diff --git a/Decision Tree.py b/Decision Tree.py new file mode 100644 index 0000000..a396c2a --- /dev/null +++ b/Decision Tree.py @@ -0,0 +1,423 @@ +import numpy as np +import matplotlib.pyplot as plt +from matplotlib.animation import FuncAnimation +import matplotlib.patches as patches +import librosa +import random +import pandas as pd +import threading +import time +from dataclasses import dataclass +from sklearn.tree import DecisionTreeRegressor +from sklearn.model_selection import train_test_split +from sklearn.metrics import mean_squared_error +from scipy.interpolate import interp1d +from scipy.signal import windows + +# Константы +SOUND_SPEED = 343.2 # скорость звука (м/с) +MIC_DISTANCE = 0.06 # расстояние между микрофонами (м) +ROOM_WIDTH = 3.0 # ширина комнаты (м) +ROOM_HEIGHT = 2.0 # высота комнаты (м) +SAMPLE_RATE = 48000 # частота дискретизации (Гц) +CHUNK = 32768 # размер буфера +RMS_THRESHOLD = 0.1 # порог RMS для определения звука +SILENCE_TIMEOUT = 0.5 # время в секундах для сохранения последнего угла +MOVE_INTERVAL = 0.5 # интервал перемещения источника звука (с) + +@dataclass +class Microphone: + """Класс для хранения информации о микрофоне""" + x: float + y: float + +@dataclass +class SoundSource: + """Класс для хранения информации об источнике звука""" + x: float + y: float + +class TreeRegressionDirectionFinder: + def __init__(self, mic_distance: float, audio_file: str): + """Инициализация определителя направления с использованием регрессии деревом решений""" + self.mic_distance = mic_distance + self.mic1 = Microphone(x=-mic_distance / 2, y=0.0) + self.mic2 = Microphone(x=mic_distance / 2, y=0.0) + self.sound_source = self._generate_random_sound_source() + self.running = True + self.current_angle = 0.0 + self.sound_detected = False + self.last_sound_time = 0 + self.last_detected_angle = None + self.show_arrow = False + self.rms_left = 0.0 + self.rms_right = 0.0 + self.audio_data, self.sample_rate = self.load_audio(audio_file) + self.audio_index = 0 + self.noise_level = 0.001 # уровень шума + self.results = [] + self.source_positions = [(self.sound_source.x, self.sound_source.y, 0.0)] + self.last_move_time = time.time() + self.max_physical_delay = self.mic_distance / SOUND_SPEED + self.model = self.train_regression_model() + print("TreeRegressionDirectionFinder инициализирован") + + def _generate_random_sound_source(self) -> SoundSource: + """Генерация положения источника звука с последовательным проходом углов от -90 до 90 градусов""" + if not hasattr(self, 'angle_ranges'): + self.angle_ranges = list(range(-90, 91, 20)) + self.current_range_idx = 0 + self.angle_count = 0 + self.current_angle = self.angle_ranges[0] + + start_angle = self.angle_ranges[self.current_range_idx] + end_angle = start_angle + 20 if self.current_range_idx < len(self.angle_ranges) - 1 else 90 + + angle_deg = random.uniform(start_angle, end_angle) + angle_rad = np.radians(angle_deg) + + distance = 1.5 # расстояние + source_x = distance * np.sin(angle_rad) + source_y = distance * np.cos(angle_rad) + + self.angle_count += 1 + if self.angle_count >= 10: + self.angle_count = 0 + self.current_range_idx = (self.current_range_idx + 1) % len(self.angle_ranges) + + print(f"Генерация новой позиции: угол={angle_deg:.2f}°, x={source_x:.2f}, y={source_y:.2f}") + return SoundSource(x=source_x, y=source_y) + + def load_audio(self, filename: str) -> tuple: + """Загрузка аудиофайла""" + try: + audio_data, sample_rate = librosa.load(filename, sr=SAMPLE_RATE, mono=True) + return audio_data, sample_rate + except Exception as e: + raise ValueError(f"Ошибка загрузки аудиофайла: {e}") + + def calculate_distances(self) -> tuple: + """Расчет расстояний от источника звука до микрофонов""" + l1 = np.sqrt((self.sound_source.x - self.mic1.x) ** 2 + + (self.sound_source.y - self.mic1.y) ** 2) + l2 = np.sqrt((self.sound_source.x - self.mic2.x) ** 2 + + (self.sound_source.y - self.mic2.y) ** 2) + return l1, l2 + + def process_signals_with_delay(self, signal: np.ndarray) -> tuple: + """Обработка сигналов с учетом временного сдвига и шума с