Добавление информации о методах (№1) #2

Merged
stud128245 merged 42 commits from dev into master 2023-10-27 08:28:22 +00:00
Showing only changes of commit b39269901c - Show all commits

View File

@ -16,16 +16,16 @@ def plt_append(sp, x: list[float], y: list[float], label: str, format: str):
sp.plot(x, y, format, label=label)
def generate_array(min, max, density=10):
point_count = int(m.fabs(max-min)*density)
x = np.linspace(min, max, point_count)
return list(x.tolist())
class NonLinear:
bisect_exp = "x**2 * np.sin(x)"
newton_exp = "np.sin(x) * np.sqrt(np.abs(x))"
@staticmethod
def generate_array(min, max):
point_count = int(m.fabs(max-min))*10
x = np.linspace(min, max, point_count)
return list(x.tolist())
@staticmethod
def slice_array(range: list[float], val_min, val_max):
def index_search(range: list[float], val):
@ -54,7 +54,7 @@ class NonLinear:
def plot_bisect():
bounds = 0, 6
split_val = 1
x1 = NonLinear.generate_array(bounds[0], bounds[1])
x1 = generate_array(bounds[0], bounds[1])
x2 = NonLinear.slice_array(x1, split_val, None)
sp = create_subplot()
@ -65,9 +65,9 @@ class NonLinear:
plt_append(
sp, x1, sol1[0], f"Исходные данные (y={NonLinear.bisect_exp})", "-b")
plt_append(
sp, *(sol1[1]), f"bisect at [{bounds[0]},{bounds[1]}]", "or")
sp, *(sol1[1]), f"bisect на [{bounds[0]},{bounds[1]}]", "or")
plt_append(
sp, *(sol2[1]), f"bisect at [{split_val},{bounds[1]}]", "og")
sp, *(sol2[1]), f"bisect на [{split_val},{bounds[1]}]", "og")
sp.set_title("scipy.optimize.bisect")
sp.legend(loc='lower left')
@ -84,7 +84,7 @@ class NonLinear:
def plot_newton():
bounds = -2, 7
split_l, split_r = 2, 5
x1 = NonLinear.generate_array(bounds[0], bounds[1])
x1 = generate_array(bounds[0], bounds[1])
x2 = NonLinear.slice_array(x1, split_l, split_r)
x0_1, x0_2 = 1/100, 4
sp = create_subplot()
@ -95,9 +95,9 @@ class NonLinear:
plt_append(
sp, x1, sol1[0], f"Исходные данные (y={NonLinear.newton_exp})", "-b")
plt_append(
sp, *(sol1[1]), f"newton at [{bounds[0]},{bounds[1]}]", "or")
sp, *(sol1[1]), f"newton на отрезке [{bounds[0]},{bounds[1]}]", "or")
plt_append(
sp, *(sol2[1]), f"newton at [{split_l},{bounds[1]}]", "og")
sp, *(sol2[1]), f"newton на отрезке [{split_l},{bounds[1]}]", "og")
sp.set_title("scipy.optimize.newton")
sp.legend(loc='lower left')
@ -137,7 +137,8 @@ class SLE:
new_data = []
new_len = len(data[0][0])
zipped = list(zip(*tuple(data[0])))
zipped[len(zipped)-1] = (zipped[len(zipped)-1][0],zipped[len(zipped)-2][1])
zipped[len(zipped)-1] = (zipped[len(zipped)-1]
[0], zipped[len(zipped)-2][1])
complement_to = new_len - len(zipped[0])
for i, val in enumerate(zipped):
zero_r = complement_to - i
@ -159,7 +160,7 @@ class SLE:
if coef != 0:
print(f"({coef}{SLE.var_str(i_coef)}) + ", end='')
else:
print(f" {coef} + ",end='')
print(f" {coef} + ", end='')
print(f"({val[-1]}{SLE.var_str(len(val)-1)})", end='')
print(f" = {data[1][i]}")
@ -213,12 +214,215 @@ class SLE:
if method in ["banded", "all"]:
SLE.print_tridiagonal()
class Approx:
