import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation import matplotlib.patches as patches import librosa import random import pandas as pd import threading import time from dataclasses import dataclass # Константы SOUND_SPEED = 343.2 # скорость звука (м/с) MIC_DISTANCE = 0.06 # расстояние между микрофонами (м) ROOM_WIDTH = 3.0 # ширина комнаты (м) ROOM_HEIGHT = 2.0 # высота комнаты (м) SAMPLE_RATE = 48000 # частота дискретизации (Гц) CHUNK = 16384 # размер буфера RMS_THRESHOLD = 0.1 # порог RMS для определения звука SILENCE_TIMEOUT = 0.5 # время в секундах для сохранения последнего угла MOVE_INTERVAL = 0.5 # интервал перемещения источника звука (с) @dataclass class Microphone: """Класс для хранения информации о микрофоне""" x: float y: float @dataclass class SoundSource: """Класс для хранения информации об источнике звука""" x: float y: float class DirectionFinder: def __init__(self, mic_distance: float, audio_file: str): """Инициализация определителя направления""" self.mic_distance = mic_distance self.mic1 = Microphone(x=-mic_distance / 2, y=0.0) self.mic2 = Microphone(x=mic_distance / 2, y=0.0) self.sound_source = self._generate_sequential_sound_source() self.running = True self.current_angle = 0.0 self.sound_detected = False self.last_sound_time = 0 self.last_detected_angle = None self.show_arrow = False self.rms_left = 0.0 self.rms_right = 0.0 self.audio_data, self.sample_rate = self.load_audio(audio_file) self.audio_index = 0 self.noise_level = 0.001 # Уровень шума self.results = [] self.source_positions = [(self.sound_source.x, self.sound_source.y, 0.0)] self.last_move_time = time.time() self.max_physical_delay = self.mic_distance / SOUND_SPEED # Максимальная физическая задержка def _generate_sequential_sound_source(self) -> SoundSource: """Генерация положения источника звука с последовательным проходом углов от -90 до 90 градусов с шагом 20 градусов""" if not hasattr(self, 'angle_ranges'): self.angle_ranges = list(range(-90, 91, 20)) self.current_range_idx = 0 self.angle_count = 0 start_angle = self.angle_ranges[self.current_range_idx] end_angle = start_angle + 20 if self.current_range_idx < len(self.angle_ranges) - 1 else 90 angle_deg = random.uniform(start_angle, end_angle) angle_rad = np.radians(angle_deg) distance = 1.5 # расстояние source_x = distance * np.sin(angle_rad) source_y = distance * np.cos(angle_rad) if abs(source_x) > ROOM_WIDTH / 2: scale = (ROOM_WIDTH / 2) / abs(source_x) source_x *= scale source_y *= scale if source_y > ROOM_HEIGHT: scale = ROOM_HEIGHT / source_y source_x *= scale source_y *= scale if source_y < 0: source_y = 0.0 source_x = 0.0 print( f"Генерация новой позиции: угол={angle_deg:.2f}°, x={source_x:.2f}, y={source_y:.2f}, расстояние={distance:.2f}, повторение {self.angle_count + 1}/10") self.angle_count += 1 if self.angle_count >= 10: # кол-во проходов в диапозоне self.angle_count = 0 self.current_range_idx = (self.current_range_idx + 1) % len(self.angle_ranges) return SoundSource(x=source_x, y=source_y) def load_audio(self, filename: str) -> tuple: """Загрузка аудиофайла""" try: audio_data, sample_rate = librosa.load(filename, sr=SAMPLE_RATE, mono=True) return audio_data, sample_rate except Exception as e: raise ValueError(f"Ошибка загрузки аудиофайла: {e}") def calculate_distances(self) -> tuple: """Расчет расстояний от источника звука до микрофонов""" l1 = np.sqrt((self.sound_source.x - self.mic1.x) ** 2 + (self.sound_source.y - self.mic1.y) ** 2) l2 = np.sqrt((self.sound_source.x - self.mic2.x) ** 2 + (self.sound_source.y - self.mic2.y) ** 2) return l1, l2 def process_signals_with_delay(self, signal: np.ndarray) -> tuple: """Обработка сигналов с учетом временного сдвига и шума""" l1, l2 = self.calculate_distances() t1 = l1 / SOUND_SPEED t2 = l2 / SOUND_SPEED log = int(self.sample_rate * (t2 - t1)) if log >= 0: S1 = signal[abs(log):] if log != 0 else signal.copy() S2 = signal[:-abs(log)] if log != 0 else signal.copy() else: S1 = signal[:-abs(log)] if log != 0 else signal.copy() S2 = signal[abs(log):] min_length = min(len(S1), len(S2)) S1 = S1[:min_length] S2 = S2[:min_length] noise1 = np.random.normal(0, self.noise_level, size=S1.shape) noise2 = np.random.normal(0, self.noise_level, size=S2.shape) S1 = S1 + noise1 S2 = S2 + noise2 return S1, S2, t1, t2 def capture_audio(self): """Эмуляция захвата аудиоданных из файла""" if self.audio_index + CHUNK >= len(self.audio_data): self.audio_index = 0 chunk = self.audio_data[self.audio_index:self.audio_index + CHUNK] self.audio_index += CHUNK signal1, signal2, t1, t2 = self.process_signals_with_delay(chunk) return signal1, signal2, t1, t2 def calculate_time_delay_fft(self, signal1: np.ndarray, signal2: np.ndarray) -> float: """Расчет временной задержки через FFT с параболической интерполяцией""" signal1 = (signal1 - np.mean(signal1)) / (np.std(signal1) + 1e-10) signal2 = (signal2 - np.mean(signal2)) / (np.std(signal2) + 1e-10) fft_signal1 = np.fft.rfft(signal1) fft_signal2 = np.fft.rfft(signal2) cross_spectrum = fft_signal1 * np.conj(fft_signal2) cross_spectrum = cross_spectrum / (np.abs(cross_spectrum) + 1e-10) correlation = np.fft.irfft(cross_spectrum) correlation = np.roll(correlation, len(correlation) // 2) max_delay_samples = int(self.max_physical_delay * self.sample_rate) middle_point = len(correlation) // 2 start_idx = middle_point - max_delay_samples end_idx = middle_point + max_delay_samples max_correlation_idx = start_idx + np.argmax(correlation[start_idx:end_idx]) peak_value = correlation[max_correlation_idx] if peak_value < 0.1: # Игнорирование RMS до... return 0.0 # Параболическая интерполяция if max_correlation_idx > start_idx and max_correlation_idx < end_idx - 1: y0 = correlation[max_correlation_idx - 1] y1 = correlation[max_correlation_idx] y2 = correlation[max_correlation_idx + 1] denom = 2 * (y0 - 2 * y1 + y2) if denom != 0: delta = (y0 - y2) / denom max_correlation_idx += delta delay_samples = max_correlation_idx - middle_point time_delay = delay_samples / self.sample_rate time_delay = np.clip(time_delay, -self.max_physical_delay, self.max_physical_delay) return time_delay def calculate_direction(self, time_delay: float) -> float: """Расчет угла направления""" sin_theta = (SOUND_SPEED * time_delay) / self.mic_distance sin_theta = np.clip(sin_theta, -1, 1) angle = np.arcsin(sin_theta) * 180 / np.pi return angle def calculate_rms(self, signal: np.ndarray) -> float: """Вычисление RMS сигнала""" return np.sqrt(np.mean(signal ** 2)) def run(self): """Обработка аудио в реальном времени""" while self.running: current_time = time.time() if current_time - self.last_move_time >= MOVE_INTERVAL: self.sound_source = self._generate_sequential_sound_source() self.source_positions.append((self.sound_source.x, self.sound_source.y, current_time)) print(f"Источник звука перемещен в: x={self.sound_source.x:.2f}, y={self.sound_source.y:.2f}") self.last_move_time = current_time left, right, t1, t2 = self.capture_audio() self.rms_left = self.calculate_rms(left) self.rms_right = self.calculate_rms(right) signal_diff = np.mean(np.abs(left - right)) new_sound_detected = (self.rms_left > RMS_THRESHOLD) and (self.rms_right > RMS_THRESHOLD) if new_sound_detected: print(f"RMS left: {self.rms_left:.4f}, RMS right: {self.rms_right:.4f}") print(f"Signal difference: {signal_diff:.4f}") time_delay = self.calculate_time_delay_fft(left, right) print(f"Time delay: {time_delay * 1000:.2f} ms") angle = self.calculate_direction(time_delay) print(f"Calculated angle: {angle:.1f}°") self.current_angle = angle self.last_detected_angle = self.current_angle self.last_sound_time = current_time self.sound_detected = True self.show_arrow = True true_dx = self.sound_source.x true_dy = self.sound_source.y true_angle = np.arctan2(true_dx, true_dy) * 180 / np.pi self.results.append({ 't1 (ms)': t1 * 1000, 't2 (ms)': t2 * 1000, 'Time Delay (ms)': time_delay * 1000, 'Detected Angle (°)': self.current_angle, 'True Angle (°)': true_angle, 'Source X': self.sound_source.x, 'Source Y': self.sound_source.y }) else: if self.last_detected_angle is not None and current_time - self.last_sound_time < SILENCE_TIMEOUT: self.sound_detected = False self.show_arrow = True else: self.sound_detected = False self.show_arrow = False