интерполяцией""" + l1, l2 = self.calculate_distances() + t1 = l1 / SOUND_SPEED + t2 = l2 / SOUND_SPEED + + time_points = np.arange(len(signal)) / self.sample_rate + interp_func = interp1d(time_points, signal, kind='linear', fill_value="extrapolate") + S1 = interp_func(time_points - t1) + S2 = interp_func(time_points - t2) + + min_length = min(len(S1), len(S2)) + S1, S2 = S1[:min_length], S2[:min_length] + + noise1 = np.random.normal(0, self.noise_level, S1.shape) + noise2 = np.random.normal(0, self.noise_level, S2.shape) + S1 += noise1 + S2 += noise2 + + return S1, S2, t1, t2 + + def capture_audio(self): + """Эмуляция захвата аудиоданных из файла""" + if self.audio_index + CHUNK >= len(self.audio_data): + self.audio_index = 0 + chunk = self.audio_data[self.audio_index:self.audio_index + CHUNK] + self.audio_index += CHUNK + + signal1, signal2, t1, t2 = self.process_signals_with_delay(chunk) + return signal1, signal2, t1, t2 + + def calculate_rms(self, signal: np.ndarray) -> float: + """Вычисление RMS сигнала""" + return np.sqrt(np.mean(signal ** 2)) + + def calculate_time_delay_fft(self, signal1: np.ndarray, signal2: np.ndarray) -> tuple: + """Расчет временной задержки и пика кросс-корреляции через FFT с оконной функцией Ханна""" + window = windows.hann(len(signal1)) + signal1 = (signal1 - np.mean(signal1)) / (np.std(signal1) + 1e-10) * window + signal2 = (signal2 - np.mean(signal2)) / (np.std(signal2) + 1e-10) * window + fft_signal1 = np.fft.rfft(signal1) + fft_signal2 = np.fft.rfft(signal2) + cross_spectrum = fft_signal1 * np.conj(fft_signal2) + cross_spectrum = cross_spectrum / (np.abs(cross_spectrum) + 1e-10) + correlation = np.fft.irfft(cross_spectrum) + correlation = np.roll(correlation, len(correlation) // 2) + + max_delay_samples = int(self.max_physical_delay * self.sample_rate) + middle_point = len(correlation) // 2 + start_idx = middle_point - max_delay_samples + end_idx = middle_point + max_delay_samples + max_correlation_idx = start_idx + np.argmax(correlation[start_idx:end_idx]) + peak_correlation = correlation[max_correlation_idx] + + if max_correlation_idx > start_idx and max_correlation_idx < end_idx - 1: + y0 = correlation[max_correlation_idx - 1] + y1 = correlation[max_correlation_idx] + y2 = correlation[max_correlation_idx + 1] + denom = 2 * (y0 - 2 * y1 + y2) + if denom != 0: + delta = (y0 - y2) / denom + max_correlation_idx += delta + + delay_samples = max_correlation_idx - middle_point + time_delay = delay_samples / self.sample_rate + time_delay = np.clip(time_delay, -self.max_physical_delay, self.max_physical_delay) + return time_delay, peak_correlation + + def train_regression_model(self): + """Обучение модели регрессии с использованием только пика кросс-корреляции""" + n_samples = 50000 + n_additional_samples = 20000 + X = [] + y = [] + + # Генерация стандартных тренировочных данных + for _ in range(n_samples): + source = self._generate_random_sound_source() + l1 = np.sqrt((source.x - self.mic1.x) ** 2 + (source.y - self.mic1.y) ** 2) + l2 = np.sqrt((source.x - self.mic2.x) ** 2 + (source.y - self.mic2.y) ** 2) + t1 = l1 / SOUND_SPEED + t2 = l2 / SOUND_SPEED + + # Генерация тестового сигнала для вычисления пика кросс-корреляции + signal = np.random.normal(0, 1, CHUNK) + time_points = np.arange(len(signal)) / self.sample_rate + interp_func = interp1d(time_points, signal, kind='linear', fill_value="extrapolate") + S1 = interp_func(time_points - t1) + S2 = interp_func(time_points - t2) + min_length = min(len(S1), len(S2)) + S1, S2 = S1[:min_length], S2[:min_length] + noise1 = np.random.normal(0, self.noise_level, S1.shape) + noise2 = np.random.normal(0, self.noise_level, S2.shape) + S1 += noise1 + S2 += noise2 + + _, peak_correlation = self.calculate_time_delay_fft(S1, S2) + true_angle = np.arctan2(source.x, source.y) * 180 / np.pi + X.append([peak_correlation]) + y.append(true_angle) + + # Генерация дополнительных данных для углов -90°...