import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation import matplotlib.patches as patches import librosa import random import pandas as pd import threading import time import os from dataclasses import dataclass from sklearn.ensemble import GradientBoostingRegressor from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from scipy.interpolate import interp1d from scipy.signal import windows import joblib # Константы SOUND_SPEED = 343.2 # скорость звука (м/с) MIC_DISTANCE = 0.06 # расстояние между микрофонами (м) ROOM_WIDTH = 3.0 # ширина комнаты (м) ROOM_HEIGHT = 2.0 # высота комнаты (м) SAMPLE_RATE = 48000 # частота дискретизации (Гц) CHUNK = 32768 # размер буфера RMS_THRESHOLD = 0.01 # порог RMS для определения звука SILENCE_TIMEOUT = 0.5 # время в секундах для сохранения последнего угла MOVE_INTERVAL = 0.5 # интервал перемещения источника звука (с) CORR_WINDOW_SIZE = 15 # Размер окна корреляции (±15 значений, всего 31) MODEL_PATH = "gradient_boosting_model2.pkl" # Путь для сохранения/загрузки модели @dataclass class Microphone: """Класс для хранения информации о микрофоне""" x: float y: float @dataclass class SoundSource: """Класс для хранения информации об источнике звука""" x: float y: float class TreeRegressionDirectionFinder: def __init__(self, mic_distance: float, audio_file: str, retrain_model: bool = False): """Инициализация определителя направления с использованием регрессии градиентным бустингом""" self.mic_distance = mic_distance self.mic1 = Microphone(x=-mic_distance / 2, y=0.0) self.mic2 = Microphone(x=mic_distance / 2, y=0.0) self.angles = np.arange(-90, 91, 10) self.current_angle_idx = 0 self.current_repetition = 0 self.sound_source = self._generate_sequential_sound_source() self.running = True self.current_angle = 0.0 self.sound_detected = False self.last_sound_time = 0 self.last_detected_angle = None self.show_arrow = False self.rms_left = 0.0 self.rms_right = 0.0 self.audio_data, self.sample_rate = self.load_audio(audio_file) self.audio_index = 0 self.noise_level = 0.001 self.results = [] self.source_positions = [(self.sound_source.x, self.sound_source.y, 0.0)] self.last_move_time = time.time() self.max_physical_delay = self.mic_distance / SOUND_SPEED self.model = self.load_or_train_model(retrain_model) print("TreeRegressionDirectionFinder инициализирован") def _generate_random_sound_source_for_training(self) -> SoundSource: """Генерация случайного положения источника звука для обучения""" x = random.uniform(-ROOM_WIDTH / 2, ROOM_WIDTH / 2) y = random.uniform(0, ROOM_HEIGHT) return SoundSource(x=x, y=y) def _generate_sequential_sound_source(self) -> SoundSource: """Генерация положения источника звука с последовательным проходом углов от -90 до 90 градусов с шагом 20 градусов""" if not hasattr(self, 'angle_ranges'): self.angle_ranges = list(range(-90, 91, 20)) self.current_range_idx = 0 self.angle_count = 0 start_angle = self.angle_ranges[self.current_range_idx] end_angle = start_angle + 20 if self.current_range_idx < len(self.angle_ranges) - 1 else 90 angle_deg = random.uniform(start_angle, end_angle) angle_rad = np.radians(angle_deg) distance = 1.5 # расстояние source_x = distance * np.sin(angle_rad) source_y = distance * np.cos(angle_rad) if abs(source_x) > ROOM_WIDTH / 2: scale = (ROOM_WIDTH / 2) / abs(source_x) source_x *= scale source_y *= scale if source_y > ROOM_HEIGHT: scale = ROOM_HEIGHT / source_y source_x *= scale source_y *= scale if source_y < 0: source_y = 0.0 source_x = 0.0 print( f"Тестирование: Генерация новой позиции: