrAsmOHDh6eNNtooLb744mmZZZZJu+22W3rhhRc+9fO8N1T+OHh/WPguueSStO6667adKDfOmXrbbbfN9XP8LFT+OFzZRX8WhK0cuvbaa7PzgkWrzMceeyx94QtfSEOHDk0TJkyY7fYPPfRQ+va3v53222+/9Pjjj2f/+Mfl6aefXuRj76rHIMQ/NG+99Vbb5dVXX12kYy6iOBdevPYRfOfFuHHj0k477ZS23nrr9MQTT6Qjjzwy7b///umOO+7o9LEW2fweh7L4JbT9z0T8csqCue+++9Khhx6a/va3v6W77rorNTU1pe233z47NnPivSEfxyF4f1i4ll9++fTzn/88jRkzJj366KNpm222Sbvuumt65plnZru9n4V8HIcu+7MQrd/Jl4033rh06KGHtt1ubm4uLbfccqXhw4fPdvtvfvObpZ122qnDfZtssknpoIMO6vSxFtX8HoMrrrii1KdPn0U4wq4n/rm64YYb5rrNscceW1prrbU63Petb32rNHTo0E4eXdcxL8fhnnvuybZ7//33F9m4upoJEyZkr/F99903x228N+TjOHh/WDSWWGKJ0mWXXTbbx/ws5OM4XNFFfxZUtnJm2rRp2V8IhgwZ0nZfbW1tdnv06NGz/Zy4v/32Iaowc9qehX8MwocffpgGDRqUBg4c+Kl/2aFz+FnIlzh5/IABA9J2222XHnzwwUoPp1AmTpyYXS+55JJz3MbPQz6OQ/D+0Hmam5vTNddck1UXYxrb7PhZyMdx6Ko/C8JWzrz77rvZN2z//v073B+357TeIe6fn+1Z+MdgtdVWS5dffnn6y1/+kv73f/83tbS0pM022yz961//WkSjZm4/C5MmTUqffPJJxcbV1UTAGjFiRPrTn/6UXeJNdauttsqm5PLZxb8vMUV28803T2uvvfYct/PekI/j4P2hc4wdOzYttthi2frcgw8+ON1www1pzTXXnO22fhbycRxW66I/C/WVHgAUQfwVp/1fcuIfjzXWWCP9+te/TqeffnpFxwaLWryhxqX9z8PLL7+czj333PT73/++omMrglgzFGtNHnjggUoPpUub1+Pg/aFzxL8xsTY3qot//OMf07Bhw7I1dXP6RZ/KH4dNu+jPgrCVM/369Ut1dXVp/PjxHe6P28suu+xsPyfun5/tWfjHYGYNDQ1p/fXXT//4xz86aZTMz89CLMjt0aNHxcZFShtvvLFwsBAcdthh6eabb846RMbi9Lnx3pCP4zAz7w8LR7du3bKOs2GDDTZIjzzySDr//POzX9xn5mchH8ehq/4smEaYw2/a+GYdOXJk231RZo3bc5oDG/e33z5El6S5zZll4R6DmcU0xCitx3QqFh0/C/kVf/n087DgojdJ/IIfU3RGjRqVBg8e/Kmf4+chH8dhZt4fOke8T0+dOnW2j/lZyMdx6LI/C5Xu0MGsrrnmmlJjY2PpyiuvLD377LOlAw88sNS3b9/S22+/nT2+9957l4477ri27R988MFSfX196eyzzy4999xzpZNPPrnU0NBQGjt2bAW/iq51DE499dTSHXfcUXr55ZdLY8aMKe25556l7t27l5555pkKfhXVb/LkyaXHH388u8Q/V+ecc0728auvvpo9HscgjkXZP//5z1LPnj1LxxxzTPazcPHFF5fq6upKt99+ewW/iq53HM4999zSjTfeWHrppZeyf4eOOOKIUm1tbenuu++u4FdR3Q455JCsi9e9995beuutt9ouH3/8cds23hvyeRy8Pyx88fpGB8hx48aVnnrqqex2TU1N6c4778we97OQz+Nwahf9WRC2curCCy8srbDCCqVu3bplbcj/9re/tT32la98pTRs2LAO21933XWlz3/+89n20fr6lltuqcCou+4xOPLII9u27d+/f2nHHXcsPfbYYxUaeXGUW4jPfCm/9nEdx2Lmz1lvvfWyY7HSSitlrWZZtMfhzDPPLK288srZm+iSSy5Z2mqrrUqjRo2q4FdQ/Wb3+sel/fe394Z8HgfvDwvfvvvuWxo0aFD2mi699NKlbbfdtu0X/OBnIZ/H4cgu+rNQE/+pdHUNAACgaKzZAgAA6ATCFgAAQCcQtgAAADqBsAUAANAJhC0AAIBOIGwBAAB0AmELAACgEwhbAABAodx///1pl112Scstt1yqqalJN95443x9/imnnJJ93syXXr16zdd+hC0Aurzvfe97abfddqv0MABYSD766KP0hS98IV188cUL9Pn//d//nd56660OlzXXXDN94xvfmK/9CFsA5NJWW22VjjzyyE7/HACK56tf/Wo644wz0te+9rXZPj516tQsUH3uc5/LqlWbbLJJuvfee9seX2yxxdKyyy7bdhk/fnx69tln03777Tdf4xC2AACALuWwww5Lo0ePTtdcc0166qmnsorVDjvskF566aXZbn/ZZZelz3/+8+nLX/7yfD2PsAVALqf13Xfffen8889vmyf/yiuvZPdtvPHGqbGxMQ0YMCAdd9xxafr06XP9nObm5uwvkYMHD049evRIq622WrbNgmppaUlnnXVWWmWVVbJxrLDCCumnP/1p2+M//vGPszfknj17ppVWWimdeOKJqampqe3xJ598Mm299dZp8cUXT717904bbLBBevTRR9sef+CBB7I38xjrwIED0w9/+MNsOkzZr371q7Tqqqum7t27p/79+6evf/3rC/y1AHRFr732WrriiivS9ddfn/17u/LKK2dVri222CK7f2ZTpkxJV1111XxXtUL9QhozACw0EYZefPHFtPbaa6fTTjstuy9C04477piFqt/97nfp+eefTwcccEAWOmIh8+w+Z+mll87C0fLLL5+9qS611FLpoYceSgceeGAW1r75zW/O99iOP/749Jvf/Cade+652RtzzOOPsZRFiLryyiuzRdljx47Nxhj3HXvssdnje+21V1p//fXTJZdckurq6tITTzyRGhoassdefvnl7C+rMfXl8ssvT++8807219e4xC8AEcoifP3+979Pm222WXrvvffSX//614X0qgN0DWPHjs3eU+IPYzNPLYz3iZndcMMNafLkyWnYsGHz/Vw1pVKp9JlGCwCdINZfrbfeeum8887Lbv/kJz9Jf/rTn9Jzzz2XVa3KVZ6oJE2cODHV1tbO8jlzEuHl7bffTn/84x+z2xHgPvjgg0/tVhVvthHgLrroorT//vvP09dx9tlnZ9NUytWrqGZdeOGFs33Tjn1GAPv1r3/dodL1la98Jatu3Xrrren73/9++te//pUFOAA+XbxnRGAqN0K69tprsz98PfPMM9m/ue2V12q1t+2222b/dsc+5pfKFgBVIULWpptu2ha0wuabb54+/PDDLHzEdL45iW5UUSmKqSOffPJJmjZtWhbKFmQM8ZfPeOOdk3gTv+CCC7IqVYwtpjnGm3TZ0UcfnYWqqE4NGTIkWycQU1jKUwxj7UBMVymLv4lGdW7cuHFpu+22S4MGDcqmJ0YFLC6x+DumLAIwb2J2QVS2JkyY8KlrsOLf3nvuuSfddNNNaUFYswVAoUVVKebix1z7O++8M5u2F9WhCFzzK9ZRzU0sto6/lsZ0x5tvvjk9/vjjWUWu/XPFlMf4a+pOO+2URo0albUSLv+1NMLZQQcdlI2xfIkAFgu2I5BFNeuxxx5Lf/jDH7JpkCeddFLW2jiqcgD8R/x7Wv53tBya4uP4o1tMH4x/q/fZZ5/05z//OXvs4YcfTsOHD0+33HJLu72k7A918e9tdDdcECpbAORSt27dsr88lq2xxhrZNMKo9JSrWw8++GAWQGJN1uw+p7xNrG/6wQ9+0HZfVJ0WRDSmiMA1cuTI2U4jjPVgUXmKgFX26quvzrJdvNHH5aijjkrf/va3s/VYUaH64he/mLUWjuYbc1JfX59VxOJy8sknp759+2ahbffdd1+grwmgiB599NGsGVH7WQUhpnDHutr4dzfWx/7oRz9Kb7zxRurXr1/60pe+lHbeeee2z4lZBbFtTDWfebrhvBK2AMilFVdcMf3973/POgrGHPoIS7EW6/DDD8/WXL3wwgtZ2Ig30FivNbvPWXLJJbOAFA017rjjjqwjYUzfe+SRR7KP51c044g1YtHsIoJdTGOMJhZRqYrKWTxX/NU0qmkbbbRR9hfS9nP8YwrjMccck3UQjOeP6Y8xlj322CN7PPYdb/bx9UWYi3O/RPi66667snViUS375z//mbbccsu0xBJLZGu44peB6LAIwH/EGt65taaIxkSnnnpqdpmTeG95/fXX02dhGiEAuRRT/+IviTHNLppSRPv0CBcx1SOmzh188MFZwDnhhBPm+DkRfGJaXlR9vvWtb2Unrfz3v//doco1v6KVe/wlNKbwRbUt9hvz/sN//dd/ZdWqCEuxJiwqXbF9WYwtnj+mrkRlK7ohxtSU8pv9uuuum7Wvj66KsY4g1hXE80RnwxBVrJjyss0222TPPWLEiGxK4VprrfUZXmkAOotuhAAAAJ1AZQsAAKATCFsA0CqmHcZarzld4nEAmFemEQJAqzgnVjTXmJNowBHdAAFgXghbAAAAncA0QgAAgE4gbAEAAHQCYQsAAKATCFsAAACdQNgCAADoBMIWAABAJxC2AAAA0sL3/wHzoKFRU43U3QAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1000x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAIjCAYAAAA0vUuxAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbH1JREFUeJzt3QeYE9XawPF3e2HZpaw0qQrSuyBFwAIiogJ6r35cr2C9NuwVCyoWwE5RsQF6vYoFAcWKlW6hCAIiKLJ0BGGX7S3f8x6cmGSTzO6y2SS7/99jZDMzmTlTksybc857IhwOh0MAAAAAAD5F+p4FAAAAAFAETgAAAABgg8AJAAAAAGwQOAEAAACADQInAAAAALBB4AQAAAAANgicAAAAAMAGgRMAAAAA2CBwAgAAAAAbBE4AAFRjX3/9tURERJh/AQC+ETgBgIdZs2aZG0l9LFmypMR8h8MhTZo0MfPPPvvsoJQR4c26vuwepQlmHn30UZk3b55Ull9//VWuuuoqOe644yQ+Pl6Sk5Olb9++MnnyZMnJyam0cgBAZYuu9C0CQJjQm8I33nhDTj75ZLfp33zzjezYsUPi4uKCVjaEt//+979uz1977TVZuHBhielt27YtVeD0j3/8Q4YPHy6B9uGHH8o///lPc+2PGjVKOnToIPn5+eYHhttvv13Wr18vL774YsDLAQDBQOAEAD6cddZZ8s4778iUKVMkOvrvj0sNprp37y779+8PavkQvv7973+7PV+xYoUJnDynh5KtW7fK//3f/0mzZs3kyy+/lIYNGzrnXXfddbJlyxYTWAFAVUVTPQDwYeTIkXLgwAFzQ2vRX9ffffdd+de//uX1NVlZWXLrrbeapnz6q3zr1q3liSeeMM37XGkzrDFjxsj//vc/s4zWbmkwtmjRIucyDzzwQKmbci1evNjUBDRt2tRsV7d/8803+2w65Wt9v//+e4kylqZ/jB4TT0lJSXLJJZe4Tfvtt99MOevUqSOJiYnSq1cvrzfbubm5Zv9POOEEc2z0Jv28884zzcS0jHbHxdqu1ezyhx9+kLLQ5fV1r776aol5n376qZm3YMEC8/zw4cNy0003SfPmzc2xr1evngwaNEhWrVolR6M015KWQ5fTcnru+7Zt2+Taa681r0tISJC6deuaY+96jsvisccek8zMTHnllVfcgiZLy5Yt5cYbb3Q+nzlzppx22mnmeGj527VrJ88//7zXYz148GBJTU015WzRooVcdtllbssUFxfLM888I+3btzfXQ/369U1zwYMHD5Z5XQBQXtQ4AYAPeiPcu3dvefPNN2XIkCFm2scffyzp6enml3etiXKlN7TnnnuufPXVV3L55ZdLly5dzE22NmHauXOnPP300yWa/L311ltyww03mBvL5557Ts4880z57rvvTBMoDRT0ZtSigZA23frPf/5ToimX1oxlZ2fLNddcY26QdR1Tp041TQp1njcjRoww27ACr0A3sdq7d6/06dPHlFP3WcupN/x6zDTw0vKooqIi03fsiy++MMdZb8Y1ONEA9qeffpKBAwe6NWl77733ZO7cuW7Tjj/++KMq64knnmj68Lz99tsyevRot3l6zmrXrm1u0NXVV19tyq9BpgYHGmxr07WNGzdKt27dyrX90l5Lus9XXHGF9OzZ03ldWPv+/fffy7Jly8wxbNy4sQmYNHA55ZRTZMOGDSZwLYsPPvjAHBM9h6Wh29JAR/dDa2z19RrIaRCkNVRq3759csYZZ8gxxxwjd911l9SqVcuUU8+pKw2SNAi+9NJLzbWjtV/Tpk2T1atXy9KlSyUmJqbU6wKAcnMAANzMnDlTf9J3fP/9945p06Y5atas6cjOzjbz/vnPfzpOPfVU83ezZs0cQ4cOdb5u3rx55nUPP/yw2/r+8Y9/OCIiIhxbtmxxTtPl9PHDDz84p23bts0RHx/vGDFihNdy6fZGjx7tdZ5VPlcTJkww29X1uiooKDDbfvDBB0vs89atW93KeN111/k5Ug7HV199ZZZ75513SsyrUaOGW3lvuukms+zixYud0w4fPuxo0aKFo3nz5o6ioiIzbcaMGWa5p556qsQ6i4uLS0y7//77zfJ257Ksxo4d64iJiXH8+eefzml5eXmOWrVqOS677DLntJSUFNvjZEdf77oPZbmWPI+zv2ti+fLlZr2vvfZaiXOo//qSnp5ulhk2bFip98nb9gcPHuw47rjjnM/nzp1re370etFl/ve//7lN/+STT9yml2ZdAHA0aKoHAH5ccMEFprmbNsvSWg/911czvY8++kiioqLML+KutLmVxiFaW+VKa7O0eZ5Fm9kNGzbM1CxorUtZaLMkizbd0v5XWjOg29Vf5V1pc0NVmuQW2mRO16W1KFpT4IseG13O9eHt+GjNiGuyDW3OpzUlWjOgtSBqzpw5pqnV9ddfX2Id2hStPLSWUMuk5SytCy+8UAoKCtxqLD777DM5dOiQmWfRmo1vv/1Wdu3aJRWlrNeS3TWh+6HnUGswtbxlbUaYkZFh/q1Zs2apX+O6fev4DxgwwDTX1OdKy6L0faVl9EZrTFNSUkzzR9frS987ev1orVxp1wUAR6NaB07al+Ccc86RRo0amS/jsqZz9dX/oEaNGgErM4DKpc1+tGmYJoTQG2gNaDSDmTfap0Q/TzxvLq3mdDrfVatWrUqsQ/v0aFO2P/74o0zlTEtLM31btO+Q3kxqufUmVVk3qRa98Ve6nB3tz6LrsvqM9O/f32t/Ie1Hosu5PjSAc6X7r/1tPHkeH+3HpMu5JuQ4WnoOtUyaOlub2WmTMc/yeercubO0adPGNM2z6N96LLTvjmvfH21CqH2RNDDU7wYNDo5GWa8lbzTgHzdunLOPlJZbj4Gef89rwo4eN1WWwFOb0Olx1+9EDWp023fffbeZZ21fr9Hzzz9fHnzwQVM+/eFA+0bl5eU517N582azvPaV8rzGtM+VNtEr7boA4GhU6z5O+qWpX4z6hW+18y+L2267zbRtd3X66adLjx49KrCUAIJNa5iuvPJK2bNnj+nrZP2yHSo0mNNf4//880+58847zc2+3qxqXxgNpjxrinQ/VIMGDWzXrTef2ndHazm0X8n48eNN/yO9mXW9qdcb9H79+rm9Vn+YChXPPvusCUr1JloTWmiSBaX9yvzRmqVHHnnE1HDo/r7//vsmaYhrUKe1krrv2s9Ka6Qef/xxmTRpkgm0rb5xwaA1dho4aOIKrd3UWhv9cU/7PPmrPfQVOGkgpwFiaWjwq9+Hei0+9dRTJniLjY01NWnaP8vavpVYRLMKah8orW3V7+Qnn3zSTNPgXpfVoEkTqXijAVRp1wUAR6NaB076hebvS02/YO+55x7TMVx/odPO2vplqB1rlX4Iu34Q//jjj6apyfTp0yul/AAqhyYt0M7pevPlWvvgSdM0f/755+ZXedeg4ueff3bOd6XBh6dffvnFdNq3bgZLY926deZ1mmhBx9axuGYDdGU1iSvNGEGaVEBrDSz6mXfRRReZ5n9a+2Tp2LGj23JKm5q50v3ftGlTiW14Hh9NbqBN37S5lXb6rwhaE6QJH9TQoUPN5/Unn3xi+zoNnLQGQ5sPaiY3bbKmgYcnzTKntVj60BoQTQqhAVd5A6eyXEu+mi9qEKGJLTRwcG16adU4lpUGzJpAZPny5SYQ80cDF/0O1UBTm6BarGZ1njS7oj70mGntrl5js2fPNokv9HrQY6GD7Lo2//PF37oA4GhU66Z6dvRXVv2C0A/ctWvXmjSumvHK282Oevnll80vmp6/ugIIbxosaIYwbYLlrxZFx33S2h/N9uVKf2HXm1vPm2j9fHHta7J9+3aZP3++yQzmGXT4Yy3rmqZa/548ebLX5TX40xv90gROnqyagrKUz/X4aLY/3W/Xmn+9GdcMhpqRTmlzK63h8TyOyjOte3npfpRmH/QYaVCox8w6bq4Bo55vz2ZvWjuitTNH00SsLNeS1i56C4Z0/zyPl2ZaLGv/Ocsdd9xhtqUBiGZI9FbLZF1z3q5JPU5aA+ZK04l7llEzCCrr+GmNnpb5oYceKrHNwsJC576XZl0AcDSqdY2TXX8B/YDXf/UL0Gqap79Q6nQdqd2V/oqnzQg0BSqAqsczJbU3GlSdeuqppqZakx1oU2BtuqXBkDaX8kyRrbXYmtLaNR250hqOstDmULpu/YzS5nnarEprSLyNcXPfffeZzzGtGS9NogX9DNTlraZ6+iu+1nZ07dpVyko/H63U7rrP2h9La8l0vVreyMgjv+Vprdlrr70mt9xyiwm09McoDbC01kFrdLT5YFlpsKbBmNVUT1Od6/EqDa110qaIOn6Qpga3yqm0Rkhr5bTfm55vDbK1nJoK3LWmp6zKci1pkgTdpjaJ0+8rHbvopJNOMjVEmq5cm+hpUKrHQJfTNPDlodvUGhw9HhpQ6nnSa1iTjWjac03iYI0hpcG/Ns3T/dDaWu2L9NJLL5mgcvfu3c516vnX615rdXX9ejx1Ob2GNXi0+i7pOiZMmCBr1qwx69aaSP0RU7epwZoe/9KsCwCOylHl5KtC9FBoKlPLggULzDRN8+r6iI6OdlxwwQUlXv/GG2+YeXv27KnkkgOoaKVNYe2ZjtxKr33zzTc7GjVqZFJZt2rVyvH444+XSKNtpfp+/fXXzTJxcXGOrl27+k0J7S8d+YYNGxwDBw50JCUlOVJTUx1XXnml48cffzTb0f1RkyZNcvTo0aNEWmd/6cith6bAbtCggeO8885zbNy4sVzpyNWvv/5qUmprSm9Nvd6zZ0/zeestlfU999xjUpXrcdRt6+v09eVJR249YmNjHS1btnSMGzfOpBYvjc2bNztfv2TJErd5uo7bb7/d0blzZ5O2XvdZ/37uueccR5OOvCzX0s8//+zo37+/IyEhwazDOuYHDx50XHrppeZ60OtCU4Hrsp7XUWnSkbv65ZdfzPWlKeT1eOp+9+3b1zF16lRHbm6uc7n333/f0alTJ3OedVm9/qxU89Z1tmrVKsfIkSMdTZs2Ne+BevXqOc4++2y3NP2WF1980dG9e3ezn7rNjh07Ou644w7Hrl27yrwuACiPCP3f0YVeVYP+8qode4cPH26ea5MMbRe9fv36Es059BdFz07V2glWf9XSdQBAaT5zdBBQb83RAABA6KGpng/aDEXbVGsnX7s+S9rMRDu8aidYAAAAAFVPtQ6ctM31li1b3AIgbT+t7e41yYPWOGkbbm2nroGUjqui7eI7depksjJZZsyYYToMBzPtLAAAAIDAqdaBk3aU1s63Fu2IbHUCnzVrlkkC8fDDD5uR2rXDtQ6opylOtcOta2YmXVY7xJYnyxQAAACA0EcfJwAAAACwwThOAAAAAGCDwAkAAAAAbFS7Pk7aJ2nXrl1Ss2bNUg3+CAAAAKBq0l5LOmC2DiDuOsC5N9UucNKgqUmTJsEuBgAAAIAQsX37dmncuLHfZapd4KQ1TdbB0QFrAQAAAFRPGRkZplLFihH8qXaBk9U8T4MmAicAAAAAEaXowkNyCAAAAACwQeAEAAAAADYInAAAAADABoETAAAAANggcAIAAAAAGwROAAAAAGCDwAkAAAAAbBA4AQAAAIANAicAAAAAsEHgBAAAAAA2CJwAAAAAwAaBEwAAAADYIHACAAAAABsETgAAAABgI9puAaAypWfny/7MfMnILZDkhBhJrRErKYmxwS4WAAAAqjkCJ4SMXYdy5M45a2Xx5v3Oaf1bpcrE8ztJo1oJQS0bAAAAqjea6iFkapo8gya1aPN+uWvOWjMfAAAACBYCJ4QEbZ7nGTS5Bk86HwAAAAgWAieEBO3T5M9hm/kAAABAIBE4ISQkx8f4nV/TZj4AAAAQSAROCAmpSbEmEYQ3Ol3nAwAAAMFC4ISQoCnHNXueZ/Ckzyed34mU5AAAAAgq0pEjZGjK8akju5pEENqnSZvnaU0TQRMAAACCjcAJIUWDJAIlAAAAhBqa6gEAAABAKAdOzz//vHTq1EmSk5PNo3fv3vLxxx/7XH7WrFkSERHh9oiPj6/UMgMAAACofoLaVK9x48YyceJEadWqlTgcDnn11Vdl2LBhsnr1amnfvr3X12iAtWnTJudzDZ4AAAAAoMoGTuecc47b80ceecTUQq1YscJn4KSBUoMGDSqphAAAAAAQQn2cioqKZPbs2ZKVlWWa7PmSmZkpzZo1kyZNmpjaqfXr1/tdb15enmRkZLg9AAAAACCsAqd169ZJUlKSxMXFydVXXy1z586Vdu3aeV22devWMmPGDJk/f768/vrrUlxcLH369JEdO3b4XP+ECRMkJSXF+dCACwAAAADKIsKhnYuCKD8/X9LS0iQ9PV3effddefnll+Wbb77xGTy5KigokLZt28rIkSPloYce8lnjpA+L1jhp8KTb0/5SAAAAAKqnjIwMU7lSmtgg6OM4xcbGSsuWLc3f3bt3l++//14mT54sL7zwgu1rY2JipGvXrrJlyxafy2hNlj4AAAAAIGyb6nnS5neuNUR2/aK0qV/Dhg0DXi4AAAAA1VdQa5zGjh0rQ4YMkaZNm8rhw4fljTfekK+//lo+/fRTM3/UqFFy7LHHmn5Kavz48dKrVy9TQ3Xo0CF5/PHHZdu2bXLFFVcEczcAAAAAVHFBDZz27dtngqPdu3ebtoU6GK4GTYMGDTLzte9TZOTflWIHDx6UK6+8Uvbs2SO1a9c2TfuWLVtWqv5QAAAAABC2ySFCuQMYAAAAgKqrLLFByPVxAgAAAIBQQ+AEAAAAADYInAAAAADABoETAAAAANggcAIAAAAAGwROAAAAAGCDwAkAAAAAbBA4AQAAAIANAicAAAAAsEHgBAAAAAA2CJwAAAAAwAaBEwAAAADYIHACAAAAABsETgAAAABgg8AJAAAAAGwQOAEAAACADQInAAAAALBB4AQAAAAANgicAAAAAMAGgRMAAAAA2CBwAgAAAAAbBE4AAAAAYIPACQAAAABsEDgBAAAAgA0CJwAAAACwQeAEAAAAADYInAAAAADABoETAAAAANggcAIAAAAAGwROAAAAAGCDwAkAAAAAbBA4AQAAAIANAicAAAAAsEHgBAAAAAA2CJwAAAAAwAaBEwAAAADYIHACAAAAABsETgAAAABgg8AJAAAAAGwQOAEAAACADQInAAAAALBB4AQAAAAANgicAAAAAMAGgRMAAAAA2CBwAgAAAAAbBE4AAAAAYIPACQAAAABsEDgBAAAAQCgHTs8//7x06tRJkpOTzaN3797y8ccf+33NO++8I23atJH4+Hjp2LGjfPTRR5VWXgAAAADVU1ADp8aNG8vEiRNl5cqV8sMPP8hpp50mw4YNk/Xr13tdftmyZTJy5Ei5/PLLZfXq1TJ8+HDz+Omnnyq97AAAAACqjwiHw+GQEFKnTh15/PHHTXDk6cILL5SsrCxZsGCBc1qvXr2kS5cuMn36dK/ry8vLMw9LRkaGNGnSRNLT000tFwAAAIDqKSMjQ1JSUkoVG4RMH6eioiKZPXu2CYy0yZ43y5cvl4EDB7pNGzx4sJnuy4QJE8zBsB4aNAEAAABAWQQ9cFq3bp0kJSVJXFycXH311TJ37lxp166d12X37Nkj9evXd5umz3W6L2PHjjURpPXYvn17he8DAAAAgKotOtgFaN26taxZs8YENe+++66MHj1avvnmG5/BU1lpQKYPAAAAAAjbwCk2NlZatmxp/u7evbt8//33MnnyZHnhhRdKLNugQQPZu3ev2zR9rtMBAAAAoMo21fNUXFzslszBlfZ9+uKLL9ymLVy40GefKAAAAAAI+xon7X80ZMgQadq0qRw+fFjeeOMN+frrr+XTTz8180eNGiXHHnusSfCgbrzxRhkwYIA8+eSTMnToUJNMQtOYv/jii8HcDQAAAABVXFADp3379pngaPfu3SbjnQ6Gq0HToEGDzPy0tDSJjPy7UqxPnz4muLr33nvl7rvvllatWsm8efOkQ4cOQdwLAAAAAFVdyI3jFEq52gEAAABUXWE5jhMAAAAAhCoCJwAAAACwQeAEAAAAADYInAAAAADABoETAAAAANggcAIAAAAAGwROAAAAAGCDwAkAAAAAbBA4AQAAAIANAicAAAAAsEHgBAAAAAA2CJwAAAAAwAaBEwAAAADYIHACAAAAABsETgAAAABgg8AJAAAAAGwQOAEAAACADQInAAAAALBB4AQAAAAANgicAAAAAMAGgRMAAAAA2CBwAgAAAAAbBE4AAAAAYIPACQAAAABsEDgBAAAAgA0CJwAAAACwEW23AFCZ0rPzZX9mvmTkFkhyQoyk1oiVlMTYYBcLAAAA1RyBE0LGrkM5cuectbJ4837ntP6tUmXi+Z2kUa2EoJYNAAAA1RtN9RAyNU2eQZNatHm/3DVnrZkPAAAABAuBE0KCNs/zDJpcgyedDwAAAAQLgRNCgvZp8uewzXwAAAAgkAicEBKS42P8zq9pMx8AAAAIJAInhITUpFiTCMIbna7zAQAAgGAhcEJI0JTjmj3PM3jS55PO70RKcgAAAAQV6cgRMjTl+NSRXU0iCO3TpM3ztKaJoAkAAADBRuCEkKJBEoESAAAAQg1N9QAAAADABoETAAAAANggcAIAAAAAGwROAAAAAGCDwAkAAAAAbBA4AQAAAIANAicAAAAAsEHgBAAAAAA2CJwAAAAAwAaBEwAAAADYIHACAAAAgFAOnCZMmCA9evSQmjVrSr169WT48OGyadMmv6+ZNWuWREREuD3i4+MrrcwAAAAAqp+gBk7ffPONXHfddbJixQpZuHChFBQUyBlnnCFZWVl+X5ecnCy7d+92PrZt21ZpZQYAAABQ/UQHc+OffPJJidokrXlauXKl9O/f3+frtJapQYMGlVBCAAAAAAixPk7p6enm3zp16vhdLjMzU5o1ayZNmjSRYcOGyfr1630um5eXJxkZGW4PAAAAAAjLwKm4uFhuuukm6du3r3To0MHncq1bt5YZM2bI/Pnz5fXXXzev69Onj+zYscNnP6qUlBTnQ4MtAAAAACiLCIfD4ZAQcM0118jHH38sS5YskcaNG5f6ddovqm3btjJy5Eh56KGHvNY46cOiNU4aPGntlvaVAgAAAFA9ZWRkmMqV0sQGQe3jZBkzZowsWLBAFi1aVKagScXExEjXrl1ly5YtXufHxcWZBwAAAACEZVM9rezSoGnu3Lny5ZdfSosWLcq8jqKiIlm3bp00bNgwIGUEAAAAgKDWOGkq8jfeeMP0V9KxnPbs2WOma3VZQkKC+XvUqFFy7LHHmr5Kavz48dKrVy9p2bKlHDp0SB5//HGTjvyKK64I5q4AAAAAqMKCGjg9//zz5t9TTjnFbfrMmTPlkksuMX+npaVJZOTfFWMHDx6UK6+80gRZtWvXlu7du8uyZcukXbt2lVx6AAAAANVFyCSHCMUOYAAAAACqrrLEBiGTjhwAAAAAQhWBEwAAAADYIHACAAAAABsETgAAAABgg8AJAAAAAGwQOAEAAACADQInAAAAALBB4AQAAAAANgicAAAAAMAGgRMAAAAA2CBwAgAAAAAbBE4AAAAAYIPACQAAAABsEDgBAAAAgA0CJwAAAACwQeAEAAAAADYInAAAAADABoETAAAAANggcAIAAAAAGwROAAAAAGCDwAkAAAAAbBA4AQAAAIANAicAAAAAsEHgBAAAAAA2CJwAAAAAwAaBEwAAAADYIHACAAAAABsETgAAAABgg8AJAAAAAGwQOAEAAACADQInAAAAALBB4AQAAAAANgicAAAAAMAGgRMAAAAA2CBwAgAAAAAbBE4AAAAAYIPACQAAAABsEDgBAAAAQGUEThkZGTJv3jzZuHFjRawOAAAAAMI/cLrgggtk2rRp5u+cnBw58cQTzbROnTrJnDlzKrqMAAAAABB+gdOiRYukX79+5u+5c+eKw+GQQ4cOyZQpU+Thhx+u6DICAAAAQPgFTunp6VKnTh3z9yeffCLnn3++JCYmytChQ2Xz5s0VXUYAAAAACL/AqUmTJrJ8+XLJysoygdMZZ5xhph88eFDi4+MruowAAAAAEFTR5XnRTTfdJBdddJEkJSVJ06ZN5ZRTTnE24evYsWNFlxEAAAAAwi9wuvbaa6Vnz56yfft2GTRokERGHqm4Ou644+jjBAAAAKDKiXBoZodyys/Pl61bt8rxxx8v0dHlisEqnaZOT0lJMf20kpOTg10cAAAAAGEQG5Srj1N2drZcfvnlJiFE+/btJS0tzUy//vrrZeLEieUrNQAAAACEqHIFTmPHjpUff/xRvv76a7dkEAMHDpS33nqr1OuZMGGC9OjRQ2rWrCn16tWT4cOHy6ZNm2xf984770ibNm3MtrVP1UcffVSe3QAAAACAwAVO8+bNMwPgnnzyyRIREeGcrrVPv/76a6nX880338h1110nK1askIULF0pBQYHJ0KfZ+nxZtmyZjBw50tR4rV692gRb+vjpp5/KsysAAAAAEJg+TtpETwMVTQahtUVa+6R/67/9+/c3bQTL448//jA1TxpQ6Xq8ufDCC01gtWDBAue0Xr16SZcuXWT69Om226CPU/hJz86X/Zn5kplXILUSYyW/sFgy8wolOSFGUmvESkpibLCLCAAAgDBUltigXBkdTjzxRPnwww9NnyZl1Tq9/PLL0rt3bykvK+CyBtf1RsePuuWWW9ymDR482NSCeZOXl2cergcH4WPXoRy5c85aWbntoEwZ2VUe+3STLN1ywDm/f6tUmXh+J2lUKyGo5QQAAEDVVq7A6dFHH5UhQ4bIhg0bpLCwUCZPnmz+1mZ0WltUHsXFxWZ8qL59+0qHDh18Lrdnzx6pX7++2zR9rtN99aN68MEHy1UmBL+mSYOmxZv3y5jTWsrMpVvdgia1aPN+uWvOWpk6sis1TwAAAAitPk7at2nNmjUmaNLkDJ999plpYqe1Qd27dy9XQbSvkzb/mz17tlQkTWShNVnWQ8eeQnjQ5nkaNKmuTWqVCJpcgyddFgAAAAiUcg++pGM3vfTSSxVSiDFjxpg+S4sWLZLGjRv7XbZBgwayd+9et2n6XKd7ExcXZx4IPxm5Bc6/8wqL/S572GVZAAAAICRqnFatWiXr1q1zPp8/f77JbHf33XebQXFLS/NSaNA0d+5c+fLLL6VFixa2r9E+VF988YXbNM3IdzR9qxCakuNjnH/HRfu/VGu6LAsAAACEROB01VVXyS+//GL+/u2330ymO820p+Mr3XHHHWVqnvf666/LG2+8YbLzaT8lfeTk5DiXGTVqlGluZ7nxxhvlk08+kSeffFJ+/vlneeCBB+SHH34wARiqltSkWJP8Qa3efkj6tqzrdTldRpcFAAAAQipw0qBJ038rDZYGDBhggp9Zs2bJnDlzSr2e559/3vQ7OuWUU6Rhw4bOh+sgumlpabJ7927n8z59+phtvfjii9K5c2d59913TUY9fwklEJ402YNmzNPAaMaSrXJp3xYlgiedN+n8TiSGAAAAQOiN46Q5zleuXCmtWrWSQYMGydlnn21qgjTIad26tVuNUahhHKfwHccpK69AUhJiJb+oWLLyCk3zPK1pImgCAABAyI7j9PDDD8vAgQNN+nGtOVJbt24tkSocOFoaGBEcAQAAIOya6j3zzDMmQYT2K7rnnnukZcuWZro2m9OmdAAAAAAg1b2pni+5ubkSFRUlMTGhm+GMpnoAAAAAKqWpni/x8fEVuToAAAAACAnlCpyKiork6aeflrffftskhPAcu+nPP/+sqPIBAAAAQHj2cXrwwQflqaeeMuM3abXWLbfcIuedd55ERkaacZUAAAAAQKp74PS///1PXnrpJbn11lslOjpaRo4cKS+//LKMGzdOVqxYUfGlBAAAAIBwC5z27NkjHTt2NH8nJSWZWiel4zl9+OGHFVtCAAAAAAjHwKlx48aye/du8/fxxx8vn332mfn7+++/l7i4uIotIQAAAACEY+A0YsQI+eKLL8zf119/vdx3333SqlUrGTVqlFx22WUVXUYAAAAACP9xnLRf07Jly0zwdM4550goYxwnAAAAAEEZx6lXr17mAQAAAABVUbma6k2YMEFmzJhRYrpOmzRpUkWUCwAAAADCO3B64YUXpE2bNiWmt2/fXqZPn14R5QIAAACA8E9H3rBhwxLTjznmGGe2PQAAAACo1oFTkyZNZOnSpSWm67RGjRpVRLkAAAAAIGSUKznElVdeKTfddJMUFBTIaaedZqZpevI77rhDbr311oouIwAAAACEX+B0++23y4EDB+Taa6+V/Px8My0+Pl7uvPNOGTt2bEWXEQAAAADCdxynzMxM2bhxoyQkJJgxnOLi4tzm79ixwzTdi4wsV4vAgGAcJwAAAACVOo5TUlKS9OjRw+f8du3ayZo1a+S44447ms0AAAAAQFAFtCroKCqzAAAAACBkhE4bOgAAAAAIUQROAAAAAGCDwAkAAAAAghk4RUREBHL1AAAAAFApSA4BAAAAADaOKh25nQ0bNphxnAAAAACgWgRO5513XqlX+t5775l/mzRpUr5SAQAAAEA4Bk46oi4AAAAAVEelDpxmzpwZ2JIAAAAAQIgiHTkAAAAABCo5xLvvvitvv/22pKWlSX5+vtu8VatWlXe1AAAAAFA1apymTJkil156qdSvX19Wr14tPXv2lLp168pvv/0mQ4YMqfhSAgAAAEC4BU7PPfecvPjiizJ16lSJjY2VO+64QxYuXCg33HCDpKenV3wpAQAAACDcAidtntenTx/zd0JCghw+fNj8ffHFF8ubb75ZsSUEAAAAgHAMnBo0aCB//vmn+btp06ayYsUK8/fWrVvF4XBUbAkBAAAAIBwDp9NOO03ef/9987f2dbr55ptl0KBBcuGFF8qIESMquowAAAAAEFQRjnJUERUXF5tHdPSRpHyzZ8+WZcuWSatWreSqq64y/Z5CVUZGhhnMV/tiJScnB7s4AAAAAMIgNihX4KR9nJo0aSIRERFu03VV