-50° и 50°...90° + for _ in range(n_additional_samples): + if random.choice([True, False]): + angle_deg = random.uniform(-90, -50) + else: + angle_deg = random.uniform(50, 90) + angle_rad = np.radians(angle_deg) + distance = 1.5 + source_x = distance * np.sin(angle_rad) + source_y = distance * np.cos(angle_rad) + source = SoundSource(x=source_x, y=source_y) + + l1 = np.sqrt((source.x - self.mic1.x) ** 2 + (source.y - self.mic1.y) ** 2) + l2 = np.sqrt((source.x - self.mic2.x) ** 2 + (source.y - self.mic2.y) ** 2) + t1 = l1 / SOUND_SPEED + t2 = l2 / SOUND_SPEED + + signal = np.random.normal(0, 1, CHUNK) + time_points = np.arange(len(signal)) / self.sample_rate + interp_func = interp1d(time_points, signal, kind='linear', fill_value="extrapolate") + S1 = interp_func(time_points - t1) + S2 = interp_func(time_points - t2) + min_length = min(len(S1), len(S2)) + S1, S2 = S1[:min_length], S2[:min_length] + noise1 = np.random.normal(0, self.noise_level, S1.shape) + noise2 = np.random.normal(0, self.noise_level, S2.shape) + S1 += noise1 + S2 += noise2 + + _, peak_correlation = self.calculate_time_delay_fft(S1, S2) + X.append([peak_correlation]) + y.append(angle_deg) + + X = np.array(X) + y = np.array(y) + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) + model = DecisionTreeRegressor(max_depth=10, random_state=42) + model.fit(X_train, y_train) + y_pred = model.predict(X_test) + mse = mean_squared_error(y_test, y_pred) + print(f"Среднеквадратичная ошибка модели на тестовых данных: {mse:.4f}") + return model + + def calculate_direction(self, peak_correlation: float) -> float: + """Расчет угла направления с использованием модели регрессии""" + features = np.array([[peak_correlation]]) + angle = self.model.predict(features)[0] + angle = np.clip(angle, -90, 90) + return angle + + def run(self): + """Обработка аудио в реальном времени""" + while self.running: + try: + current_time = time.time() + if current_time - self.last_move_time >= MOVE_INTERVAL: + self.sound_source = self._generate_random_sound_source() + self.source_positions.append((self.sound_source.x, self.sound_source.y, current_time)) + print(f"Источник звука перемещен в: x={self.sound_source.x:.2f}, y={self.sound_source.y:.2f}") + self.last_move_time = current_time + + left, right, t1, t2 = self.capture_audio() + self.rms_left = self.calculate_rms(left) + self.rms_right = self.calculate_rms(right) + peak_amp_left = np.max(np.abs(left)) + peak_amp_right = np.max(np.abs(right)) + peak_diff = peak_amp_left - peak_amp_right + + new_sound_detected = (self.rms_left > RMS_THRESHOLD) and (self.rms_right > RMS_THRESHOLD) + + if new_sound_detected: + print(f"RMS left: {self.rms_left:.4f}, RMS right: {self.rms_right:.4f}") # Исправлено + print(f"Peak difference: {peak_diff:.4f}") + time_delay, peak_correlation = self.calculate_time_delay_fft(left, right) + print(f"Time delay: {time_delay * 1000:.2f} ms") + print(f"Peak correlation: {peak_correlation:.4f}") + angle = self.calculate_direction(peak_correlation) + print(f"Calculated angle: {angle:.1f}°") + self.current_angle = angle + self.last_detected_angle = angle + self.last_sound_time = current_time + self.sound_detected = True + self.show_arrow = True + + true_dx = self.sound_source.x + true_dy = self.sound_source.y + true_angle = np.arctan2(true_dx, true_dy) * 180 / np.pi + self.results.append({ + 'Time Delay (ms)': time_delay * 1000, + 'Peak Correlation': peak_correlation, + 'Detected Angle (°)': self.current_angle, + 'True Angle (°)': true_angle, + 'Source X': self.sound_source.x, + 'Source Y': self.sound_source.y + }) + else: + if self.last_detected_angle is not None and current_time - self.last_sound_time < SILENCE_TIMEOUT: + self.sound_detected = False + self.show_arrow = True + else: + self.sound_detected = False + self.show_arrow = False + time.sleep(CHUNK / self.sample_rate) + except Exception as e: + print(f"Ошибка в run: {e}") + continue + + def get_coordinates_dataframe(self): + """Создание датафрейма с координатами микрофонов и всех позиций источника""" + data = { + 'Object': ['Mic1', 'Mic2'] + [f'SoundSource_{i}' for i in range(len(self.source_positions))], + 'X': [self.mic1.x, self.mic2.x] + [pos[0] for pos in self.source_positions], + 'Y': [self.mic1.y, self.mic2.y] + [pos[1] for