function = "np.sin(x) * np.sqrt(np.abs(x))"
function_exp = "np.sin(x) * np.sqrt(np.abs(x))"
least_sq_exp = "np.sin(x) * np.abs(x)"
@staticmethod
def get_function_exp_der(*args):
function_der_exp = "(x * np.sin(x) + 2 * x**2 * np.cos(x)) / (2 * np.sqrt(np.abs(x)) ** 3)"
result = ()
for i in args:
array = []
for x in i:
array.append(eval(function_der_exp))
result = result + (array,)
return result
@staticmethod
def generate_y(x_array, function):
result = []
for x in x_array:
result.append(eval(function))
return result
@staticmethod
def lagrange(x, y):
return sitp.lagrange(x, y)
@staticmethod
def get_approx_data(function=function_exp, bounds=[-6, 6]):
x1 = generate_array(bounds[0], bounds[1], 1/2)
x2 = generate_array(bounds[0], bounds[1], 1)
y1 = Approx.generate_y(x1, function)
y2 = Approx.generate_y(x2, function)
x_real = generate_array(bounds[0], bounds[1])
y_real = Approx.generate_y(x_real, function)
return x1, x2, y1, y2, x_real, y_real
@staticmethod
def plot_lagrange():
x1, x2, y1, y2, x_real, y_real = Approx.get_approx_data()
sp = create_subplot()
sol1 = np.polynomial.polynomial.Polynomial(
Approx.lagrange(x1, y1).coef[::-1])
sol2 = np.polynomial.polynomial.Polynomial(
Approx.lagrange(x2, y2).coef[::-1])
plt_append(
sp, x_real, y_real, f"Исходные данные (y={Approx.function_exp})", "--b")
plt_append(
sp, x_real, sol1(np.array(x_real)), f"f1 = lagrange, кол-во точек = {len(x1)}", "-m")
plt_append(
sp, x_real, sol2(np.array(x_real)), f"f2 = lagrange, кол-во точек = {len(x2)}", "-r")
plt_append(
sp, x1, y1, f"Исходные точки для f1", ".m")
plt_append(
sp, x2, y2, f"Исходные точки для f2", ".r")
sp.set_title("scipy.interpolate.lagrange")
sp.legend(loc='lower left')
@staticmethod
def plot_spline():
x1, x2, y1, y2, x_real, y_real = Approx.get_approx_data()
d1, d2 = Approx.get_function_exp_der(x1, x2)
for interpolator in [sitp.CubicSpline,
sitp.PchipInterpolator,
sitp.CubicHermiteSpline,
sitp.Akima1DInterpolator]:
sp = create_subplot()
if interpolator.__name__ != "CubicHermiteSpline":
args1 = x1, y1
args2 = x2, y2
else:
args1 = x1, y1, d1
args2 = x2, y2, d2
sol1 = interpolator(*args1)
sol2 = interpolator(*args2)
plt_append(
sp, x_real, y_real, f"Исходные данные (y={Approx.function_exp})", "--b")
plt_append(
sp, x_real, sol1(np.array(x_real)), f"f1 = {interpolator.__name__}, кол-во точек = {len(x1)}", "-m")
plt_append(
sp, x_real, sol2(np.array(x_real)), f"f2 = {interpolator.__name__}, кол-во точек = {len(x2)}", "-r")
plt_append(
sp, x1, y1, f"Исходные точки для f1", ".m")
plt_append(
sp, x2, y2, f"Исходные точки для f2", ".r")
sp.set_title(f"scipy.interpolate.{interpolator.__name__}")
sp.legend(loc='lower left')
@staticmethod
def linear(x, a, b):
return a*x + b
@staticmethod
def quadratic(x, a, b, c):
return a * (x**2) + (b*x) + c
@staticmethod
def fract(x, a, b, c):
return x / (a * x + b) - c
@staticmethod
def noise_y(y, rng):
diff = max(y) - min(y)
noise_coeff = diff*(10/100)
return y + (noise_coeff * rng.normal(size=len(y)))
@staticmethod