27dvN833QhWBEwAAAICyxgblaqrXokUL+eOPP0pM135POg8AAAAAqpJyBU5as+RZ26QyMzMlPj6+IsoFAAAAACHjSCelUrrlllvMvxo03XfffZKYmOicV1RUJN9++6106dKl4ksJAAAAAOESOK1evdpZ47Ru3Tq3JBD6d+fOneW2226r+FICAAAAQLgETl999ZUzBfnkyZNJrgAAAACgWihT4GSZOXOm8+8dO3aYfxs3blxxpQIAAACAcE8OoWM4jR8/3qTua9asmXnUqlVLHnroITMPAAAAAKS61zjdc8898sorr8jEiROlb9++ZtqSJUvkgQcekNzcXHnkkUcqupwAAAAAEDTlGgC3UaNGMn36dDn33HPdps+fP1+uvfZa2blzp4QqBsAFAAAAUCkD4OpAt23atCkxXafpvNJatGiRnHPOOSYQ0xTn8+bN87v8119/bZbzfOzZs6c8uwEAAAAApVKuwEnTjk+bNq3EdJ2m80orKyvLLP/ss8+WafubNm2S3bt3Ox/16tUr0+sBAAAAIOB9nB577DEZOnSofP7559K7d28zbfny5bJ9+3b56KOPSr2eIUOGmEdZaaCkyShKIy8vzzxcq+MAAAAAIOA1Ti1atJBffvlFRowYIYcOHTKP8847z9QEaYa9QOvSpYs0bNhQBg0aJEuXLvW77IQJE0y7RevRpEmTgJcPAAAAQNVSruQQUVFRXpvIHThwwEwrKioqe0EiImTu3LkyfPhwn8toYKb9nE488URTi/Tyyy/Lf//7X/n222+lW7dupa5x0uCJ5BAAAABA9ZZRhuQQ5Wqq5yvWyszMlPj4eAmU1q1bm4elT58+8uuvv8rTTz9tAihv4uLizAMAAAAAyqtMgdMtt9zirB0aN26cJCYmOudpLZPW/GgzusrUs2dPM4YUAAAAAIRE4LR69WpnjdO6deskNjbWOU//1gx5t912m1SmNWvWmP5OAAAAABASgdNXX31l/r300ktl8uTJR91HSJv2bdmyxfl869atJhCqU6eONG3aVMaOHWsG033ttdfM/GeeecYkpmjfvr3k5uaaPk5ffvmlfPbZZ0dVDgAAAACo8D5OM2fOlIrwww8/yKmnnlqiKeDo0aNl1qxZJgFFWlqac35+fr7ceuutJpjSZoKdOnUyKdFd1wEAAAAAIZFVr7pkzgAAAABQdZUlNijXOE4AAAAAUJ0QOAEAAACADQInAAAAALBB4AQAAAAANgicAAAAAMAGgRMAAAAA2CBwAgAAAAAbBE4AAAAAYIPACQAAAABsEDgBAAAAgA0CJwAAAACwQeAEAAAAADYInAAAAADABoETAAAAANiItlsACDXp2fmyPzNfMnILJDkhRlJrxEpKYmywiwUAAIAqjMAJYWXXoRy5c85aWbx5v3Na/1apMvH8TtKoVkJQywYAAICqi6Z6CKuaJs+gSS3avF/umrPWzAcAAAACgcAJYUOb53kGTa7Bk84HAAAAAoHACWFD+zT5c9hmPgAAAFBeBE4IG8nxMX7n17SZDwAAAJQXgRPCRmpSrEkE4Y1O1/kAAABAIJBVD2FDU45POK+jbDuQLYdyCiQ+JkpWpR2UTbszZPywDqQkBwAAQMAQOCGsUpHf9d46twQR/VqlyoQRHaUhqcgBAAAQQDTVQ1inItfnd89dRypyAAAABBSBE8ICqcgBAAAQTAROCAukIgcAAEAwETghLJCKHAAAAMFE4ISwQCpyAAAABBOBE8KCphqfeH6nEsGTPp90fidSkQMAACCgSEeOsNGoVoJMHdnVJILQPk3aPE9rmgiaAAAAEGgETggrGiQRKAEAAKCy0VQPAAAAAGwQOAEAAACADQInAAAAALBB4AQAAAAANkgOgaBKz843WfIycgskOSFGUmuQ/AEAAAChh8AJQbPrUI7cOWetLN68321cJh2vSVOPAwAAAKGCpnoIWk2TZ9CkFm3eL3fNWWvmAwAAAKGCwAlBoc3zPIMm1+BJ5wMAAAChgsAJQaF9mvw5bDMfAAAAqEwETgiK5PgYv/Nr2swHAAAAKhOBE4IiNSnWJILwRqfrfAAAACBUEDghKDTluGbP8wye9Pmk8zuRkhwAAAAhhXTkCBpNOT51ZFeTCEL7NGnzPK1pImgCAABAqCFwQlBpkESgBAAAgFBHUz0AAAAAsEHgBAAAAAChHDgtWrRIzjnnHGnUqJFERETIvHnzbF/z9ddfS7du3SQuLk5atmwps2bNqpSyAgAAAKi+gho4ZWVlSefOneXZZ58t1fJbt26VoUOHyqmnnipr1qyRm266Sa644gr59NNPA15WAAAAANVXUJNDDBkyxDxKa/r06dKiRQt58sknzfO2bdvKkiVL5Omnn5bBgwcHsKQAAAAAqrOw6uO0fPlyGThwoNs0DZh0ui95eXmSkZHh9gAAAACAKhs47dmzR+rXr+82TZ9rMJSTk+P1NRMmTJCUlBTno0mTJpVUWgAAAABVRVgFTuUxduxYSU9Pdz62b98e7CIBAAAACDNhNQBugwYNZO/evW7T9HlycrIkJCR4fY1m39MHAAAAAFSLGqfevXvLF1984TZt4cKFZjoAAAAAVMnAKTMz06QV14eVblz/TktLczazGzVqlHP5q6++Wn777Te544475Oeff5bnnntO3n77bbn55puDtg8IjvTsfPl1X6asTjsov/6RaZ4DAAAAVbKp3g8//GDGZLLccsst5t/Ro0ebgW13797tDKKUpiL/8MMPTaA0efJkady4sbz88sukIq9mdh3KkTvnrJXFm/c7p/VvlSoTz+8kjWp5b7IJAAAAHI0Ih8PhkGpEM/Bpdj1NFKF9oxBetGZpzJur3YIm1+Bp6siukpIYG5SyAQAAoOrGBmHVxwnYn5nvNWhSizbvN/MBAACAikbghLCSkVvgd/5hm/kAAABAeRA4Iawkx8f4nV/TZj4AAABQHgROCCupSbGmL5M3Ol3nAwAAABWNwAlhRRM/aPY8z+BJn086vxOJIQAAAFD10pED5aEpxzV7niaC0D5N2jxPa5oImgAAABAo1DghLFOSa9CkiSJqJhA0AQAAIPCocUJYYfBbAAAABAM1TgjJGqVf92XK6rSD8usfmea5Nd0zaLLGb7przlrncgAAAEBFo8YJoVej9O5aWbylZI1STn6R7eC3NNkDAABAIFDjhJBhapQ8giYrKNKapvQc/zVKDH4LAACAQCFwQsjYdzivRNBk0ZqmxFj/FaQMfgsAAIBAIXBCyEjP8V9jFBFxpNmeNwx+CwAAgEAicELIqBHnv0bJIcLgtwAAAAgKkkMgZESISN+WdWXplgMl5ul0jZxqxEbJQ8M6SFZ+oWTnF0lKQozUqxlH0AQAAICAInBCyIiIFLm0bwvzt2vwpEGTTtf5Y95c7XUMp5TEoBQZAAAA1QSBE0JGrYRYefzbTdK1aW25rG8LySsslrjoSFm9/ZDM/i5NTm9T3+cYTlNHdqXWCQAAAAFD4ISQUT85Xsad007umbtOpn25xTm9X8u6Mn54Bxk6ZYnX1zGGEwAAAAKNwAkhpWndGvLEBV3kYFa+ZOQWSnJ8tNSpEWsy7mmtktZCxcdEyaq0gzJjyVbTz0kxhhMAAAACicAJIVnzpA/LrkM5Mv6D9bLYo9/TlJFd5YY3V5vgiTGcAAAAEEgETghp6dn5cuectW5Bk2vyiMtObiFr0g5KUjyXMgAAAAKHcZwQ0rTvkmdCCNfgqfdxdeWSvi0kK6+w0ssGAACA6oPACSEtw6bvUpHDYZrrZeTQxwkAAACBQ+CEkJZs03epoLCYPk4AAAAIODqGIKSlJsWaQW415bhKjI0y/Zq6NqllntdKjJUJ53U0ywEAAACBQuCEkKZjM008v5MZ5PaHbQdNJr2ZS7e6j/PUKlUGnHCMpCQGtagAAACowiIcDodDqpGMjAxJSUmR9PR0SU5ODnZxUIbseoeyC+TeeetKZNhTWiul4zwxCC4AAAACERvQxwlhQQOiwmKH16BJaVM+zcAHAAAABAKBE6pMhr3DNvMBAACA8iJwQpXJsEdmPQAAAAQKySEQ1H5L2rxOa5KSE2IktUas3z5KmjlPM+jVqxkneYXFEh8TJavSDsqMJVvlxGa1yawHAACAgCFwQlDsOpQjd85ZK4v/SjNuJXjQDHqNaiV4fU1WfpF8tHa3LN7y92v6tqwrMy7pIc3rJJIYAgAAAAFDUz0EpabJM2iyEjxo2nGd7/U17651C5rU0i0H5NmvtkhCbFTAyw0AAIDqi8AJlU6b53kGTXbZ8fYdzisRNFl0XXsyciu8nAAAAICFwAlhkR3vUI7/1+w4mOO1pgoAAACoCAROCIvseDVK0RSPcZwAAAAQKAROqHSa/U4TQXij071lx6sRGy39Wtb1+hpNELF6+yHGcQIAAEDAEDih0mn2O82e5xk86fNJ53fymh2vVmKM3H9OexMkudLnl/ZtYVKSM44TAAAAAoV05AgKTTk+dWRX07xOa4o06NGaJl8pxXV6Vl6hnN2xoVzWt4UZxykuOtLUNN3w5mrGcQIAAEBAETghaDQYKsvYS41qJ0q/VsfI2LnrSoz/5KumCgAAAKgIBE4IK43rJMq0MtRUAQAAABWBwAlVvqYKAAAAOFoETghrOnaT1j7p2FDJCTGSWoOgCgAAABWPwAlha9ehHLlzztoS/Z00Y58mnwAAAAAqCunIEbY1TZ5Bk1q0eb/cNWetmQ8AAABUFGqcEJZN73QZz6DJNXjS+TTZAwAAQEUhcEJYNr3TwMofzbgHAAAAVKmmes8++6w0b95c4uPj5aSTTpLvvvvO57KzZs2SiIgIt4e+DtWr6V1yfIzf9WmacgAAAKDKBE5vvfWW3HLLLXL//ffLqlWrpHPnzjJ48GDZt2+fz9ckJyfL7t27nY9t27ZVaplR8UrT9M6Vjt2ktVHe6HSdDwAAAFSZwOmpp56SK6+8Ui699FJp166dTJ8+XRITE2XGjBk+X6O1TA0aNHA+6tevX6llRsXRmqRf92XKgax8mXFJDxlzWktJjI2ybXqn/Ze0CZ9n8KTPJ53fif5NAAAAqDp9nPLz82XlypUyduxY57TIyEgZOHCgLF++3OfrMjMzpVmzZlJcXCzdunWTRx99VNq3b+912by8PPOwZGRkVPBeoCL7NPVtWVemjOwqN7y5WrLzi/w2vdN+T1NHdjW1URpY6TJa00TQBAAAgCpV47R//34pKioqUWOkz/fs2eP1Na1btza1UfPnz5fXX3/dBE99+vSRHTt2eF1+woQJkpKS4nw0adIkIPuCiunTtHTLAZm5dKtcdnKLUjW90yDp+HpJ0qVpbfMvQRMAAACqZFO9surdu7eMGjVKunTpIgMGDJD33ntPjjnmGHnhhRe8Lq+1Wenp6c7H9u3bK73MKFufJg2eujapZf6m6R0AAACkujfVS01NlaioKNm7d6/bdH2ufZdKIyYmRrp27SpbtmzxOj8uLs48EFrs0olrs7svbhlA0zsAAACEhKDWOMXGxkr37t3liy++cE7Tpnf6XGuWSkOb+q1bt04aNmwYwJKiotmlE69b40gTPIImAAAAhIKgN9XTVOQvvfSSvPrqq7Jx40a55pprJCsry2TZU9oszzV5xPjx4+Wzzz6T3377zaQv//e//23SkV9xxRVB3AuUFenEAQAAEE6C2lRPXXjhhfLHH3/IuHHjTEII7bv0ySefOBNGpKWlmUx7loMHD5r05bps7dq1TY3VsmXLTCpzhA8rnbgObqvjNFno0wQAAIBQFOFwOBxSjWg6cs2up4kidCBdBD+7HunEAQAAEOqxQdBrnFC9aZBEoAQAAIBQF/Q+TgAAAAAQ6gicAAAAAMAGgRMAAAAA2CBwAgAAAAAbBE4AAAAAYIPACQAAAABsEDgBAAAAgA0CJwAAAACwQeAEAAAAADai7RYAQk16dr7sz8yXjNwCSU6IkdQasZKSGBvsYgEAAKAKI3BCWNl1KEfunLNWFm/e75zWv1WqTDy/kzSqlRDUsgEAAKDqoqkegl579Ou+TFmddlB+/SPTPPe3rGfQpBZt3i93zVnr97UAAADA0aDGCWFTe6TN8zyDJtfgSedXlSZ7emzScwokI6dAUhJiTJNEatQAAACChxonBEV5ao+0T5M/h23mh4ttB7Lkznd/lPOfXyaLt+yXnYdyZOPuDNm0J4NaNQAAgCChxglBUZ7ao+T4GL/rrGkzP1xqmu6du05Wph2SKSO7ysylW2Xal1uc8/u1SpVJ9OcCAACodNQ4ISjKU3uUmhRrmvJ5owFFdFRE2NfI6HFZvOWAXHZyCxM0Ld1ywG2+Bpv05wIAAKh81DjBNs13INJ/l6f2SLep/Z80cNBaKUvflnVldJ/mMmTyYjmxWe2wzrCXkVNo/u3apJbMWLJVxpzW0vydV1gs8TFRsirtoJlelfpzAQAAhAMCJ/hM1DCobT257+x2cs+8nyo8/bdVe+QaALmuX+d7EyEiQzo2lBtOb2WSJ6jV2w/JDW+uluz8Imcfqakju4ZlYFEjLsr8W1js8NpUT4NEnZ6VVzX6cwEAAIQLmurBZ6KG1g2TZezcdQFJ/23VHnk2vev/Vx8eb0GPbu+++T+ZZAlxMZGmFiYiQkMp732kwlFiTJQJjhqmxHttqqfPdXpKQvgFhQAAAOGMGif4TNSgTcRcazsqOv231lhpzZCuR/s0afM8rWnytc4DWfnyfz2b+qyFsWqdwjnDXkJMlFx/WispLj4SJHmj0/OLiiu9bAAAANUZgRN8JmrQGh1/KiI40SCptMGXNl+bs3K7XNa3hdw1pI1k5xVJalKcKaeW5Z2rekuxQ+TLTXslKT48L+0GtRJMULTjYI7f5bLyjvSFAgAAQOUIz7tLVChfiRrioiNDLP23Q24a2FrGL1gvq/9K1z3ly81uNTNa+zTm1JYSGxm+rVCb1q0hOQVHas6qcup1AACAcBK+d5eoML7SfGvShZNb1vX6Gn8JHAIlJjLSBE1L/aTr1ufTvtoiS387ENYpuxskx/tMvR6MYw8AAFDdETjBZ6KGTbsz5NERHcuUwOFoabDz675MWZ12UH79I9Mt+MktLHYGSt2a1vbbB6h+cnzYJogob/IMAAAABA5N9WCbqOHxf3aWg1k6jlOhJCdES+3EWBOYBCQl+rtrZfEW76nPXftURUeWzKbnSgfDDdcEEeVNngEAAIDAIXCC30QN3sZ3qohxnLymRPcImqzsfbr9aSO7uvXFql3Dfx+f2okxkhgT/pd3WZJnAAAAIHBoqocyj+9UEeM4edp3OK9E0GTR7e/JyJXaNWKdfa4KixwmEYQ3Ot3hONJ3CwAAAKgIBE4o8/hOgRhk9lCO/2Z1h7ILJD460vS56teyrmTkFMqlfVuUCJ70uU6Pj4kM65oaf329AAAAUPnCvy0TKn18J0tF9iGqERvld35CbJQZAFcHiD2rYyNpVDteJn60Ubo2rW3GddKxnDR9umYCfPPbbfLguR0kXFVW80hXGphpIKznPDkhRlJr0EQQAADAFYETyjy+UyDGEqoRG21qi7xlyrNqlYqKHXLHXwHFrEt6yMiTmpmU5NO+3FKixmnHwWypGR8ddjf/ds0jNVlERe9TMAI1AACAcENTPZR5fKdAjCVUKzFGrj+tldemd2NObSVfbdpnAifr5j67oEhueHO1qXF6ZfSJ8txF3cy/+lyn/5ldEJbpyCuzeWRl92MDAAAIZ9Q4wWnnwWyTcjwjp0BSEmJMjc0jwzvI2LnrZIlLTZAmaHh4eIcKrfnQdTWplSBnd2zo1vRub0au5BYUyU870qVfy7+DOJ2XnV/kVtvkSueHYzpybSqXGBtlBvjt2qSWOQ7xMVGyKu2gzFiytcL3qTSBWrjV2gEAAAQCgROMbQey5O6569yayh0JkDpK/xNSTfM3135EDy3YIE/8s/NR31RrYOQ6RlS/E46RXQezzbbUrvRc+ernffLQsA6SkVcgY05raQKKOjViTSDlmonPCjh6H1fX1E7Fx0aZGpNwuvHXYHXKyK5emyDq9KT46LDtxwYAABDOCJxgapo8gyaltUz3zlsnd5zZRs6dtrTE6462NiLtQJapzfIM1h4Z0VGOqRkv6TkFMqLLsZJ6cgsz78/sfJNlTgMKDZI0kHCIw5TTeu4ZcIRbX524qEizD57nQp/rkL8TRnQM235sAAAA4Yw+TjC1Pd6SMigNSqKjIiu8NkJrmjyDJmt798xdJ4lx0dKlaW05vl6SCc40HfkjH210Lq/N9LQvky7z5pUnyYIxJ8urXgKOUO+r45l2PCu/yO+5OJxXGLb92ICqguECAKB6osYJpk+TP5k5fzeRc+1zo2mry0ub5/kLEHR+/eR457Ss/JLBnQZP2u+nS5NaZoDcxT7Wd7R9dSoiVbe3dWj5rSyBFk1w4Y++piLpfmiNnAaXepxcg6ZJ53cKq2aOQGUgCyUAVF8ETjA38r4SEsz+Lk2OqRknQ9o3MDVT9ZOjTW3Rb/sOS6yPmqiK6FvjOV9rYrzRMmvTtotOauZ3feWtHauImyRf67j21JayctvBMpVHk3ZUND2LWpbbz2wtmblFpp9VZl6haRoYahhvCtVtuAAAQOggcIKkxEebmo5pX21x6x90WptjZPZ/esu4+T+51eZoP6T7zm4vEz/eaPoj+bpR8HeTa9d3xnN+LR8BgwZ6WmbNxFeW9ZWGBoi/78+SkT2bmuQYVmY7z5skf/vp70aryOEwgZ/rMdfEG77Gs+rXKlXq1YyTiqTl+/3PbJn65Wa3bWoZND28DjwcKjeC/NKPYCMLJQBUbwROkBpx0fLcV1tK3Ky3a5Qi97//k9d+SA8tWG+CCV83Cv5ucmvERpkkCBqAuaY5t+j0pNgot2kaMGjg4Lo+rSWL+avWy1/AUZ6+Oqb87/7oFjBame20b5XeJB3Iyjc1YZ77qeV84Nz2psbGdewpT1pWz4BPAzPdhu6V57avO7WlVDTtO+YZNFllU48O9x0YVyZ+6UcoIAslAFRvBE448iuql4DDqs3xRgOeO4e08XqjYHeTq2NDPf7ZzzLunPay8vc/pV5yvLN54N70HOnbMlUKiotNx2urBkfn339OO3nwgw1mvVYWvajICLeAQ7kGAf3K0VfHWX4vwURkRITMH9NXLpv5vQmKvO2nPtdaOh2MV4+hP1badYuV9GL2f3rJJYfz3FLAXzbre/lgzMkVGiB46ztm0ek6PxTwSz9CAVkoAaB6I3CCz19RPW/qPeXkF0tyfLRbgKM3r3Y3uZn5RfLNL/vlwh5N5aN1u90CFB2bqddxdeXjn/bI45/+YqYNaltP7j6rreQXFss1A443f0dHRcikjzZKm0YpzpomDTi06ZvW4hQWO6RJ7QQTWGniiOyColL3h/FXfp2+LyNPXru8pzk+ZalN8kaDIk9dm9aSzzbs9Rq0VvQv2r76jgUqGUV5pef4z1qmqeuBQLOyULomUrGQhRIAqj4CJ/j8FdXbTb2rwqJiOXPy4hJN8TLz7JuzaIDz0uLfStR26IC24+avl3vPbmsCJ61ZurBn0xL9rLQmaXSf5qYG6/F/dJahHRuaLHwazERHRkrDlFiZ8NFGt9fY9Yex+ippEzy7m/Tnv94iNw08we9yWpYNuzN891lqmSp/ZuW7ZSysnRgjSXHRcums78v0i3Z5kyb46jsWyGQU5ZEY6/+jSq8TIND0PaU15ku27C9RU35yy1RqPQGgiiNwqma83WD7+hVVm4f56ofUT/shxUfLcxd1c2bg0+Zy2nRt/LntfWbp02X05t9fM0ANngqLHG5Z80oEWFpWh8hrl/aUqKhImbHkN2eQpIGI1oL5GtPJW38Y1z5ZdinBNaA0400Njfa7n7rc332WIsx+WTSYGnduOykoLJb31+x0OxYaFD72j04y5o3VbjU+/Xz8or3rYLYcyikwtWxaBu23tGrbQXMj19AmaYK3vmOBTEZRXpGRET4DUJ1uNdkEAv35uSs9Vz5ct9vtc1E/D487Jsl8phI8HUEGTABVEYFTNfpiOpLwQPvulByvZ/ywDnLPPPcBaTfsSpeHhneQ++b95H6ToKm0T2kp//fiCueNvWvihIPZ+TLzkh4m6YBbQNCyrple86/aAdegQ2/6G6UkSF5hkfyRmScREUcCoBOb1jbBh7dxpHS6Zn3zrI3yF5R56w/j2SfLLrNdg+R4sx8JGhh53c9UmXdtX9M/SPdPgzVd7urc400mPQ2WzHa2HZT5P+7yERQ6TICnrJqo2t6ScPyZLem5BXIwu8DUhB05Nvvl510Z0rROojnG/q4JnTcpDMZxio6MMMlIlGf2P51O4ITKoD9KTPGSTEU/f4pDKJlKsO0+lGNq5Vqk1jA/gmVHFsqugiLJyiuURrUTg108ACg3AqcwVdbUzBocPLJgg1zSt7ncMeTv8Xo05fbDH26QmwedYJIZaL8c14QEV722Up64oLPcExVpmthpbdGatINy+avfO4MmvTnX1ybGRMkLF3c3zaq0xmdV2iG3MpjgJiJC7hvaVhqmxMvHN/ST8QvWO2tlJn6yscRN8bmdG5parf8u/91M00AqJTHGjCvVv9UxkltYLJ2b1paVaYec5bHrm+XZT8izT5OzligiwoyzZAV3SpsDLty4V15c9Js8eG57U1vkrbnhgwvWm2PyY9pBef6ibnIgM0+KHSI1YqOlMMIhDZLjJCoiwmdiBj1W15zSUv718rduAdn4Ye3N31Ya9EO5BfLIRxu9BhMvLfrVpI23u5HT60WvGw28rHOsTfTsaqsqO/Pjm99u83qN6vQHzmlvjgc3rQikcEmmEkz6PtxxMNs05dbPFH2vZhdEyZ70HDn+mBr6m5AcW4fgCUB4inA49GOs+sjIyJCUlBRJT0+X5ORkCUca7Nz29hqvmfA0ePLWFO3XPw5LUbHIgx+sd/vi16Z4mt3OIQ7ZeTDXWZOjQYgGRBq0vLL472Zw2ozt8ld/cL7eym7n2ZzOunnXGihrXVYAon2q4mMiTYKHmOhIycwpNP2StDmW9o/SWiRxRMiXm/aaWqivf94rV53S0gzKqk3eisUhy3494Cyn67aUZqT746+MdK61U1Zg9fGN/Y6kRI+Jkowcra3Jl8y8ohL7/skNJ0tBsUO+21oy89+JLerI4ZwCOe/55T7P0wfXnyxf/rxXerWoK9O+3Fyij9b957SXc6ct8ZmAQfdD+0C57oMmjji7UyMTRBUUFZeobXM9/hpkDOnQwLzeX21k2oEsGTt3XYnr4tERHaVp3RrOa+5gltZuFkpyQrSp/dIgsrJqTjfvPSzb/sx2XmfW9dT7uLomAK2VGCOx0ZGSFBMl9UIo4KsuTaWqS7Os73//U/453fd7/t2re8uJzetIdZa2P0t2pueYcQE9vxPGnNpSdhzMkTPa1a+S1weAqh8bEDiFAb0p0Zt0PVF6I5+TX2RutmsmRMve9Fy5d95PMqzrsc6mbNo8QsdBKnQ4JLeg2NQiaA3Cj9sPmfb5HY9NcWsap8HDsbUTpEZMlBl76HCBTiuUpLgoE8ToFaJ9aPILis02i4vFBDX/Xb7NNOeatXSruXl3DY7yi4rN+jVA0hte/fuXPRlSq0asHFMzztR46Q14cly05BYVy/j318vGPYfN+uolx5l9PCYpTvKKtPyF5tfLb7f+aZrwdWiUYo6L3rh//lftT5/j6sjYs9qZ/d+dniMRERGybuchU/aezeuY8Z60fJGRR/rLpGcfucGLj440meWy8opMhkA9blkFReaY1a8ZLzsP5chUHzcAWmN39tSlzume/Z00q5/+Av3yot/k85//KHFeNfjp3ry2ORfemiHOuaaP2XdzHmKiJDYyQnalZ0vdpATncdFg0jMwtGiQqzU12qTSCtSKHMVSK+HvoEcDomlf/CKX9ztOcgqKJS+/QOomxZvMh3pdaO2eBiNZhUWSnv13WQ7n5kudxDg5/Ndyeiw1GNUyNvirKY5nsFU3MdZZbn2NBju6Lj22es6dgWlGrvQ9rq4JkLVMeu3X1PXHRElhsf56XSw5BUUSGxVprofd6bnm74TYSKldI9Zcu3oua3kEd1pLq7+Am/1KiDFldq2d1V/JrbLpfO3D1/gomhXZbc8cH/PeLpQacVHm+tGAtCw3lJ7HWH+UyCsokkPZ+ZIUHyMFRQ5zLeu2dey0QofWxkaYpo91Kyi40WZZX2/6o8Q57N2ijml2q+XQ91VV6P+zaU+GDH7m74Q4nj69qZ+0bhA+3yuBCHZ/+yNT7ptfcvw/67PzzjPbmNricDlOAKq+jHALnJ599ll5/PHHZc+ePdK5c2eZOnWq9OzZ0+fy77zzjtx3333y+++/S6tWrWTSpEly1llnhV3g5HqjZt14FhQXSVxklPOGVG+4tE+Q3lzvysiV15b/Lv/o3sTcpLgGH3szcuRAdqEJUPKLiky7cm0apoHRMTVjJSuvWFISo03AoLU7uj69UdOzbwVB0/7VTZ71UjMy7ux28tv+LBN86E36r/sOyw2nn2BuWvWmTwMRbb53SptjJDe/2NzEWc0A3125Xc7v3kQefH+9zLy0hzz60UYzsK42uauTFGtuePUYJOqNY0yU/PD7nzLp002m6ZhnLZaW5bpTjpfLXv3BGSRov6lLT25hah1eXvybabKnwUu3prXN8Sx2OGSpS+2UBiv/6X+crN15SPqfcIxJLa5BlhV8dG9aWy7v18LUbDWunSC7M3KdfYfW7jjkFrhpsLnzYI7Zdk5hkTSrk2gCs5jIKMnV9vz5ReaGWCPe0TO/MzcpyrP2TWtKrABAj7HWaLWsl2Sy6334054j5WpW2zQN1OaDOvhw20YpLpn4YiW1ZqzsOphrAjUr+NIAuXlqosRHR5l9z8orkLo1jgSj5pqLPxK4/JmVJ5GRkbJy2wE5tU19E4iv/us4Wk0Uj62V4Ew8sfNQtkkZr69LiI2WTHPTfuTGPCYyQrKLiiQhOkryiorkspk/mCBn2sguUj8lQcbN+7uG7OZBrUxQ6+2X6QfP7SATP9rgDDj1mM0Y3UOe/cr9+nStbezWtJZc4lLLqdeLNm1Mio026ejv9lKr9vDwjnIoO09qxEdLdESk2ccMj2A1Nkbflw6/QZDr+/nwXwGnJuh46MONzmv1vC4N5eZBrZ1Bqa5Daw2v+98q2X5Qxy+rK9ef1spcR1YzSX83t75qCrVfovYlmfDxzyXmadPNKV/8YsqhQaieM1XH5qZZy7HvcJ4pR+2EWMnXADavUOolxckOPz8u5BUUm359St9PGoQf+1ctZjjafiBL7p6r13DJZCp6fCeM6ChNyrB/waqpM8HuL3+Y5C+uwe4pJxzjtYmuVU5tEaA/SOh1W1zsEM3hoz/e6A8VGgzpeyQ6KlKGTlnic9vvj+lrgv3jUmuY98KRz49o8710JOCPNp+Jf2bmmx/u9PNLL1PdblmPTbBrQoO9ffyNcxFa0kPsfIRV4PTWW2/JqFGjZPr06XLSSSfJM888YwKjTZs2Sb169Uosv2zZMunfv79MmDBBzj77bHnjjTdM4LRq1Srp0KFD2ARO28wXsPtNz1kd6ssdZ7YtkaRBbwDHDmkjLy76Va45pZXpF+R5Q6TJHdL+zC6R4lvn6c2kdv73FoxYNzhJcTEl+hh5NvvSBAintTlG7jyzrbl5L5kw4njTjM+6UbRu1J75fJPpr/PM57/Iv05qJm98u01G9W7u1gSwPGVxbrtlXTmrY0Nzk2rXbFBpogbPANF1mT7H1ZVbzjihRDpzDbquPbXkPlrHV9Oiaw2bZyCgx+aOwa3lwhdXmOd2ZdTmeHoDXb9mrNknPWY6fcYlJ8pLi36TkSc1K/F6qxxW0HAk+GgvMZGRcve8dSYQ8rZd6xxd9PIKEzhrogtfy+pxHt23hcxZuV1uPaONPPi+ezNBXdcD57Y3NR5PLfxFxp7VVuIiIyS3yGEC4gXrdrutT2+gJn3ifnPvuq4uLufZV6ZEz2vC8/rQ5/cNbScPfbjB53au6HecCYIe+mB9iWvixtNbmVqre+auc7ve9XWPjOgozf66Sfb2fnY9p1q7o2N/aVDqLdAZ9cp3zuBJm2Ke1aGBCbx99WPUZBi3vL3G5z7p8fq/F7/1Ok/LNGOpNvusbX7w0Ka6Uz7/Re4e2s5r/0grqczKtIMlrouvbh0g9/qpXbjnrLZylstNtF5DD7sct3Ci51ivkf/z8v6zzrUGh21KWZNS1n6qFXnDorX7+l733Af93GnboKbbDYxVTu3vqedfP7//5ecY6A8yF7zguzmjNkHW1gQPeHx+uL5f9AesS09ubjKL6uehfi/oNd+k9t8/KoTq8Q2V7eNvnIvQsisEz0dYBU4aLPXo0UOmTZtmnhcXF0uTJk3k+uuvl7vuuqvE8hdeeKFkZWXJggULnNN69eolXbp0McFXOARO+su0XjSeNxvatEpvaHyN+XP7ma193mhOGNGhxGCyrl9I2qHe17p1/u1ntJHhz/3d7MyT1beptDewnjdq+mWn5dPXWkkTFh9lWTynaaIAu7Kp0izjr3ye+2gdX/3FVtMU+8rG1/mv2pvSBgAPDesg763e6Txmg9vXl0/X7y318ddt6g342Lk/+T1v1jnSWsxzpi61Pcf+rqUjN+2tTEYtvSnXgF6b7ehrPM+ZBk7nTivdefZ2zku7rPZpG+Iy3pinj27sJxM+3OD1fD86ooN87ON9pfv62D86m1pNb+9n13OifTr8BYl3nNnGeSy0/HqDqMGetzTx+gWjQam/ffrg+r7mXPqbZx0n6/y/uuz3Ev0j9SZbb161hsXbdfHhDSfb1i54nmPdnn5BHk0zyGB80d/+7o9u/eusGl+tgdQa5uvfXC2zLu1h9svuy98c1zdX+zy/3vqpVpRt+7PMjym+rlfNDNgstUaJclrnX69nf58P+kOF6/h+nj68/mSZ+LH7j1LePsM0yO7s8nmoY/Vp6wD9TLM7NsE8vqGwffyNcxFa0kP0fJQlNvA/wmmA5efny8qVK2XgwIF/Fygy0jxfvtz7L1Y63XV5NXjwYJ/L5+XlmQPi+gg2bc7j7UtHb1x9Z1nbb5pA+JqvyQu8fREpqw+Jv2xQ+sXvj5WpTm8W/K3HatplWfLXtrX5kvVa/XdxBZTFc1ppylbaZRaXYR+t46s1Ez7P3+b9pd6+9bc2cXM9Zto0syzHX7ep14Xy9zrrHOn67Za1u5Z0Xdo8Udehf+t50WW9nbPsvNKfZ7tMif6W1WZx/mTmFvg833pOfc3T/TuSidB/pjU9Fv7eu7oene9afl2vty8WpWnjD9vuU5HtPOs4WeffStVfIuPkX83SvF0X2jfQH2+JT3R7eszCiZ4Pa991n/RmXoPOa/+3Si76K/Ol6XcaH2OWteOZydOVt/MQrMyAruV0/Szy9/qYqAjzQ583Ol2bZZfm83Wxx+ehvhe1aWFpjk0wj28obB9/41yElv1V4HwENXDav3+/FBUVSf369d2m63Pt7+SNTi/L8tqkT6NI66G1WcHm60bO382O8nezZHdjabdu/TLzR9uvl2Y73uab1OcJMc55dusobVk8p5WmbBW1jLd9rOh1a2DhesyS4qPKXLbSHnMtv66/tMvazbfWYV2z3s6ZZlX0x/U13l5f2mW1/bQ/erPrS2lS29sFZroOu0DHdb6W3+49oO8nf6xz6W+e63Gyzqlnqn5tf+7vWGjfFH80CYU3ntsJdaU5x1qTprVRpdk31+Na2cdHm4CWNtj1dv7t3hPaL1Rrp7TGyJVpcn5WG5PxtDw/glifn6F+fENh+/gb5yK0ZFSB8xHUwKkyjB071lS9WY/t27cHu0g+b+T83ez4e11pbizt1q18/UqozSS0GVxptuNtvnYc1qx42qSlNOsobVmcy7ZKNc3kSlO20ixTy+am1Ns69Pjarbt5ag3TB6K069ZO0tZz/Vc7/Je1bK6v90fLr4ky9ObvaK8l12Nh3eBbgwq70uZ8vs7zyR7n2dvrvV0TnteHPk+IiTTr87Udne+L3bHQoMsuMNN12AU61nwtr17LmijFH71B97dPeq34mqfn2fM4WefUM4jU/iqu++FJMx36q13Qc1zWYDUU2Z1j/Wx74NwOElXKfXM9rpV9fOw+Q6zPaV/n3+49kV/oMMHXkI4NTXNQM6TF6BNNEzsdfkKzspbnRxDr8zvUj28obB9/41yEluQqcD6CGjilpqZKVFSU7N271226Pm/QoIHX1+j0siwfFxdn2iu6PoJNM855u+mxbly90eBAb6Z8zd+Xkes32LBulnzN/3l3hvk1ULfjOc90Jl+y1TzXmy1fZfAW1OiysTGRJnPYsbXinTfE/sqqZbl1cOsS5dXXjDm1lbMs1vo1CYIOrGjSWNuUbW8pjpPeJJUlcLNe52/7elw1k9VnG/aWKgDQ7WsWPCtg0HXnFzhM4FXa46/b1OvCLvCwbqa1n47e/Olr/JXR33Vq3bRb14ne6Oi/es70OnJdr6aRN79Me1xzRwb67SAbd6U7p+nrtYO453lxvT77eVyr1rzPNu4xSSs8y2yNYbb9QE6JX8ctR64X3/tqsl76eD9bZdBjoT8c+DtmOv9IcpRWJqOippHX9t7e6HTNXuhvn/Ra8ZzX7695munS9ThZ51/Xm5rk3rZcn1vl8HYN3frOGnl4eIeStQv6Xj2tpTnH3vZXj1k40fPs77O5To0Y0co1TaHvGnj44npcPXk7DxVJm7t5vucsOl3n+zv/dj9iaEbP695YZfojaV8vzfqpTUG12fAzn/0idZNiS/UZ1s/jBxF9L2pmx9Icm2Ae31DYPv7GuQgtqVXgfIREcghNPa4pyK3kEE2bNpUxY8b4TA6RnZ0tH3zwgXNanz59pFOnTmGTHMLK0OSZqcvKqnfvPPfpehNy/emtpKiwSBrWTiwxX7+E7j+3vUmNbZdVT8dcWuIlk1KD5DiTPlmbWZzUoq4UFR+5AdAvrocWbHA23xjYtp7cO7Sd3DdvXYm05dee0lIuf/V7t4xzmu45PSdPioojJCe/UI6tnSgPf7hB/t2rmbyyZKtbW1dTllNbSYOUOJPqunaiS+rshBhZp+NQZeSadOBWp2wdK2nnn9lSNzlOfkxLNwkYNOOfZza8e89uK7sP5cofh3OlR4u6cp9Ji73f/WZ9eHuJcIhJtRwVESkPaJY1l/L52sfSZNXTm0tNWX44u0BSk+Jk3Pvu63bPKFXLBDB6Pl9bvlXuGNJWPv5pt6zdfkjuG9pWIiIj5V6PlMieWfX0puOh4R3NuE33z18vq/xk1dOb6X+9tELaNkyW+89tJ3Gart7hkHHz9DiWLOPcVTtMMgNvmea03Bogzlq21YyrlRAVIQUOMdfsKo8U53oztXnPYenWrLb8fiDbXHM67YuN+2TOyh3y4sXd5WB2gRlDTAOwn3alm3T77Rommwx0+gFrpS1ukBJ/ZAyuwiLZ8WeOWb9euxoc9D6ujjxwdnvZmZFr+l9pszRNF56RcyTxgXrjyl7y0AcbSuxvWbLqeS6j52D88A6yZV+WJMZEmmvf23tX15NTUCDatWTTnsPmWmxQK8EkJNDrStt9u36x6FhnmmxFU2Pr+1XHSdL3iO6bFQB3aZwi95zdzgygrH1u9AZWj6EGxfresNLzW+dfs+rdM7Sd14xlnlnVPK+hK/o2l9F9mpvU0trMQn8xNEMoOBxyn8c