time.sleep(CHUNK / self.sample_rate) def get_coordinates_dataframe(self): """Создание датафрейма с координатами микрофонов и всех позиций источника""" data = { 'Object': ['Mic1', 'Mic2'] + [f'SoundSource_{i}' for i in range(len(self.source_positions))], 'X': [self.mic1.x, self.mic2.x] + [pos[0] for pos in self.source_positions], 'Y': [self.mic1.y, self.mic2.y] + [pos[1] for pos in self.source_positions], 'Time': [0.0, 0.0] + [pos[2] for pos in self.source_positions] } return pd.DataFrame(data) def get_results_dataframe(self): """Создание датафрейма с результатами""" return pd.DataFrame(self.results) def main(): try: finder = DirectionFinder(MIC_DISTANCE, "my_recording1.wav") print("Аудиофайл загружен, частота дискретизации:", finder.sample_rate) thread = threading.Thread(target=finder.run) thread.start() fig, ax = plt.subplots(figsize=(9, 6)) ax.set_xlim(-ROOM_WIDTH / 2, ROOM_WIDTH / 2) ax.set_ylim(-0.5, ROOM_HEIGHT) ax.set_aspect('equal') ax.set_title("Определение направления на источник звука", fontsize=12) ax.set_xlabel("X (м)", fontsize=10) ax.set_ylabel("Y (м)", fontsize=10) ax.grid(True) ax.plot(finder.mic1.x, finder.mic1.y, 'bs', markersize=12, label='Микрофон 1') ax.plot(finder.mic2.x, finder.mic2.y, 'bs', markersize=12, label='Микрофон 2') source_plot, = ax.plot(finder.sound_source.x, finder.sound_source.y, 'ro', markersize=12, label='Источник звука') arrow_length = min(ROOM_WIDTH, ROOM_HEIGHT) / 4 arrow = ax.arrow(0, 0, 0, 0, head_width=0.2, head_length=0.3, fc='r', ec='r', label='Расчетное направление') arrow_true = ax.arrow(0, 0, 0, 0, head_width=0.2, head_length=0.3, fc='g', ec='g', linestyle=':', label='Истинное направление') sound_bar = ax.axhline(y=ROOM_HEIGHT - 1, color='green', linewidth=15, visible=False) angle_text = ax.text(0, ROOM_HEIGHT - 0.3, "", ha='center', va='center', fontsize=10) left_indicator = patches.Rectangle((finder.mic1.x - 0.03, -0.15), 0.06, 0.08, facecolor='gray') right_indicator = patches.Rectangle((finder.mic2.x - 0.03, -0.15), 0.06, 0.08, facecolor='gray') ax.add_patch(left_indicator) ax.add_patch(right_indicator) def update(frame): source_plot.set_data([finder.sound_source.x], [finder.sound_source.y]) dx = finder.sound_source.x dy = finder.sound_source.y true_angle_rad = np.arctan2(dx, dy) true_end_x = arrow_length * np.sin(true_angle_rad) true_end_y = arrow_length * np.cos(true_angle_rad) arrow_true.set_data(x=0, y=0, dx=true_end_x, dy=true_end_y) if finder.show_arrow: angle = finder.current_angle calc_angle_rad = np.radians(angle) calc_end_x = arrow_length * np.sin(calc_angle_rad) calc_end_y = arrow_length * np.cos(calc_angle_rad) arrow.set_data(x=0, y=0, dx=calc_end_x, dy=calc_end_y) angle_text.set_text(f"Расчетный угол: {angle:.1f}°\nИстинный угол: {np.degrees(true_angle_rad):.1f}°") if finder.sound_detected: sound_bar.set_visible(True) ax.set_title("Активное обнаружение звука", fontsize=12) else: sound_bar.set_visible(False) ax.set_title("Последнее зафиксированное направление", fontsize=12) else: arrow.set_data(x=0, y=0, dx=0, dy=0) angle_text.set_text("") sound_bar.set_visible(False) ax.set_title("Звук не обнаружен", fontsize=12) left_indicator.set_facecolor('green' if finder.rms_left > RMS_THRESHOLD else 'gray') right_indicator.set_facecolor('green' if finder.rms_right > RMS_THRESHOLD else 'gray') return [source_plot, arrow, arrow_true, sound_bar, left_indicator, right_indicator, angle_text] ani = FuncAnimation(fig, update, frames=None, interval=10, blit=True, cache_frame_data=False) plt.legend(loc='upper left', fontsize=8) plt.tight_layout() plt.show() finder.running = False thread.join() coords_df = finder.get_coordinates_dataframe() results_df = finder.get_results_dataframe() print("\nКоординаты микрофонов и всех позиций источника звука:") print(coords_df.to_string(index=False)) print("\nРезультаты вычислений:") print(results_df.to_string(index=False)) coords_df.to_csv('coordinates.csv', index=False) results_df.to_csv('results.csv', index=False) print("\nДанные сохранены в 'coordinates.csv' и 'results.csv'") except Exception as e: print(f"Ошибка: {e}") if __name__ == "__main__": main()