угол={angle_deg:.2f}°, x={source_x:.2f}, y={source_y:.2f}, расстояние={distance:.2f}, повторение {self.angle_count + 1}/10") self.angle_count += 1 if self.angle_count >= 10: # кол-во в зоне self.angle_count = 0 self.current_range_idx = (self.current_range_idx + 1) % len(self.angle_ranges) return SoundSource(x=source_x, y=source_y) def load_audio(self, filename: str) -> tuple: """Загрузка аудиофайла с нормализацией""" try: audio_data, sample_rate = librosa.load(filename, sr=SAMPLE_RATE, mono=True) rms = np.sqrt(np.mean(audio_data ** 2)) if rms > 0: audio_data = audio_data / rms * 0.1 print(f"RMS аудиозаписи: {rms:.4f}, после нормализации: {np.sqrt(np.mean(audio_data ** 2)):.4f}") return audio_data, sample_rate except Exception as e: raise ValueError(f"Ошибка загрузки аудиофайла: {e}") def get_audio_chunk(self) -> np.ndarray: """Получение случайного фрагмента аудио размером CHUNK с аугментацией""" max_index = max(0, len(self.audio_data) - CHUNK) start_idx = random.randint(0, max_index) chunk = self.audio_data[start_idx:start_idx + CHUNK] if len(chunk) < CHUNK: chunk = np.pad(chunk, (0, CHUNK - len(chunk)), mode='constant') scale = np.random.uniform(0.8, 1.2) chunk = chunk * scale chunk += np.random.normal(0, 0.0005, chunk.shape) return chunk def calculate_distances(self, source: SoundSource) -> tuple: """Расчет расстояний от источника звука до микрофонов""" l1 = np.sqrt((source.x - self.mic1.x) ** 2 + (source.y - self.mic1.y) ** 2) l2 = np.sqrt((source.x - self.mic2.x) ** 2 + (source.y - self.mic2.y) ** 2) return l1, l2 def process_signals_with_delay(self, signal: np.ndarray, source: SoundSource) -> tuple: """Обработка сигналов с учетом временного сдвига и шума""" l1, l2 = self.calculate_distances(source) t1 = l1 / SOUND_SPEED t2 = l2 / SOUND_SPEED time_points = np.arange(len(signal)) / self.sample_rate interp_func = interp1d(time_points, signal, kind='linear', fill_value="extrapolate") S1 = interp_func(time_points - t1) S2 = interp_func(time_points - t2) min_length = min(len(S1), len(S2)) S1, S2 = S1[:min_length], S2[:min_length] noise1 = np.random.normal(0, self.noise_level, S1.shape) noise2 = np.random.normal(0, self.noise_level, S2.shape) S1 += noise1 S2 += noise2 return S1, S2, t1, t2 def capture_audio(self): """Эмуляция захвата аудиоданных из файла""" if self.audio_index + CHUNK >= len(self.audio_data): self.audio_index = 0 chunk = self.audio_data[self.audio_index:self.audio_index + CHUNK] self.audio_index += CHUNK signal1, signal2, t1, t2 = self.process_signals_with_delay(chunk, self.sound_source) return signal1, signal2, t1, t2 def calculate_rms(self, signal: np.ndarray) -> float: """Вычисление RMS сигнала""" return np.sqrt(np.mean(signal ** 2)) def calculate_time_delay_fft(self, signal1: np.ndarray, signal2: np.ndarray) -> tuple: """Расчет временной задержки и отрезка корреляции через GCC-PHAT""" window = windows.hann(len(signal1)) signal1 = (signal1 - np.mean(signal1)) / (np.std(signal1) + 1e-10) * window signal2 = (signal2 - np.mean(signal2)) / (np.std(signal2) + 1e-10) * window fft_signal1 = np.fft.rfft(signal1) fft_signal2 = np.fft.rfft(signal2) cross_spectrum = fft_signal1 * np.conj(fft_signal2) cross_spectrum = cross_spectrum / (np.abs(cross_spectrum) + 1e-10) correlation = np.fft.irfft(cross_spectrum, n=len(signal1) * 2) correlation = np.roll(correlation, len(correlation) // 2) max_delay_samples = int(self.max_physical_delay * self.sample_rate * 1.5) middle_point = len(correlation) // 2 start_idx = middle_point - max_delay_samples end_idx = middle_point + max_delay_samples max_correlation_idx = start_idx + np.argmax(correlation[start_idx:end_idx]) corr_start = max(start_idx, max_correlation_idx - CORR_WINDOW_SIZE) corr_end = min(end_idx, max_correlation_idx + CORR_WINDOW_SIZE + 1) correlation_segment = correlation[corr_start:corr_end] target_length = 2 * CORR_WINDOW_SIZE + 1 if len(correlation_segment) < target_length: correlation_segment = np.pad(correlation_segment, (0, target_length - len(correlation_segment)), mode='constant') elif len(correlation_segment) > target_length: correlation_segment = correlation_segment[:target_length] correlation_segment = correlation_segment / (np.max(np.abs(correlation)) + 1e-10) if correlation[max_correlation_idx] < 0.05 * np.max(np.abs(correlation)): time_delay = 0.0 else: if max_correlation_idx > start_idx + 1 and max_correlation_idx < end_idx - 1: y0 = correlation[max_correlation_idx - 1] y1 = correlation[max_correlation_idx] y2 = correlation[max_correlation_idx + 1] denom = 2 * (y0 - 2 * y1 + y2) if denom != 0: delta = (y0 - y2) / denom max_correlation_idx += delta delay_samples = max_correlation_idx - middle_point time_delay = delay_samples / self.sample_rate return time_delay, correlation_segment def train_regression_model(self): """Обучение модели регрессии на отрезке корреляции""" n_samples = 5000 n_additional_samples = 20000 X = [] y = [] print("Обучение: Генерация случайных тренировочных выборок...") for _ in range(n_samples): source = self._generate_random_sound_source_for_training() chunk = self.get_audio_chunk() signal1, signal2, _, _ = self.process_signals_with_delay(chunk, source) _, corr_segment = self.calculate_time_delay_fft(signal1, signal2) corr_segment += np.random.normal(0, 0.005, corr_segment.shape) true_angle = np.arctan2(source.x, source.y) * 180 / np.pi X.append(corr_segment.tolist()) y.append(true_angle) print("Обучение: Генерация дополнительных выборок с шагом 1°...") n_samples_per_angle = n_additional_samples // 82 for angle_deg in np.concatenate([np.arange(-90, -49, 1), np.arange(50, 91, 1)]): angle_rad = np.radians(angle_deg) distance = np.random.uniform(0.5, 2.0) source_x = distance * np.sin(angle_rad) source_y = distance * np.cos(angle_rad) source = SoundSource(x=source_x, y=source_y) for _ in range(n_samples_per_angle): chunk = self.get_audio_chunk() signal1, signal2, _, _ = self.process_signals_with_delay(chunk, source) _, corr_segment = self.calculate_time_delay_fft(signal1, signal2) corr_segment += np.random.normal(0, 0.005, corr_segment.shape) X.append(corr_segment.tolist()) y.append(angle_deg) print("Обучение: Генерация дополнительных выборок с шагом 10°...") n_samples_per_angle_10 = 2000 for angle_deg in np.arange(-90, 91, 10): angle_rad = np.radians(angle_deg) distance = np.random.uniform(0.5, 2.0) source_x = distance * np.sin(angle_rad) source_y = distance * np.cos(angle_rad) source = SoundSource(x=source_x, y=source_y) for _ in range(n_samples_per_angle_10): chunk = self.get_audio_chunk() signal1, signal2, _, _ = self.process_signals_with_delay(chunk, source) _, corr_segment = self.calculate_time_delay_fft(signal1, signal2) corr_segment += np.random.normal(0, 0.005, corr_segment.shape) X.append(corr_segment.tolist()) y.append(angle_deg) print("Обучение: Подготовка данных завершена, обучение модели...") X = np.array(X) y = np.array(y) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = GradientBoostingRegressor(n_estimators=600, max_depth=6, learning_rate=0.03, random_state=42) model.fit(X_train, y_train) y_pred = model.predict(X_test) mse = mean_squared_error(y_test, y_pred) print(f"Обучение: Среднеквадратичная ошибка модели на тестовых данных: {mse:.4f}") joblib.dump(model, MODEL_PATH) print(f"Модель сохранена в {MODEL_PATH}") return model def load_or_train_model(self, retrain: bool): """Загрузка сохраненной модели или обучение новой""" if not retrain and os.path.exists(MODEL_PATH): try: model = joblib.load(MODEL_PATH) print(f"Модель загружена из {MODEL_PATH}") return model except Exception as e: print(f"Ошибка загрузки модели: {e}. Обучение новой модели...") return self.train_regression_model() def calculate_direction(self, correlation_segment: np.ndarray) -> float: """Расчет угла направления с использованием модели регрессии""" angle = self.model.predict([correlation_segment])[0] angle = np.clip(angle, -90, 90) return angle def run(self): """Обработка аудио в реальном времени""" while self.running: try: current_time = time.time() if current_time - self.last_move_time >= MOVE_INTERVAL: self.sound_source = self._generate_sequential_sound_source() self.source_positions.append((self.sound_source.x, self.sound_source.y, current_time)) print(f"Тестирование: Источник звука перемещен в: x={self.sound_source.x:.2f}, y={self.sound_source.y:.2f}") self.last_move_time = current_time left, right, t1, t2 = self.capture_audio() self.rms_left = self.calculate_rms(left) self.rms_right = self.calculate_rms(right) new_sound_detected = (self.rms_left > RMS_THRESHOLD) and (self.rms_right > RMS_THRESHOLD) if new_sound_detected: print(f"Тестирование: RMS left: {self.rms_left:.4f}, RMS right: {self.rms_right:.4f}") time_delay, correlation_segment = self.calculate_time_delay_fft(left, right) print(f"Тестирование: Time delay: {time_delay * 1000:.2f} ms, Correlation segment length: {len(correlation_segment)}") # Сохранение корреляционного отрезка в файл (без использования Matplotlib) np.savetxt(f"corr_segment_{current_time}.txt", correlation_segment) angle = self.calculate_direction(correlation_segment) print(f"Тестирование: Calculated angle: {angle:.1f}°") self.current_angle = angle self.last_detected_angle = angle self.last_sound_time = current_time self.sound_detected = True self.show_arrow = True true_dx = self.sound_source.x true_dy = self.sound_source.y true_angle = np.arctan2(true_dx, true_dy) * 180 / np.pi self.results.append({ 'Time Delay (ms)': time_delay * 1000, 'Detected Angle (°)': self.current_angle, 'True Angle (°)': true_angle, 'Source X': self.sound_source.x, 'Source Y': self.sound_source.y }) else: if self.last_detected_angle is not None and current_time - self.last_sound_time < SILENCE_TIMEOUT: self.sound_detected = False self.show_arrow = True else: self.sound_detected = False self.show_arrow = False time.sleep(CHUNK / self.sample_rate) except Exception as e: print(f"Ошибка в run: {e}") continue def get_coordinates_dataframe(self): """Создание датафрейма с координатами микрофонов и всех позиций источника""" data = { 'Object': ['Mic1', 'Mic2'] + [f'SoundSource_{i}' for i in range(len(self.source_positions))], 'X': [self.mic1.x, self.mic2.x] + [pos[0] for pos in self.source_positions], 'Y': [self.mic1.y, self.mic2.y] + [pos[1] for pos in self.source_positions], 'Time': [0.0, 0.0] + [pos[2] for pos in self.source_positions] } return pd.DataFrame(data) def get_results_dataframe(self): """Создание датафрейма с результатами""" return pd.DataFrame(self.results) def main(): try: # retrain_model=True, чтобы переобучить модель, или False, чтобы загрузить сохраненную finder = TreeRegressionDirectionFinder(MIC_DISTANCE, "my_recording1.wav", retrain_model=False) print("Аудиофайл загружен, частота