15Hncwon3c5wqDw5rL/sz86Rhcrz5JbK06dbtzm8glWXb1rI/lDKrnvkMa1ZbHhnewYwLqO9V6z2s78mtf2R6/fzwn1WvlUlJ3rR2onlvVPQ+BkKwt4+/cS5Cy64QPB9hl4589OjR8sILL5gAStORv/322/Lzzz+bvkuaqvzYY481fZWsdOQDBgyQiRMnytChQ2X27Nny6KOPhl06crdxX/662fAcx8n1JkS/kDPyiySnoFDq1IgzNz3W/CODthaajtp1/hpk1BqnR9eZYw1eGh8lNWKjTdIBHSTUGjtJx6rJKy6SCImU3L/akFvbVVoWHatDxxXS8Yb0CywuKspM021qkzINGGIjIkwZrddrc6Jo54C6R6Ylx0aJhhw6ro75hdZxZCyoRJdxc3Rf92XlSUz0kWn6XNNaa+OjTI/91oxmOiCq1s7ocdGxafSK1vVq+fSXbR0rSgOxGnFHjsfB7DypGR9rBum1yqUD4RY4iiU+KsoEerUT4o6U86/tmXGKoiPNa7SpSdZf69bjpwPmWuP7aNOlfB2kuKDI9FHSPiA6do2OZaNl1/WZJnhRR461tZ4YlzLqcdOxuHQfNJ24a9kPZOVJUkK0xEdGlTgWekz1Jtn5vLDQ/Oqr58rbOE7mHOk4Ttl5khh7ZOwUDUh1XBUd6FjHYjqy/3rtRJvzpedfb4Z0vKpYjzJo+XTspqJiMedNf3fPyM+XmOhoiY08MtCwnhOtTTE9XyKOLHcgM1cSYo/U3GTnF5qxopL/uv7y9fzqccvTjvdHBijWDyzX7erx0is1p+hIMJsYE31kfDQdHyY+2gyKq+dX+xEdOVdH3gu6z5qIRJetXUPP75Fr+rDHe8N1HCdrmyn+xnGy3j/aRFXHvvrrWGugd1jX77FMcWGx/OmyjGdWO+0say3vOX+nblOb5TnMf2ZsJb1W9ZrXwXXjY4/sh14b+sOF52eHNlPU90tpx3HS19VyjuNUZI6D9QuhzjfXX0KUJEVHm7Hi9KJx3Z7ubzhl0/P2ha/vncPW56FOjDjSZFHf0/XK+KVvd34DqSzbtpbVz5CUhFgpKD7yOWg+1/76DNP32JEA/si6cvOLzOdlgcfnob63CzQBUGSE8zPBfAZ6juOUlW/Gl9JxnKKPchynYBzfUNg+/sa5CC3pIXY+wipwUpqK3BoAV9OKT5kyxdREqVNOOUWaN28us2bNci6v4zzde++9zgFwH3vssbAcABcAAABA8IRd4FSZCJwAAAAAhNU4TgAAAAAQDgicAAAAAMAGgRMAAAAA2CBwAgAAAAAbBE4AAAAAYIPACQAAAABsEDgBAAAAgA0CJwAAAACwQeAEAAAAADYInAAAAADABoETAAAAANggcAIAAAAAGwROAAAAAGAjWqoZh8Nh/s3IyAh2UQAAAAAEkRUTWDGCP9UucDp8+LD5t0mTJsEuCgAAAIAQiRFSUlL8LhPhKE14VYUUFxfLrl27pGbNmhIRERESUa4Gcdu3b5fk5ORgF6da4hwEH+cg+DgHwcXxDz7OQfBxDoKvOp4Dh8NhgqZGjRpJZKT/XkzVrsZJD0jjxo0l1OjFWV0u0FDFOQg+zkHwcQ6Ci+MffJyD4OMcBF91OwcpNjVNFpJDAAAAAIANAicAAAAAsEHgFGRxcXFy//33m38RHJyD4OMcBB/nILg4/sHHOQg+zkHwcQ78q3bJIQAAAACgrKhxAgAAAAAbBE4AAAAAYIPACQAAAABsEDgBAAAAgA0Cpwr27LPPSvPmzSU+Pl5OOukk+e677/wu/84770ibNm3M8h07dpSPPvrIbb7m7hg3bpw0bNhQEhISZODAgbJ58+YA70V4q8hzUFBQIHfeeaeZXqNGDTOq9KhRo2TXrl2VsCfhq6LfB66uvvpqiYiIkGeeeSYAJa86AnEONm7cKOeee64ZKFDfDz169JC0tLQA7kV4q+hzkJmZKWPGjDGDuOv3Qbt27WT69OkB3ovqcw7Wr18v559/vlne32dMWc9rdVfR52DChAnms6dmzZpSr149GT58uGzatCnAexHeAvE+sEycONEsd9NNN0m1oFn1UDFmz57tiI2NdcyYMcOxfv16x5VXXumoVauWY+/evV6XX7p0qSMqKsrx2GOPOTZs2OC49957HTExMY5169Y5l5k4caIjJSXFMW/ePMePP/7oOPfccx0tWrRw5OTkVOKeVd9zcOjQIcfAgQMdb731luPnn392LF++3NGzZ09H9+7dK3nPqvf7wPLee+85Onfu7GjUqJHj6aefroS9CU+BOAdbtmxx1KlTx3H77bc7Vq1aZZ7Pnz/f5zqru0CcA13H8ccf7/jqq68cW7dudbzwwgvmNXoecPTn4LvvvnPcdtttjjfffNPRoEEDr58xZV1ndReIczB48GDHzJkzHT/99JNjzZo1jrPOOsvRtGlTR2ZmZiXsUfgJxDlwXbZ58+aOTp06OW688UZHdUDgVIH0hvq6665zPi8qKjI3eBMmTPC6/AUXXOAYOnSo27STTjrJcdVVV5m/i4uLzUX7+OOPO+frjXxcXJy5oBH4c+Drg0J/c9i2bVsFlrzqCNQ52LFjh+PYY481X5bNmjUjcKrkc3DhhRc6/v3vfwew1FVLIM5B+/btHePHj3dbplu3bo577rmnwstfHc+BK1+fMUezzuooEOfA0759+8x38jfffHPU5a2KAnUODh8+7GjVqpVj4cKFjgEDBlSbwImmehUkPz9fVq5caZrSWSIjI83z5cuXe32NTnddXg0ePNi5/NatW2XPnj1uy2gTGa1m9bXO6iwQ58Cb9PR0Uy1dq1atCix91RCoc1BcXCwXX3yx3H777dK+ffsA7kH4C8Q50OP/4YcfygknnGCma/MY/RyaN29egPcmPAXqfdCnTx95//33ZefOnaYZ91dffSW//PKLnHHGGQHcm+pzDoKxzqqsso6XfierOnXqVNg6q4pAnoPrrrtOhg4dWuJzq6ojcKog+/fvl6KiIqlfv77bdH2uwY83Ot3f8ta/ZVlndRaIc+ApNzfX9HkaOXKkJCcnV2Dpq4ZAnYNJkyZJdHS03HDDDQEqedURiHOwb98+079G27KfeeaZ8tlnn8mIESPkvPPOk2+++SaAexOeAvU+mDp1qunXpH2cYmNjzbnQvgv9+/cP0J5Ur3MQjHVWZZVxvPRHHe1b07dvX+nQoUOFrLMqCdQ5mD17tqxatcr0N6tuooNdACBcaKKICy64wPzS+/zzzwe7ONWG/lo2efJk8yGtNX2ofHpzooYNGyY333yz+btLly6ybNkyk5xgwIABQS5h9aCB04oVK0ytU7NmzWTRokXmV19NWlPdfvUFlF7/P/30kyxZsiTYRak2tm/fLjfeeKMsXLjQJJuobqhxqiCpqakSFRUle/fudZuuzxs0aOD1NTrd3/LWv2VZZ3UWiHPgGTRt27bNfFhQ21R552Dx4sWmxqNp06am1kkfeh5uvfVWk/UHgT8Huk497lrb4apt27Zk1aukc5CTkyN33323PPXUU3LOOedIp06dTIa9Cy+8UJ544okA7k31OQfBWGdVFujjpdf/ggULTJNVrYVF5ZyDlStXmu/kbt26Ob+TteXBlClTzN9aw1WVEThVEG020b17d/niiy/cfqXV57179/b6Gp3uurzSm3Jr+RYtWpgL23WZjIwM+fbbb32uszoLxDlwDZo0Dfznn38udevWDeBehLdAnAPt27R27VpZs2aN86G/sGt/p08//TTAexR+AnEOdJ2a/tcz5a/2r9GaDwT+HOjnkD60f4IrvSmyagRxdOcgGOusygJ1vLTVhwZNc+fOlS+//NLcK6HyzsHpp58u69atc/tOPvHEE+Wiiy4yf+tnUpUW7OwUVS3lo2a8mzVrlkkn+5///MekfNyzZ4+Zf/HFFzvuuusut/Sz0dHRjieeeMKxceNGx/333+81HbmuQ9PNrl271jFs2DDSkVfiOcjPzzcp4Bs3bmzSnu7evdv5yMvLC9p+Vrf3gSey6lX+OdBU8DrtxRdfdGzevNkxdepUkwp78eLFQdnH6ngONHOVZtbTdOS//fabSckcHx/veO6554Kyj1XtHOhn+urVq82jYcOGJiWz/q3Xe2nXicCfg2uuucYM0/L111+7fSdnZ2cHZR+r4znwVJ2y6hE4VTC9mdDxBDRnvqaAXLFihduFNXr0aLfl3377bccJJ5xgltcvxA8//NBtvqYkv++++xz169c3F/7pp5/u2LRpU6XtT3U/BzpWiv6+4O2hNy+onPeBJwKn4JyDV155xdGyZUtzs67jaen4cqi8c6A3h5dccolJJaznoHXr1o4nn3zSfE/g6M+Br897Xa6060Tgz4Gv72T9IQGV9z6oroFThP4v2LVeAAAAABDK6OMEAAAAADYInAAAAADABoETAAAAANggcAIAAAAAGwROAAAAAGCDwAkAAAAAbBA4AQAAAIANAicAAAAAsEHgBACo0po3by7PPPOM83lERITMmzcvqGUCAIQfAicAQFioqIBn9+7dMmTIEPP377//bta7Zs0aCQUEdQAQugicAAAhLT8/v0LX16BBA4mLi5PKUlRUJMXFxZW2PQBAYBA4AQDK7ZRTTpHrr79ebrrpJqldu7bUr19fXnrpJcnKypJLL71UatasKS1btpSPP/7Y+ZpvvvlGevbsaYKXhg0byl133SWFhYVu6xwzZoxZZ2pqqgwePNg0t1MjRowwtTLW819//VWGDRtmtpuUlCQ9evSQzz//vNS1Oi1atDD/du3a1UzXbS9atEhiYmJkz549bq/T8vTr18/2mMyaNUtq1aol77//vrRr187sZ1pamnz//fcyaNAgs08pKSkyYMAAWbVqlfN1vvZRzZ8/X7p16ybx8fFy3HHHyYMPPuh2zAAAgUfgBAA4Kq+++qoJBr777jsTRF1zzTXyz3/+U/r06WMCgzPOOEMuvvhiyc7Olp07d8pZZ51lApwff/xRnn/+eXnllVfk4YcfLrHO2NhYWbp0qUyfPt0EHWrmzJmmqZ31PDMz06zviy++kNWrV8uZZ54p55xzjglUSkPLrDTY0vW+99570r9/fxOc/Pe//3UuV1BQIP/73//ksssuK9V6dV8nTZokL7/8sqxfv17q1asnhw8fltGjR8uSJUtkxYoV0qpVK1N2na587ePixYtl1KhRcuONN8qGDRvkhRdeMMHZI488UqqyAAAqiAMAgHIaMGCA4+STT3Y+LywsdNSoUcNx8cUXO6ft3r3boV83y5cvd9x9992O1q1bO4qLi53zn332WUdSUpKjqKjIuc6uXbuW2JauY+7cubZlat++vWPq1KnO582aNXM8/fTTXtezdetW83z16tVu65g0aZKjbdu2zudz5swxZczMzLTd/syZM80616xZ43c53d+aNWs6PvjgA7/7ePrppzseffRRt2n//e9/HQ0bNrQtCwCg4lDjBAA4Kp06dXL+HRUVJXXr1pWOHTs6p2kzOrVv3z7ZuHGj9O7d2zRFs/Tt29fUHO3YscM5rXv37qXatr7utttuk7Zt25rmcdpcT7dR2honXy655BLZsmWLqRlSWsNzwQUXSI0aNUr1eq0tcz0uau/evXLllVeamiZtqpecnGzKb1dWrZkbP3682TfroevRWimt2QIAVI7oStoOAKCK0v5ArjQocp1mBUllSZBQ2gBFg6aFCxfKE088YfpSJSQkyD/+8Y+jTiihTeu0yZ82m9N+UNpH6+uvvy7167UcrsGh0mZ6Bw4ckMmTJ0uzZs1M3ycNIu3KqsGV9mk677zzSszTPk8AgMpB4AQAqDRaMzRnzhxtJu4MLLQfkyaRaNy4sd/XajCmGepc6Wu1dkgTKlhBhqYYLy2tGVKe61VXXHGFjBw50pTr+OOPNzVjR0PL+txzz5l+TWr79u2yf/9+233UpBCbNm0ygSEAIHhoqgcAqDTXXnutCRg0icTPP/9sssXdf//9csstt0hkpP+vJM0yp0kgNNvdwYMHzTRt9qYJHXQcJm3S9q9//atMNVtas6S1Q5988olpSpeenu6cp9n8tDmdJq7QDIFHS8uqCSe0KeG3334rF110kdm23T6OGzdOXnvtNVPrpIkm9PWzZ8+We++996jLBAAoPQInAEClOfbYY+Wjjz4y2ew6d+4sV199tVx++eWlCgKefPJJ0yyvSZMmJn24euqpp0wadM3gp03rNNjRGprSio6OlilTpphMdY0aNTKpzS0ayGltltYAaVa7o6XZAzUY0vJplsEbbrjBBG52+6j7tGDBAvnss89MNsJevXrJ008/bZr7AQAqT4RmiKjE7QEAEDY0qPvjjz/MmEwAgOqNPk4AAHjQJnvr1q2TN954g6AJAGDQVA8AAA/aZE8H7tWmhIMGDXKbN2TIELfU4K6PRx99NGhlBgAEFk31AAAog507d0pOTo7XeXXq1DEPAEDVQ+AEAAAAADZoqgcAAAAANgicAAAAAMAGgRMAAAAA2CBwAgAAAAAbBE4AAAAAYIPACQAAAABsEDgBAAAAgPj3/7kk9xeVRFAJAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1000x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA4UAAAIjCAYAAAC04r7nAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAqXlJREFUeJzt3QfcFMX9x/GhNwXEQlFUUCOKIIoNC3aJLXbREAviP4rEKPYGKBI1mtgioEZjAwtYo6JGsUaxREABRWOLBRQVKYL0+7++E3+XuX32nueeex6eK/t5v17HcXv73O3tzs7Ob2Z2pl4qlUo5AAAAAEAi1S/0BgAAAAAACoegEAAAAAASjKAQAAAAABKMoBAAAAAAEoygEAAAAAASjKAQAAAAABKMoBAAAAAAEoygEAAAAAASjKAQAAAAABKMoBAAUFAvvviiq1evnn8uZXvssYfbaqutCr0ZJbnf9AAAFA5BIQAkkIKwXB65BGpXXHGFe/TRR1f7Nt95550Z29a0aVPXoUMH16dPH3fjjTe6hQsXrvZtmDVrlrv00kvd1KlTXTmaPHmy37eXXHJJ1nX+/e9/+3XOOussVyomTJjgjxsAIF7DLMsBAGXsnnvuyXh99913u2effbbC8i222CKnoPDII490hx56qKsLw4cPd506dXLLly93X3/9tQ9czzzzTHfttde6v//976579+6rNSi87LLL3MYbb+x69Ojhys22227runTp4u677z43YsSI2HXuvfde//yb3/ymVr7zH//4h6uLoHDkyJEEhgCQBUEhACRQtED/+uuv+6Cwtgr6q9P+++/vtttuu/TrCy+80D3//PPuoIMOcr/61a/c+++/75o1a1bQbSxl/fr1c0OGDPFpYqeddqrwvgJGBY4KIGti8eLFrnnz5q5x48Y1+hwAQM3RfRQAEGvRokXu7LPPdh07dnRNmjRxm2++ufvTn/7kUqlUeh11I9R6d911V7pb54knnujf+89//uNOO+00/3cK0tZee2131FFHuc8++6zWt3WvvfbygYy+c8yYMRnvzZw507dktmnTxnc5VUCpFsXQ3Llz3TnnnOO6devm1lhjDdeyZUsffL7zzjvpddQiuf322/v/9+/fP/171a019N5777k999zTBzzrr7++u/rqqyts71/+8hfXtWtXv85aa63lt8la4Kq69zLbw/a7+eSTT/z+1u/W9yjAe/LJJ3MKCiVue95++233wQcfpNd57LHH3IEHHui78SqNbLLJJu7yyy93K1eujL3fUn/fu3dvvz0XXXRR7D2Fy5Ytc0OHDnU9e/Z0rVq1ci1atHC77babe+GFFzI+U+lIv1tp8tZbb/XfrW3QMXrrrbfS62m/qJVQwv0FAPgfWgoBABUo8FOrmwriAwYM8F0ln3nmGXfuuee6r776yl133XV+PXU3Pfnkk90OO+zgfvvb3/plKpyLCuavvfaaO+aYY9wGG2zgC/GjR4/2AYACJwUGtem4447zgYa6I/7f//2fXzZjxgy3yy67+ODsggsu8AHGuHHjfFfXhx56yB122GHpAEr3RSqIUtfUb775xt1yyy1u991399uqoEddadV1VQGLfqsCFdl5553T2/DDDz+4X/7yl+7www93Rx99tHvwwQfd+eef74NNBZny17/+1f3+97/3geoZZ5zhlixZ4t599133xhtvuF//+tdV/k79rQWnRscgpO3Xdqk1TusrIFfgrmOqbbLfHUe/X3+r/aTj3KBBg/R7FijadiogVhCt+wv1rBZb7Z8FCxa4a665JuNzv//+e78PlB7UIt22bdvY79ff3nbbbe7YY4/1x1H3it5+++3+3tE333yzQrddbZPWOeWUU3ywpyBc+1/HtFGjRn65uv3GdY8GAPwsBQBIvEGDBqn5L/360Ucf9a9HjBiRsd6RRx6ZqlevXuqjjz5KL2vRokXqhBNOqPCZixcvrrBs0qRJ/nPvvvvu9LIXXnjBL9NzZe644w6/3ltvvZV1nVatWqW22Wab9Ou999471a1bt9SSJUvSy1atWpXaeeedU5tttll6md5fuXJlxmd9+umnqSZNmqSGDx+eXqbv1jZoW6J23333Cr9t6dKlqXbt2qWOOOKI9LJDDjkk1bVr11R12X4aP358hfeix+DMM8/0677yyivpZQsXLkx16tQptfHGG1f4rVEjR470f//MM8+kl+lv1l9//VSvXr0qPcannHJKqnnz5hn73PbNzTffXGF9vaeHWbFihd9voR9++CHVtm3b1EknnZRxfPSZa6+9dmru3Lnp5Y899phf/vjjj2dN3wCATHQfBQDEDsyhFiK1MoXUnVStiE899VSVnxHe16dBYdRStOmmm7rWrVv7US5XB7VW2Sik6hKqliu12GnZd9995x/aDrU6aRRNtXqKuh3Wr//fS6K6PmodfZa6vlZnW/U34X2Zul9OrahqtTL6/V9++WVGF8fVcfz0vbvuumvGtqmFUy22av2sTN++fX0rW9iF9KWXXvL7y7qORo+x7WO1oKqFUt12Q9rH6nZbFaU7u89w1apV/jiuWLHCd7GNOxbaVnXBNdaCG+5zAEDlCAoBABXo3jx1mVxzzTVjRyPV+1X56aeffFdCuydxnXXWceuuu66bN2+emz9//mrZ7h9//DG9zR999JEPYHWvob43fAwbNsyvM2fOnHTwoa6Sm222Wca2qltndbZV3WSj96spYFG3UqPupArQFLTp+wYNGuReffVVV5t0fBTQRuV6/NTdVIHzI4884ru3igLEhg0b+iDbqHuuuqLq3j/dh6l9ZkFxdL+pC2+ug8qoq6tGkdU9oNoWfa7uh4w7FhtuuGHGawsQw30OAKgc9xQCAFaL008/3d1xxx1+uohevXr5wEEBk+4pUxBW29T6pqBBrZFi36EBZBTgxLF1Na2GgseTTjrJD5SiwVnUcqhtr862hvffhcLBeRSYabCWJ554wj399NP+3sZRo0b5AFrTXRQLBXfaRj10L6K2c7/99vMBmii41z2XCgZ1r6XuJVUQp9Y8Bb7R/ZbriLAaKEiDw+i+T93Dut566/n9euWVV7qPP/44r30OAKgcQSEAoIKNNtrIPffcc75LYNhaaF0C9b7JNpKjBjQ54YQT3J///Of0MrU6KZhYHWwQEQsAO3fu7J/VDXKfffap9G+1rRoxVAOahLStajU0tTVqpQa8UbdHPTTapgZG+cMf/uCn11BgVVM6Pgo8o+KOXzYKBHXs1UKofaiWt7DrqEZDVTfbhx9+2I8oaj799NMabbuOhY6dPjfc39a6mw9GGwWAytF9FABQwQEHHODvrbvpppsylquLpQrYNpKmBThxgZ5acKKtNZqKITpdQW3QvYNq4dPImRa4qIVJI51qFNHZs2dX+Jtvv/220m0dP358+p7D8LdKTQJbBVIhdanccsst/ffr3svaOn4aqXPSpEnpZZo6RFM3bLzxxv77qqKWPXUN1f2JGjVWv/2QQw6p0EIX7jcFuGr1rIm4z9XIrOFvqa7aOG4AUM5oKQQAVHDwwQf7lrOLL77YD0yy9dZb+6keNC+dulTatBOi+eTUqnjttdf6+xAVmO24445+Mnm13qnbqIIQFeq1nu4RqwkNcqMWLw0+oqkXFBBqugG1fmn+wbClTfPTabAVTQmh6Q3UAqW/0baou6nNQ6htVRdIDYSi6RimTZvmxo4dm25tNPrdGijm5ptv9q1oCjb0W/Wbc6UumO3atfNTZWhahvfff98H35rvL3oPZ740/YYmmVfwrsGC1B1W9+mpFU/dQG1QnVy6kN59991+OhIF2xZcifaT7t9Ta7C+Q5UFOt417bapY6FWQgWk2ifaZu1vpSHdM5oPpVHRdqolWYGnujEDAH4WGY0UAJBAcUP2awqDwYMHpzp06JBq1KiRn8Lhmmuu8VM6hGbOnJnq3bt3qlmzZv4zbGoETSPQv3//1DrrrJNaY401Un369PHrbrTRRhnTJ1R3Sgp7NG7c2E/3sO+++6ZuuOGG1IIFC2L/7uOPP04df/zxfl39Dk2rcNBBB6UefPDB9DqaPuHss89OtW/f3v+OXXbZxU+fEZ0uwaY82HLLLVMNGzbMmJ5C68VNNaHfqt9sbrnlFr+/NJWCprzYZJNNUueee25q/vz5tTYlhf1uTSHSunXrVNOmTVM77LBD6oknnkhVh6aH0D7R906YMKHC+6+++mpqp5128vtM6eS8887z01hEj2e2fWPvhftY6euKK67w+0z7R1OMaLuj+9GmpFCajNLyYcOGZfyO008/PbXuuuv6KVUo/gBApnr6xwJEAAAAAECycE8hAAAAACQYQSEAAAAAJBhBIQAAAAAkGEEhAAAAACQYQSEAAAAAJBhBIQAAAAAkGJPX16FVq1a5WbNm+cmJNckvAAAAgGRKpVJu4cKFrkOHDq5+/cK21REU1iEFhB07diz0ZgAAAAAoEl988YXbYIMNCroNBIV1SC2EduBbtmxZ6M0BAAAAUCALFizwDUYWIxQSQWEdsi6jCggJCgEAAADUK4LbyhhoBgAAAAASjKAQAAAAABKMoBAAAAAAEoygEAAAAAASjKAQAAAAABKMoBAAAAAAEoygEAAAAAASjKAQAAAAABKMoBAAAAAAEoygEAAAAAASjKAQAAAAABKMoBAAAAAAEoygEAAAAAASrGGhNwAAAAAAitnKlSvdu+++6+bOnevatGnjunfv7ho0aODKBUEhAAAAAGTx8ssvu1GjRrmvv/46vaxdu3butNNOc71793blgO6jAAAAAJAlIBw2bJjr3LmzGzlypJswYYJ/1mst1/vloF4qlUoVeiOSYsGCBa5Vq1Zu/vz5rmXLloXeHAAAAACVdBnt16+fDwBHjBjh6tf/X3vaqlWr3CWXXOI+/fRTN2bMmLy6khZTbEBLIQAAAABE6B5CdRlVYBgGhKLXWj579my/XqkjKAQAAACACA0qI506dYq+lbHc1itlBIUAAAAAEKFRRkVdROPYcluvlBEUAgAAAECEpp3QKKNjx4719xCG9FrL27dv79crdQSFAAAAABChwWM07cSkSZP8oDIzZsxwixcv9s96reUDBw4si/kKGX20DhXTCEMAAAAAqhY3T6FaCBUQ1mSewmKKDQgK61AxHXgAAAAAudH0FBplVIPK6B5CdRmtaQthMcUGDQv67QAAAABQ5Bo0aOC22WYbV64Kek/hpZde6urVq5fx6NKlS/r9JUuWuEGDBrm1117brbHGGu6II45w33zzTcZnfP755+7AAw90zZs3d+utt54799xz3YoVKzLWefHFF922227rmjRp4jbddFN35513VtiWkSNHuo033tg1bdrU7bjjju7NN9/MeD+XbQEAAACAUlPwgWa6du3qJ320xz//+c/0e4MHD3aPP/64Gz9+vHvppZfcrFmz3OGHH57RjKuAcNmyZe61115zd911lw/4hg4dmjFUrNbZc8893dSpU92ZZ57pTj75ZPfMM8+k13nggQfcWWed5YYNG+YmT57stt56a9enTx83Z86cnLcFAAAAAEpRQe8pVEvho48+6oO1KPWtXXfddd29997rjjzySL9s5syZbosttvAj/ey0007uqaeecgcddJAP0Nq2bevXufnmm93555/vvv32W9e4cWP//yeffNJNnz49/dnHHHOMmzdvnnv66af9a7UMbr/99u6mm25KDzHbsWNHd/rpp7sLLrggp20ptX7DAAAAAAqnmGKDgrcU/vvf/3YdOnRwnTt3dv369fPdQeXtt992y5cvd/vss096XXUt3XDDDX0gJnru1q1bOiAUtfBpB2uoWFsn/Axbxz5DrYz6rnCd+vXr+9e2Ti7bEmfp0qV+W8IHAAAAABSTggaFaqFTd0+12I0ePdp39dxtt93cwoUL/ZCvaulr3bp1xt8oALThYPUcBoT2vr1X2ToK0H766Sf33Xff+W6oceuEn1HVtsS58sorffRvD7U+AgAAAEAxKejoo/vvv3/6/xrWVUHiRhtt5MaNG+eaNWvmSt2FF17o71U0CkQJDAEAAAAUk4J3Hw2pJe4Xv/iF++ijj1y7du18107d+xfSiJ96T/QcHQHUXle1jvrtKvBcZ511/BCzceuEn1HVtsTRaKf6nvABAAAAAMWkqILCH3/80X388ceuffv2rmfPnq5Ro0Zu4sSJ6fc/+OADf89hr169/Gs9T5s2LWOU0GeffdYHX1tuuWV6nfAzbB37DHUL1XeF62igGb22dXLZFgAAAAAoRQXtPnrOOee4gw8+2HcZ1QiimhJCrXbHHnusvwdvwIABvvtlmzZtfKCn0UAVhNlon/vtt58P/o477jh39dVX+/v7LrnkEj+foFrp5NRTT/Wjip533nnupJNOcs8//7zvnqoRSY2+44QTTnDbbbed22GHHdz111/vFi1a5Pr37+/fz2VbAAAAAKAUFTQo/PLLL30A+P333/spH3bddVf3+uuv+//Ldddd50cC1UTxGslTo4aOGjUq/fcKIJ944gk3cOBAH6C1aNHCB3fDhw9Pr9OpUycfAGqewRtuuMFtsMEG7rbbbvOfZfr27eunsND8hgose/To4Qe/CQefqWpbAAAAAKAUFXSewqQpprlIAAAAABROMcUGRXVPIQAAAACgbhEUAgAAAECCERQCAAAAQIIRFAIAAABAghEUAgAAAECCERQCAAAAQIIRFAIAAABAghEUAgAAAECCERQCAAAAQIIRFAIAAABAghEUAgAAAECCERQCAAAAQIIRFAIAAABAghEUAgAAAECCERQCAAAAQIIRFAIAAABAghEUAgAAAECCERQCAAAAQIIRFAIAAABAghEUAgAAAECCERQCAAAAQIIRFAIAAABAghEUAgAAAECCERQCAAAAQIIRFAIAAABAghEUAgAAAECCERQCAAAAQIIRFAIAAABAghEUAgAAAECCERQCAAAAQIIRFAIAAABAghEUAgAAAECCERQCAAAAQIIRFAIAAABAghEUAgAAAECCERQCAAAAQIIRFAIAAABAghEUAgAAAECCERQCAAAAQIIRFAIAAABAghEUAgAAAECCERQCAAAAQIIRFAIAAABAghEUAgAAAECCERQCAAAAQIIRFAIAAABAghEUAgAAAECCERQCAAAAQIIRFAIAAABAghEUAgAAAECCERQCAAAAQIIRFAIAAABAghEUAgAAAECCERQCAAAAQIIRFAIAAABAghEUAgAAAECCERQCAAAAQIIRFAIAAABAghEUAgAAAECCERQCAAAAQIIRFAIAAABAghEUAgAAAECCERQCAAAAQIIRFAIAAABAghEUAgAAAECCERQCAAAAQIIRFAIAAABAghEUAgAAAECCERQCAAAAQIIRFAIAAABAghEUAgAAAECCFVVQeNVVV7l69eq5M888M71syZIlbtCgQW7ttdd2a6yxhjviiCPcN998k/F3n3/+uTvwwANd8+bN3XrrrefOPfdct2LFiox1XnzxRbftttu6Jk2auE033dTdeeedFb5/5MiRbuONN3ZNmzZ1O+64o3vzzTcz3s9lWwAAAACglBRNUPjWW2+5W265xXXv3j1j+eDBg93jjz/uxo8f71566SU3a9Ysd/jhh6ffX7lypQ8Ily1b5l577TV31113+YBv6NCh6XU+/fRTv86ee+7ppk6d6oPOk08+2T3zzDPpdR544AF31llnuWHDhrnJkye7rbfe2vXp08fNmTMn520BAAAAgFJTL5VKpQq9ET/++KNvxRs1apQbMWKE69Gjh7v++uvd/Pnz3brrruvuvfded+SRR/p1Z86c6bbYYgs3adIkt9NOO7mnnnrKHXTQQT5Aa9u2rV/n5ptvdueff7779ttvXePGjf3/n3zySTd9+vT0dx5zzDFu3rx57umnn/av1TK4/fbbu5tuusm/XrVqlevYsaM7/fTT3QUXXJDTtlRlwYIFrlWrVv6zWrZsuVr2JQAAAIDit6CIYoOiaClUl0y15O2zzz4Zy99++223fPnyjOVdunRxG264oQ/ERM/dunVLB4SiFj7t5BkzZqTXiX621rHPUCujvitcp379+v61rZPLtkQtXbrUb0f4AAAAAIBi0rDQG3D//ff77prqPhr19ddf+5a+1q1bZyxXAKj3bJ0wILT37b3K1lGQ9tNPP7kffvjBd0ONW0etgbluS9SVV17pLrvsspz3BQAAAAAkqqXwiy++cGeccYYbO3asH9yl3Fx44YW+Odge+r0AAAAAUEwKGhSqS6YGctH9hA0bNvQPDeBy4403+v+rFU5dO3XvX0gjfrZr187/X8/REUDtdVXrqO9us2bN3DrrrOMaNGgQu074GVVtS5RGOtV3hA8AAAAAKCYFDQr33ntvN23aND8iqD222247169fv/T/GzVq5CZOnJj+mw8++MBPQdGrVy//Ws/6jHCU0GeffdYHYFtuuWV6nfAzbB37DHUL7dmzZ8Y6GmhGr20dvV/VtgAAAABAqSnoPYVrrrmm22qrrTKWtWjRws8DaMsHDBjgp4po06aND/Q0GqiCMBvtc7/99vPB33HHHeeuvvpqf3/fJZdc4gevUUudnHrqqX5U0fPOO8+ddNJJ7vnnn3fjxo3zI5IafccJJ5zgA9EddtjBj366aNEi179/f/++RgaqalsAAAAAoNQUfKCZqlx33XV+JFBNFK/RPDVqqKauMOr2+cQTT7iBAwf6AE1BpYK74cOHp9fp1KmTDwA1z+ANN9zgNthgA3fbbbf5zzJ9+/b1U1hofkMFlpoWQ9NVhIPPVLUtAAAAAFBqimKewqQoprlIAAAAABROMcUGRTFPIQAAAACgMAgKAQAAACDBiv6eQgAAAAAoNStXrnTvvvuumzt3rh+osnv37n48lGJEUAgAAAAAtejll1/2A1JqAEujuc1PO+0017t3b1ds6D4KAAAAALUYEA4bNsx17tzZjRw50k2YMME/67WW6/1iw+ijCR1hCAAAAEDtUpfRfv36+QBwxIgRfjo7s2rVKj+f+qeffurGjBnj50QvltiAlkIAAAAAqAW6h1BdRhUYhgGh6LWWz549269XTAgKAQAAAKAWaFAZ6dSpU+z7ttzWKxYEhQAAAABQCzTKqKiLaBxbbusVC4JCAAAAAKgFmnZCo4yOHTvW30MY0mstb9++vV+vmBAUAgAAAEAt0DyEmnZi0qRJflCZGTNmuMWLF/tnvdbygQMHFt18hYw+WocYfRQAAABI5jyF7du39wGhzVNYTLEBQWEdKqYDDwAAAGD10fQUGmVUg8roHkJ1GQ1bCIspNmhY0G8HAAAAgDLUoEEDt80227hSwD2FAAAAAJBgBIUAAAAAkGAEhQAAAACQYASFAAAAAJBgBIUAAAAAkGAEhQAAAACQYASFAAAAAJBgBIUAAAAAkGAEhQAAAACQYASFAAAAAJBgBIUAAAAAkGAEhQAAAACQYASFAAAAAJBgBIUAAAAAkGAEhQAAAACQYASFAAAAAJBgBIUAAAAAkGAEhQAAAACQYASFAAAAAJBgBIUAAAAAkGAEhQAAAACQYASFAAAAAJBgBIUAAAAAkGAEhQAAAACQYASFAAAAAJBgBIUAAAAAkGAEhQAAAACQYASFAAAAAJBgBIUAAAAAkGAEhQAAAACQYASFAAAAAJBgBIUAAAAAkGAEhQAAAACQYASFAAAAAJBgBIUAAAAAkGAEhQAAAACQYASFAAAAAJBgBIUAAAAAkGAEhQAAAACQYASFAAAAAJBgBIUAAAAAkGAEhQAAAACQYASFAAAAAJBgDQu9AQAAAABQzFauXOneffddN3fuXNemTRvXvXt316BBA1cuCAoBAAAAIIuXX37ZjRo1yn399dfpZe3atXOnnXaa6927tysHdB8FAAAAgCwB4bBhw1znzp3dyJEj3YQJE/yzXmu53i8H9VKpVKrQG5EUCxYscK1atXLz5893LVu2LPTmAAAAAKiky2i/fv18ADhixAhXv/7/2tNWrVrlLrnkEvfpp5+6MWPG5NWVtJhiA1oKAQAAACBC9xCqy6gCwzAgFL3W8tmzZ/v1Sh1BIQAAAABEaFAZ6dSpU/StjOW2XikjKAQAAACACI0yKuoiGseW23qljKAQAAAAACI07YRGGR07dqy/hzCk11revn17v16pIygEAABASQz6MWXKFDdx4kT/rNfA6tSgQQM/7cSkSZP8oDIzZsxwixcv9s96reUDBw4si/kKGX20DhXTCEMAAAClIgnzxKG00l/79u19QFiT9FdMsQFBYR0qpgMPAABQSvPE9erVy4/2qME9dC+Xuu6ppeayyy4jMMRqt3LlSj/KqAaV0T2E6jJa0xbCYooNCArrUDEdeAAAgKTPEwcU0oIiig24pxAAAABFKUnzxAElFxROnjzZTZs2Lf36sccec4ceeqi76KKL3LJly2pz+wAAAJBQSZonDii5oPCUU05xH374of//J5984o455hjXvHlzN378eHfeeefl/DmjR4/2/XHVXKqH+oo/9dRT6feXLFniBg0a5NZee223xhpruCOOOMJ98803GZ/x+eefuwMPPNB//3rrrefOPfdct2LFiox1XnzxRbftttu6Jk2auE033dTdeeedFbZl5MiRbuONN3ZNmzZ1O+64o3vzzTcz3s9lWwAAAFB7kjRPHFByQaECwh49evj/KxDUzb333nuvD7YeeuihnD9ngw02cFdddZV7++233b/+9S+31157uUMOOcQP8yqDBw92jz/+uP+Ol156yc2aNcsdfvjhGf3MFRCqdfK1115zd911l9+GoUOHZmQWWmfPPfd0U6dOdWeeeaY7+eST3TPPPJNe54EHHnBnnXWWv4lZraBbb72169Onj5szZ056naq2BQAAALUrSfPEAQWVysOaa66Z+vDDD/3/99lnn9T111/v//+f//wn1bRp01RNrLXWWqnbbrstNW/evFSjRo1S48ePT7/3/vvva1Cc1KRJk/zrCRMmpOrXr5/6+uuv0+uMHj061bJly9TSpUv96/POOy/VtWvXjO/o27dvqk+fPunXO+ywQ2rQoEHp1ytXrkx16NAhdeWVV/rXuWxLnCVLlqTmz5+ffnzxxRf+b/R/AAAAVO2ll15K7bHHHqkLL7wwNX369NSiRYv8s15rud4HStH8+fOLJjbIq6Vwu+228yNA3XPPPb7VTC1x1irXtm3bvIJTtfrdf//9btGiRb4bqVoPly9f7vbZZ5/0Ol26dHEbbrihH35Y9NytW7eM71QLn0bysdZGrRN+hq1jn6FWRn1XuI5uXNZrWyeXbYlz5ZVX+hGF7NGxY8e89g0AAEBSqUeapp3QLUu6leeAAw7wzyp3Mh0FUDsa5vNH119/vR/t6dFHH3UXX3yxv09PHnzwQbfzzjtX67M0YI2CQN2zp3v1HnnkEbflllv6rp6NGzd2rVu3zlhfAaBNHKnnaBBqr6taR4HjTz/95H744QcfkMatM3PmzPRnVLUtcS688ELfLdXoOwkMAQAAqkeB3y677FLr88QBqEFQqJMwHH3UXHPNNdU+OTfffHMfAGp+DgWVJ5xwgm99LAca2EYPAAAA1IzKmNtss02hNwMoS3kFhUZdLzUYS/TGX3WrzJVa4KylsWfPnu6tt95yN9xwg+vbt6///Hnz5mW00GnET91wLHqOjhJqI4KG60RHCdVrjXbarFkzn8HoEbdO+BlVbQsAAAAAJGr00d12280HVRtttJGfI0YPTemQbR6ZXCnAXLp0qQ8QGzVq5CZOnJh+74MPPvBTUKi7qehZLZbhKKHPPvusD/jUBdXWCT/D1rHPUFCq7wrX0Tbota2Ty7YAAAAAQGJaCvv37+8aNmzonnjiCT8McL169fL6ct1zt//++/uWxYULF/ppLTSnoKaL0MAsAwYM8Pfkqd+4Ar3TTz/dB2E77bST//v99tvPB3/HHXecu/rqq/39fZdccom/+di6bZ566qnupptu8vMnnnTSSe75559348aNc08++WR6O/Qd6raqAXR22GEHf8+kBrzR75RctgUAAAAAEhMU6h5AjcipEThrQi18xx9/vJs9e7YPvHSvogLCfffd179/3XXX+ZFANVG8Wg81auioUaPSf69unwpMBw4c6AO0Fi1a+OBu+PDh6XXUcqkAUPMMqluq5ka87bbb/GcZdVX99ttv/fyGCiw1B+PTTz+dMfhMVdsCAAAAAKWonualqO4fbb/99j5I2nXXXVfPVpUpjT6q4FeD6qi1EQAAAEAyLSii2KB+dTbaHn/84x99d0x19fz+++8z3tMDAAAAAFBm3Uc16mZ476AaGPfee++MdbRM62jePwAAAABAGQWFL7zwwurdEgAAAABA8QaFu+++e/r/moqhY8eOFUYdVUvhF198UbtbCAAAAAAornkKNaKnRuuMmjt3bo3nKQQAAAAAFHlQaPcORv3444+uadOmtbFdAAAAAIBim6dQk7eLAsIhQ4a45s2bp9/T4DJvvPGGn+MPAAAAAFCGQeGUKVPSLYXTpk1zjRs3Tr+n/2+99dbunHPOqf2tBAAAAAAUPii0EUj79+/vbrjhhoJPsggAAAAAqMOg0Nxxxx01/FoAAAAAQMkGhfKvf/3LjRs3zk9PsWzZsoz3Hn744drYNgAAAABAMY4+ev/997udd97Zvf/+++6RRx5xy5cvdzNmzHDPP/+8a9WqVe1vJQAAAACgeILCK664wl133XXu8ccf9wPM6P7CmTNnuqOPPtptuOGGtb+VAAAAAIDiCQo//vhjd+CBB/r/KyhctGiRn6Zi8ODB7tZbb63tbQQAAAAAFFNQuNZaa7mFCxf6/6+//vpu+vTp/v/z5s1zixcvrt0tBAAAAAAU10AzvXv3ds8++6zr1q2bO+qoo9wZZ5zh7yfUsr333rv2txIAAAAAUDxB4U033eSWLFni/3/xxRe7Ro0auddee80dccQR7pJLLqntbQQAAAAArCb1UqlUanV9ODItWLDAj846f/5817Jly0JvDgAAAIACKabYIK97Cm2wGbUKHnvssW7OnDl+2VNPPeWnpgAAAAAAlIa8gsKXXnrJ30/4xhtv+Inqf/zxR7/8nXfeccOGDavtbQQAAAAAFFNQeMEFF7gRI0b4gWU0JYXZa6+93Ouvv16b2wcAAAAAKLagcNq0ae6www6rsHy99dZz3333XW1sFwAAAACgWIPC1q1bu9mzZ1dYPmXKFD9vIQAAAACgjIPCY445xp1//vnu66+/dvXq1XOrVq1yr776qjvnnHPc8ccfX/tbCQAAAAAonqDwiiuucF26dHEdO3b0g8xsueWWfkL7nXfemXkKAQAAACAp8xR+/vnnbvr06T4w3Gabbdxmm21Wu1tXZoppLhIAAAAAhVNMsUHDmvzxhhtu6B8AAAAAgNKUc1B41lln5fyh1157bb7bAwAAAAAoxqBQI4uGJk+e7FasWOE233xz//rDDz90DRo0cD179qz9rQQAAAAAFDYofOGFFzJaAtdcc0131113ubXWWssv++GHH1z//v3dbrvttnq2FAAAAABQHAPNaC7Cf/zjH65r164ZyzXozH777edmzZpVm9tYNorpZlIAAAAAhVNMsUH9fH/At99+W2G5li1cuLA2tgsAAAAAUKxB4WGHHea7ij788MPuyy+/9I+HHnrIDRgwwB1++OG1v5UAAAAAgOKZkuLmm29255xzjvv1r3/tli9f/t8PatjQB4XXXHNNbW8jAAAAAKAYJ69ftGiR+/jjj/3/N9lkE9eiRYuM99WC2KFDB1e/fl4NkmWnmPoNAwAAACicspm8XkFg9+7ds76/5ZZbuqlTp7rOnTvX5GsAAAAAAKvJam3Cq0EjJAAAAACgDtCvEwAAAAASjKAQAAAAABKMoBAAAAAAEmy1BoX16tVbnR8PAAAAAKghBpoBAAAAgASr0ZQUVXnvvff8PIUAAAAAgBIPCg8//PCcP/Thhx/2zx07dsxvqwAAAAAAxRUUtmrVavVuCQAAAACgeIPCO+64Y/VuCQAAAACgzjElBQAAAAAkWN4DzTz44INu3Lhx7vPPP3fLli3LeG/y5Mm1sW0AAAAAgGJsKbzxxhtd//79Xdu2bd2UKVPcDjvs4NZee233ySefuP3337/2txIAAAAAUDxB4ahRo9ytt97q/vKXv7jGjRu78847zz377LPu97//vZs/f37tbyUAAAAAoHiCQnUZ3Xnnnf3/mzVr5hYuXOj/f9xxx7n77ruvdrcQAAAAAFBcQWG7du3c3Llz/f833HBD9/rrr/v/f/rppy6VStXuFgIAAAAAiiso3Guvvdzf//53/3/dWzh48GC37777ur59+7rDDjustrcRAAAAALCa1Evl0bS3atUq/2jY8L+Dl95///3utddec5tttpk75ZRT/H2GqGjBggWuVatW/r7Lli1bFnpzAAAAABRIMcUGeQWFuqewY8eOrl69ehnL9VFffPGF71KK4j7wAAAAAAqnmGKDvLqPdurUyX377bcVlus+Q70HAAAAACgNeQWFahGMthLKjz/+6Jo2bVob2wUAAAAAqAP/vSkwR2eddZZ/VkA4ZMgQ17x58/R7K1eudG+88Ybr0aNH7W8lAAAAAKDwQeGUKVPSLYXTpk3LGFBG/996663dOeecU/tbCQAAAAAofFD4wgsvpKehuOGGGwp+QyQAAAAAoA6DQnPHHXek///ll1/65w022KCGmwIAAAAAKImBZjRH4fDhw/0QqhtttJF/tG7d2l1++eX+PQAAAABAGbcUXnzxxe722293V111ldtll138sn/+85/u0ksvdUuWLHF/+MMfans7AQAAAADFMnl9hw4d3M033+x+9atfZSx/7LHH3Gmnnea++uqr2tzGslFME1QCAAAAKJxiig3y6j6qSeq7dOlSYbmW6T0AAAAAQGnIKyjU1BM33XRTheVapvcAAAAAoFysXLnST883ceJE/6zXLun3FF599dXuwAMPdM8995zr1auXXzZp0iT3xRdfuAkTJtT2NgIAAABAQbz88stu1KhR7uuvv04va9eunb9trnfv3i6xLYWdOnVyH374oTvssMPcvHnz/OPwww93H3zwgR+JFAAAAADKISAcNmyY69y5sxs5cqRvANOzXmu53k/sQDMNGjRws2fPduutt17G8u+//94vK7fm1HK8mRQAAABAdopp+vXr5wPAESNGuPr1/9eepmn4LrnkEvfpp5+6MWPG+PiolGODvFoKs8WRP/74o2vatGlNtwkAAAAACurdd9/1XUYVGIYBoei1lquhTOuVumoFhWeddZZ/1KtXzw0dOjT9Wo8zzjjD9e3b1/Xo0SPnz7vyyivd9ttv79Zcc03fwnjooYf6LqghzXs4aNAgt/baa7s11ljDHXHEEe6bb77JWOfzzz/39zg2b97cf865557rVqxYkbHOiy++6LbddlvXpEkTt+mmm7o777yzwvaoKXjjjTf2ge2OO+7o3nzzzWpvCwAAAIDSN/fnWRV061wcW14Osy9UKyjUSDt6qKVw2rRp6dd6zJw50488GhdsZfPSSy/5IOv11193zz77rFu+fLnbb7/93KJFi9LrDB482D3++ONu/Pjxfv1Zs2b5+xfDZl0FhMuWLXOvvfaau+uuu/w2KGg1atbVOnvuuaebOnWqO/PMM93JJ5/snnnmmfQ6DzzwgA9u1Td48uTJ/rf06dPHzZkzJ+dtAQAAAFAe2rRpk44l4thyW6+kpfJw4oknpubPn5+qbXPmzFG/1NRLL73kX8+bNy/VqFGj1Pjx49PrvP/++36dSZMm+dcTJkxI1a9fP/X111+n1xk9enSqZcuWqaVLl/rX5513Xqpr164Z39W3b99Unz590q932GGH1KBBg9KvV65cmerQoUPqyiuvzHlbqqJ9pvVXx74DAAAAUHtWrFjhY4YLL7zQxwYhvdbyY445xq+Xj2KKDfK6p/COO+5YLTdD6ibLMNp+++23fevhPvvsk16nS5cubsMNN/RTYIieu3Xr5tq2bZteRy18unFzxowZ6XXCz7B17DPUyqjvCtdRP2G9tnVy2ZaopUuX+u0IHwAAAACKX4MGDfy0Eyrra1AZxRaLFy/2z3qt5QMHDsxrkJlik9c8hauDRvBRt85ddtnFbbXVVn6Zbuxs3Lixa926dca6CgBtnhA9hwGhvW/vVbaOgrSffvrJ/fDDD74batw66hab67bE3TN52WWX5bU/AAAAABRW7969fXle8xTqtjfTvn17v7yyeQoVX2gQGt1zqEav7t27F20AWTRBoXby9OnT3T//+U9XLi688EJ/n6JRENqxY8eCbhMAAACA3PXu3ds3XFUnwCu1Ce+LIij83e9+55544gm/8zbYYIOMHaeunfPmzctoodOIn3rP1omOEmojgobrREcJ1Wt1gW3WrJk/oHrErRN+RlXbEqWRTvUAAAAAULoaNGjgttlmm2pNeN+rVy83ZMgQP0qpBqUZO3asX15VC2Mh5HVPYW3RKKYKCB955BH3/PPPVxjutWfPnq5Ro0Zu4sSJ6WWaskJTUGgni541Emo4SqhGMlXAt+WWW6bXCT/D1rHPULdQfVe4jrqz6rWtk8u2AAAAAEiulStX+hZCxQea8L5r165+2jw967WWjx492q9XTOoXusvomDFj3L333uvnKlTzqh66z09atWrlBgwY4LtgvvDCC36wl/79+/ududNOO/l1NIWFgr/jjjvOvfPOO36aCd34qc+2VrpTTz3VffLJJ+68887z9wjqQI0bN85PMWH0HX/961/9lBbvv/++v2lUU2Po+3LdFgAAAADJ9W6JTnhf0O6jipJljz32qDC66Yknnuj/f9111/kdqIniNZqnRg1VUBc25arrqYI4BWgtWrRwJ5xwghs+fHh6HbVAPvnkkz4IvOGGG3wX1dtuu81/lunbt6/79ttv/fyGOpA9evRwTz/9dMbgM1VtCwAAAIDkmluNCe832WQTVyzqaV6KQm9EUmigGbU4auqN1TGlBwAAAIDCmTJlim+IGjlypO8yGqXpLNSjUY1NCgqLJTYoaPdRAAAAACgX3bt394NQalAZjVES0mst13QWWq+YEBQCAAAAQIInvKf7aB2i+ygAAABQ/l6OmadQLYQKCG06imKKDQgK61AxHXgAAAAAq4+mnahswvtiig2KYvJ6AAAAAEjqhPeFxj2FAAAAAJBgBIUAAAAAkGAEhQAAAACQYASFAAAAAJBgBIUAAAAAkGAEhQAAAACQYASFAAAAAJBgBIUAAAAAkGAEhQAAAACQYASFAAAAAJBgBIUAAAAAkGAEhQAAAACQYASFAAAAAJBgBIUAAAAAkGAEhQAAAACQYASFAAAAAJBgBIUAAAAAkGAEhQAAAACQYASFAAAAAJBgBIUAAAAAkGAEhQAAAACQYASFAAAAAJBgDQu9AQAAAEBVVq5c6d599103d+5c16ZNG9e9e3fXoEGDQm8WUBYICgEAAFDUXn75ZTdq1Cj39ddfp5e1a9fOnXbaaa53794F3TagHNB9FAAAAEUdEA4bNsx17tzZjRw50k2YMME/67WW630ANVMvlUqlavgZyNGCBQtcq1at3Pz5813Lli0LvTkAAABF32W0X79+PgAcMWKEq1//f+0Zq1atcpdccon79NNP3ZgxY+hKipLrvrygiGIDuo8CAACgKKkQri6jQ4YMyQgIRa8VMA4aNMivt8022xRsO1HeXk5A92W6jwIAAKAoqVVGOnXqFPu+Lbf1gNr2ckK6LxMUAgAAoCipm56oi2gcW27rAbXdZXTUqFGuV69evvty165dXfPmzf2zXmv56NGj/XqljqAQAAAARUn3bamb3tixY/09hCG91vL27dv79YDV1X25X79+Wbsvz549269X6ggKAQAAUJQ0kIfu25o0aZIfVGbGjBlu8eLF/lmvtXzgwIEMMoPVYm6Cui8z0AwAAACKlgbyuOyyy3w3Pg0qY9RCqOXlMtAHirv7cteuXcu6+zJBIQAAAIqaAr9ddtml1qcEAHLtvjwiZkqUcuq+TPdRAAAAFD0FgJp2Yu+99/bPBIRY3RokqPsyk9fXoWKaoBIAAABA1eLmKVQLoQLCyrovVzXhfTHFBgSFdaiYDjwAAACA3FQV4OUz4X0xxQYEhXWomA48AAAAgNpnE95rHkNNW6FRSjUoje5BVJdTGyCpmGIDgsI6VEwHHgAAAEDtUouiAsHOnTvHDk6jexEVII4ZM8YtWrSoaGIDBpoBAAAAgARPeE9QCAAAAAAJnvCeoBAAAAAAannC+zjFOuE9QSEAAAAA1PKE97qHMFTME94TFAIAAABAgie8Z/TROsToowAAAED5ezmHCe+LKTYgKKxDxXTgAQAAAKw+VU14X0yxQcOCfjsAoCQvZAAAoHK6bm6zzTauFBAUAgCq7PKim+Z1j4R1eQEAAOWDgWYAABkB4bBhw1znzp3dyJEj3YQJE/yzXmu53gcAAOWFewrrUDH1GwaAuC6j/fr18wHgiBEjXP369TOG0daoaZpfacyYMXQlBYBaQFf9ZFtQRLEB3UcBAJ4KJuoyOmTIEKf6wilTpmQUVBQwDho0yK9XKvdIAECxoqs+iglBYYIsW7bMPfbYY27WrFmuQ4cO7pBDDnGNGzcu9GYBKBIKAEV5xOWXX16hoDJgwICM9YBiQosLSrGrfq9evXxFXKdOnXxPDE1sruWXXXYZgSHqFN1HE9JEfPPNN7vx48f7i6bRxfKoo45yp556ap1uC4DipJbBwYMH+//vvPPOvmUwLKi89tpr/r3rrruOlkIUFVpcUEroqo9i7D7KQDMJoIDw/vvv94ntnHPOcQ899JB/1mst1/sA0LVrV18AWWuttdzw4cP96+bNm/tnvdZyva/XQLEo98GRFECowmbixIn+OazcRWl31VdgGAaEotdaPnv2bL8eUFfoPpqALqNqIVRhTs8NG/73kB900EHul7/8pW8p1PKTTjqJrqRAws2YMcMXOOfNm+eGDh1aoaVQy9W5ROvRUohioPSqFkJ1wQtbXFRxoddqcRk9erTbZZddSrLFhRbQ8mRd8JW/xrHldNVHXaKlsMzpHkJdNHUvkAWERq8VDOp9rQcg2awActFFF7lPPvnEDypzwAEH+GcFhloergcUWjm3uJR7C2iS6Z5XUb4ax5bbekBdoKWwzGnACFEtahxbbusBSC4rgGggKrUMRgftmDlzZsZ6QKGVa4tLubeAJn0wIW23WnyVz8bdU6jl7du39+sBdYWWwjKnwp1MmjQp9n1bbusBSK6woFKvXj3fRXTvvff2z3pNQQXFplxbXMq5BTRfahnV79ZgWBodWc96XYotpgpk1QVYZTAF+OqSv3jxYv+s11o+cODAkgx4UboICsucpp1QpnL77be7FStWZLyn13/729/8+1oPQLJRUEEpV2SohSVUyi0u5doCmq9y7Eqre0I17URcV32mo0AhMCVFAoadtdFHNdiM7iFUdxQV7hQQ/vDDD+6YY45hWgoAlQ5uoYK1AkIKKijm+d6igyPpWleKBWybHkaBT9xov6qoUQCRhOlhyn36hnLpEovSn5KCoLAOMU8hgFJBQQWlpNwqMso9EKoOAmSUswVFFBQy0ExCKPBTK6FGGdWgMrqHUF1GmYYCQBwVNClgoVQo8NOgK+VSkWFdudUCqgAwWwtoqf6+6qArLVA3CAoTRAGgWgYBACg35VaRYfecqQVULWFhC2gpdomtjcGE4loKS3UwIaDYEBQCAAAUoXJrAc0H0zcAdYOgEAAAoEiVWwtodZV7V1ru30axYKCZhN5MCgBAOSnXwnW5/q6kDyaU7TepVVRBcKn+JpRubEBQmNADDwBAuSjXwnW5/q58lVOAXI5TqaC0Y4P6hT4hDj74YD8SZr169dyjjz6a8b7i1aFDh/qaoGbNmrl99tnH/fvf/85YRxmDTibtyNatW7sBAwa4H3/8MWMdZSC77baba9q0qevYsaO7+uqrK2yLpmvo0qWLX6dbt25+YtTqbgsAAKhb5TixeTn/rtroSrv33nv751INCBXcKthXQKj7JDWATvPmzf2zXmv56NGjM6YRA8o6KFy0aJHbeuutfSYXR8HbjTfe6OfYe+ONN1yLFi1cnz593JIlS9LrKCDUHDXPPvuse+KJJ3wm+dvf/jYjAt9vv/3cRhtt5N5++213zTXXuEsvvdTdeuut6XVee+01d+yxx/qAUvPhHHroof4xffr0am0LAACoO+VauC7X34X/NVao9Vdl2HDgHNFrLZ89e7ZfD6gzqSKhTXnkkUfSr1etWpVq165d6pprrkkvmzdvXqpJkyap++67z79+7733/N+99dZb6XWeeuqpVL169VJfffWVfz1q1KjUWmutlVq6dGl6nfPPPz+1+eabp18fffTRqQMPPDBje3bcccfUKaeckvO25GL+/Pl+e/UMAABqZvLkyandd989NX369Nj3tVzva71SUq6/C//13HPP+eO3aNGi2Pe1XO9rPZS3+UUUGxS0pbAy6letWhR10zTqc7vjjjv6vtaiZ3UZ3W677dLraH3Vsqg1z9ZRn+xwkna18H3wwQfuhx9+SK8Tfo+tY9+Ty7bEWbp0qW+pDB8AAKB2lOvE5uX6u1Bx7sU4zL2IQijaoNBuqm7btm3Gcr229/S83nrrZbzfsGFDfxKF68R9Rvgd2dYJ369qW+JceeWVPni0h+5nBAAAtaNcC9fl+rtQce5FzbUYYu5FFErRBoXl4MILL/SjCdnjiy++KPQmAQBQNsq1cF2uvwuZcy+qt5nmXtTYGIsXL/bPeq3lmmqjVAfSQWkq2qBQmaF88803Gcv12t7T85w5czLeX7Fihe9OEa4T9xnhd2RbJ3y/qm2J06RJEz8qavgAAAC1o1wL1+X6u/A/urVJ00588sknbtCgQe6AAw7wz2oFZjqK4rRy5Uo/IOXEiRP9c7kN9NTQFSn1l1fApR3fo0cPv0z35OleQWWEotG35s2b50cV7dmzp1/2/PPP+1o03e9n61x88cVu+fLlrlGjRn6ZRirdfPPN3VprrZVeR99z5plnpr9f62h5rtsCAAAKV7jWaJ0qVBu1pJVy4bpcfxf+R8dwl112KZu5F8vZywmYM7Sgk9drPsGPPvrI/1/zzVx77bVuzz339CfFhhtu6P74xz+6q666yt11110+MBsyZIg/cd577z0/n6Dsv//+vsVOU0Uo8Ovfv78feObee+/176vbpgJATUtx/vnn+2kmTjrpJHfdddelp67QlBS77767/64DDzzQ3X///e6KK65wkydPdltttZVfJ5dtKaUJKgEAKCflNLF5En4XUGpzhvbq1ctPF6I4QC266satVvuaVNIUVWxQyKFPX3jhBT8Ma/RxwgknpKeCGDJkSKpt27Z++oe999479cEHH2R8xvfff5869thjU2ussUaqZcuWqf79+6cWLlyYsc4777yT2nXXXf1nrL/++qmrrrqqwraMGzcu9Ytf/CLVuHHjVNeuXVNPPvlkxvu5bEspDTsLAAAAILsVK1ak+vbtm7rwwgtTK1euzHhPr7X8mGOO8evlo5hig4K2FCZNUdUGAAAAAMhK9w4OHjzYjRw50nXt2rXC+7rPV9271QNRvR5LOTYo2nsKAQAAAENXWtS1uQmaM5SgEAAAAGU50AeBJGprztCuMS2F5TRnKEEhAKACClIAinGgDw30Fw70oeXZBvpIwoiRqLs5Qy+77DI/YKVdFzUYZTnNGco9hXWomPoNA0A2FKQAFFMFlUZ87Ny5sxsxYoSrX/9/U2xrCjLN26gAccyYMRkVV6tzxMhSVeyVfcW6fS+//LIbOnSoa9y4sVu2bFl6ub0ePnx4WYw+SkthguR7shXrSQqgeGrkAWB1UPlDFVTKj8KAUPRaAZ8G+tB6NtCHyi2q2FI+FgaS6v6n1wokR48e7ecITEp5ptgr+4p9+yQMCONelzqCwoTI92QrhZMUQO2gIAWgHAb6yCeQLGfFXtlXzNu3cuVKP4+67LTTTm7HHXf085MvWbLEvfHGG+7111/375fDdTHzTEFZspNNXS80pO6ECRP8s15rud6vzb8DUJqsIKUCU7aC1OzZs/16AFDXA33EiRvoI0kjRla3sk+VfM2bN09X9mm5Kvu0HttX0dSpU928efNct27d3BVXXOEOO+wwt//++/tnvdZyva/1Sh1BYZnL92Qr9pMUQO2jIAWgmAf60D2EIb2OG+gjn0CyXBV7ZV+xb9/Un4O9/v37x27fiSeemLFeKSMoLHP5nmzFfpICqH0UpAAUG3XJ0y0rGhxGXdg1WfjixYv9s15r+cCBAzO67uUTSJarYq/sK/btM0kYl5OgsMzle7KVykkKoPZQkALKg3rxTJkyxU2cONE/l3qvHt1PpvvKPvnkE38v4AEHHOCfVVEVd79ZPoFkuSr2yr5i374ePXr45zvvvDP2uqjl4XqlfC4y0EyZy3fSzSRN1gkgsyCle4ZVcMo2jHsSClJAqSrXAeK07RrMI9fR0C2Q1L5QAGlUsVXogVUKVdkXN6VHoSv7in37evTo4Vq3bu2mTZvmLr74Yveb3/wmfV3UNChavtZaa8UGhaV2LjJPYR0qxFwk+c7vk+/fASh9cRcyXZRVs16MFzIA/8XcfBUxrVbxp4tS2b7GjRu7pUuXppc3adLET0sRt325/qZimqeQoLAOFerA53uyFftJCmD1oSAFlBYqc1HKlX3ltH0rq3EuLlq0iKAwiQpZG5DvyVbsJykAAHD+fqXBgwf7qaPibvvQ/XTqRnndddclYm4+lF5lX7ls35RqnIubbLJJ0QSF3FOYENXti1/TvwMAAHWHAeJQFZXdirlCoFy2b241zkUFhcWCoDBB8j3Ziv0kBQAg6RggDigObUr0XGRKCgAAgBLHlDJA8Z2Ly5cvz5iSQq+L9VykpRAAAKDEMaUMUHzn4kEHHZR1xNJiOxcJCgEAAMoAc/MBxSOVZSzPYh3jk9FH61AxzUUCAADKU7GP4giUs5XBlBSqjJk+fXr6XNxqq618C2IxTklBSyEAAEAZYYA4oHDeffddP5XbkCFDXKNGjSqciwoY1ZKv9Ypp9FEGmgEAAACABE8PQ1AIAAAAALU8JUUcpqQAAAAAgDLWvUSnhyEoBAAAAIBanJJC08BoepgZM2a4xYsX+2e91vKBAwcW3eBPjD5ahxh9FAAAACh/L7/8sp8eRoPOGLUQKiC06WGKKTYgKKxDxXTgAQAAAOQmn6leqvqbYooNmJICAAAAAKrR6qf7BtVN1Fr9Sn16GO4pBADE1m5OmTLFTZw40T/rNQAASQwIhw0b5iejHzlypJswYYJ/1mst1/vlgO6jdaiYmogBoLZrRAEAKCcrV670k80rABwxYoSrX79+xkiiGjhGU0yMGTMmr4Fjiik2oKUQAJC4GlEAAKry7rvv+gpSBYZhQCh6reWzZ8/265U6gkIAQLpGVC2EvXr18jWiXbt2dc2bN/fPeq3lo0ePpispACAR5s6d6587deoU+74tt/VKGUEhACBxNaIAAFSlTZs2/lldROPutdfycL1SxuijAIAKNaJxw2iXU40oAABV6d69u7+n/sYbb3Tz5s1z33zzTfq9tm3butatW/u5B7VeqSMoBABk1HQ+8sgj7vHHH68w0MxBBx2UsR4AAOWsQYMGbo899nD333+/W2uttdzZZ5/tb6WYNGmS+9vf/uY++OADd8wxx+Q1yEyxYfTROlToEYbymXQTQHIojzjiiCN8baguer/5zW9866CNrKaLoC6KDz74IHkHACAxo4+2+rn8HlaWqoVQ5XmV78th9FFaChNCIwZqBMFos/egQYMYYr6MEPhjdaMeEQCQtHvthwwZ4rp06VKhjDVz5kxfltbyUpmkPhuCwoQEhEOHDnVNmjTJWK7WAC0fPnw4gWEZYG451JQuasoX/u///s93H9WFLqwR1fK//vWvZXHxA1B6li1b5h577DE3a9Ys16FDB3fIIYe4xo0bF3qzkJB77Rs0aFDh2ldO99oTFCag5ejaa6/1/992221ju4Pp/V122YUWpRJmc8upy59qs+wYjx071i+/7LLLCAxRJbuoHXbYYe6oo46qUPhasWKFDwrL4eKH8kNPifJ28803u3HjxvkJw42myDn66KPdqaeeWtBtQzJGH+3atWuF96safbSUKjIICsvc1KlTfc1/t27d3B/+8If0MPNK2Hp9xhlnuGnTpvn1evbsWejNRS3MLRceY72+5JJL/IWTwB81GWjmoYcecgcffHDGekCxKOeeEgS7/w0INdBHdKoc0XIp1cCQ41sao4+OHTvWV7BPnz49fay22morvzzb6KOlVpFBUFjmFOxJ//79Y+cdO/HEE/1ISgSF5dHfPdvccuXS3x2rly5qGl5brYHRVmf1LNByvV8OQ2+jfJRzT4lyDnZzpZYWFaxlhx12cMcdd1z6GN9zzz3u9ddf9++fdNJJRdsCkw3Ht/g1aNDAHw/lJRqBe+nSpen3dFuW0qfymGggX4oVGUxenxAMDpGM/u5xyqm/OwqvXr16hd4EIGtPCfWQaN68ebqnhJarZl7rlWqw27lzZz9Q3IQJE/yzXmu53k8C9VxQS8smm2zirrjiioxjrNfaH3pf65USjm9hxU1En085Om55tCIjPL56LXpf6xUTgsIy16NHD/985513ZjRfi15rebgeSru/e5yq+rsDcQPNKN2ohfmAAw7wz5999pk7+eST3Q8//ODXA4qpp4R6RGTrKTF79uySS7PlHOxWl25xEeU/ccd4wIABGeuVAo5vYSngVt4wePBgd/nll/vnfv36xQbidqx23nln98QTT7jrrrvO90jQs15refRYlWpFBkFhmVOwp+5eyiwvvvhiN2PGDLd48WL/rNdarnnHCArLo797XOBfWX93INtAM0o34cVP3UcPP/zwjPWAQivXnhLlGuzmo1mzZv5Zvzeudce6Xtp6pYDjWzottO8Gx6pRo0b+Npy9997bP+t13LEq1YoM7iksc+rjfNZZZ/mEPnnyZD/aaNgXWl3BVEPCTc3l0d9dg8oogwrvqdExj+vvDlQ1ylr0HlRanVFuIwMWq3INdvOx3377uWeffdbf06x7sebMmZN+b7311nMLFy5Mr1cqOL6lMzDf3DyOVViREadYKzJoKUwA3aysoEAtgiFdJEv5BnxUPMaffPJJRpc/FYg4xsgVrc4o5TS7fPnyjFYkvS7VNMttAf+j6bRUif3TTz+577//3u21116+IlTPeq3lel/rleLxjWv9TNLxLfYW2jZ5nItWQXHHHXf4qZxCem23bhVbRQYthQmhoEA1Hwx7XL44xqgpWp1Rqml26NChsSMD6vXw4cNLLs2GwW7YopHUChq1qOhYKmB6/vnn/SP6fike3xtvvNHNnz+/wuijrVq1StTxrSv5tPp1z+NcVAWF7iFUK7bm/N133339Ogo41eqt5S1atPDrLVq0yBULgsIE0UWRKQnKG8cYtdXqrC42am02uqDR6oy6moetun+TbVTcUh0tN6yg0f3/GrHQgtw333zTT8OQlAoaGwBLNOVEOGKj7RO9n23apWKcB1Dfv8cee/jusOrFdc455/gujap4u/32290HH3zgjjnmmIJvZ7nJp7t5gzzORf3/ggsu8JVVGpzNRiINnX/++UV3fAkKUaVizFABrD60OqOQ87BV52/Ce4TiJpZWQS56j1Cp0G/t27evGz9+fMZ4APodWp6UCprvvvvOP++4446+pSZ6jNWr4Y033kivVwrzACrdvvjii27zzTf3Ae2f/vSnjO3T8pdeesmPBF1q6bYcW+B71+BcjFZkRF8XE4JCVKpYM1QAqxetzijEpPLV/Ru7R0jr2siAIXWBVot3tlakYqZ98cADD7iddtrJt040bdrULVmyxLdOaPmWW26ZiOuwtRLutttuscd411139UGhrVeT9FdXwnTbpUuXChVwM2fOLNl0W8wNF/neIvHyz+eiKibWX399H9QpuPvqq69iz8VwGouqKquKCUEhsirmDBUAUF6j/NXVyIClINu+kEMOOSR2X5QrTaslr7zyiuvTp0+FAvY///nPjPXyTUt1KUy3cRVwpZpuS6Hhorq3SKz8OS394he/8IP5qbtoOPqtlkfTUnUqqzSXYbFg9FHEYmJVAEBdjvJXVyMDlgLmsfufddZZxz+rNVCDCYUTjuu1lofrlcL+K9d0W8zzDYYU+MXNxds7JpC0tKT7PDUoUEivtTyalkq1soqgELGKPUMFsHrFDZMO5CqfQlFNRwYsp2lUalqoLKfzV8fOWgFTqVTsOno/PMbFXigv13RbSg0X1kJrE9E3yNJiHN6rGk1/4etwvVIN+uk+iljFnqECWH24lxiFGOWvpiMDltM0KvnsiyScvxrCX/d12eiPaiVUd77oKLPh/ou7Z291Fcpzvb+tXNNtXQm7Z2ZruKitezLn5ljOzXcaC6akQNHfjFuTCxKQlGHwS0F1fxP3EifD6k7r+YzyV5ORActtGpV894WdvxoEI6Rh8Uv1/LUpKTQS5+OPP55xT5f2wcknn+xuu+22jACgpvMA5nN+VDcYL8d0W44NF/ODLqNKXxr4yQZ9Ulq07svheqUa9BMUJkR1MysmzkUpW93D4JeK6v6mYh+cAbWjLtJ6PoWimhSkym0alXz2hc7fa6+91ndpU4vab37zm/Tf6H4p/Y3unSq189cK9ocddpifuy96jNViqKAwDABqMg9gvtePfCrTyi3d1pW6bLiYM2dO+v9vv/12OgiUhg0bxq4XBv26zzEM+pWWijXo557CBMjnZly7ICkD1QVpxowZbvHixf5Zr7V84MCBZFwoi/RekxvWi1U+v4l7ictfXaZ1KxRpxD4Vig444AD/rAJbZYXk6v5Nde8RKpX776q7L6ZOnepb1Lp16+aGDx/uh83XtVrPeq3lajHUeqUkn/uzwnkA1WqqeQCPOOII/6yupzYPYPRY53N+1PT+tnzTbZIV6p7MFStWVPo6TrRrczGrl8p21y5q3YIFC3yXBTUxt2zZsk6+U5mQCnLK0OJa/BTgWS1ithqzm266KaMGpG3btv7CVIy1HEi2ML0PHTrUdzWaNWuW69Chgzv44IN9wSia3mt6jhSjfH+TCsUa1U8FIRVqolQxpIKpasJVgEFpKVRaz6crngKZxx57LH3+ahqGaJfI2lAKPQRy3X9qAbvnnnvcCSec4J555pkKv0nTOdx1113uuOOOcwMGDHCllm5VflLQ+80332SURzTIjMpXYbpVcK/RSdXlVOkoLMNoGoFf/epXvnVRLafW5TTf88O+S8FjXKuVKtNVZgq/CzUXts5ma0mvjXP4lltucffdd1+V6x177LHulFNOqfb2FSI2yIaWwjIX1vyri8X111/vu1HoWa+rqvl/7733MkZUkm+//dYvR/Ep1hrvuk7vCmgUvOgi/cgjj/hnvdby2hgGv9jl+5vCGvm4tMS9xKWtUGm9ui0hKkwdf/zxGeevXtd2i32p9BCo7v5T4KcWwZBea3kpsq6g6vKpyoKzzz7bPfjgg/5Zr7V89913z9gv1pX0r3/9a+y+UEAYrleT86OUBuYr9jJCdbavJr0KqqNFixZZW/3C1+F6pTqtG/cUlvkN/5YJqfYwvDn7X//6l3v00Uf9KF7heqGbb77Z98ePZo6i5XLqqafWynaitGq8i3VAFkvHzz33XIXMW50itDxcr9Qu6LnK9zeFgzNkq5HnXuLSVQppvSYDHVWndbGm98/WZR6Y63eF52W0sBm+LrXzN+wKqnzpz3/+c/o95VfWFVStgrZfwonsly9fnvF54etwvXzPj5re31ZXaanYW8XznYh+dd+T+fbbb+c0JYXW03280dFRtY4C3HD7inXyeoLCAlvdJ6llQgoIdUOs7ilYe+213ffff++mTZuWvmE2mlnp4jpu3Dj//0aNGvlWRWOv9f5JJ520Wrr0IL+ClEbF6tu3b3pkrDfffLPWR5wr5gtL2PWissw7XK8cR9rN9zeFgzNEK4PUQ0BBYrbBGVD8ij2t1yRQUyXm+PHjM4IfLTvqqKNiKy9rMqR9XeaB+i61XkYraKq6hSPuPqtSZcdKtwD8/e9/r5Cvaz+oRTA8VuHv1UAz++67r1t//fXdV1995Z599tl062G4Xr7nR00G5qurtGRlBJXfQgpUimFU2pqMmmst6avLd5HecrmsZxUHqqDSbSvR81cj5tp6xRQU0n20gOqi68pmm22WcUOsaivUWqLn8AbZcD1Rlx3LLDWKWbh9ei16X+uhsKwg9Ytf/MJ3o7jhhhvcH//4R/+s11peW90Uir271UcffZRRA6yu0g899JB/DmuEw/XKcRLhfH+T0sjTTz9dYVS18LXeL7YuL8hNsaf1fLvvWa8WVfaE57xea7nej8q3Vagu80B9lu6NVutYSK+1PPpduQ4gU2oDzVTVFVTLw/Vk8uTJ6f//+OOPvhJb9/TpWa/j1sv3/Mh3YD5LSxtvvLEfBEdBr571ujbTUjgqbVz3Ry3XvilUvh5uX1xlbqG3b911103/Pxq0atCiuPWs4uAPf/hDhTxEr7U8XK9YEBQWSF31N7Z+89Vdzy66mvRViTfcPr3W8nA9FI4VpHRfhWqcwoKKXmt5bdwnVAp95KdPn57+v7oUqZuQWsP1rNdx65XjSLv5/iYbvXCdddbxvQVCeq3ler/UCpUojbSeT6CmdKkWQrUG3X333b7C58orr/TPeq3lej+anvMd0bKu8kArKFfW60Hvh99lrREqnOpcDWmZFVrDVotSuHcsrNCrTLjehx9+mNPfhOvV5Pyo7v1tlpYUZKpHjyoyNDCanvVay2srLVm+XlklfyFHpQ23r2fPnhnbp9eF3r6eP2+DqEJAgftBBx3kn9X7Lm495QlWsZWt+7Lej2uRLiS6jxZITbquVMcXX3yR13rWXVQJPq4/9FZbbeVmzpyZ0a0UhWFdFnR/qC4+Cnh08dKx0mtdzBQY5doFotBptibUxVE6duzo3nrrrYz5hHQh13KldVuv1CYRrs69J/n8JrvoKq1YDbLRa0tDWi+8AKJ0FHNaz6f7nu4h1HmhZWppid43r4oxFSi1nrqS1qTLX13mgWFBOa6CRqyCJnourrHGGj6giI6+rIAmmvcVQnW7TIatdpXdFhCuZy04yh/j7q+05WFLT03Pj+rc32ZpKY5+h46brVfTtGStoVtuuaWv1A+7Zev17373Oz94oNYrRL4ebp+6WoZlGL0+44wzCrp9ixcvzshX9KhqPd2eVVWXbb2v9aI99QqJoLBAwhrRuIJebd3w/9NPP+W1nrocKuHrovLKK69UyLztYqX1UFh2LNRPXTc5R/uu77DDDhnrlfMgFaodV82vAj918wgLU7owW+VHtBY9W4GjmO7DqYub8MPCU2WFL7qPlr5iTOv5BGpWeP74449jP9OW23o1mRy+LvNAVcTmup4VlJXfi36DBtkJK23VG8he23qlMpBQ2EJU2TxxWm/77bfPyOPj8qowrcddC2oyeEmu97dFJzqv6Xq5fMY+++wTW8mvUW0VdNXGd9Vk+9RtVtOlRK9x2p+rY/tyrWStHzPYYpxwvWyBY5TWIyhEuqZT9+Qp8IqeBGqaDtfLVzRD1MmvbnTqUqhuG9nW00Xm3nvv9YOVqHVAf6cAUAVujfJlGTGtBYVnXWZ0A37cTdpKX+F6tVGLr+7D0cy00INUWMv2a6+95v+vNLrXXnv5bVWrtkavC9fLVlDRvTrVGfGwLlr9ajIiY3Vuwl+4cGGtrrc6FesIuMWuEGk9V/kEauF9PJWJW6+6rUJ1OVCPBkQxqtjT8VKrlgI77Qd1MYyup66A2k+VtS7aeqU0kFBY0VlZZVW4Xni7QGWyrbe6By8Jb+fQ4C9hF8PwtdbT/JI1oXkZ5eGHH/b3VEbLm3a/uK1X1+x71WU0eo3TnJBPPfVUpduXz7WgOpWs3X+uhGrWrJlbc801K8x5qeuhGlbCyiqVsXOR63p1haCwQJR4VEjXDdLq9qdMUJm2CvVffvmlr9XTvRA1veE/elO2AsEwGMy2ngrNyrBVo6bCddzf6f1o4Rp1LyyAaJ6c008/3WesKjj87W9/SxcGajocdjhdgSZZjWammny10AOyaLAHo7T7/PPP+0dl69V0aPp8VOeCVJfbV5e11+U6Am4xK0Rar67qBmphUFSZbOtVp1WoJqNMVpfKAaLt+Oyzz9JBoBVE7fps60Wv29mCp0Jet/Ptfhv9LdmE64WF7WhXeNtHtt6BBx5Ya5VOuU6LovsUc5HrepWxygKlFZUrjz76aL9t2kaNxGr5aKEqC3r06JGuzLDrtio/VAkStupqvdq4FlS3krX+z2lVgd/WW2/tJ6m3ChrdomLTvYVpWg0qxtaNex2uVwwICouAElV471N1M8LKRG9wzXU9ZUS59IfWeoW6fwz/ZcdJ01Aos4nO4WTTU8Qdz+pkqOF0BbqwaHQ/Cz5vv/12f3Et9HQF4QAyVa1nc3TW9D6h6hYeqntBqsv7mMJRWWtjvdWhJq2mSVcK9wVXN1B75513cvrMytbLtVUon5bMfNn9ScpfopUw4evwPqZiv27n2/02LAupFe3II4/0A7moZUmT2Fv5JVxP026J0k600lt0DdNyW682Kp00yq1a4sJjoEoWBWHRaVHCEVArm0cxXC9fYWWBfrNNNxYqZGVBmBdlKw9H18v3WhBWjMWNwTBs2LAKFWPhrTeaizCc8zsM+MP1VHFuNBhVWFmv8pIFheF6xYCgsEB0savqHi+9X9OLsxJjXIYYt17IBpTQ8vCiE66v5TUdvAS11w1Fgd+GG27oa5GV0ajlTgGhXdi0nt1vkU+GGk4grDT1pz/9Kf2e7lGJm0C4rtnFWF084ro42vLwol2T+3urW3jIp6WmpvcfVydozbXWsjZrN+tywvGkC9NS3H4vhvuCqyvu+lTd9Vb3AE75UD6eSyto2KUun/nU6rJbdr7db8MyjFr97rvvPv+QMK8I17MyTVxatuAoXC/bnL/WqlPVnL82LUrcd9nyMDBUT7FcjldNb/uojcqC1d1VP9fxDsL18r0WhHNexo3B8Ktf/crfghKWvcP0GA3gw27Z4XphBYXKHGF5KZzuqTYaf2oTQWGB1LSbVq4nqUZbzOXCovXiTr5sF1Jbnu1krsv7fcr1u6pLxzDsYhQuj44uG2aouq9I9x1q/koVDvVaI35FM1TLTDXybLQfvDJW1TLqMyqryMhn/1Xnb2xS+mz3vNnyuMnrdX+vHuGFWoMQHHbYYRnrZSs8WItsZYWHfFpqqrr/2EZcjOseXN2Jr8P9qq7I6lZl3YyefPJJt2jRogrr1YQKUg888EDGhVHpUvuzqgnH4wZMqO1W3ZpQxczFF1/s9732uUb5U0VNZfLdvlz/ztKIpjLQuRpSOtG94+F6Ueo+dcstt/huaBtssIE75ZRT/H02tRn4W7pVN/Xoufj73/++QrrVSJu5BLFaL9t33XTTTRXuE9KIjJUN4KTzvjq/qbrUlS+XwWbCLn9xrV5xsq2nfXH99ddn7E+lhTPPPLPSYLe6tyCo4lHnhm6fsbSkysRs3W/DYK+yQnS43n777ee7RlZF68XN+asBitSqE6YJm/M3GmgofccFhCG9f9JJJ6XTiH5zLj0utF5N1aSyQGlCcx6HaWbttdf2I4JWVQGS63kfXo8rE64XXgtUHtU0NPY9F154YdZrQTjnpVqdQ3Pnzo2d81LpUXm4HrouKWjUvY4KKnfeeWd/HVP+EaZbXT9N3Oi3cesVA4LCEujmFr3JuDoXzOgE1NlE14vWnmUTt14+F9maFB5W50WsJgXssPtHNMPKVkDJh/rZ33PPPVmnH7HlYX/8MMDbf//9KxTKNUCLzW1oGart42hh0tjybAW0fPv+Vyct5TOfVXh/b5TOMS3X+2GGHxYeNC9VWHhQmshWeMin+1S4fdGLmC7UcdsXTnwdd+GzwD+6D8N1FQDGdTOKrpfv+ZutZl1pMa5m3bZd9PkqDETPew25H65XG+dvPvmFCiRhZZymAdC+WH/99dP3ztRWvlndAROUZ2c7h3XfuAopcffEqRD/6quvVpjyQWncJmKuaZc6+z1Kn3HnYly6VQH1888/T7/W8fntb3/rbr311ox0oPVy/S4dg2zniP3dX/7yl4zpHfQb1UWstq472eZPrGy9f//73zn9Tdx62fZFZflFdc8r636rzwvv47O0JPqe6D4Jr5eVDTQTrqdrWy7C9ey6GDdVhNKEnZvRQENdWHOh9X79619Xq9tgbXQvzHUakuh62dKErjuVpYls+bvSiW4xiZ73GgguF1rPejvZua2ANZxrUueDBmq0kfGj14Lw2l9Zt93WwXpKj0rPquxVMLjbbrv55crP9VrTSkS7jW+33Xbp86yyNKv1igmT11eTErWGzVWrgO5JimuZyYUKktEakLPPPrtCjUl0PTtJozU6dsHU+6FcJ/uMrhf9HHWh0IU2OqdPdD3bvrh7IOK2L5qJKEDRPlariJ71Wsvj2HdFT3q7iGX7Li1XoW3w4MHu8ssv9896Xdm22XdFW0b1urLvUuanDEqFKWVWetbruMJQvvIZZS0M8OIyLBtUKNy3+dTmRVvVNMBLODGtXmt53P7LJy3le/HLpSt3yAoPajHVPGjhb9JrLbeguqYTZocXq2wXsejycOLrbH8Tnfi6smAvKm696py/Ch7VQlgZvZ9twnEFIXHnvQUnca26SjPRSbv1uqp8qbr5RTQgDGm53o/7jnzyzeqeVzreYe8PFWJU2x0WZlQZEE0X0YAwpOV6v7KCYbTrmnWpi6YNfW9YCFVwq9+hZ6P3w+2LVkwqHVx11VUV0kd0PX2GCrWV0fvRfWHHKpqH6HVtXneyTbFR2XrRdKdWMA1aF7aGxa0X3e9xovs93+viM888U+n3xL2/6667Zp2SIszfwvWqyl/i1su3Re0f//hHxmuVEa+44gr/nG29mrbqVkdYTlUDgAJTBTN6DhsEwvV0rHXuVUbvx035ka3CT+LO+2iL7hZbbOG7W+o523qWxysgVJfiMK3rtQWK0WtBrlPvrArW03VCeZB6Ruja/sc//tEv17O+R8v1fnh9yTXYIygsYco8zjrrLH8iaBJNjUKkVrx8RuILT3R1/1BLkrru6Dlbd5DoSaqJPjWoiJ6znaSWsKPBXLRwFz1RVPNh1OVJfepV86rnsAYlXE/fq4ux2EAkDz30kH/Wa9H7lWUiCijCv9PrbIWH6u6LfIOTsICtYxP+nR2ruAK2Aj/VbMVlWFpeW4Fh2Fc91/WigVvc/ouuF60A0TDpatmweRCzrRft+68+/yqgWd9/LVfLQbj/8k1L4Qi50ZaB8HW4Xvh/HZtQ+DpczwoFqhiK+002iE208BB2n4orKMd1n1KFjXXbzEbvhxU74cTXOsfDQoCd8zbxdbZRWSsTXa+656/eDysj4irF9L7WC0XvQ8qWbsP1cklLurjH5UvVzS9Uqx8WuOO2T++Htf/5pvV8zquwNVz31+o9pQs9h/s+XE9dRi0gjMvLRO9H57oNA/9svysa+OueZKOWI6WdPffc0z9bS1J0vfAaVJnoesqnLMDQ+RoeXzt/9X60oHzppZdWmgfq/dq47ljeofM12u1Y12A7j8M8Juwtot5DCkJOPvlk/xxOyRHtVRLNA8P8IlsemM91MUxL+g1qLVZwrGcrV0TTkgrayg+jeXOU3rcWHAmDkuh0JOF9mOF60UqjbMFddL2wDKipoe68807frVDPeh23XniLQ7RlNHxdG9P/hC3pmkZMrfsKlvQcTisWrqcukpZH69iE568dK71vU0Bl60obtw/1fnjehxUsSrfvv/++/x49h8cuXC+8BunWhosuushtuumm/lmv49aTt956K6dyzFs/r6dj/ZvjjveNIrqORYN0nX9arve1nqUN9ZRRHlsZva+eGYUezTtE99FqUAanfu/9+/f3r5UQlPg07P8FF1xQrc8KE4G6QoU3rIe1ouF64Un6xBNPpLtK6KRWF0W1QNlJapmjEqb6rYfD4cbVsqm7h937ImFtsgYvURcLmwxcXVrj7jlUoKzXSujjx49P10Bpu375y1/6e7OUwWm9cMATfabWV0Eh7u+OOuoovzzsj5/Pvsj3xmQrYOueObVEhH+n1+pbrwKH1rMMVttgAaHm2FHLsijDUsWCWlD0vtaraVfScP49pZ1oNzJ7Ha4Xdl/WRcsKhNr+BQsW+JutbT07VmEXGWWgJ5xwgu/uqGexwpPWC9NzPvfR5ZOWlH7Di5rSk2rh9Lcq3KlG3TL0cD2r9ZOnn37aT5Jr3btUmLfu21rPatwt/Sttxf0m1VhrBLVoDXo+oxeGhVLlN6qZtO1TFxnrhqX1LP3ZBU2fo7+x80YXrhNPPNGnP50PWs/+RvtPXXuiF/k4qhmtyfkbThOi9GITSOv+SF1kNbqgrafhv004Kp2OrfJi7T+lnzvuuCM9YbDWs/M+33wpn/zivPPOS/99tnzJ1tO9eTXZvnzOK32+KKBQkBXtyqi0rnNF69k5rG6SJi4v0zbaeuHvt8BfgWrc71Ieo9+t9ewYW8WVrkPRruB6rcK8rolaT13cLf3lQtfA8Bqn9GKVRaqMDY+vXivdKr/QekoDolEHrTJHAZC1Pl599dX+t2hETL2v9ZQu8k1HYv/XNTrahTDMV6L3toX7S+kuzP+sUK17n8N9EeaBaqmL5heW74V5YD7XRe0Hq6TWeR+2Uum7lJfpOGk9VRJpG/v95ji3YnnVx1hp7YQT+7uxY+7xv8vKPCq/6FxQIGzXW91nr1sudD9jWDYKg16dH5YGFeDptx566KHp9dTCbsIgNtoiHb4O1wsr6iu75yxbhX51WLrQ/lZ5MLw+K++1NBKmn+uuuy6dvsJjZeev8gptp9YLg3FVJsSVLbQPw7KF1tM1Idw+q1TR9dAGy1P+ri700fV0zhmdR9Frabhe2L39n//8Z8Zv13XTrrHrrrtu+hzRerpWazuWL1vqlqy/rUs1zl5Wq7fsR+e+mpw+V487/oQq063ydd84UK942ucICnOkxKihaHU/mFEmuM8++2TcTxRSZhNmODohRJlz2EqgC4+6nNmInmGBNVzPphrQiaJWuyidfPoOraeTVBnqRx/l1gVFJ5IyX2Wo0ZopZey51MZa0KDCmu55jNpoo418kHHXXXf5AqRqdZRBqbZYmYsy77i/U62jMmHVTuskzWdfWIFGhShNq6D7EKOU+anLnwoBWse2TxO+ii4mcX+32Wab+f2jbbSLn3WnUp9zuxCGFKyrxUDrqU+86Lt0HJQGsnUdsnSizM+2z2j7VGhUetJFX4U3FXhU8xrtShXeK6aKDgUXNjJn2D9f61kliAXhKlDq94YXFg02YXNB6aHtsu2zWn0FJ3Fdg+xGegVjVni1tKTaxVzSkrZd6Te8mOq7s93Ir/WsUGR/owuEarlDL7zwgt+H2qfhZ9vom9pOdScJa7H1+y14UUEk3Bd2fHWOaBCJMADTPrRCkf2NbYNtnwUScdun/9s9dfa5+gzVgkapcK20rooC5WG2/3IpfMmAk/8vXfjSeVnZ+avlmg4gPH/tXgudc3fffXeFv7G0pPXC/WeFV+0rjZQXTYNx532uaUnrWdCl79K+UX6h8zvuvFfBUvtZ+YoFe3buqPY3Ll/ScrXqhudYvvlmPueVUWHX8h2j9BM3IqJ9j/KeuLzMAjUF8Icffnh6+6y2Ptt+V76ugpfyTQsK7bzSdlgrVHS79V22ns7hXEfC1XkVXuOsRVf7NO74qoVB51VYyWb7TOdiXLdoOxe1ngWF+Vx39LusvFAVrWetE2FXyqryv3BfWN6m62lcfmGF5TAPtAAq23XRKkTC66Lli3odlyaUVpSfKl3oHlw/T3KOeZJoXSuU2/VK5SkF+dloPbsWhN36VfGV7bqo9cJ8KZwHURUD6vZoFe1q7TJ2ndDyuPsW42g92758ywjWqqzAL66ly4SDRtl+1OfFHSulCW2bguVwX9iosMrrlOfHncP6G5X7LCgMr58WAMYJ17NjpXxelYHRa6mOgfa9jlu4fdbQovNOg0WpbGTlpTZt2vi8VOdRtPWu6VeTXa6076qbbosFQWGOdOIoQ7SaNaPX2W6SVUakWv+oaMFOCTDbCR6eBHaS6jnskhAV1ir+d26ait2i4qz6OcMPa4arwzI/K8RmowKOvkMXTj3b/FF6rmwuKV1crFCZz76wQKiqUcLsxuHo9mUL/o21UoilCdVEhpMLR4VpJ/yuqqjrsm2fUS2oRqfMRViQ0gUn2h0mbr0wvUbvU4t2HYs7vqpZr4wKlXa/laWlqiokLC2p1cLSb03O8crSUshaXTWptB7Z6PP+85//VNgXcbQP1bqkhx3fcES9qrYvHHnPLmgqYEVHig3pop7P/lsVUziszvlrlKdWtc/DtGRzdkXTmy2z5eF5n2taCgtv4bF65ZVXKt0+5SsWFFrBUIFfZb8r7Dpb03yzOueVUQE/17Ru+1TXqMruc1NeEW6f5XsKSvXIRj1lote7qtJtVV0Jc7nGWZfsyoKnaOuEFairOhfDgnc+153/0m/MZbj6mu8LU9X1NO56V53rop2XVfVGUF5m+VLDRo1zLjRr3apG+M1VZddFCdN6WHmv9JItH8xo0VcazmU6giCt51tGyGVaMgmDfsujFFSFAXGUfnu4L6xsUFUeGDaYWEtlVcKWZbsWxOXPyrMsX1VeF26ffY9+q6612awMKkpyTYNh+qtuui0WBIWrkVoV1b0mrNFT7bJqoHQRirZKxLF7TawroGoUdWKo+1e0dUI1kkrw1v1UAeuoUSN9a4W+K24wDdXmqaCmmiRtm/5GI6ipq1JcrXBUWAOn7gTqJqTaUnUViG6fCtKqcdO9k1YzrO9SjZFuIFYmplrxKGUuKlDacOmi+65UmKhqX2g9o/sW1O1IXeTiptpQxqkMRt1CVGNr26dC1b333utrlNUtMPpduujpuITdSbp06eIzb9XWh/eIGrU6q6Za6xl9V3VqAe1v1JIZFgxVI6bWGdWQhoUd6+YpOs5WU6nWKf12qy3T77Ra/rASJDq1hY6X1YaGFyq1HGi7bPs0WJJqn1V7p26n0f2nwq6+P+x6ZmlJtbQ6FlWlJUvralmyVuTKqMuL/Tb9fvu9agFQDaPVDuvCYjWp4Wh52lY91LVH64VBin6nul9pO1Xrafc05HN8RdtjA9bYyKZh7bUVXMKb8lUDaoGrjocGGbK/UWHbgka1IKm1LcwrdFHXb1bhRq1E+hv97e677+5buMO8QnQMVPDNdv4qKFb6CM9f64ouOofV5czSkloA7cKt98K0pG762rZs5726/2r7w/M+17QUjvKs79JyG2nO7oEL6Tgr71K+Yuw3WItBWIjRb7LzNDyv8s038zmvNMCJupuK1reh1rXNSmNWENR6RsfGgmkFv2HBVgVCK1gp3wmPlfJM5Z2qkde+yHasdByNWoJ1L1FV56K1GGvb1WKnroaV3Xerc0r3roXXON1nZwGbWj2UF9t3qbLOupGpW6NR+tZ+1zmgLnTZflN4HuRz3fnv7xrtu9JV1qKka73WsfSkQq8dg8qcf/75Po+xfaH8UOedKB2q27ztCwX0FuTavZai7VVrbrbrolr79NvC66LyUF2vtK7+ny0t6T5SVWRo+9SaqWBSQUS2faH9oLxYBXLbFzo3Kmt1MlrP/kYtRdarRmlCn2uTvuu7LU1o34RpXedaXGtplHV59Md39GifLiqrkNA5pfPBti/fMoKui2EX4WzC817dPO0+3srORV0XjjvuuPR36Tyz3ma6HSCaLqziOhwARvtFo+dXJewyqi6hdgyUlsJu1Aro7Jp+7rnnpgfZ0/oqs+YyiFPXn+9LtzSoa2ZV56KutXasqpNulcbUI6UY1EsV28yJRUoFGJ1o6upj/cqtoK1gS8OwV0VBoTItJRR1c9JFPm5wA6NEHvZxV2al7jmibk7q6299qHVDs91HpEw3bp6p6s6bpXs2KhupSQk5vDdI+0gXSv2NCqXKKGz71H9f91nob3ThDIep19+pYKB9Et57YgUp3duhfadAz/4u3BfhvUX6rvDeonBf+C4z/fr5Qnp4b4dom3Vvh/5eBcFoBnPEEUf446z7QnSRs+/Suqop1YVRacP+zu4fit5TKAq+bBqI8L6jfGn7wgJ3NkpL4YTotv+UBjQYgX6bfou6fFiNbrj/tExdeqqicyGarmygBX1HtvvowqGt801LVY3+KNFpAfRd0dH54qgQGX5XOE+hCuXhJMfavtqayDq8Fy0MpqKvw7SkINUK29FaWBVorTZXaTOXeeYqk8/5q1aksLCYjc6vcJ6ufM77fNNSPvlFuH2WT+v79D3hAAe1sX35nFdigUdlwvuPw/Sn36kgR0GeAlwFVXYNi+Zl+l0KeJXPqcvYgAED0nnM7bff7vNT5Y/hPWyifVFZl1DlpdoXUdrvcVORaD/bLQAhbbfdQ5mN0rK2z45vmAeG91Vrn6t7r92bFOaB+V53ogOWRSmIjevCWtlIsRI3hUiYX1QmzC/yuS6Gea32rfIGS0vKO+xYRPPafFU2CqZEp0dQ0Kdtqoq2NTp4jc4Ra72Ko3MjrmUq2/GqaqqX6qpuusj3uhjuQ/1mNYLYea9ecraPovuwutft6GB+ug3C7l+3UdXjzpEwP6vME7VQNstVNDYoJILCalAtmS4E1t1CGbpaZFQblctAM3EHPltgGA0Iq7rwVXUBzFe2wDAaEEYzYatdC9fX67g5asK/00VE/cwtE9EgPqptjPu7fPZFPoWo8O+U+YXdHhQIKPOM+7t8Mqx8ZZtPyMTNJ5TP/ssn465sPjW16Og+uLh9nm9aqmw7s21fdQsP+f6mfGUrGJq4tJRP4TBf+Zy/1a0Uq0m6zTct5ZNf1OX25ZsGKwsMw4CwJukv/F3ZZPtd2QLDbAGh0X5X7xy1bKnFSy1ZcRWkNck388kD873u5DvXbT6BRj75RT7XxXzTRL70fWrRD4u6uib37ds39nvyDe4q+9vK/saCcgVMqixTJZgCqZpW1tVGusj3WOW7D6t73c6n0qSyvzG1WTbLBUFhiVLGoppBnbwKDtVdQDWlSlzRew2rc+CVEailRpmqMlO11IS14zWtEa0pdUNULa9aF9TKoFpeBcPZ6GRS8BMW+FTAU1BUWWafz9/lsy/yLcjn83f5ZFj50vap62R4P5XSm7pWZdu+fPZfPhl3vpOA55uW8mkZj5tkW4XybJNs5/ub8pVPWqqrWuh8j1V1K8Vqkm7jjm8uaSmf8z7f7cs3reeTBtUNUtcd7Q+lc113KpuSJN+8LN/9rv2tfWwjRmqEznBk7tqi46suhOHAEtkmX69JHlhXFUg1CTTyyS/y+V1xgVoueW2+FKCq9daCarX2VtYSmW9wZy1laiiw0TOVtqKtioVU3XSR7/mb7z6s7nU7n0qTui6bVYWgsITpBL/mmmt8BtijRw8/KlPYz76uDnx1a0TrWnUz4Zr8XT77It+CfD5/l0+Gla98ti+f/ZdPxl3XaanYvysf+aSluqqFznf/VbdSrCbpNt/jW1fnVTmmv1L4Xfkc33zywLqqQKqJfPKLfH5XsaeJYg/u6lK+x6rY92Fdls0qQ1CYUMV04AEAAAAUTjHFBsUzYyIAAAAAoM4RFAIAAABAghEUAgAAAECCERQCAAAAQIIRFAIAAABAghEUAgAAAECCERQCAAAAQIIRFAIAAABAghEUAgAAAECCERQCAAAAQIIRFAIAAABAghEUAgAAAECCERQCAAAAQII1LPQGJEkqlfLPCxYsKPSmAAAAACigBT/HBBYjFBJBYR1auHChf+7YsWOhNwUAAABAkcQIrVq1Kug21EsVQ2iaEKtWrXKzZs1ya665pqtXr16FmgIFi1988YVr2bJlTp9XV39Trt/F9pX39tXld7F95b19dfldbB/bl5TvYvvKe/vq8rtKeftSqZQPCDt06ODq1y/sXX20FNYhHewNNtig0nWUWKqToOvyb8r1u9i+uv+bcv0utq/u/6Zcv4vtq/u/qcvvKvbtq8vvYvvq/m/K9btKdftaFbiF0DDQDAAAAAAkGEEhAAAAACQYQWGRaNKkiRs2bJh/Lra/KdfvYvvKe/vq8rvYvvLevrr8LraP7UvKd7F95b19dfld5bp9dY2BZgAAAAAgwWgpBAAAAIAEIygEAAAAgAQjKAQAAACABCMoRFZ33nmna926daE3w7344ouuXr16bt68edX6O/3No48+WqPvPvHEE92hhx6afr3HHnu4M8880xWjSy+91PXo0aOg+7zUhPss+v927drV2v5E8ecz2c752lq3Mp999pk/36ZOneqKhfK6nXbaKes5UFu/vbr7oSZ508Ybb+yuv/56V07nwuo4DqUmmiaKLU9B6fkszzx5dZWdarN8VykNNIOqXXHFFantttsutcYaa6TWXXfd1CGHHJKaOXNmxjo//fRT6rTTTku1adMm1aJFi9Thhx+e+vrrr2M/b7/99kvVr18/9eabb8a+P2fOnNSpp56a6tixY6px48b+85o1a5Zq1KhRap111kn17t079eijj/p1P//881SPHj00YJD/zA033DB1wAEHpDbeeONUgwYN/PJ69er5z9Hf63W2x1NPPZUaNmxYapNNNkltvfXWfn39nT5XD61z0kkn+X1hr3N5aDvWX3/92PemTZuW/q0NGzb0D62v37vTTjulrrrqKr/eDz/8kPrd736X/k3hQ9uy2267+efHHnvM75fzzz/f/70+p1WrVrH7uW/fvv73hZ+j4zt27Fj//uOPP57af//9U+3atUs1b97cH4cOHTr446d907Vr19Stt96a6tKli/97bfuaa67p19V3tm7dOr29LVu29J95yy23pHr27Bm7//T36623XmqfffZJnXvuuVn3p6WbRYsWpXbZZRf/G3SMw9+h7dP3X3bZZal58+ZVK72/8MIL6X3+6aef+n2rz2/atGmqc+fOqaFDh6aWLl2aXl/rxG3npEmT0uePjn+4jdqX2hdG/9c+sv0Sdw7Z3x588MHp/4efGX3oPT1OPPHE1HHHHZfxns5TpfO1117bp70mTZqk1lprLX9u77777v7v7JidcMIJfh29p//rOZd8Yscdd0x169bNH9ds27nRRhtVef7keq5Fv8POJZ3Ltv9+85vfpLdRvy+Xz4x+bvha6ax9+/YZn6V9WdXn6viG554eOt8qS0/VyW90XHX+K6/UsbPt7N+/f+q9997LSI9af8stt/TpSmlA6Vzn9mGHHVblb9HfifZptnUeeughnwaVd+v1BhtskNpiiy38NujzlRa1PFu6Cj/f0oLyGOVD//znP31+r2UHHXRQatddd83II/Ub7W8sPfTp08evq2Omz9Fn/+Uvf/HrbLbZZv4cD4+79ptt48477+zPAeWJylu1f7P9bn2fft8222yTevDBB9O/5dhjj41d364R9957r1/v9NNP98cxemz1UD5b2bmv9/Wsc7Cq9K39o+fw2n7fffelj8nFF1+cXl9pw/KlZcuW+XPL3psyZUqVeat+m75PZYXoNX/PPfdMX6vbtm2bPr5x+bKxvNCu1eHf6TzS9VrXgcr2Va55ja5pVZ0P2od6PuaYY3xatH0bt+6VV14Zu48sr9axj/6mk08+2b9neez222+ftWyh71Y+ozS67777+nSs5fosPV933XWpPfbYI73/on+v77e0KHvttVfW3619rM/V9VvXZCsHdurUyb+va43STlV5m13b995779j3tT+WL1+eeuCBB3za02dqWVjW034Jtzssn+qc1XrarvDa+uSTT2Z8j/aHtlm/S/mWHUPlNVb2/fvf/+6PTXQbld+eccYZfp0FCxb4/6tcauVIHbtsv1/bqPwoem3QQ2lPv1fHRXlo3N8rX7r99tv9d99xxx2x62y66ab+t+n/ds3Xbxo2bFjW7friiy/8Z+p6rXRjn608Tvtb26zjYeeoyl1hmtL+03arbKft+/LLL30+qPxW79n+ykbbZtdxqawcUhMEhTnSRfTGG29MHX300f4ksAuJMgnLtC2wmThxYupf//qXL5DssMMO6RPCCiVHHXWUzyx+//vf+78xSiT9+vXzmYk+Xyfv6NGjfcFEn5stseoE0+crcWZbxwpslmHrJNfJ071799Qvf/nL9HoKhrRd+v6zzjrLP+wioM/XyaTfccQRR2RcHP72t7+levXqlfq///s/v69U0NBynQDaX+GFRt+ti+fs2bP9QwGHLtzPP/986vrrr/evdUFXJqffZpmRLoT6O/ucrbbayq+r32aBs/5u1qxZfr9m2xdXX32139/PPvts1nX0WSo8KmjU66effjr10UcfpTMS+32WUen3XXrppf4imO0ztc4f/vCH1MCBA7Ouc8opp6Tefvvt1IABAzKWax8oXej46XOuvfba9MVTx0QFGF30tJ72QTRD1XJLHzoeqjBQmtI+1nt6VuakC3lVaUmZkTI3rVfZxS3b48ADD/TfVdV60Uw/LOiqIKR0q/Rz5JFHptO1PbQP9Bv0GfZ3Ok7aR5bulJa0HUrPKhCHQeGFF17oLz7ZgkIVRPRZVlC2wqDSvi4W06dP95USllZUAFflRjTdbL755v57bNm2226bsW+UVqzCJ0z34evbbrvN/x7t13A/6Vl50C9+8YuMoFCfp2186623/DmrfEZp4uOPP/afo3NRfzt48GB/0Q+3WYUdOx+131RBYoU0fYcK8fq//QblJarIsfNfv9kqmSxd6tkCC+WPP/74Y2rFihV+O+IKaroojxgxInX88cf710qH48aNS3++CjHapyr06Hjqt9h5G/fQuXb22WdXmhZ1LMNjpQKEFSxVkP/Pf/7j/68CoQrOKvhpX2rfaB8pPSqY0rVA69n5pX2hfTZ+/Hj/WuknG32G9pvSnAJR5U2qhFDeq9+tfae0MXLkSH+M7RqlhwrfFlxp/yh/U6XT5MmTfb6mii39vbZf76mAaPtfn618+K9//av/e50TyndVeNV+UJ6vQrnOCaVfBX86Jvp+/X5V9lx++eV+O/R9on1hx+7Xv/61/07lfXa89aw0qfdVSAzTtc5NpVt9nq5hWmbP4XVGFVd61u/Q/tZ32z6377A0rQA927FXXpmtEi/M2/WsY6/nd999t8Lx0z7S51jFp/4mDPiyfbbyN7HCZtzDCqbaz3o9ZMgQXzmqSl5VRuh7ddxVoNc2ar9aBYXyM/udSovKq+wzf/vb3/p8T3+nQu5FF13k37NKah1rpVmrQNBxmDp1avpc1HXKKoz0+y292zmkcz1KFZ061jpvlKY+++yz1BtvvOG/W3m+HT+dB0oH+k6dl9r+V199Nf352p677rrLF7ztfFN+YNcWfb7SiI6D0pr2j1Wa6KH9o/X1vs7lyvIH5dOqbKvs+CgPiuZn2o+Wv2sb9L0LFy70+YS2X3mYyitW6WwPKweMGjXK7yOrsB40aFDqnnvu8XmV1gn3r5VPlW/aPtT5Gg0Kx4wZ43+v9rv+r2U6/61so+ue0o8+W5U92o/aVp1nOh5aRwGtVXqozKz86swzz/Tv6Vgp7TzxxBM+/eh32Pbos5SefvWrX6WvDVqmdVRWVR6oclZY/lSep9+v65zypJdffjl9Xv3pT39K5x3Kr/X+hAkT/PVJ54Xeu//++3361m+68MIL/X7T/lPat/zdzhPR9UflAG2XlquM/s477/iyUxgU6ljrs/Tb7Zqoz1UZUPtTlRG6NiqNKg0QFJagMHhRwV0HWhdEZb5qiVEi0MXdqJVE6+jEVkJUweGll17yiU8J+h//+IfPoBcvXpyaO3euT2xKqM8995z/u2uuucZfsLXOnXfemS7M2kOFAbsgKsPUSaPClQrMSqQ68azgrgwuWuOqxKnaSZ2Atky/TRdsnbj6fJ2Y2g7LlMIa07CQ/sgjj/jfpN8a1hyp9kQnsQIXW6YMQMGvKNCz9ZSp2TrK/G1/2QVXBe+4C6MKHirQaj/pN1ormRUMVLi11/o9+i79PmUiWqaT0X6L/l4n+4svvuiPt2VWVjOrfWMXQF0wbJ9abaYuQKoQsH0eFvjtwqSLlo6fWg/02jJbZXjKKCT8ndp2fY4ye/sM7WtlVspclDZELZp6Txmk1QaGD32+lqswGdYq6qHvsMBQNZBWyNJrq3EPH9oefbcuQmErmP5OBcvXXnst4zdaS4YdR1WA2Gtl1rrwWSFbLTTh/tJDNWsWZOmhgotliBaw6XjY71b6CtOppS2lDV38te1WuWP7obKLflWP8HP0fdoefZddWJSOlaajNdpaX4V4S0P6LWqlsfeVvlatWuUv3vo87fdzzjknfU7ou1SoFaVjFYwsANL5oBrN8GKi5TqXVUjT32ofWxrWuXv33Xf7C5n9rei79b72mz5bBUz7HKU1FTYsaLJzXwUV237lj9FA1lpXtE/CAo/WV/ChWu64/az8V2lfx/PQQw+t9JjEVWzo8+N6Gtj+17N+Y5gX6dzQhT2sBNNvUhrUZ2m/qaAUrj9//nzfiqR9qYf2mQqslh/o81VgUXCutGL7WMdWtDzs3WD5pP0GFSIUTCm/sFYCpX1dj+LySEufludpG60gZQXlcF39Pvu9Oj7KE+MqvJT2Vq5cmf5d2g4LjLT/lfaMCvHDhw/PaLkLWz2Vb1gFhCpglWb0edq+cBvVmhzuC/scVYBYJY0ef/7znzO21YIgOz8sMNW+1Xmn/ajzwoJffZ6etR3WA0evVUmr63m4X621SflhmO/ob5WWdX23a4aelQfrfNI+1m/QcdffKJ0pb1I+GrbAap/qYWlUhVvtW9vX2j4dI3tfFR1Kf0bntd7TQ58fVvSorGDHS5WfYfrRb9C1UNRSYp+vAr2uCyrQirXAKY1YPmP5nso1+t06HvqbCy64IL3fjX2nPtcK20qbStPqCSWqYLcKH72vz9Vx02+z79Nnqixm267rl64nqpjQMktHdiys5U/BVZg36bhoOyzQUwWyrmeqPNLf6toTpi1tt3rOfPDBB/61AiFVQmg/W56ovD8MCvWZKkdaOrRjqfSt79C269wS9VxR67TeVwWY9oXWsaDHPlu/WWW0r776Kr3/lU7sXFJa03p6tgBO+0F5lLXOKji0Y3jzzTenz1FrmLDyqaUFXbet3GJBpFXS23VLZUl9r84p7V8t13aKfpe1HOpaokDJGjF0zqqMqv9rufIFHRd9llVQKI1YRYa+V+lGjQti5Q4dB6VvlUWt4k7lQr2nINn2/S677OKPl7bRWnRVwWLHTGlJ+0rfb/vhkksu8cfKyhlhC6I+28pldk3RZ1g5WnmNHV/9dp23+s06T1S+UwWLCa/jcS2aOofkvPPO89uj/aJrk7YvzAuqQlCYI7soWwb573//O931UdQ6GM3odJB14iohGhXwdHHRSakCkQoLytRUqLIMVV0DdJKoZmXJkiW+sKVMRs3wIUtsqi22BKNMRiehWgGUwOyiFba4hQ+dfGGrmk4onfxKmH/84x/ThXgtt8zBuipaRmtBoWUSSvB2kVDgqb9T62i0lky1Sdqf9loXRGX4doIr2FELmBXitL4yXiv46+RWbZZq1hTMapkyAz1bQVuZj05SC2yUOejCp+5jquWy36MTWCeQvksFWlGwbgUjO67aN1bwt5p7raN0oEoAZbTKsC2zCn+zaieVIahFJ7wQ2kVDn6v/f/jhh+mCj74nDHL10P9V+NAFSu8rfSjTV0Cg961gFNZMWougjrdqk63biWq3oi1wCmTCYFYZpmXaWlfpVxdnSwd6tgza1rECkjLZMFO29GTnj6U5ZVqWMYddQ22/WcuoLVOGqQuzClvW1c0yYn2/zg1rOdVDLSXhZ2p7LL1q/4aFJP19uL+tVl/rhIGB9rm1squlIQyereXSWoVVA6ln1YLaOrbvrAbVLlDRrjUK0u14aBt0nG37tG36v/affqPetxbWbEGhjq8K+jrflHas+6oKa9bVS4UM/a0qpez3aLmCEdtXCkD0UKHC8j/73arJ1bO2O5rv2GfZNob7Xhd8nedhd3XbV3pWPqjfp9fa9jBt2/9vuOGGdCuRluuctCDVHmHQp9+vc9XSpz4jTP96qOCmQoKdW+pBofWtlt9+p/IUbbd6GVgtuPXA0P62oEyVZJanW8uKHgoOrDCidGC+/fbb9DqqgVfQYAUv26c6DmptUx4Z/l5rMQzTvPZh2AKtc1qFQdteXZf0eboOqPuzCldhPqG8Ttuvc1Us7SstWoBsAZvyW+Xj+n7lsTq+dsztnLf0bIGctk/7Ty3Vlo/ad4SVQ2GPCB0PnRuWFqxgaZVMYRqx4M7ydis86rip8Gl5jPazFdqtYkP7WhWwtq90jdHf6f+q3LLfo3NIhVh9n85rC9y0T62lQIVkFaT1G7V9Og7abqVJ/R7bT3b9tfxErYcKCMJ8QGkhPGfU+msUPFkLmD4/zN8sKNQ5a9fCMO0onYQVx/oOFWL1fxU4rZVVf6v80K7feihP0m/Rd1pll12/rTuerp22vj7LKomsNVL5l11flC5VQaj/q7eA9kuYJ+tYhj2ArMeVVQRY/mT71QKpMI/SNUu/L+xyreuMWDAYrXBS/qfyisokem3d1nWcVRESl6dYQGCVEPbQtdUqNrUvlI603do3+r0WSCkv0vZov+tctGuMlU8sWNX+s+9Wzy37vx0HpQ1rYLB0b/mKraP9btdyO+es0kKv7Ty2yg2do7q9yT7Tgmutq3Sgz9X+1fVQld22nso/Op5WyaJ17LzXb7cyqeW59n/7vdpu5Ve2LdHWfZ17KltZGtJD57ulmXr16vl1wqDQKpOUhq1XjI6/KkTsM7RtOsd1/lp5Tr9VeYdVduszVca3PEGBm8opovSmsqXyU5XdVQZU+U556Pfff+/XCa/jKvPqmFtvKT3sdh6V71QBqe237r3ab7kiKMxRGKgpWFDB3mroRRd9JQKjGh6d3DqZFbkbtQ5qmTIKJUAFTUoQOuH12dYVThc3ZVxK+LoYWXc4tXJpPR1sOxEUkIUJRgV91YBZt5Dwod+gFjBrOo+7X0jbraDOMmI1xVsmaCeofusnn3yS/hvVXulzlCmKdeGwh04odXNTzZPVFIcBiT0rAYddJ5XZWIFen68TJFqzbSepTqrwONl7at63TE6FWGP3jIQXENsGY93g9Fsl2i1TGYYKMAo8RSd09HfbZyuDspa6MCgMgxNlviowal9Fv8cuYlpP6UN0wYhebGz/6DgqbVmBw46/Khr0WmlE+y38TVo3DMwto7X/WxdFPaw1zN6P6+qnjMt+my1TxYUKYVqmTE9pRgVAS4vRC68KXerqpm4h9hn6WyvkRNOBPkMXU7uIWTqKblv4+8Lu2WFAov318MMPp9/TuajCpAq3Ou524VCaUcWELsw6VvYZ+l5thwpPWs9aG6x1Vv8Pu75W1mIZ1nJH37PuQ+Hv0L7QOaZKmjAo1PHW/lE3rW+++cYvU8FPtC36bXH3Glq3t/BCaPe5WeWOBQIW/Np+tPSrbbeWAnttF9rwWFmXwmz7wh5KRwoywn2iY2aBrvIrbVMYSOgR5k9hK6+OqdJ+tGu0ziWxQFTHVMdDhZ2wgKmCuva19qMu+BZ4WcunpYPwnAzvucoWFIYthWEhWIV1/T4VUPQZ1tXQWh7toW0L96e1RIRpXcfQAh9bps/Wb9G22PfqWZV8SlsqxNg93/p8q5QJ8xV9ltKTCvFargKMzve442n3UekzlU8p+FJhW8fRAvIwuAtvTdB6ca2ZKgjb+pWlJX2uBUYK7rWtulYqT7b7cqN5n/6va7oFhVbAt/Sj65XyTG172FVf+1ABsF1HlT7DgMz2nd3LpZ4Vum5YhaO+274rruJQn2/XGQWdup7rONo9ZWF+bEGhriUqsFvFhT2sRcX2kcoVVnGl4Ef5npYr4FVermOm93SNsl5H4TkWVlQqT1dFueU3qojSPggrsbW+7U993zPPPOP/b722dI2zz1QaDI+zfo8K2FZRZs9hTxLlP5V1DdYx0DZKeF2M5o3KU63cYQG+PlfBr12von+nYxEuVzq39Kq/V4WKKmBs/1hFkJ0nCp5U9gqvbzqvlScpz1JZQnmOjSehXl+qONJn2Pmkig8rS9i2RwMu9UKxinYLpJXXWbqPPnQ7hrr86v92G0ZcBWHcOahtC3vU2DkTjpFh6TW8BcaCaSuj6lkPqxQKHzo/bFtUHtE5qrTa6Od0FFYUW9pQXqvypZVT7Fqg80rHQ3mlAlK71iggD/ej1rfGBX2fXqvcL7pO6BgpzwupMsPGXci3+6iOufKwXBEUVoMuZHaPihKVWkKUocYFhbqB107sMCjUhVQ1E1bQVDcUu4DqM1WoVLcDJQS9ViFBAaQyQ32vLvrWAmIXDn1WmGBUu6/EHb0nSxmQah/sfgwtU4ZhtX720AkcBoXaXrsYqRCk7dB3W1cBPVQ40Gfqs8Va4SwztIE8tA+VKek9FQ6sK5pdDMNCinU1CQuoymis4Kl9oJNL+8ROcH1PtJusarTs81955ZX0sbDWRT108oU1htaNK2wJiAZfeigztkxLF7Lwwhx3M7W2Q7U4YjVkVlhT4f27777zxykMaLI97OKufV7ZYCVhRmzBYLZ17UIRdoMKL4RhNxul1egAKuH/lUFGuw3aRcb+r4KzChJ6jnattIA82mpkF0OrwVf6VXrVRSHsdlLZfZHVeYSFabt/1H5r3M3w4cMKBRYMWJCstBHtkhh9WE2s0qB1+Y1eVO03quCg1lelIQsMlRaVRrR/dSxEyy1fCO/t02+0i6DSk9ZRDwLbbr2nQqy2w7ozq/umBR8WHNq5p+OgGlm7jys8FrbPdLzDVkI9rJCvwqFe24Xe0o0VWCxtWMt+uI5tX/i50SDXWg5s0BVbruBN+WvY6mv7SJUBYdd4C5LDAq+224Jc/Z0VqK1iywry2i/qraDvU15jLQzWImlpJC4oVBBi1ws7Z/X5ujZZISO8R06Fj7h8MZpHWIu4HU8r/Om18mzb58qzLUDS32n/KY3GtYbooWuBesvoPR1zY58b7mdrmVC+oeNq91jqN9gxCfMPbaNaNrQ/VHCPG1hCXfrDPMS6hdpDXdyV5sNz0SrbdH2JBoXhOajPFCscq9KzsvzAWpMtWNJn6hyzVpW44ETHV9QLJkx/4b3H0aDQvkvndZhPxQ36YkGhAvGwxUjpRdc3HVsL9PRQBZ0dZ12PrcLDWvism6PS+vvvv5/+O+1f5QlhuUFpXRR867WCVlVK6Tt07tvgc3HXGF0zVDmha59dL1UO0n6wdVR2Eks79j1WcNd6Eh57+74wndk121o7VXEdtuTqYT0YLI0qSNY22v3G0RbauABJAa+NY6AgzNjtN9GWceutE5duwuDbxl0Q7SPlFapQs/2i77U8Q+ek9eSx79U5YMfZWvjCMpTlc3H5pqXDMB0owLJ7WMNykn6TDQyo1+GtFGFQqd+kMqe+T8ttrIvwGqnfrLKrfq/+r99n54nWseukyo9KQ7pOt2zZMt3iHs3L1DVY7FpmlRMqT6mLqz5TadfOZV1jFJBa+Vq/29KMjXdgg5Rp+20/hQ9th8UPuQaFukdS+YvyCn2GvleBa64ICqtJJ4wKnDoJdCFRItSFKNp91IJCnXzW9U21hlaoDO8JshPIAiqjE0YXMKOMSEGmWA2itTZGE4wNwhBeDHTxCT/LWhlVoxEmftUchd1Hw5Gnwows7FdvXRfD32QPFUiVOVsAZRcYdXmzGju7qCoQVYakdXXCR2u91fUwLNxoXXWTsa6ceqj2MeySFbaehKPDhfdO2Imri5K2UccpDArVrzy8Ty8uQ9c+zaV1Q4NoiGrOw+WWdnQc4+4JDB86rjo++v26gNrNzGEGrGBOBRDV8oU1YOFviF6k7HfZvXB6hINjWLdgZWi60dzSh11QLIjQQ6PeWeuWXegsc1QmZSPKqTCh7bILtQV7dqG2Amv4+3VBsAEklNbjBmKy+xmiy8P0ab/Hug9qf+ihi4O+NxxgQ59l6UG/Oaxxt+e4gQTERna04ES/zVpdwxYjfaZtk7UgqiUhOsJbNP1ZVyQbOVjLdA7peNgFULRcv0EXmvDvlUfpOCtdad/aCGuqpAi75ipvsGBQ26oAKCwIWNpTYcGExzLuEV587SJmQWHYK0DpROeYjp/lF9qWuBbqaE8FBRjRlk7bLiv46IKuQFzHwYI0PdTdR8/aZ2HaUW8NHcMwjYWFbl38rbbctkd5VXiuG+u5ob+3+5KyBYWibbb9HhYKtb/Etl/7U13fVKgLC5T6HVYBVFkrSdzD7h9SsKXuS7p/WMu1PTZIkb3W9crOAbVAWZ5u6UKVqfa5OraW9pV3WIG7staFsJLGWsyi62g7w0J+9PO0XHlOXA+U8GEtaDqnLB1ZC7KlRwuIbP8rSNT+in5nmNfq3LRKYgU31itIebrlF+pmHA0Ko58X/naruLWAL/oIzwNbR92udawsuFPQoGtRtEupHnbOzZgxwxeKlRfYeWSVTipbiO13lZmi113d8ybWZdf2WzR4tRZKBVq2j+2hLrtWcam8ROUhe8/uH6tO+tZnKS3q/LN9qpYgiVYuRSsIwgomW5bt/NJyVbZb3qj9pIoNu1/spptuSp8rSmdaX2UGnSM6RuomqEpu/Z1VfNh5p+OlfaXrsr7Dymc2kEp4Pqg8pXKCXTes11NleYMqYsJjabe72O8PP1/bYMG4Va6oclTpK+yFo4eN1G2v9Vt1fdc+UotXWL6KlpGUTpUWw3wjTEf2rH2nYNPyQ51T1hOs1c+3ymib7bfZfZuWZ9v1SkGknvWdou1RRY0FhdqnSrNWNlOepme17Oq6obRktxLp2qPvVXku+tCtA7kGhcqLtY+VTqwbqpW9c8U8hTnSOfK73/3OPf744+61115z1157rX/WHEHDhg1zPXv2dI0aNXITJ07066+77rpuzTXXdD/88IPr1auXXzZ27Fi3wQYbuHfeecd/VoMGDdwrr7zi/vznP/t5Tbp06ZLxnVtssYX7/PPP06+33HJLt2jRIv833333nV+25557ulGjRrnly5dn/O0aa6zhn5ctW5benrXXXjvjs0x0Hpa2bdu6H3/80f+NLFy40PXp08e1bNky/Xenn366e/rpp9N/c95557nGjRv7/TBu3Lj08v3228+1adPGDRkyxO24446uc+fObtq0aa5Vq1Z+f3311Vd+vSVLlvh5hb799lu36aabuhYtWrgVK1b491atWuWfGzZs6Dp16uT3lf3GO+64wz/22Wcfv56O02677ea23nrr9Dbsu+++lR5bbcuHH37oP3+bbbZx9evXT3+39rf86U9/ctdcc43/7iZNmvg5vNZZZx3/nvaL3HPPPe7ss89Of264v/V7dLz1/MILL/hlc+bM8c/6vtCCBQsyjqe+U/tQz/bb9Tc6TtpXzZs399uu/anfr//b96+//vruoosu8sttX2quLtGyX/ziF+nt12/XMddrOy7y3nvv+WftE/vNG264oZs5c6b/v/a9bdcmm2yS/julXW2bnHbaaRn74tVXX3VNmzb1+13HUdt6zjnn+M+x47106dL0dt53331u1qxZlR5HpZ9mzZr5///qV79yffv2TX+WWW+99dxtt92W3q8HHHCAf9ax0UNpWL9T/7f9bMdJy7RNOq/1Pdou23f6HqUjnSfh8bTjaM92Pupzevfu7f/fvXt3/6x99dNPP/n5EWXx4sVuo4028mk+nJ9I59dTTz2V3r7999/fHXHEEbH7ROlG6ULb9/333/tlRx55pE/Xlk5EaeKxxx7zxybcfh2XXXfdNf37df7rnNax12+5995709+tfWHni9KS5Zmy1VZb+edtt902nW/oPD3ssMP8uW/095tvvrl76623/PG0/aZt0vbq+/W533zzjX+t36d1wt+ivzv44IMz9sOUKVN8erPzWtq3b+9fW1rXvtfcUvp8HUujfN7228qVK/3/dR7oO5RfWZpba621fBo+9thj/fYoXen3apufe+45v85//vOfjO2yuaw++ugj/6zjZL9Z+8L2ZzR/1/5Qvqzv1LZ+8MEHPu1q/auvvjp9fbDt0veH+0jbpmMkEyZMcHvttZdPR1pmaV/pslu3bv6cEa0jujaIvk95odKNpaEvv/zSX5OMzhXb5zrP9bc6dsZ+t2g/WVpQGnj33Xfd4Ycf7vM5nRv6Pvvt9tk6zy+77DL/2bqODR8+3MXRsd977739//U3tl/kpZde8sfRftfll1/unx988EGfz+k36jstP9I1zv5Wx0/XBvPvf/87fd5oHx999NE+fekzRNe/7bbbzp/TF198sc9vVUa4//77/W/UQ2lA+0zfYcfolltuca+//rrPD0K6puq80/UozGOVhvU52ndGx1X76dlnn3VXXXVVhX10wQUXuD/+8Y8Z36Hri87zcJnyTO0jfZY+U9cz/d+Oq6V1UVrUOaP1tC+zsfxt/vz5Pr+aNGmSL2Nov1v5abPNNvPHwPIU5VX67TfddFP6HNbvGjRoUPpzVQ5QeUnXOVH+LFaO0d///e9/93mB0bVJZbGfG00y8u3tt98+vd5f/vIXd/vtt/v/K8/WujvssIN/reOt3/Gvf/0rXSZQGrS8Qh5++GG/HfbZek9pRvmH3Hjjjf4Yfvrppz6d6f/6fp0HKnfqd6vMoWNj1zp9p36jznXtK22H0pQdK22z8nOdO7atOsa6DmvfR6mca9d8/Y2l7fAcF7v+v//+++ll+r2iPEHfYfmK0sMzzzzjDjnkkArfp2uU0r193ogRI9LnmvaT5Yf6nVdccYX/nUojyqf0vn6n0oWto7L2qaeemj5HVIZTntOhQ4d0nqpzS+djqHHjxulykvaN0XlpaUJ5rp3zc+fO9dcPlX90nob5lF13d9llF/+stKa8SuU8u3Zqu+2arH0VPmz/R2kb7XoUXquUHpS3KJ/RORO95lQp5/Ax4XSDt6Jt3XcRjgCqLheqaRF1t1LNqGrJNQKldYXSeqIoX60huidR3VPU9UE0WpbWs6Zk1aLoc1TrolY11fToXjh9j96zgRhUm6+aALVaqNZBNQ0aqUtdUqOtdXpftdGqXVLrnNXGxN2DYa1mNo+X1baE/cd1o25Ya2OjYelZLYDW7Uv7R8ute4fVMKrW3YZdtsFa1GVJ26VRsLRMtUTh/UfWBc5aUPSbrLbcurqqlkgjkWr0vLCG12qJ9Jk2B6G1Rlgtms3XZa0pOk5WU6baXrsZWduqbiHWnz0cDt26Qti8flZrZffaqGVFtVSq3bQaQvsNapHQvYR2b2a0Rjd6r4dq6XUMtG9VQxXeE6DP1v5Va4AdR6sZ02eGAzxoP1rXMe0Ltb6ENaDhHIj6PJsrUwME2OAJ1k04bDHWMus+arVkVhOrWmRLP/p7dWvWeRIdsTU6bLYtU2uW1T7qtytNhH9nNZbR80C1eXY/ht2facfAuoyEtZx2P4X9fdg6E96XEP7m6Pmk/Wv729bXPrWuc2ErmnX1DGtbbcQ72x61UNmASmEXLN3PErYg2ZyXdq+cjZhs90voPLffaele+0fHRdus1nG1cNlvsvt6rOXe0r5tb5j+9dnK76LdQ5X/2b2h2q5wtEg99Dc2WEf4t5Z+9flh10k9tA3Wvd1qaKNzfFpeHKYHq2m27dfDRuQL7/+yfW9dlPR/ncei1iVrIVEaVJ5iA5hoXfXCUGuhtVLayIo2eIe2NZwfTPtY+Y691rmr2wHCNKiBh+w81LFWPqD7vu0Y2D1xtr66/Nt9ReE+sS5fdny17eEIrGr1U56jZdpH1pKm17qO6N4npRvLj+38U0uO5evaRl2nNDWJ3lPaUiuDdfm1vFMPXd9skBode32OrnuW/0TPNe0/fb5uydDnqjt+eCxte5TnK91YfmPzxtmx0N9btzXlzepOpuuX7mtVOtN3qKXVjr1aLLRc61tLpZ0/dj+YfZfSc3hbgdbTuaFlOkZKB+oNZL0ElF9aj4VwoDK7HthxtfRvrZDax2HrtqV53YsY7jf9NuUd4T2z1hNC+0utEdZSqDxLrRFhTwDtE32e0oa2T3mYTeVg61gPGLtn3c5fHUul3bAlT9dp9aCyboj6vcrPdT5rO/R3asW146CeJeGAaiozheUQjf6ulk879nrWfXnWCmbHyfaJ9r/So5339tDxCXufWGtQ9LvtdgD9Th07m0bFlulaGo6uHH6mTU1mr+1+W53/Nueyuh/aQCU6Hmo91LmhwQXVSqTzJ7yfTr/D8k2dP/r9ljb0rO9Ty5uOqc3Hqs9RXm/7xEZHDweO0Xs2Cqfdp62WMmsVtv0XDugXXkNt0B37LF1fVHYNu4+HeVFYLrTrVJh/2T2/Nm+hHZOwnKN8SdcbHROto3PYygVhF2PtF7VU6ze3/Ln7qPa7jTBs+1b5i+3T8JzUdto6yj/CMoLyT8sfld9oPbvHUdulOEG913RN1XpaX71JdE1Xl2WVa9XiF9dSqPNIaU1Tu6g1UeVunU/aLxovQ9cNtf5rv1SnpZCgMEdhwg0fSkQq8IoyTB1cnWw6KdQ0rASnzEIHx7qT6IRX5qD59IxNdaADrYzL+qfrc+weGT2sIKrEpYuZaAROG+ra5kbJtr12kla3y5Al8ugE5NGHDdISnSg8+jlKqFpXmaoVmqOfq9+i/Wknoe5zE50I0d+oC78NX67PCafAiD50UirYtLnB4h4auMGCjriHLojZhmnP9purs6/twhJ20Y1O1myFh2zHU2klLDxb+sh2s7x9Ry73M9rDur1ZugoLByoIxt1jFPdQQJOtm48ugNHzMG6ajNp46HNtUJR8j111H2EBLe6en6oeJtqtqroPpWm7N9jSVy5dr2zy5Op+X1V/EzfYTfRheWS2dJbtvlIrzFX2sIFMouecnpXn2tQzdu+nBYW6sFvhQoVnUSHXghA9VECy64TdJxnmcXbfmxV8qjoOuZ4PNpVMVWlM61mhrLKJpnUMFXBa0KeHdcG2faiH3RukAm54T3u2hwrxq+scDwPRyh5WgNdx07260fkNVTmj7QwL+tYNMuxyrX1pf6Prp9KCBY82AJD2h94LgwQb4TkcQCXcbyqYh1NyRM8BdYHLNnl3+IiO9lzdtJVPWSJ8aBtt6iLtN5tWKqwU0v+1rKqyTdzDbgOIe0/lLJUFbNCQyvZRZeVAPWxQF1V4hsvDUbqzdf+N7g8FxsoDwq7x+nvlNRpvQgGMBbiVPRS46PqivMbu37M0pfxer1XG0BQ6cXllXNd8eyh4sTEhqko/YbrWcbRKMvt82//VHQcgrlu27WPtQ52PYRnIpu7J9nnNqrhtxxo01O01TIv2m+x+SS2LVkzaQ/tc5f1wRN/wYffFK19RA45NyRINCnUfoyrRLG3blBT6Xp1DWq7bdnRNIihcDTQqkDIPBSk2jLoSsjIB1eyIajRsgkujCF4no7Uq6eApQdgwsyH1y1YAqYSl2qVwSGmjDEEJV62L2ah/ub4jifsr+r2WIavGK9v3an+p5jrue63FMbwHyL7XMl07Tpah23FSRqHW4yjVjikwVVCvAoICaG2rjqtqslSDZjcxW4HDakptkCMNuW+/w9az/Rcd5St603x483b0YXOCxY2UFh4HtZyHcz/adtlx0HKtU9m9ZPrNOk66uNn0KvocXahVwWIXiuj9VzbJtfaB7pfS/rNWP9t/xuZ7Uw211eZZS6xadDTJtDJb7T/LOLVP9d1hBqyWGpt8Vt8VDoASPnRh0DbY3Fm27dF558QKD0lQLPmnVVZpsIt88k+7zySaJsXuwzRhfmCU3jTCZdhCqoKLRrULaRAaBU/KE9SaocFlwgu/9qcqZLQvlRZ1rmn/VnbPifZvVRMk1zVr4dS9aYVMH5Y+rYKmsu8P00fc9+th9yiFVIhU5aXyH2t1DdNHdMA3bYPSlALPaPrTdcNodG19vwre1qpk1wOj3jF2/dB3W0WGvt8GNtJAIvpc5aMqyIf3Bes7rEBroxzbffdh2lewYvdKq3JN+aDeU0FVLXK6Nintq9VQw+pHf5ceTz31VHq50q/yVN3bbOnDAgzlx3Z81NqiZTq3RL/Jvs8qYKLXsej5avfFaT9Z+rB9Y2MR2PU2LH9FC+tKHzrW4bmnVhxdr8KgUPfUKT8Qu29N1ymJSxtx566VJTTavV0Lo2UJo9+sbdL+0PVP+06thuF26pjYiMraVvXaiH53dL+F57Ja6rXPVaFule7WkyWXa2DcfXL6bm1DdF/a1Ew6p+xanu17VofZP7emWkteuUhGiaSIqHugAhW7CRvFub/K5TjV5HeEf1su+wOlrTbSoWp51fpshf1CUUFOgZ0KNWHhrZxp3yvAVUFR3fHVBS+c2qmmCp1P5fL9uQTnVvCOBhzlqrLKltpUyPShih8NHKIeHUk4puVq1apVPv9Srw4Fzj/99FOqnPzvznPUiQEDBvjBEXRDrm4IDm88RvHsr3I5TjX5HeHfnnnmmWWxP1DaauO81OA2xUADEWigCg3+oMEwNChAudPgOOeff74fhEoDKGiQKg20Vi75dqG/H8V7fKZPn+523nlnP6jO3XffXWffi9o1f/58PxCWBoLUAFE2oE658JO0FHojAAAAAACFwZQUAAAAAJBgBIUAAAAAkGAEhQAAAACQYASFAAAAAJBgBIUAAAAAkGAEhQAA1JHPPvvM1atXz02dOrXQmwIAQBpBIQAAdaRjx45u9uzZbquttqrVz914443d9ddfX6ufCQBIDiavBwCgDixbtsw1btzYtWvXrtCbAgBABloKAQCIuPXWW12HDh3cqlWrMpYfcsgh7qSTTnIff/yx/3/btm3dGmus4bbffnv33HPPVWi9u/zyy93xxx/vWrZs6X77299W6D66cuVKN2DAANepUyfXrFkzt/nmm7sbbrgh43NOPPFEd+ihh7o//elPrn379m7ttdd2gwYNcsuXL/fv77HHHu4///mPGzx4sP9sPQAAqA6CQgAAIo466ij3/fffuxdeeCG9bO7cue7pp592/fr1cz/++KM74IAD3MSJE92UKVPcL3/5S3fwwQe7zz//PONzFMhtvfXWfp0hQ4ZU+B4FnRtssIEbP368e++999zQoUPdRRdd5MaNG5exnrZDgaie77rrLnfnnXf6hzz88MP+M4YPH+67puoBAEB11EulUqlq/QUAAAmg1jm1yt1+++3p1sPLLrvMffHFF65+/Yp1qrpP8NRTT3W/+93v0i2F22yzjXvkkUfS66ilUK2CChJ79OgR+736+6+//to9+OCD6ZbCF1980QeFDRo08MuOPvpovw33339/+rvOPPNM/wAAoLpoKQQAIIZaBB966CG3dOlS/3rs2LHumGOO8cGYWgrPOecct8UWW7jWrVv7LqTvv/9+hZbC7bbbrsrvGTlypOvZs6dbd911/eco+Ix+TteuXdMBoagb6Zw5c2rttwIAko2gEACAGOoOqs40Tz75pG8dfOWVV3ygKAoI1QJ4xRVX+OW6R7Bbt25+MJlQixYtKv0OtfTps3Rf4T/+8Q//Of3796/wOY0aNcp4rfsGo/c7AgCQL0YfBQAgRtOmTd3hhx/uWwg/+ugjPwjMtttu69979dVXfbfOww47zL9Wy6G6hlaXPmfnnXd2p512WnqZuolWl0Y11aA1AADkg5ZCAACyUMugWgr/9re/pVsJZbPNNvMDvKhl75133nG//vWv82q50+f861//cs8884z78MMP/WA0b731VrU/R/cUvvzyy+6rr75y3333XbX/HgCQbASFAABksddee7k2bdq4Dz74wAd+5tprr3VrrbWWb+VTN9M+ffqkWxGr45RTTvGtkX379nU77rijH/E0bDXMlUYeVUvlJpts4u9NBACgOhh9FAAAAAASjJZCAAAAAEgwgkIAAAAASDCCQgAAAABIMIJCAAAAAEgwgkIAAAAASDCCQgAAAABIMIJCAAAAAEgwgkIAAAAASDCCQgAAAABIMIJCAAAAAEgwgkIAAAAAcMn1/9s4ixuJOzgfAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1000x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n",
"Обработка данных: 0%| | 0/4113 [00:00<?, ?it/s]\u001b[A\n",
"Обработка данных: 0%| | 10/4113 [00:00<00:44, 92.80it/s]\u001b[A\n",
"Обработка данных: 0%|▏ | 20/4113 [00:00<00:44, 92.27it/s]\u001b[A\n",
"Обработка данных: 1%|▎ | 30/4113 [00:00<00:44, 91.67it/s]\u001b[A\n",
"Обработка данных: 1%|▍ | 40/4113 [00:00<00:44, 92.09it/s]\u001b[A\n",
"Обработка данных: 1%|▌ | 50/4113 [00:00<00:44, 92.31it/s]\u001b[A\n",
"Обработка данных: 1%|▋ | 60/4113 [00:00<00:44, 92.02it/s]\u001b[A\n",
"Обработка данных: 2%|▊ | 70/4113 [00:00<00:43, 92.25it/s]\u001b[A\n",
"Обработка данных: 2%|▉ | 80/4113 [00:00<00:43, 92.38it/s]\u001b[A\n",
"Обработка данных: 2%|█ | 90/4113 [00:00<00:43, 92.28it/s]\u001b[A\n",
"Обработка данных: 2%|█▏ | 100/4113 [00:01<00:43, 92.37it/s]\u001b[A\n",
"Обработка данных: 3%|█▎ | 110/4113 [00:01<00:43, 92.27it/s]\u001b[A\n",
"Обработка данных: 3%|█▍ | 120/4113 [00:01<00:43, 92.26it/s]\u001b[A\n",
"Обработка данных: 3%|█▌ | 130/4113 [00:01<00:43, 92.29it/s]\u001b[A\n",
"Обработка данных: 3%|█▋ | 140/4113 [00:01<00:42, 92.58it/s]\u001b[A\n",
"Обработка данных: 4%|█▊ | 150/4113 [00:01<00:42, 92.20it/s]\u001b[A\n",
"Обработка данных: 4%|█▊ | 160/4113 [00:01<00:42, 92.40it/s]\u001b[A\n",
"Обработка данных: 4%|█▉ | 170/4113 [00:01<00:42, 92.21it/s]\u001b[A\n",
"Обработка данных: 4%|██ | 180/4113 [00:01<00:42, 92.37it/s]\u001b[A\n",
"Обработка данных: 5%|██▏ | 190/4113 [00:02<00:42, 92.45it/s]\u001b[A\n",
"Обработка данных: 5%|██▎ | 200/4113 [00:02<00:42, 92.48it/s]\u001b[A\n",
"Обработка данных: 5%|██▍ | 210/4113 [00:02<00:42, 92.39it/s]\u001b[A\n",
"Обработка данных: 5%|██▌ | 220/4113 [00:02<00:42, 92.46it/s]\u001b[A\n",
"Обработка данных: 6%|██▋ | 230/4113 [00:02<00:42, 92.35it/s]\u001b[A\n",
"Обработка данных: 6%|██▊ | 240/4113 [00:02<00:41, 92.46it/s]\u001b[A\n",
"Обработка данных: 6%|██▉ | 250/4113 [00:02<00:41, 92.41it/s]\u001b[A\n",
"Обработка данных: 6%|███ | 260/4113 [00:02<00:41, 92.44it/s]\u001b[A\n",
"Обработка данных: 7%|███▏ | 270/4113 [00:02<00:41, 92.37it/s]\u001b[A\n",
"Обработка данных: 7%|███▎ | 280/4113 [00:03<00:41, 92.03it/s]\u001b[A\n",
"Обработка данных: 7%|███▍ | 290/4113 [00:03<00:41, 92.06it/s]\u001b[A\n",
"Обработка данных: 7%|███▌ | 300/4113 [00:03<00:41, 92.32it/s]\u001b[A\n",
"Обработка данных: 8%|███▌ | 310/4113 [00:03<00:41, 92.41it/s]\u001b[A\n",
"Обработка данных: 8%|███▋ | 320/4113 [00:03<00:41, 92.25it/s]\u001b[A\n",
"Обработка данных: 8%|███▊ | 330/4113 [00:03<00:41, 92.20it/s]\u001b[A\n",
"Обработка данных: 8%|███▉ | 340/4113 [00:03<00:41, 91.97it/s]\u001b[A\n",
"Обработка данных: 9%|████ | 350/4113 [00:03<00:40, 92.08it/s]\u001b[A\n",
"Обработка данных: 9%|████▏ | 360/4113 [00:03<00:40, 92.21it/s]\u001b[A\n",
"Обработка данных: 9%|████▎ | 370/4113 [00:04<00:40, 92.21it/s]\u001b[A\n",
"Обработка данных: 9%|████▍ | 380/4113 [00:04<00:40, 92.03it/s]\u001b[A\n",
"Обработка данных: 9%|████▌ | 390/4113 [00:04<00:40, 92.36it/s]\u001b[A\n",
"Обработка данных: 10%|████▋ | 400/4113 [00:04<00:40, 92.27it/s]\u001b[A\n",
"Обработка данных: 10%|████▊ | 410/4113 [00:04<00:40, 92.42it/s]\u001b[A\n",
"Обработка данных: 10%|████▉ | 420/4113 [00:04<00:39, 92.43it/s]\u001b[A\n",
"Обработка данных: 10%|█████ | 430/4113 [00:04<00:39, 92.44it/s]\u001b[A\n",
"Обработка данных: 11%|█████▏ | 440/4113 [00:04<00:39, 92.31it/s]\u001b[A\n",
"Обработка данных: 11%|█████▎ | 450/4113 [00:04<00:39, 92.30it/s]\u001b[A\n",
"Обработка данных: 11%|█████▎ | 460/4113 [00:04<00:39, 92.38it/s]\u001b[A\n",
"Обработка данных: 11%|█████▍ | 470/4113 [00:05<00:39, 92.29it/s]\u001b[A\n",
"Обработка данных: 12%|█████▌ | 480/4113 [00:05<00:39, 92.19it/s]\u001b[A\n",
"Обработка данных: 12%|█████▋ | 490/4113 [00:05<00:39, 92.23it/s]\u001b[A\n",
"Обработка данных: 12%|█████▊ | 500/4113 [00:05<00:39, 92.37it/s]\u001b[A\n",
"Обработка данных: 12%|█████▉ | 510/4113 [00:05<00:39, 92.36it/s]\u001b[A\n",
"Обработка данных: 13%|██████ | 520/4113 [00:05<00:38, 92.47it/s]\u001b[A\n",
"Обработка данных: 13%|██████▏ | 530/4113 [00:05<00:38, 92.57it/s]\u001b[A\n",
"Обработка данных: 13%|██████▎ | 540/4113 [00:05<00:38, 92.48it/s]\u001b[A\n",
"Обработка данных: 13%|██████▍ | 550/4113 [00:05<00:38, 92.47it/s]\u001b[A\n",
"Обработка данных: 14%|██████▌ | 560/4113 [00:06<00:38, 92.38it/s]\u001b[A\n",
"Обработка данных: 14%|██████▋ | 570/4113 [00:06<00:38, 92.29it/s]\u001b[A\n",
"Обработка данных: 14%|██████▊ | 580/4113 [00:06<00:38, 92.25it/s]\u001b[A\n",
"Обработка данных: 14%|██████▉ | 590/4113 [00:06<00:38, 92.17it/s]\u001b[A\n",
"Обработка данных: 15%|███████ | 600/4113 [00:06<00:38, 92.27it/s]\u001b[A\n",
"Обработка данных: 15%|███████ | 610/4113 [00:06<00:38, 92.13it/s]\u001b[A\n",
"Обработка данных: 15%|███████▏ | 620/4113 [00:06<00:37, 91.97it/s]\u001b[A\n",
"Обработка данных: 15%|███████▎ | 630/4113 [00:06<00:37, 92.11it/s]\u001b[A\n",
"Обработка данных: 16%|███████▍ | 640/4113 [00:06<00:37, 92.20it/s]\u001b[A\n",
"Обработка данных: 16%|███████▌ | 650/4113 [00:07<00:37, 92.11it/s]\u001b[A\n",
"Обработка данных: 16%|███████▋ | 660/4113 [00:07<00:37, 92.23it/s]\u001b[A\n",
"Обработка данных: 16%|███████▊ | 670/4113 [00:07<00:37, 91.98it/s]\u001b[A\n",
"Обработка данных: 17%|███████▉ | 680/4113 [00:07<00:37, 92.24it/s]\u001b[A\n",
"Обработка данных: 17%|████████ | 690/4113 [00:07<00:37, 92.20it/s]\u001b[A\n",
"Обработка данных: 17%|████████▏ | 700/4113 [00:07<00:36, 92.26it/s]\u001b[A\n",
"Обработка данных: 17%|████████▎ | 710/4113 [00:07<00:36, 92.03it/s]\u001b[A\n",
"Обработка данных: 18%|████████▍ | 720/4113 [00:07<00:36, 92.14it/s]\u001b[A\n",
"Обработка данных: 18%|████████▌ | 730/4113 [00:07<00:36, 92.13it/s]\u001b[A\n",
"Обработка данных: 18%|████████▋ | 740/4113 [00:08<00:36, 92.41it/s]\u001b[A\n",
"Обработка данных: 18%|████████▊ | 750/4113 [00:08<00:36, 92.55it/s]\u001b[A\n",
"Обработка данных: 18%|████████▊ | 760/4113 [00:08<00:36, 92.52it/s]\u001b[A\n",
"Обработка данных: 19%|████████▉ | 770/4113 [00:08<00:36, 92.64it/s]\u001b[A\n",