pos in self.source_positions], + 'Time': [0.0, 0.0] + [pos[2] for pos in self.source_positions] + } + return pd.DataFrame(data) + + def get_results_dataframe(self): + """Создание датафрейма с результатами""" + return pd.DataFrame(self.results) + +def main(): + try: + finder = TreeRegressionDirectionFinder(MIC_DISTANCE, "my_recording1.wav") + print("Аудиофайл загружен, частота дискретизации:", finder.sample_rate) + + thread = threading.Thread(target=finder.run) + thread.start() + + fig, ax = plt.subplots(figsize=(9, 6)) + ax.set_xlim(-ROOM_WIDTH / 2, ROOM_WIDTH / 2) + ax.set_ylim(-0.5, ROOM_HEIGHT) + ax.set_aspect('equal') + ax.set_title("Определение направления на источник звука (Tree Regression)", fontsize=12) + ax.set_xlabel("X (м)", fontsize=10) + ax.set_ylabel("Y (м)", fontsize=10) + ax.grid(True) + + ax.plot(finder.mic1.x, finder.mic1.y, 'bs', markersize=12, label='Микрофон 1') + ax.plot(finder.mic2.x, finder.mic2.y, 'bs', markersize=12, label='Микрофон 2') + source_plot, = ax.plot(finder.sound_source.x, finder.sound_source.y, 'ro', markersize=12, + label='Источник звука') + + arrow_length = min(ROOM_WIDTH, ROOM_HEIGHT) / 4 + arrow = ax.arrow(0, 0, 0, 0, head_width=0.2, head_length=0.3, + fc='r', ec='r', label='Расчетное направление') + arrow_true = ax.arrow(0, 0, 0, 0, head_width=0.2, head_length=0.3, + fc='g', ec='g', linestyle=':', label='Истинное направление') + + sound_bar = ax.axhline(y=ROOM_HEIGHT - 1, color='green', linewidth=15, visible=False) + angle_text = ax.text(0, ROOM_HEIGHT - 0.3, "", ha='center', va='center', fontsize=10) + + left_indicator = patches.Rectangle((finder.mic1.x - 0.03, -0.15), 0.06, 0.08, facecolor='gray') + right_indicator = patches.Rectangle((finder.mic2.x - 0.03, -0.15), 0.06, 0.08, facecolor='gray') + ax.add_patch(left_indicator) + ax.add_patch(right_indicator) + + def update(frame): + source_plot.set_data([finder.sound_source.x], [finder.sound_source.y]) + + dx = finder.sound_source.x + dy = finder.sound_source.y + true_angle_rad = np.arctan2(dx, dy) + true_end_x = arrow_length * np.sin(true_angle_rad) + true_end_y = arrow_length * np.cos(true_angle_rad) + arrow_true.set_data(x=0, y=0, dx=true_end_x, dy=true_end_y) + + if finder.show_arrow: + angle = finder.current_angle + calc_angle_rad = np.radians(angle) + calc_end_x = arrow_length * np.sin(calc_angle_rad) + calc_end_y = arrow_length * np.cos(calc_angle_rad) + arrow.set_data(x=0, y=0, dx=calc_end_x, dy=calc_end_y) + angle_text.set_text(f"Расчетный угол: {angle:.1f}°\nИстинный угол: {np.degrees(true_angle_rad):.1f}°") + + if finder.sound_detected: + sound_bar.set_visible(True) + ax.set_title("Активное обнаружение звука (Tree Regression)", fontsize=12) + else: + sound_bar.set_visible(False) + ax.set_title("Последнее зафиксированное направление (Tree Regression)", fontsize=12) + else: + arrow.set_data(x=0, y=0, dx=0, dy=0) + angle_text.set_text("") + sound_bar.set_visible(False) + ax.set_title("Звук не обнаружен", fontsize=12) + + left_indicator.set_facecolor('green' if finder.rms_left > RMS_THRESHOLD else 'gray') + right_indicator.set_facecolor('green' if finder.rms_right > RMS_THRESHOLD else 'gray') + + return [source_plot, arrow, arrow_true, sound_bar, + left_indicator, right_indicator, angle_text] + + ani = FuncAnimation(fig, update, frames=None, interval=10, blit=True, cache_frame_data=False) + plt.legend(loc='upper left', fontsize=8) + plt.tight_layout() + plt.show() + + finder.running = False + thread.join() + + coords_df = finder.get_coordinates_dataframe() + results_df = finder.get_results_dataframe() + print("\nКоординаты микрофонов и всех позиций источника звука:") + print(coords_df.to_string(index=False)) + print("\nРезультаты вычислений:") + print(results_df.to_string(index=False)) + coords_df.to_csv('coordinates_tree.csv', index=False) + results_df.to_csv('results_tree.csv', index=False) + print("\nДанные сохранены в 'coordinates_tree.csv' и 'results_tree.csv'") + + except Exception as e: + print(f"Ошибка в main: {e}") + +if __name__ == "__main__": + main() \ No newline at end of file