дискретизации:", finder.sample_rate) thread = threading.Thread(target=finder.run) thread.start() plt.switch_backend('TkAgg') fig, ax = plt.subplots(figsize=(9, 6)) ax.set_xlim(-ROOM_WIDTH / 2, ROOM_WIDTH / 2) ax.set_ylim(-0.5, ROOM_HEIGHT) ax.set_aspect('equal') ax.set_title("Определение направления на источник звука (Gradient Boosting)", fontsize=12) ax.set_xlabel("X (м)", fontsize=10) ax.set_ylabel("Y (м)", fontsize=10) ax.grid(True) ax.plot(finder.mic1.x, finder.mic1.y, 'bs', markersize=12, label='Микрофон 1') ax.plot(finder.mic2.x, finder.mic2.y, 'bs', markersize=12, label='Микрофон 2') source_plot, = ax.plot(finder.sound_source.x, finder.sound_source.y, 'ro', markersize=12, label='Источник звука') arrow_length = min(ROOM_WIDTH, ROOM_HEIGHT) / 4 arrow = ax.arrow(0, 0, 0, 0, head_width=0.2, head_length=0.3, fc='r', ec='r', label='Расчетное направление') arrow_true = ax.arrow(0, 0, 0, 0, head_width=0.2, head_length=0.3, fc='g', ec='g', linestyle=':', label='Истинное направление') sound_bar = ax.axhline(y=ROOM_HEIGHT - 1, color='green', linewidth=15, visible=False) angle_text = ax.text(0, ROOM_HEIGHT - 0.3, "", ha='center', va='center', fontsize=10) left_indicator = patches.Rectangle((finder.mic1.x - 0.03, -0.15), 0.06, 0.08, facecolor='gray') right_indicator = patches.Rectangle((finder.mic2.x - 0.03, -0.15), 0.06, 0.08, facecolor='gray') ax.add_patch(left_indicator) ax.add_patch(right_indicator) def update(frame): source_plot.set_data([finder.sound_source.x], [finder.sound_source.y]) dx = finder.sound_source.x dy = finder.sound_source.y true_angle_rad = np.arctan2(dx, dy) true_end_x = arrow_length * np.sin(true_angle_rad) true_end_y = arrow_length * np.cos(true_angle_rad) arrow_true.set_data(x=0, y=0, dx=true_end_x, dy=true_end_y) if finder.show_arrow: angle = finder.current_angle calc_angle_rad = np.radians(angle) calc_end_x = arrow_length * np.sin(calc_angle_rad) calc_end_y = arrow_length * np.cos(calc_angle_rad) arrow.set_data(x=0, y=0, dx=calc_end_x, dy=calc_end_y) angle_text.set_text(f"Расчетный угол: {angle:.1f}°\nИстинный угол: {np.degrees(true_angle_rad):.1f}°") if finder.sound_detected: sound_bar.set_visible(True) ax.set_title("Активное обнаружение звука (Gradient Boosting)", fontsize=12) else: sound_bar.set_visible(False) ax.set_title("Последнее зафиксированное направление (Gradient Boosting)", fontsize=12) else: arrow.set_data(x=0, y=0, dx=0, dy=0) angle_text.set_text("") sound_bar.set_visible(False) ax.set_title("Звук не обнаружен", fontsize=12) left_indicator.set_facecolor('green' if finder.rms_left > RMS_THRESHOLD else 'gray') right_indicator.set_facecolor('green' if finder.rms_right > RMS_THRESHOLD else 'gray') return [source_plot, arrow, arrow_true, sound_bar, left_indicator, right_indicator, angle_text] ani = FuncAnimation(fig, update, frames=None, interval=10, blit=True, cache_frame_data=False) plt.legend(loc='upper left', fontsize=8) plt.tight_layout() plt.show() finder.running = False thread.join() coords_df = finder.get_coordinates_dataframe() results_df = finder.get_results_dataframe() print("\nКоординаты микрофонов и всех позиций источника звука:") print(coords_df.to_string(index=False)) print("\nРезультаты вычислений:") print(results_df.to_string(index=False)) coords_df.to_csv('coordinates_tree.csv', index=False) results_df.to_csv('results_tree.csv', index=False) print("\nДанные сохранены в 'coordinates_tree.csv' и 'results_tree.csv'") except Exception as e: print(f"Ошибка в main: {e}") finder.running = False thread.join() if __name__ == "__main__": main()