"Обработка данных: 19%|█████████ | 780/4113 [00:08<00:36, 92.58it/s]\u001b[A\n",
"Обработка данных: 19%|█████████▏ | 790/4113 [00:08<00:35, 92.49it/s]\u001b[A\n",
"Обработка данных: 19%|█████████▎ | 800/4113 [00:08<00:35, 92.58it/s]\u001b[A\n",
"Обработка данных: 20%|█████████▍ | 810/4113 [00:08<00:35, 92.68it/s]\u001b[A\n",
"Обработка данных: 20%|█████████▌ | 820/4113 [00:08<00:35, 92.64it/s]\u001b[A\n",
"Обработка данных: 20%|█████████▋ | 830/4113 [00:08<00:35, 92.51it/s]\u001b[A\n",
"Обработка данных: 20%|█████████▊ | 840/4113 [00:09<00:35, 92.59it/s]\u001b[A\n",
"Обработка данных: 21%|█████████▉ | 850/4113 [00:09<00:35, 92.32it/s]\u001b[A\n",
"Обработка данных: 21%|██████████ | 860/4113 [00:09<00:35, 92.22it/s]\u001b[A\n",
"Обработка данных: 21%|██████████▏ | 870/4113 [00:09<00:35, 92.28it/s]\u001b[A\n",
"Обработка данных: 21%|██████████▎ | 880/4113 [00:09<00:35, 92.22it/s]\u001b[A\n",
"Обработка данных: 22%|██████████▍ | 890/4113 [00:09<00:34, 92.34it/s]\u001b[A\n",
"Обработка данных: 22%|██████████▌ | 900/4113 [00:09<00:34, 92.04it/s]\u001b[A\n",
"Обработка данных: 22%|██████████▌ | 910/4113 [00:09<00:34, 92.14it/s]\u001b[A\n",
"Обработка данных: 22%|██████████▋ | 920/4113 [00:09<00:34, 92.13it/s]\u001b[A\n",
"Обработка данных: 23%|██████████▊ | 930/4113 [00:10<00:34, 92.14it/s]\u001b[A\n",
"Обработка данных: 23%|██████████▉ | 940/4113 [00:10<00:34, 91.93it/s]\u001b[A\n",
"Обработка данных: 23%|███████████ | 950/4113 [00:10<00:34, 91.80it/s]\u001b[A\n",
"Обработка данных: 23%|███████████▏ | 960/4113 [00:10<00:34, 91.97it/s]\u001b[A\n",
"Обработка данных: 24%|███████████▎ | 970/4113 [00:10<00:34, 91.95it/s]\u001b[A\n",
"Обработка данных: 24%|███████████▍ | 980/4113 [00:10<00:34, 92.06it/s]\u001b[A\n",
"Обработка данных: 24%|███████████▌ | 990/4113 [00:10<00:33, 92.01it/s]\u001b[A\n",
"Обработка данных: 24%|███████████▍ | 1000/4113 [00:10<00:33, 92.12it/s]\u001b[A\n",
"Обработка данных: 25%|███████████▌ | 1010/4113 [00:10<00:33, 92.07it/s]\u001b[A\n",
"Обработка данных: 25%|███████████▋ | 1020/4113 [00:11<00:33, 92.28it/s]\u001b[A\n",
"Обработка данных: 25%|███████████▊ | 1030/4113 [00:11<00:33, 92.46it/s]\u001b[A\n",
"Обработка данных: 25%|███████████▉ | 1040/4113 [00:11<00:33, 92.38it/s]\u001b[A\n",
"Обработка данных: 26%|███████████▉ | 1050/4113 [00:11<00:33, 92.25it/s]\u001b[A\n",
"Обработка данных: 26%|████████████ | 1060/4113 [00:11<00:33, 92.05it/s]\u001b[A\n",
"Обработка данных: 26%|████████████▏ | 1070/4113 [00:11<00:33, 92.09it/s]\u001b[A\n",
"Обработка данных: 26%|████████████▎ | 1080/4113 [00:11<00:32, 92.26it/s]\u001b[A\n",
"Обработка данных: 27%|████████████▍ | 1090/4113 [00:11<00:32, 92.12it/s]\u001b[A\n",
"Обработка данных: 27%|████████████▌ | 1100/4113 [00:11<00:32, 92.28it/s]\u001b[A\n",
"Обработка данных: 27%|████████████▋ | 1110/4113 [00:12<00:32, 92.47it/s]\u001b[A\n",
"Обработка данных: 27%|████████████▊ | 1120/4113 [00:12<00:32, 92.37it/s]\u001b[A\n",
"Обработка данных: 27%|████████████▉ | 1130/4113 [00:12<00:32, 92.13it/s]\u001b[A\n",
"Обработка данных: 28%|█████████████ | 1140/4113 [00:12<00:32, 92.46it/s]\u001b[A\n",
"Обработка данных: 28%|█████████████▏ | 1150/4113 [00:12<00:32, 92.46it/s]\u001b[A\n",
"Обработка данных: 28%|█████████████▎ | 1160/4113 [00:12<00:31, 92.42it/s]\u001b[A\n",
"Обработка данных: 28%|█████████████▎ | 1170/4113 [00:12<00:31, 92.43it/s]\u001b[A\n",
"Обработка данных: 29%|█████████████▍ | 1180/4113 [00:12<00:31, 92.36it/s]\u001b[A\n",
"Обработка данных: 29%|█████████████▌ | 1190/4113 [00:12<00:31, 92.28it/s]\u001b[A\n",
"Обработка данных: 29%|█████████████▋ | 1200/4113 [00:13<00:31, 92.39it/s]\u001b[A\n",
"Обработка данных: 29%|█████████████▊ | 1210/4113 [00:13<00:31, 92.18it/s]\u001b[A\n",
"Обработка данных: 30%|█████████████▉ | 1220/4113 [00:13<00:31, 92.11it/s]\u001b[A\n",
"Обработка данных: 30%|██████████████ | 1230/4113 [00:13<00:31, 92.21it/s]\u001b[A\n",
"Обработка данных: 30%|██████████████▏ | 1240/4113 [00:13<00:31, 91.99it/s]\u001b[A\n",
"Обработка данных: 30%|██████████████▎ | 1250/4113 [00:13<00:31, 91.96it/s]\u001b[A\n",
"Обработка данных: 31%|██████████████▍ | 1260/4113 [00:13<00:30, 92.16it/s]\u001b[A\n",
"Обработка данных: 31%|██████████████▌ | 1270/4113 [00:13<00:30, 92.05it/s]\u001b[A\n",
"Обработка данных: 31%|██████████████▋ | 1280/4113 [00:13<00:30, 92.17it/s]\u001b[A\n",
"Обработка данных: 31%|██████████████▋ | 1290/4113 [00:13<00:30, 91.73it/s]\u001b[A\n",
"Обработка данных: 32%|██████████████▊ | 1300/4113 [00:14<00:30, 91.84it/s]\u001b[A\n",
"Обработка данных: 32%|██████████████▉ | 1310/4113 [00:14<00:30, 91.78it/s]\u001b[A\n",
"Обработка данных: 32%|███████████████ | 1320/4113 [00:14<00:30, 91.80it/s]\u001b[A\n",
"Обработка данных: 32%|███████████████▏ | 1330/4113 [00:14<00:30, 91.99it/s]\u001b[A\n",
"Обработка данных: 33%|███████████████▎ | 1340/4113 [00:14<00:30, 92.11it/s]\u001b[A\n",
"Обработка данных: 33%|███████████████▍ | 1350/4113 [00:14<00:29, 92.25it/s]\u001b[A\n",
"Обработка данных: 33%|███████████████▌ | 1360/4113 [00:14<00:29, 92.41it/s]\u001b[A\n",
"Обработка данных: 33%|███████████████▋ | 1370/4113 [00:14<00:29, 92.49it/s]\u001b[A\n",
"Обработка данных: 34%|███████████████▊ | 1380/4113 [00:14<00:29, 92.17it/s]\u001b[A\n",
"Обработка данных: 34%|███████████████▉ | 1390/4113 [00:15<00:29, 92.01it/s]\u001b[A\n",
"Обработка данных: 34%|███████████████▉ | 1400/4113 [00:15<00:29, 92.09it/s]\u001b[A\n",
"Обработка данных: 34%|████████████████ | 1410/4113 [00:15<00:29, 92.19it/s]\u001b[A\n",
"Обработка данных: 35%|████████████████▏ | 1420/4113 [00:15<00:29, 92.28it/s]\u001b[A\n",
"Обработка данных: 35%|████████████████▎ | 1430/4113 [00:15<00:29, 92.07it/s]\u001b[A\n",
"Обработка данных: 35%|████████████████▍ | 1440/4113 [00:15<00:29, 92.11it/s]\u001b[A\n",
"Обработка данных: 35%|████████████████▌ | 1450/4113 [00:15<00:28, 92.07it/s]\u001b[A\n",
"Обработка данных: 35%|████████████████▋ | 1460/4113 [00:15<00:28, 91.90it/s]\u001b[A\n",
"Обработка данных: 36%|████████████████▊ | 1470/4113 [00:15<00:28, 91.86it/s]\u001b[A\n",
"Обработка данных: 36%|████████████████▉ | 1480/4113 [00:16<00:28, 91.91it/s]\u001b[A\n",
"Обработка данных: 36%|█████████████████ | 1490/4113 [00:16<00:28, 91.97it/s]\u001b[A\n",
"Обработка данных: 36%|█████████████████▏ | 1500/4113 [00:16<00:28, 91.98it/s]\u001b[A\n",
"Обработка данных: 37%|█████████████████▎ | 1510/4113 [00:16<00:28, 91.97it/s]\u001b[A\n",
"Обработка данных: 37%|█████████████████▎ | 1520/4113 [00:16<00:28, 92.14it/s]\u001b[A\n",
"Обработка данных: 37%|█████████████████▍ | 1530/4113 [00:16<00:27, 92.33it/s]\u001b[A\n",
"Обработка данных: 37%|█████████████████▌ | 1540/4113 [00:16<00:27, 92.17it/s]\u001b[A\n",
"Обработка данных: 38%|█████████████████▋ | 1550/4113 [00:16<00:27, 92.03it/s]\u001b[A\n",
"Обработка данных: 38%|█████████████████▊ | 1560/4113 [00:16<00:27, 92.23it/s]\u001b[A\n",
"Обработка данных: 38%|█████████████████▉ | 1570/4113 [00:17<00:27, 92.42it/s]\u001b[A\n",
"Обработка данных: 38%|██████████████████ | 1580/4113 [00:17<00:27, 92.26it/s]\u001b[A\n",
"Обработка данных: 39%|██████████████████▏ | 1590/4113 [00:17<00:27, 92.36it/s]\u001b[A\n",
"Обработка данных: 39%|██████████████████▎ | 1600/4113 [00:17<00:27, 92.22it/s]\u001b[A\n",
"Обработка данных: 39%|██████████████████▍ | 1610/4113 [00:17<00:27, 92.24it/s]\u001b[A\n",
"Обработка данных: 39%|██████████████████▌ | 1620/4113 [00:17<00:26, 92.42it/s]\u001b[A\n",
"Обработка данных: 40%|██████████████████▋ | 1630/4113 [00:17<00:26, 92.53it/s]\u001b[A\n",
"Обработка данных: 40%|██████████████████▋ | 1640/4113 [00:17<00:26, 92.51it/s]\u001b[A\n",
"Обработка данных: 40%|██████████████████▊ | 1650/4113 [00:17<00:26, 92.55it/s]\u001b[A\n",
"Обработка данных: 40%|██████████████████▉ | 1660/4113 [00:17<00:26, 92.64it/s]\u001b[A\n",
"Обработка данных: 41%|███████████████████ | 1670/4113 [00:18<00:26, 92.60it/s]\u001b[A\n",
"Обработка данных: 41%|███████████████████▏ | 1680/4113 [00:18<00:26, 92.47it/s]\u001b[A\n",
"Обработка данных: 41%|███████████████████▎ | 1690/4113 [00:18<00:26, 92.56it/s]\u001b[A\n",
"Обработка данных: 41%|███████████████████▍ | 1700/4113 [00:18<00:26, 92.55it/s]\u001b[A\n",
"Обработка данных: 42%|███████████████████▌ | 1710/4113 [00:18<00:25, 92.48it/s]\u001b[A\n",
"Обработка данных: 42%|███████████████████▋ | 1720/4113 [00:18<00:25, 92.44it/s]\u001b[A\n",
"Обработка данных: 42%|███████████████████▊ | 1730/4113 [00:18<00:25, 92.36it/s]\u001b[A\n",
"Обработка данных: 42%|███████████████████▉ | 1740/4113 [00:18<00:25, 92.52it/s]\u001b[A\n",
"Обработка данных: 43%|███████████████████▉ | 1750/4113 [00:18<00:25, 92.41it/s]\u001b[A\n",
"Обработка данных: 43%|████████████████████ | 1760/4113 [00:19<00:25, 92.38it/s]\u001b[A\n",
"Обработка данных: 43%|████████████████████▏ | 1770/4113 [00:19<00:25, 92.56it/s]\u001b[A\n",
"Обработка данных: 43%|████████████████████▎ | 1780/4113 [00:19<00:25, 92.54it/s]\u001b[A\n",
"Обработка данных: 44%|████████████████████▍ | 1790/4113 [00:19<00:25, 92.60it/s]\u001b[A\n",
"Обработка данных: 44%|████████████████████▌ | 1800/4113 [00:19<00:24, 92.69it/s]\u001b[A\n",
"Обработка данных: 44%|████████████████████▋ | 1810/4113 [00:19<00:24, 92.68it/s]\u001b[A\n",
"Обработка данных: 44%|████████████████████▊ | 1820/4113 [00:19<00:24, 92.64it/s]\u001b[A\n",
"Обработка данных: 44%|████████████████████▉ | 1830/4113 [00:19<00:24, 92.79it/s]\u001b[A\n",
"Обработка данных: 45%|█████████████████████ | 1840/4113 [00:19<00:24, 92.67it/s]\u001b[A\n",
"Обработка данных: 45%|█████████████████████▏ | 1850/4113 [00:20<00:24, 92.65it/s]\u001b[A\n",
"Обработка данных: 45%|█████████████████████▎ | 1860/4113 [00:20<00:24, 92.56it/s]\u001b[A\n",
"Обработка данных: 45%|█████████████████████▎ | 1870/4113 [00:20<00:24, 92.64it/s]\u001b[A\n",
"Обработка данных: 46%|█████████████████████▍ | 1880/4113 [00:20<00:24, 92.69it/s]\u001b[A\n",
"Обработка данных: 46%|█████████████████████▌ | 1890/4113 [00:20<00:23, 92.67it/s]\u001b[A\n",
"Обработка данных: 46%|█████████████████████▋ | 1900/4113 [00:20<00:23, 92.47it/s]\u001b[A\n",
"Обработка данных: 46%|█████████████████████▊ | 1910/4113 [00:20<00:23, 92.43it/s]\u001b[A\n",
"Обработка данных: 47%|█████████████████████▉ | 1920/4113 [00:20<00:23, 92.61it/s]\u001b[A\n",
"Обработка данных: 47%|██████████████████████ | 1930/4113 [00:20<00:23, 92.83it/s]\u001b[A\n",
"Обработка данных: 47%|██████████████████████▏ | 1940/4113 [00:21<00:23, 92.82it/s]\u001b[A\n",
"Обработка данных: 47%|██████████████████████▎ | 1950/4113 [00:21<00:23, 92.80it/s]\u001b[A\n",
"Обработка данных: 48%|██████████████████████▍ | 1960/4113 [00:21<00:23, 92.80it/s]\u001b[A\n",
"Обработка данных: 48%|██████████████████████▌ | 1970/4113 [00:21<00:23, 92.87it/s]\u001b[A\n",
"Обработка данных: 48%|██████████████████████▋ | 1980/4113 [00:21<00:23, 92.58it/s]\u001b[A\n",
"Обработка данных: 48%|██████████████████████▋ | 1990/4113 [00:21<00:22, 92.55it/s]\u001b[A\n",
"Обработка данных: 49%|██████████████████████▊ | 2000/4113 [00:21<00:22, 92.59it/s]\u001b[A\n",
"Обработка данных: 49%|██████████████████████▉ | 2010/4113 [00:21<00:22, 92.63it/s]\u001b[A\n",
"Обработка данных: 49%|███████████████████████ | 2020/4113 [00:21<00:22, 92.48it/s]\u001b[A\n",
"Обработка данных: 49%|███████████████████████▏ | 2030/4113 [00:21<00:22, 92.51it/s]\u001b[A\n",
"Обработка данных: 50%|███████████████████████▎ | 2040/4113 [00:22<00:22, 92.47it/s]\u001b[A\n",
"Обработка данных: 50%|███████████████████████▍ | 2050/4113 [00:22<00:22, 92.33it/s]\u001b[A\n",
"Обработка данных: 50%|███████████████████████▌ | 2060/4113 [00:22<00:22, 92.29it/s]\u001b[A\n",
"Обработка данных: 50%|███████████████████████▋ | 2070/4113 [00:22<00:22, 92.37it/s]\u001b[A\n",
"Обработка данных: 51%|███████████████████████▊ | 2080/4113 [00:22<00:21, 92.58it/s]\u001b[A\n",
"Обработка данных: 51%|███████████████████████▉ | 2090/4113 [00:22<00:21, 92.53it/s]\u001b[A\n",
"Обработка данных: 51%|███████████████████████▉ | 2100/4113 [00:22<00:21, 92.68it/s]\u001b[A\n",
"Обработка данных: 51%|████████████████████████ | 2110/4113 [00:22<00:21, 92.56it/s]\u001b[A\n",
"Обработка данных: 52%|████████████████████████▏ | 2120/4113 [00:22<00:21, 92.68it/s]\u001b[A\n",
"Обработка данных: 52%|████████████████████████▎ | 2130/4113 [00:23<00:21, 92.73it/s]\u001b[A\n",
"Обработка данных: 52%|████████████████████████▍ | 2140/4113 [00:23<00:21, 92.62it/s]\u001b[A\n",
"Обработка данных: 52%|████████████████████████▌ | 2150/4113 [00:23<00:21, 92.36it/s]\u001b[A\n",
"Обработка данных: 53%|████████████████████████▋ | 2160/4113 [00:23<00:21, 92.39it/s]\u001b[A\n",
"Обработка данных: 53%|████████████████████████▊ | 2170/4113 [00:23<00:21, 92.50it/s]\u001b[A\n",
"Обработка данных: 53%|████████████████████████▉ | 2180/4113 [00:23<00:20, 92.56it/s]\u001b[A\n",
"Обработка данных: 53%|█████████████████████████ | 2190/4113 [00:23<00:20, 92.66it/s]\u001b[A\n",
"Обработка данных: 53%|█████████████████████████▏ | 2200/4113 [00:23<00:20, 92.67it/s]\u001b[A\n",
"Обработка данных: 54%|█████████████████████████▎ | 2210/4113 [00:23<00:20, 92.78it/s]\u001b[A\n",
"Обработка данных: 54%|█████████████████████████▎ | 2220/4113 [00:24<00:20, 92.65it/s]\u001b[A\n",
"Обработка данных: 54%|█████████████████████████▍ | 2230/4113 [00:24<00:20, 92.61it/s]\u001b[A\n",
"Обработка данных: 54%|█████████████████████████▌ | 2240/4113 [00:24<00:20, 92.57it/s]\u001b[A\n",
"Обработка данных: 55%|█████████████████████████▋ | 2250/4113 [00:24<00:20, 92.69it/s]\u001b[A\n",
"Обработка данных: 55%|█████████████████████████▊ | 2260/4113 [00:24<00:19, 92.98it/s]\u001b[A\n",
"Обработка данных: 55%|█████████████████████████▉ | 2270/4113 [00:24<00:19, 93.06it/s]\u001b[A\n",
"Обработка данных: 55%|██████████████████████████ | 2280/4113 [00:24<00:19, 93.06it/s]\u001b[A\n",
"Обработка данных: 56%|██████████████████████████▏ | 2290/4113 [00:24<00:19, 93.10it/s]\u001b[A\n",
"Обработка данных: 56%|██████████████████████████▎ | 2300/4113 [00:24<00:19, 92.89it/s]\u001b[A\n",
"Обработка данных: 56%|██████████████████████████▍ | 2310/4113 [00:25<00:19, 92.96it/s]\u001b[A\n",
"Обработка данных: 56%|██████████████████████████▌ | 2320/4113 [00:25<00:19, 92.92it/s]\u001b[A\n",
"Обработка данных: 57%|██████████████████████████▋ | 2330/4113 [00:25<00:19, 92.87it/s]\u001b[A\n",
"Обработка данных: 57%|██████████████████████████▋ | 2340/4113 [00:25<00:19, 92.74it/s]\u001b[A\n",
"Обработка данных: 57%|██████████████████████████▊ | 2350/4113 [00:25<00:18, 92.80it/s]\u001b[A\n",
"Обработка данных: 57%|██████████████████████████▉ | 2360/4113 [00:25<00:18, 92.80it/s]\u001b[A\n",
"Обработка данных: 58%|███████████████████████████ | 2370/4113 [00:25<00:18, 92.50it/s]\u001b[A\n",
"Обработка данных: 58%|███████████████████████████▏ | 2380/4113 [00:25<00:18, 92.48it/s]\u001b[A\n",
"Обработка данных: 58%|███████████████████████████▎ | 2390/4113 [00:25<00:18, 92.23it/s]\u001b[A\n",
"Обработка данных: 58%|███████████████████████████▍ | 2400/4113 [00:25<00:18, 92.10it/s]\u001b[A\n",
"Обработка данных: 59%|███████████████████████████▌ | 2410/4113 [00:26<00:18, 92.03it/s]\u001b[A\n",
"Обработка данных: 59%|███████████████████████████▋ | 2420/4113 [00:26<00:18, 92.30it/s]\u001b[A\n",
"Обработка данных: 59%|███████████████████████████▊ | 2430/4113 [00:26<00:18, 92.41it/s]\u001b[A\n",
"Обработка данных: 59%|███████████████████████████▉ | 2440/4113 [00:26<00:18, 92.18it/s]\u001b[A\n",
"Обработка данных: 60%|███████████████████████████▉ | 2450/4113 [00:26<00:17, 92.47it/s]\u001b[A\n",
"Обработка данных: 60%|████████████████████████████ | 2460/4113 [00:26<00:17, 92.49it/s]\u001b[A\n",
"Обработка данных: 60%|████████████████████████████▏ | 2470/4113 [00:26<00:17, 92.38it/s]\u001b[A\n",
"Обработка данных: 60%|████████████████████████████▎ | 2480/4113 [00:26<00:17, 92.33it/s]\u001b[A\n",
"Обработка данных: 61%|████████████████████████████▍ | 2490/4113 [00:26<00:17, 92.56it/s]\u001b[A\n",
"Обработка данных: 61%|████████████████████████████▌ | 2500/4113 [00:27<00:17, 92.52it/s]\u001b[A\n",
"Обработка данных: 61%|████████████████████████████▋ | 2510/4113 [00:27<00:17, 92.58it/s]\u001b[A\n",
"Обработка данных: 61%|████████████████████████████▊ | 2520/4113 [00:27<00:17, 92.66it/s]\u001b[A\n",
"Обработка данных: 62%|████████████████████████████▉ | 2530/4113 [00:27<00:17, 92.67it/s]\u001b[A\n",
"Обработка данных: 62%|█████████████████████████████ | 2540/4113 [00:27<00:16, 92.66it/s]\u001b[A\n",
"Обработка данных: 62%|█████████████████████████████▏ | 2550/4113 [00:27<00:16, 92.60it/s]\u001b[A\n",
"Обработка данных: 62%|█████████████████████████████▎ | 2560/4113 [00:27<00:16, 92.74it/s]\u001b[A\n",
"Обработка данных: 62%|█████████████████████████████▎ | 2570/4113 [00:27<00:16, 92.76it/s]\u001b[A\n",
"Обработка данных: 63%|█████████████████████████████▍ | 2580/4113 [00:27<00:16, 92.67it/s]\u001b[A\n",
"Обработка данных: 63%|█████████████████████████████▌ | 2590/4113 [00:28<00:16, 92.74it/s]\u001b[A\n",
"Обработка данных: 63%|█████████████████████████████▋ | 2600/4113 [00:28<00:16, 92.48it/s]\u001b[A\n",
"Обработка данных: 63%|█████████████████████████████▊ | 2610/4113 [00:28<00:16, 92.37it/s]\u001b[A\n",
"Обработка данных: 64%|█████████████████████████████▉ | 2620/4113 [00:28<00:16, 92.41it/s]\u001b[A\n",
"Обработка данных: 64%|██████████████████████████████ | 2630/4113 [00:28<00:16, 92.51it/s]\u001b[A\n",
"Обработка данных: 64%|██████████████████████████████▏ | 2640/4113 [00:28<00:15, 92.53it/s]\u001b[A\n",
"Обработка данных: 64%|██████████████████████████████▎ | 2650/4113 [00:28<00:15, 92.45it/s]\u001b[A\n",
"Обработка данных: 65%|██████████████████████████████▍ | 2660/4113 [00:28<00:15, 92.63it/s]\u001b[A\n",
"Обработка данных: 65%|██████████████████████████████▌ | 2670/4113 [00:28<00:15, 92.41it/s]\u001b[A\n",
