Add code with non-LE test

This commit is contained in:
AVAtarMod 2023-10-15 16:29:44 +03:00
parent 0f23ddeecc
commit 5f0e792396
Signed by: stud128245
GPG Key ID: 43198AE4D0774328

121
code/main.py Normal file
View File

@ -0,0 +1,121 @@
import scipy.integrate as sitg
import scipy.interpolate as sitp
import scipy.optimize as sopt
import scipy.linalg as salg
import math as m
import numpy as np
import matplotlib.pyplot as plt
def create_subplot():
return plt.subplots(layout='constrained')[1]
class NonLinear:
bisect_exp = "x**2 * np.sin(x)"
newton_exp = "np.sin(x) * np.sqrt(np.abs(x))"
@staticmethod
def generate_array(min, max):
point_count = int(m.fabs(max-min))*10
x = np.linspace(min, max, point_count)
return list(x.tolist())
@staticmethod
def slice_array(range: list[float], val_min, val_max):
def index_search(range: list[float], val):
i = 0
for v in range:
if v >= val:
return i
i += 1
return -1
index_l = index_search(
range, val_min) if val_min is not None else range.index(min(range))
index_r = index_search(
range, val_max) if val_max is not None else range.index(max(range))
return range[index_l:index_r+1]
@staticmethod
def plt_append(sp, x: list[float], y: list[float], label: str, format: str):
sp.plot(x, y, format, label=label)
@staticmethod
def bisect(x, x_min, x_max):
def f(x): return eval(NonLinear.bisect_exp)
y = f(np.array(x))
root = sopt.bisect(f, x_min, x_max)
solution = root[0] if root is tuple else root
return list(y), (float(solution), float(f(solution)))
@staticmethod
def plot_bisect():
bounds = 0, 6
split_val = 1
x1 = NonLinear.generate_array(bounds[0], bounds[1])
x2 = NonLinear.slice_array(x1, split_val, None)
sp = create_subplot()
sol1 = NonLinear.bisect(x1, bounds[0], bounds[1])
sol2 = NonLinear.bisect(x2, split_val, bounds[1])
NonLinear.plt_append(
sp, x1, sol1[0], f"Исходные данные (y={NonLinear.bisect_exp})", "-b")
NonLinear.plt_append(
sp, *(sol1[1]), f"bisect at [{bounds[0]},{bounds[1]}]", "or")
NonLinear.plt_append(
sp, *(sol2[1]), f"bisect at [{split_val},{bounds[1]}]", "og")
sp.set_title("scipy.optimize.bisect")
sp.legend(loc='lower left')
@staticmethod
def newton(x, x0):
def f(x): return eval(NonLinear.bisect_exp)
y = f(np.array(x))
root = sopt.newton(f, x0)
solution = root[0] if root is tuple else root
return list(y), (float(solution), float(f(solution)))
@staticmethod
def plot_newton():
bounds = -2, 7
split_l, split_r = 2, 5
x1 = NonLinear.generate_array(bounds[0], bounds[1])
x2 = NonLinear.slice_array(x1, split_l, split_r)
x0_1, x0_2 = 1/100, 4
sp = create_subplot()
sol1 = NonLinear.newton(x1, x0_1)
sol2 = NonLinear.newton(x2, x0_2)
NonLinear.plt_append(
sp, x1, sol1[0], f"Исходные данные (y={NonLinear.newton_exp})", "-b")
NonLinear.plt_append(
sp, *(sol1[1]), f"newton at [{bounds[0]},{bounds[1]}]", "or")
NonLinear.plt_append(
sp, *(sol2[1]), f"newton at [{split_l},{bounds[1]}]", "og")
sp.set_title("scipy.optimize.newton")
sp.legend(loc='lower left')
@staticmethod
def plot(method: str = "all"):
if method in ["bisect", "all"]:
NonLinear.plot_bisect()
if method in ["newton", "all"]:
NonLinear.plot_newton()
plt.ylabel("y")
plt.xlabel("x")
plt.show()
def main():
NonLinear.plot()
if __name__ == "__main__":
main()