def plot_least_squares_curvefit():
rng = np.random.default_rng()
bounds = [3, 6]
x1, x2, y1, y2, x_real, y_real = Approx.get_approx_data(
Approx.least_sq_exp, bounds)
x_real = np.array(x_real)
y_real = Approx.noise_y(y_real, rng)
base_functions = [Approx.linear,
Approx.quadratic, (Approx.fract, "x/(ax+b)")]
sp = create_subplot()
plt_append(
sp, x_real, y_real, f"y={Approx.least_sq_exp} на [{bounds[0]};{bounds[1]}], с шумом", ".b")
for bf in base_functions:
if isinstance(bf, tuple):
bf, desc = bf[0], bf[1]
else:
bf, desc = bf, None
optimal_params, _ = sopt.curve_fit(bf, x_real, y_real)
desc_str = f" ({desc}) " if desc is not None else ""
plt_append(
sp, x_real, bf(np.array(x_real), *optimal_params),
f"МНК, вид функции - {bf.__name__}{desc_str}", "-")
sp.set_title(f"scipy.optimize.curve_fit")
sp.legend(loc='lower left')
@staticmethod
def plot_least_squares():
rng = np.random.default_rng()
def exponential(x, a, b, c):
return np.sin(x) * np.sqrt(np.abs(x))
exponential.str = "np.sin(x) * np.sqrt(np.abs(x))"
def gen_y(x, a, b, c, noise=0., n_outliers=0):
y = exponential(x, a, b, c)
error = noise * rng.standard_normal(x.size)
outliers = rng.integers(0, x.size, n_outliers)
error[outliers] *= 10
return y + error
def loss(params, x, y):
return (exponential(x, params[0], params[1], params[2])) - y
params0 = np.array([0.1, 1, 0])
bounds = [-5, 3]
params_real = (3, 1, 5)
x_approx = np.array(generate_array(bounds[0], bounds[1], 4))
y_approx = np.array(gen_y(x_approx, *params_real,
noise=0.3, n_outliers=4))
params_lsq = sopt.least_squares(
loss, params0, loss='linear', args=(x_approx, y_approx)).x
params_soft_l1 = sopt.least_squares(
loss, params0, loss='soft_l1', args=(x_approx, y_approx),f_scale=0.1).x
params_cauchy = sopt.least_squares(
loss, params0, loss='cauchy', args=(x_approx, y_approx), f_scale=2).x
x_real = np.array(generate_array(bounds[0], bounds[1]))
y_real = np.array(gen_y(x_real, *params_real, 0, 0))
sp = create_subplot()
sp.plot(x_real, y_real, "-b",
label=f"y={exponential.str} на [{bounds[0]};{bounds[1]}]")
sp.plot(x_approx, y_approx, ".r", label=f"Табличные значения с шумом")
sp.plot(x_real, gen_y(x_real, *params_lsq), color="green",
label=f"loss=\"linear\"", linestyle=(0, (5, 10)))
sp.plot(x_real, gen_y(x_real, *params_soft_l1), color="magenta",
label=f"loss=\"soft_l1\"", linestyle=(5, (5, 10)))
sp.plot(x_real, gen_y(x_real, *params_cauchy), color="black",
label=f"loss=\"cauchy\"", linestyle=(7, (5, 10)))
sp.set_title(f"scipy.optimize.least_squares")
sp.legend(loc='lower left')
@staticmethod
def plot(method: str = "all"):
if method in ["lagrange", "all"]:
Approx.plot_lagrange()
if method in ["spline", "all"]:
Approx.plot_spline()
if method in ["least_squares_curvefit", "all"]:
Approx.plot_least_squares_curvefit()
if method in ["least_squares", "all"]:
Approx.plot_least_squares()
plt.ylabel("y")
plt.xlabel("x")
plt.show()
def main():
# NonLinear.plot()
NonLinear.plot()
SLE.print()
Approx.plot()
if __name__ == "__main__":