nm-coursework/code/main.py
2023-10-16 20:16:37 +03:00

226 lines
6.8 KiB
Python

import scipy.integrate as sitg
import scipy.interpolate as sitp
import scipy.optimize as sopt
import scipy.linalg as salg
import math as m
import numpy as np
import matplotlib.pyplot as plt
def create_subplot():
return plt.subplots(layout='constrained')[1]
def plt_append(sp, x: list[float], y: list[float], label: str, format: str):
sp.plot(x, y, format, label=label)
class NonLinear:
bisect_exp = "x**2 * np.sin(x)"
newton_exp = "np.sin(x) * np.sqrt(np.abs(x))"
@staticmethod
def generate_array(min, max):
point_count = int(m.fabs(max-min))*10
x = np.linspace(min, max, point_count)
return list(x.tolist())
@staticmethod
def slice_array(range: list[float], val_min, val_max):
def index_search(range: list[float], val):
i = 0
for v in range:
if v >= val:
return i
i += 1
return -1
index_l = index_search(
range, val_min) if val_min is not None else range.index(min(range))
index_r = index_search(
range, val_max) if val_max is not None else range.index(max(range))
return range[index_l:index_r+1]
@staticmethod
def bisect(x, x_min, x_max):
def f(x): return eval(NonLinear.bisect_exp)
y = f(np.array(x))
root = sopt.bisect(f, x_min, x_max)
solution = root[0] if root is tuple else root
return list(y), (float(solution), float(f(solution)))
@staticmethod
def plot_bisect():
bounds = 0, 6
split_val = 1
x1 = NonLinear.generate_array(bounds[0], bounds[1])
x2 = NonLinear.slice_array(x1, split_val, None)
sp = create_subplot()
sol1 = NonLinear.bisect(x1, bounds[0], bounds[1])
sol2 = NonLinear.bisect(x2, split_val, bounds[1])
plt_append(
sp, x1, sol1[0], f"Исходные данные (y={NonLinear.bisect_exp})", "-b")
plt_append(
sp, *(sol1[1]), f"bisect at [{bounds[0]},{bounds[1]}]", "or")
plt_append(
sp, *(sol2[1]), f"bisect at [{split_val},{bounds[1]}]", "og")
sp.set_title("scipy.optimize.bisect")
sp.legend(loc='lower left')
@staticmethod
def newton(x, x0):
def f(x): return eval(NonLinear.bisect_exp)
y = f(np.array(x))
root = sopt.newton(f, x0)
solution = root[0] if root is tuple else root
return list(y), (float(solution), float(f(solution)))
@staticmethod
def plot_newton():
bounds = -2, 7
split_l, split_r = 2, 5
x1 = NonLinear.generate_array(bounds[0], bounds[1])
x2 = NonLinear.slice_array(x1, split_l, split_r)
x0_1, x0_2 = 1/100, 4
sp = create_subplot()
sol1 = NonLinear.newton(x1, x0_1)
sol2 = NonLinear.newton(x2, x0_2)
plt_append(
sp, x1, sol1[0], f"Исходные данные (y={NonLinear.newton_exp})", "-b")
plt_append(
sp, *(sol1[1]), f"newton at [{bounds[0]},{bounds[1]}]", "or")
plt_append(
sp, *(sol2[1]), f"newton at [{split_l},{bounds[1]}]", "og")
sp.set_title("scipy.optimize.newton")
sp.legend(loc='lower left')
@staticmethod
def plot(method: str = "all"):
if method in ["bisect", "all"]:
NonLinear.plot_bisect()
if method in ["newton", "all"]:
NonLinear.plot_newton()
plt.ylabel("y")
plt.xlabel("x")
plt.show()
class SLE:
gauss_data = ([[13, 2], [3, 4]], [1, 2])
invmatrix_data = ([[13, 2], [3, 4]], [1, 2])
tridiagonal_data = ([[4, 5, 6, 7, 8, 9],
[2, 2, 2, 2, 2, 0]],
[1, 2, 2, 3, 3, 3])
@staticmethod
def var_str(index):
return f"x{index+1}"
@staticmethod
def print_solution(data: list[float]):
print(" ", end='')
for i, val in enumerate(data[:-1]):
print(f"{SLE.var_str(i)} = {round(val,3)}, ", end='')
print(f"{SLE.var_str(len(data)-1)} = {round(data[-1],3)}")
@staticmethod
def print_data(data: tuple[list[list[float]], list[float]], tridiagonal: bool = False):
if tridiagonal:
new_data = []
new_len = len(data[0][0])
zipped = list(zip(*tuple(data[0])))
zipped[len(zipped)-1] = (zipped[len(zipped)-1][0],zipped[len(zipped)-2][1])
complement_to = new_len - len(zipped[0])
for i, val in enumerate(zipped):
zero_r = complement_to - i
if zero_r <= 0:
zero_r = 0
mid_val = list(reversed(val[1:])) + list(val)
mid_end = len(mid_val) if zero_r > 0 else len(
mid_val) + (complement_to - i)
mid_beg = len(mid_val) - (new_len - zero_r) if zero_r > 0 else 0
mid_beg = mid_beg if mid_beg >= 0 else 0
zero_l = new_len - (zero_r + (mid_end - mid_beg))
tmp = [0] * zero_l + \
mid_val[mid_beg:mid_end] + [0] * zero_r
new_data.append(tmp)
data = (new_data, data[1])
for i, val in enumerate(data[0]):
print(" ", end='')
for i_coef, coef in enumerate(val[:-1]):
if coef != 0:
print(f"({coef}{SLE.var_str(i_coef)}) + ", end='')
else:
print(f" {coef} + ",end='')
print(f"({val[-1]}{SLE.var_str(len(val)-1)})", end='')
print(f" = {data[1][i]}")
@staticmethod
def gauss(system: list[list[float]], b: list[float]):
lup = salg.lu_factor(system)
solution = salg.lu_solve(lup, b)
return solution
@staticmethod
def invmatrix(system: list[list[float]], b: list[float]):
m_inv = salg.inv(system)
solution = m_inv @ b
return solution
@staticmethod
def tridiagonal(system: list[list[float]], b: list[float]):
solution = salg.solveh_banded(system, b, lower=True)
return solution
@staticmethod
def print_gauss():
print("Gauss method (LU decomposition)")
print(" Input system:")
SLE.print_data(SLE.gauss_data)
print(" Solution:")
SLE.print_solution(SLE.gauss(*SLE.gauss_data))
@staticmethod
def print_invmatrix():
print("Inverted matrix method")
print(" Input system:")
SLE.print_data(SLE.invmatrix_data)
print(" Solution:")
SLE.print_solution(SLE.invmatrix(*SLE.invmatrix_data))
@staticmethod
def print_tridiagonal():
print("Tridiagonal matrix method (Thomas algorithm)")
print(" Input system:")
SLE.print_data(SLE.tridiagonal_data, True)
print(" Solution:")
SLE.print_solution(SLE.tridiagonal(*SLE.tridiagonal_data))
@staticmethod
def print(method="all"):
if method in ["gauss", "all"]:
SLE.print_gauss()
if method in ["invmatrix", "all"]:
SLE.print_invmatrix()
if method in ["banded", "all"]:
SLE.print_tridiagonal()
class Approx:
function = "np.sin(x) * np.sqrt(np.abs(x))"
def main():
# NonLinear.plot()
SLE.print()
if __name__ == "__main__":
main()