Fix punctuation; style. Replace math symbols

This commit is contained in:
AVAtarMod 2023-08-15 12:20:32 +03:00
parent d6d49c20c8
commit 5ab4a6e67c
Signed by: stud128245
GPG Key ID: 43198AE4D0774328

View File

@ -27,20 +27,20 @@
\section{Численное решение нелинейных уравнений}
При решении некоторых практических задач или проведении исследований
может быть получена математическая модель, которая включает
непрерывную функцию \(F(x), x \in \Re\), и необходимо определить корни уравнения
непрерывную функцию \(F(x), x \in \textbf{R}\), и необходимо определить корни уравнения
\(F(x) = 0\). Если данное уравнение не имеет вид \(ax + b = 0\),
где \(a,b\) -- константы, то оно будет нелинейным.
Для решения нелинейных уравнений существует несколько методов, в данной работе будут рассмотрены итерационные.
Каждый из итерационных методов, перечисленных ниже, соответствует
следующему алгоритму из двух этапов \cite[с. 15]{book:nm-examples}:
следующему алгоритму из двух этапов \cite[с. 15]{book:nm-examples}.
\begin{enumerate}
\item отыскание приближенного значения корня или содержащего
его отрезка;
\item уточнения значения до некоторой степени точности.
\item Отыскание приближенного значения корня или содержащего
его отрезка.
\item Уточнения значения до некоторой степени точности.
\end{enumerate}
Начальное приближение определяется исходя из физических соображений
Начальное приближение определяется, исходя из физических соображений
решений похожих задач или графических методов. Если ни один из этих
способов не доступен или не позволяет получить начальное приближение,
удовлетворяющее требованиям, то применяют следующий алгоритм
@ -54,7 +54,10 @@
отрезка.
\end{enumerate}
Так как выполняется условие \(F(a) \cdot F(b) < 0\) и \(F(x)\) непрерывна, то обязательно найдется такое \(x_k \in (a,b)\), что \(F(x_k) = 0\) либо \(|F(x_k)| < \epsilon\), где \(\epsilon\) --- погрешность искомого решения.
Так как выполняется условие \(F(a) \cdot F(b) < 0\) и \(F(x)\)
непрерывна, то обязательно найдется такое \(x_k \in (a,b)\), что
\(F(x_k) = 0\) либо \(|F(x_k)| < \varepsilon\), где \(\varepsilon\)
--- погрешность искомого решения.
\subsection{Метод деления отрезка пополам}
Данный метод использует технику поиска решения, похожую на бинарный
поиск.
@ -65,11 +68,13 @@
применяем следующий алгоритм:
\begin{enumerate}
\item Рассмотрим отрезки \([a;x_i], [x_i;b]\), \(i = 0 \dots k\)
--- номер итерации. На первой итерации \(i = 0\). \label{list:hls_begin}
--- номер итерации. На первой итерации \(i = 0\).
\label{list:hls_begin}
\item Из рассмотренных отрезков берем те, что удовлетворяют условию
\(F(a) \cdot F(b) < 0\), где \(a,b\) --- границы отрезка. \label{list:hls_test}
\(F(a) \cdot F(b) < 0\), где \(a,b\) --- границы отрезка.
\label{list:hls_test}
\item Для каждого из взятых в п.\ref{list:hls_test} отрезков
вычисляем их длину \(l\). Если \(l < \epsilon\),
вычисляем их длину \(l\). Если \(l < \varepsilon\),
тогда дальнейшее выполнение данного алгоритма для данного
отрезка прекращается. За решение уравнения принимается
число \((a+b)/2\), округленное с учетом заданной погрешности.
@ -79,14 +84,16 @@
устанавливаем значения
\(a,b,x_{i+1}\). Для левого отрезка эти значения будут равны
\(a = a,b = x_i,x_{i+1} = (a+x_i)/2\), для правого ---
\(a = x_i,b = b,x_{i+1} = (b+x_i)/2\). \label{list:hls_prepare}
\item Для каждого из взятых отрезков переходим к п.\ref{list:hls_begin},
с увеличением номера итерации на \(1\) и установленными