"Обработка данных: 65%|██████████████████████████████▌ | 2680/4113 [00:29<00:15, 92.37it/s]\u001b[A\n",
"Обработка данных: 65%|██████████████████████████████▋ | 2690/4113 [00:29<00:15, 92.09it/s]\u001b[A\n",
"Обработка данных: 66%|██████████████████████████████▊ | 2700/4113 [00:29<00:15, 92.07it/s]\u001b[A\n",
"Обработка данных: 66%|██████████████████████████████▉ | 2710/4113 [00:29<00:15, 91.93it/s]\u001b[A\n",
"Обработка данных: 66%|███████████████████████████████ | 2720/4113 [00:29<00:15, 92.01it/s]\u001b[A\n",
"Обработка данных: 66%|███████████████████████████████▏ | 2730/4113 [00:29<00:15, 92.11it/s]\u001b[A\n",
"Обработка данных: 67%|███████████████████████████████▎ | 2740/4113 [00:29<00:14, 92.18it/s]\u001b[A\n",
"Обработка данных: 67%|███████████████████████████████▍ | 2750/4113 [00:29<00:14, 92.14it/s]\u001b[A\n",
"Обработка данных: 67%|███████████████████████████████▌ | 2760/4113 [00:29<00:14, 92.17it/s]\u001b[A\n",
"Обработка данных: 67%|███████████████████████████████▋ | 2770/4113 [00:29<00:14, 91.96it/s]\u001b[A\n",
"Обработка данных: 68%|███████████████████████████████▊ | 2780/4113 [00:30<00:14, 91.74it/s]\u001b[A\n",
"Обработка данных: 68%|███████████████████████████████▉ | 2790/4113 [00:30<00:14, 91.75it/s]\u001b[A\n",
"Обработка данных: 68%|███████████████████████████████▉ | 2800/4113 [00:30<00:14, 91.66it/s]\u001b[A\n",
"Обработка данных: 68%|████████████████████████████████ | 2810/4113 [00:30<00:14, 91.69it/s]\u001b[A\n",
"Обработка данных: 69%|████████████████████████████████▏ | 2820/4113 [00:30<00:14, 91.95it/s]\u001b[A\n",
"Обработка данных: 69%|████████████████████████████████▎ | 2830/4113 [00:30<00:13, 92.17it/s]\u001b[A\n",
"Обработка данных: 69%|████████████████████████████████▍ | 2840/4113 [00:30<00:13, 92.23it/s]\u001b[A\n",
"Обработка данных: 69%|████████████████████████████████▌ | 2850/4113 [00:30<00:13, 92.25it/s]\u001b[A\n",
"Обработка данных: 70%|████████████████████████████████▋ | 2860/4113 [00:30<00:13, 92.33it/s]\u001b[A\n",
"Обработка данных: 70%|████████████████████████████████▊ | 2870/4113 [00:31<00:13, 92.32it/s]\u001b[A\n",
"Обработка данных: 70%|████████████████████████████████▉ | 2880/4113 [00:31<00:13, 92.27it/s]\u001b[A\n",
"Обработка данных: 70%|█████████████████████████████████ | 2890/4113 [00:31<00:13, 92.24it/s]\u001b[A\n",
"Обработка данных: 71%|█████████████████████████████████▏ | 2900/4113 [00:31<00:13, 92.17it/s]\u001b[A\n",
"Обработка данных: 71%|█████████████████████████████████▎ | 2910/4113 [00:31<00:13, 92.07it/s]\u001b[A\n",
"Обработка данных: 71%|█████████████████████████████████▎ | 2920/4113 [00:31<00:12, 91.97it/s]\u001b[A\n",
"Обработка данных: 71%|█████████████████████████████████▍ | 2930/4113 [00:31<00:12, 92.00it/s]\u001b[A\n",
"Обработка данных: 71%|█████████████████████████████████▌ | 2940/4113 [00:31<00:12, 91.99it/s]\u001b[A\n",
"Обработка данных: 72%|█████████████████████████████████▋ | 2950/4113 [00:31<00:12, 92.22it/s]\u001b[A\n",
"Обработка данных: 72%|█████████████████████████████████▊ | 2960/4113 [00:32<00:12, 92.07it/s]\u001b[A\n",
"Обработка данных: 72%|█████████████████████████████████▉ | 2970/4113 [00:32<00:12, 92.17it/s]\u001b[A\n",
"Обработка данных: 72%|██████████████████████████████████ | 2980/4113 [00:32<00:12, 92.12it/s]\u001b[A\n",
"Обработка данных: 73%|██████████████████████████████████▏ | 2990/4113 [00:32<00:12, 92.42it/s]\u001b[A\n",
"Обработка данных: 73%|██████████████████████████████████▎ | 3000/4113 [00:32<00:12, 92.27it/s]\u001b[A\n",
"Обработка данных: 73%|██████████████████████████████████▍ | 3010/4113 [00:32<00:11, 92.35it/s]\u001b[A\n",
"Обработка данных: 73%|██████████████████████████████████▌ | 3020/4113 [00:32<00:11, 92.26it/s]\u001b[A\n",
"Обработка данных: 74%|██████████████████████████████████▌ | 3030/4113 [00:32<00:11, 92.36it/s]\u001b[A\n",
"Обработка данных: 74%|██████████████████████████████████▋ | 3040/4113 [00:32<00:11, 92.31it/s]\u001b[A\n",
"Обработка данных: 74%|██████████████████████████████████▊ | 3050/4113 [00:33<00:11, 92.25it/s]\u001b[A\n",
"Обработка данных: 74%|██████████████████████████████████▉ | 3060/4113 [00:33<00:11, 92.20it/s]\u001b[A\n",
"Обработка данных: 75%|███████████████████████████████████ | 3070/4113 [00:33<00:11, 92.38it/s]\u001b[A\n",
"Обработка данных: 75%|███████████████████████████████████▏ | 3080/4113 [00:33<00:11, 92.35it/s]\u001b[A\n",
"Обработка данных: 75%|███████████████████████████████████▎ | 3090/4113 [00:33<00:11, 92.19it/s]\u001b[A\n",
"Обработка данных: 75%|███████████████████████████████████▍ | 3100/4113 [00:33<00:11, 91.96it/s]\u001b[A\n",
"Обработка данных: 76%|███████████████████████████████████▌ | 3110/4113 [00:33<00:10, 92.02it/s]\u001b[A\n",
"Обработка данных: 76%|███████████████████████████████████▋ | 3120/4113 [00:33<00:10, 91.84it/s]\u001b[A\n",
"Обработка данных: 76%|███████████████████████████████████▊ | 3130/4113 [00:33<00:10, 91.95it/s]\u001b[A\n",
"Обработка данных: 76%|███████████████████████████████████▉ | 3140/4113 [00:34<00:10, 92.01it/s]\u001b[A\n",
"Обработка данных: 77%|███████████████████████████████████▉ | 3150/4113 [00:34<00:10, 92.21it/s]\u001b[A\n",
"Обработка данных: 77%|████████████████████████████████████ | 3160/4113 [00:34<00:10, 92.38it/s]\u001b[A\n",
"Обработка данных: 77%|████████████████████████████████████▏ | 3170/4113 [00:34<00:10, 92.35it/s]\u001b[A\n",
"Обработка данных: 77%|████████████████████████████████████▎ | 3180/4113 [00:34<00:10, 92.14it/s]\u001b[A\n",
"Обработка данных: 78%|████████████████████████████████████▍ | 3190/4113 [00:34<00:09, 92.33it/s]\u001b[A\n",
"Обработка данных: 78%|████████████████████████████████████▌ | 3200/4113 [00:34<00:09, 92.56it/s]\u001b[A\n",
"Обработка данных: 78%|████████████████████████████████████▋ | 3210/4113 [00:34<00:09, 92.55it/s]\u001b[A\n",
"Обработка данных: 78%|████████████████████████████████████▊ | 3220/4113 [00:34<00:09, 92.49it/s]\u001b[A\n",
"Обработка данных: 79%|████████████████████████████████████▉ | 3230/4113 [00:34<00:09, 92.17it/s]\u001b[A\n",
"Обработка данных: 79%|█████████████████████████████████████ | 3240/4113 [00:35<00:09, 92.06it/s]\u001b[A\n",
"Обработка данных: 79%|█████████████████████████████████████▏ | 3250/4113 [00:35<00:09, 92.05it/s]\u001b[A\n",
"Обработка данных: 79%|█████████████████████████████████████▎ | 3260/4113 [00:35<00:09, 92.08it/s]\u001b[A\n",
"Обработка данных: 80%|█████████████████████████████████████▎ | 3270/4113 [00:35<00:09, 92.13it/s]\u001b[A\n",
"Обработка данных: 80%|█████████████████████████████████████▍ | 3280/4113 [00:35<00:09, 92.30it/s]\u001b[A\n",
"Обработка данных: 80%|█████████████████████████████████████▌ | 3290/4113 [00:35<00:08, 92.38it/s]\u001b[A\n",
"Обработка данных: 80%|█████████████████████████████████████▋ | 3300/4113 [00:35<00:08, 92.46it/s]\u001b[A\n",
"Обработка данных: 80%|█████████████████████████████████████▊ | 3310/4113 [00:35<00:08, 92.46it/s]\u001b[A\n",
"Обработка данных: 81%|█████████████████████████████████████▉ | 3320/4113 [00:35<00:08, 92.43it/s]\u001b[A\n",
"Обработка данных: 81%|██████████████████████████████████████ | 3330/4113 [00:36<00:08, 92.34it/s]\u001b[A\n",
"Обработка данных: 81%|██████████████████████████████████████▏ | 3340/4113 [00:36<00:08, 92.23it/s]\u001b[A\n",
"Обработка данных: 81%|██████████████████████████████████████▎ | 3350/4113 [00:36<00:08, 92.03it/s]\u001b[A\n",
"Обработка данных: 82%|██████████████████████████████████████▍ | 3360/4113 [00:36<00:08, 92.00it/s]\u001b[A\n",
"Обработка данных: 82%|██████████████████████████████████████▌ | 3370/4113 [00:36<00:08, 92.19it/s]\u001b[A\n",
"Обработка данных: 82%|██████████████████████████████████████▌ | 3380/4113 [00:36<00:07, 92.25it/s]\u001b[A\n",
"Обработка данных: 82%|██████████████████████████████████████▋ | 3390/4113 [00:36<00:07, 92.42it/s]\u001b[A\n",
"Обработка данных: 83%|██████████████████████████████████████▊ | 3400/4113 [00:36<00:07, 92.54it/s]\u001b[A\n",
"Обработка данных: 83%|██████████████████████████████████████▉ | 3410/4113 [00:36<00:07, 92.30it/s]\u001b[A\n",
"Обработка данных: 83%|███████████████████████████████████████ | 3420/4113 [00:37<00:07, 91.97it/s]\u001b[A\n",
"Обработка данных: 83%|███████████████████████████████████████▏ | 3430/4113 [00:37<00:07, 92.11it/s]\u001b[A\n",
"Обработка данных: 84%|███████████████████████████████████████▎ | 3440/4113 [00:37<00:07, 92.23it/s]\u001b[A\n",
"Обработка данных: 84%|███████████████████████████████████████▍ | 3450/4113 [00:37<00:07, 92.09it/s]\u001b[A\n",
"Обработка данных: 84%|███████████████████████████████████████▌ | 3460/4113 [00:37<00:07, 92.06it/s]\u001b[A\n",
"Обработка данных: 84%|███████████████████████████████████████▋ | 3470/4113 [00:37<00:06, 91.93it/s]\u001b[A\n",
"Обработка данных: 85%|███████████████████████████████████████▊ | 3480/4113 [00:37<00:06, 92.39it/s]\u001b[A\n",
"Обработка данных: 85%|███████████████████████████████████████▉ | 3490/4113 [00:37<00:06, 92.39it/s]\u001b[A\n",
"Обработка данных: 85%|███████████████████████████████████████▉ | 3500/4113 [00:37<00:06, 92.56it/s]\u001b[A\n",
"Обработка данных: 85%|████████████████████████████████████████ | 3510/4113 [00:38<00:06, 92.33it/s]\u001b[A\n",
"Обработка данных: 86%|████████████████████████████████████████▏ | 3520/4113 [00:38<00:06, 92.20it/s]\u001b[A\n",
"Обработка данных: 86%|████████████████████████████████████████▎ | 3530/4113 [00:38<00:06, 92.24it/s]\u001b[A\n",
"Обработка данных: 86%|████████████████████████████████████████▍ | 3540/4113 [00:38<00:06, 92.45it/s]\u001b[A\n",
"Обработка данных: 86%|████████████████████████████████████████▌ | 3550/4113 [00:38<00:06, 92.36it/s]\u001b[A\n",
"Обработка данных: 87%|████████████████████████████████████████▋ | 3560/4113 [00:38<00:05, 92.54it/s]\u001b[A\n",
"Обработка данных: 87%|████████████████████████████████████████▊ | 3570/4113 [00:38<00:05, 92.67it/s]\u001b[A\n",
"Обработка данных: 87%|████████████████████████████████████████▉ | 3580/4113 [00:38<00:05, 92.44it/s]\u001b[A\n",
"Обработка данных: 87%|█████████████████████████████████████████ | 3590/4113 [00:38<00:05, 92.34it/s]\u001b[A\n",
"Обработка данных: 88%|█████████████████████████████████████████▏ | 3600/4113 [00:38<00:05, 92.33it/s]\u001b[A\n",
"Обработка данных: 88%|█████████████████████████████████████████▎ | 3610/4113 [00:39<00:05, 92.39it/s]\u001b[A\n",
"Обработка данных: 88%|█████████████████████████████████████████▎ | 3620/4113 [00:39<00:05, 92.36it/s]\u001b[A\n",
"Обработка данных: 88%|█████████████████████████████████████████▍ | 3630/4113 [00:39<00:05, 92.28it/s]\u001b[A\n",
"Обработка данных: 88%|█████████████████████████████████████████▌ | 3640/4113 [00:39<00:05, 92.25it/s]\u001b[A\n",
"Обработка данных: 89%|█████████████████████████████████████████▋ | 3650/4113 [00:39<00:05, 92.19it/s]\u001b[A\n",
"Обработка данных: 89%|█████████████████████████████████████████▊ | 3660/4113 [00:39<00:04, 92.29it/s]\u001b[A\n",
"Обработка данных: 89%|█████████████████████████████████████████▉ | 3670/4113 [00:39<00:04, 92.36it/s]\u001b[A\n",
"Обработка данных: 89%|██████████████████████████████████████████ | 3680/4113 [00:39<00:04, 92.07it/s]\u001b[A\n",
"Обработка данных: 90%|██████████████████████████████████████████▏ | 3690/4113 [00:39<00:04, 92.20it/s]\u001b[A\n",
"Обработка данных: 90%|██████████████████████████████████████████▎ | 3700/4113 [00:40<00:04, 92.05it/s]\u001b[A\n",
"Обработка данных: 90%|██████████████████████████████████████████▍ | 3710/4113 [00:40<00:04, 92.01it/s]\u001b[A\n",
"Обработка данных: 90%|██████████████████████████████████████████▌ | 3720/4113 [00:40<00:04, 91.96it/s]\u001b[A\n",
"Обработка данных: 91%|██████████████████████████████████████████▌ | 3730/4113 [00:40<00:04, 91.94it/s]\u001b[A\n",
"Обработка данных: 91%|██████████████████████████████████████████▋ | 3740/4113 [00:40<00:04, 91.86it/s]\u001b[A\n",
"Обработка данных: 91%|██████████████████████████████████████████▊ | 3750/4113 [00:40<00:03, 91.97it/s]\u001b[A\n",
"Обработка данных: 91%|██████████████████████████████████████████▉ | 3760/4113 [00:40<00:03, 92.10it/s]\u001b[A\n",
"Обработка данных: 92%|███████████████████████████████████████████ | 3770/4113 [00:40<00:03, 92.27it/s]\u001b[A\n",
"Обработка данных: 92%|███████████████████████████████████████████▏ | 3780/4113 [00:40<00:03, 92.11it/s]\u001b[A\n",
"Обработка данных: 92%|███████████████████████████████████████████▎ | 3790/4113 [00:41<00:03, 91.92it/s]\u001b[A\n",
"Обработка данных: 92%|███████████████████████████████████████████▍ | 3800/4113 [00:41<00:03, 91.95it/s]\u001b[A\n",
"Обработка данных: 93%|███████████████████████████████████████████▌ | 3810/4113 [00:41<00:03, 92.17it/s]\u001b[A\n",
"Обработка данных: 93%|███████████████████████████████████████████▋ | 3820/4113 [00:41<00:03, 92.46it/s]\u001b[A\n",
"Обработка данных: 93%|███████████████████████████████████████████▊ | 3830/4113 [00:41<00:03, 92.35it/s]\u001b[A\n",
"Обработка данных: 93%|███████████████████████████████████████████▉ | 3840/4113 [00:41<00:02, 92.24it/s]\u001b[A\n",
"Обработка данных: 94%|███████████████████████████████████████████▉ | 3850/4113 [00:41<00:02, 92.36it/s]\u001b[A\n",
"Обработка данных: 94%|████████████████████████████████████████████ | 3860/4113 [00:41<00:02, 92.26it/s]\u001b[A\n",
"Обработка данных: 94%|████████████████████████████████████████████▏ | 3870/4113 [00:41<00:02, 92.26it/s]\u001b[A\n",
"Обработка данных: 94%|████████████████████████████████████████████▎ | 3880/4113 [00:42<00:02, 92.63it/s]\u001b[A\n",
"Обработка данных: 95%|████████████████████████████████████████████▍ | 3890/4113 [00:42<00:02, 92.42it/s]\u001b[A\n",
"Обработка данных: 95%|████████████████████████████████████████████▌ | 3900/4113 [00:42<00:02, 92.35it/s]\u001b[A\n",
"Обработка данных: 95%|████████████████████████████████████████████▋ | 3910/4113 [00:42<00:02, 92.39it/s]\u001b[A\n",
"Обработка данных: 95%|████████████████████████████████████████████▊ | 3920/4113 [00:42<00:02, 92.55it/s]\u001b[A\n",
"Обработка данных: 96%|████████████████████████████████████████████▉ | 3930/4113 [00:42<00:01, 92.66it/s]\u001b[A\n",
"Обработка данных: 96%|█████████████████████████████████████████████ | 3940/4113 [00:42<00:01, 92.40it/s]\u001b[A\n",
"Обработка данных: 96%|█████████████████████████████████████████████▏ | 3950/4113 [00:42<00:01, 92.34it/s]\u001b[A\n",
"Обработка данных: 96%|█████████████████████████████████████████████▎ | 3960/4113 [00:42<00:01, 92.37it/s]\u001b[A\n",
"Обработка данных: 97%|█████████████████████████████████████████████▎ | 3970/4113 [00:43<00:01, 92.21it/s]\u001b[A\n",
"Обработка данных: 97%|█████████████████████████████████████████████▍ | 3980/4113 [00:43<00:01, 92.08it/s]\u001b[A\n",
"Обработка данных: 97%|█████████████████████████████████████████████▌ | 3990/4113 [00:43<00:01, 91.88it/s]\u001b[A\n",
"Обработка данных: 97%|█████████████████████████████████████████████▋ | 4000/4113 [00:43<00:01, 91.98it/s]\u001b[A\n",
"Обработка данных: 97%|█████████████████████████████████████████████▊ | 4010/4113 [00:43<00:01, 91.86it/s]\u001b[A\n",
"Обработка данных: 98%|█████████████████████████████████████████████▉ | 4020/4113 [00:43<00:01, 92.04it/s]\u001b[A\n",
"Обработка данных: 98%|██████████████████████████████████████████████ | 4030/4113 [00:43<00:00, 92.02it/s]\u001b[A\n",
"Обработка данных: 98%|██████████████████████████████████████████████▏| 4040/4113 [00:43<00:00, 92.08it/s]\u001b[A\n",
"Обработка данных: 98%|██████████████████████████████████████████████▎| 4050/4113 [00:43<00:00, 92.03it/s]\u001b[A\n",
"Обработка данных: 99%|██████████████████████████████████████████████▍| 4060/4113 [00:43<00:00, 91.94it/s]\u001b[A\n",
"Обработка данных: 99%|██████████████████████████████████████████████▌| 4070/4113 [00:44<00:00, 91.87it/s]\u001b[A\n",
"Обработка данных: 99%|██████████████████████████████████████████████▌| 4080/4113 [00:44<00:00, 91.78it/s]\u001b[A\n",
"Обработка данных: 99%|██████████████████████████████████████████████▋| 4090/4113 [00:44<00:00, 92.09it/s]\u001b[A\n",
"Обработка данных: 100%|██████████████████████████████████████████████▊| 4100/4113 [00:44<00:00, 92.14it/s]\u001b[A\n",
"Обработка данных: 100%|██████████████████████████████████████████████▉| 4110/4113 [00:44<00:00, 92.31it/s]\u001b[A\n",
" \u001b[A"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Анализ завершен!\n"
]
}
],
"source": [
"import pandas as pd\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"from tqdm import tqdm\n",
"import time\n",
"\n",
"# Загрузка данных\n",
"df = pd.read_csv('surv_variants.csv')\n",
"\n",
"# Базовый анализ\n",
"df_info = df.info() # инфо выводим только один раз\n",
"df_description = df.describe() # статистику тоже только один раз\n",
"# Можно при необходимости вывести их через print:\n",
"#print(df_info)\n",
"#print(df_description)\n",
"\n",
"# Построение графиков\n",
"# Histplot (Гистограмма)\n",
"plt.figure(figsize=(10, 6))\n",
"sns.histplot(df['total_cases'], bins=30, kde=True)\n",
"plt.title('Распределение Total Cases')\n",
"plt.show()\n",
"\n",
"# Scatterplot (Диаграмма рассеяния)\n",
"plt.figure(figsize=(10, 6))\n",
"sns.scatterplot(x='mortality_rate', y='total_cases', data=df)\n",
"plt.title('Мортальность vs Total Cases')\n",
"plt.show()\n",
"\n",
"# Boxplot (Ящик с усами)\n",
"plt.figure(figsize=(10, 6))\n",
"sns.boxplot(x='variant', y='total_deaths', data=df)\n",
"plt.title('Total Deaths по Variant')\n",
"plt.show()\n",
"\n",
"# Использование tqdm, но вывод прогресса будет скрыт\n",
"for i in tqdm(df.iterrows(), total=df.shape[0], desc=\"Обработка данных\", leave=False):\n",
" time.sleep(0.01)\n",
"\n",
"print(\"Анализ завершен!\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d20cfb5d-30f0-44ed-b5f6-a32fe7ca4706",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}