относительно взятого отрезка значениями из п.\ref{list:hls_prepare}.
\(a = x_i,b = b,x_{i+1} = (b+x_i)/2\).
\label{list:hls_prepare}
\item Для каждого из взятых отрезков переходим к
п.\ref{list:hls_begin}, с увеличением номера итерации
на \(1\) и установленными относительно взятого
отрезка значениями из п.\ref{list:hls_prepare}.
\end{enumerate}
После применение метода на заданных входных данных получим множество
решений уравнения \(Ans = \{x, x \in \Re\}, |Ans| \geq 1\).
решений уравнения \(Ans = \{x, x \in \textbf{R}\}, |Ans| \geq 1\).
\subsubsection{Реализации метода в библиотеках numpy, scipy}
Библиотека scipy содержит функцию \textbf{bisect} из модуля
\textbf{scipy.optimize} \cite{links:scipy_doc}, которая реализует
@ -96,8 +103,9 @@
\begin{enumerate}
\item \(f\) --- function
Функция Python, возвращающая число. \(f\) должна быть непрерывной, а \(f(a)\) и \(f(b)\) должны иметь противоположные знаки.
Функция Python, возвращающая число.\(f\) должна быть
непрерывной, а \(f(a)\) и \(f(b)\) должны иметь
противоположные знаки.
\item \(a\) --- scalar
Первый конец интервала \([a,b]\).
@ -106,22 +114,36 @@
Второй конец интервала \([a,b]\).
\item \(xtol\) --- number, необязательный
Вычисленный корень \(x0\) будет удовлетворять \verb|np.allclose(x, x0,| \verb|atol=xtol,| \verb|rtol=rtol)|, где \(x\) --- точный корень. Параметр должен быть положительным.
Вычисленный корень \(x0\) будет удовлетворять
\verb|np.allclose(x, x0,| \verb|atol=xtol,|
\verb|rtol=rtol)|, где \(x\) --- точный корень.
Параметр должен быть положительным.
\item \(rtol\) --- number, необязательный
Вычисленный корень \(x0\) будет удовлетворять \verb|np.allclose(x, x0,| \verb|atol=xtol, rtol=rtol)|, где \(x\) --- точный корень. Параметр не может быть меньше значения по умолчанию \verb|4*np.finfo(float).eps|.
Вычисленный корень \(x0\) будет удовлетворять
\verb|np.allclose(x, x0,| \verb|atol=xtol, rtol=rtol)|,
где \(x\) --- точный корень. Параметр не может быть
меньше значения по умолчанию \verb|4*np.finfo(float).eps|.
\item \(maxiter\) --- int, необязательный
Если сходимость не достигается в итерациях \(maxiter\), возникает ошибка. Должен быть \(\geq 0\).
Если сходимость не достигается в итерациях \(maxiter\),
возникает ошибка. Должен быть \(\geq 0\).
\item \(args\) --- tuple, необязательный
Содержит дополнительные аргументы для функции \(f\). \(f\) вызывается с помощью \verb|apply(f, (x)+args)|.
Содержит дополнительные аргументы для функции \(f\).
\(f\) вызывается с помощью \verb|apply(f, (x)+args)|.
\item \(full\_output\) --- bool, необязательный
Если \(full\_output\) имеет значение \verb|False|, возвращается корень. Если \(full\_output\) имеет значение \verb|True|, возвращаемое значение равно \verb|(x, r)|, где \(x\) --- это корень, а \(r\) --- объект \verb|RootResults|.
Если \(full\_output\) имеет значение \verb|False|,
возвращается корень. Если \(full\_output\) имеет значение
\verb|True|, возвращаемое значение равно \verb|(x, r)|, где
\(x\) --- это корень, а \(r\) --- объект \verb|RootResults|.
\item \(disp\) --- bool, необязательный
Если \verb|True|, будет сгенерировано исключение \verb|RuntimeError|, если алгоритм не сошелся. В противном случае статус сходимости записывается в возвращаемый объект \verb|RootResults|.
Если \verb|True|, будет сгенерировано исключение
\verb|RuntimeError|, если алгоритм не сошелся. В противном
случае статус сходимости записывается в возвращаемый объект
\verb|RootResults|.
\end{enumerate}
\subsection{Метод Ньютона (метод касательных)}