final version

This commit is contained in:
Qukich 2024-02-29 14:11:43 +03:00
parent afddc11d94
commit f9ede61287
15 changed files with 870 additions and 64 deletions

View File

@ -1,7 +1,7 @@
#ifndef CIRCULAR_BUFFER_H #ifndef CIRCULAR_BUFFER_H
#define CIRCULAR_BUFFER_H #define CIRCULAR_BUFFER_H
#define BUFFER_SIZE 32 #define BUFFER_SIZE 128
struct circular_buffer{ struct circular_buffer{
unsigned char buffer[BUFFER_SIZE]; unsigned char buffer[BUFFER_SIZE];

View File

@ -9,7 +9,7 @@ void init_hdlc_client(struct Client* client, int connecting_frame_timeout){
client->state = IDLE_STATE; client->state = IDLE_STATE;
client->connecting_frame_timeout = connecting_frame_timeout; client->connecting_frame_timeout = connecting_frame_timeout;
connecting_frame_timeout_bf = connecting_frame_timeout; connecting_frame_timeout_bf = connecting_frame_timeout;
client->current_index_frame = 20; client->current_index_frame = 0;
client->current_state_hdlc.control_escape = 0; client->current_state_hdlc.control_escape = 0;
client->current_state_hdlc.fcs = FCS_INIT_VALUE; client->current_state_hdlc.fcs = FCS_INIT_VALUE;

125
emulate/hdlc/client.c Normal file
View File

@ -0,0 +1,125 @@
#include "client.h"
#include "hdlc.h"
#include "stdio.h"
#define SIZE_DATA_BUFFERS 64
int connecting_frame_timeout_bf;
void init_hdlc_client(struct Client* client, int connecting_frame_timeout){
client->state = IDLE_STATE;
client->connecting_frame_timeout = connecting_frame_timeout;
connecting_frame_timeout_bf = connecting_frame_timeout;
client->current_index_frame = 0;
client->current_state_hdlc.control_escape = 0;
client->current_state_hdlc.fcs = FCS_INIT_VALUE;
client->current_state_hdlc.start_index = -1;
client->current_state_hdlc.end_index = -1;
client->current_state_hdlc.src_index = 0;
client->current_state_hdlc.dest_index = 0;
}
void hdlc_connect(struct Client* client){
client->state = CONNECTING;
client->frameS.seq_no = 0;
client->frameS.frame = S_FRAME;
client->current_index_frame = client->frameS.seq_no;
}
int hdlc_send_data(struct Client* client, uint8_t* data, size_t data_len){
if (client->state != READY_STATE){
return ERR_INVALID_STATE;
}
if (SIZE_DATA_BUFFERS < data_len){
return ERR_INVALID_DATA_SIZE;
}
client->frameI.seq_no = 0;
client->frameI.frame = I_FRAME;
client->data_i_frame = data;
client->len_data_i_frame = data_len;
client->current_index_frame = client->frameI.seq_no;
client->state = RECIVING;
return 0;
}
int hdlc_get_raw_frame(struct Client *client, uint8_t* buffer, size_t lenBuffer) {
if(client->state == RECIVING){
int ret = hdlc_frame_data(&client->frameI, client->data_i_frame,
client->len_data_i_frame, buffer, &lenBuffer);
if (ret < 0){
printf("err in get_frame: %d\n", ret);
}
}
if (client->state == CONNECTING){
int ret = hdlc_frame_data(&client->frameS, NULL, 0, buffer, &lenBuffer);
if (ret < 0){
printf("err in get_frame: %d\n", ret);
}
}
if (client->state == DISCONNECTING){
int ret = hdlc_frame_data(&client->frame_rej, NULL, 0, buffer, &lenBuffer);
if (ret < 0){
printf("err in get_frame: %d\n", ret);
}
}
return 0;
}
int hdlc_decode_recived_raw_data(struct Client* client, uint8_t buffer[], size_t len_buffer, uint8_t* recived_data, size_t* len_recived_data){
hdlc_control_t recv_control;
uint8_t recive[len_buffer];
int ret = hdlc_get_data_with_state(&client->current_state_hdlc,&recv_control, buffer, len_buffer, recive,
&len_buffer);
if (ret < 0) {
return ret;
}
if (recv_control.seq_no != client->current_index_frame){
client->state = DISCONNECTING;
client->frame_rej.seq_no = 0;
client->frame_rej.frame = S_FRAME_NACK;
return ERR_INVALID_SEQ_NUMBER_FRAME;
}
switch (recv_control.frame) {
case S_FRAME:
client->state = READY_STATE;
break;
case I_FRAME:
for (int i = 0; i < sizeof(recive)-3; i++){
recived_data[i] = recive[i];
}
*len_recived_data = sizeof(recive)-3;
break;
case S_FRAME_NACK:
client->state = DISCONNECTING;
client->frame_rej.seq_no = 0;
client->frame_rej.frame = S_FRAME_NACK;
return ERR_INVALID_SEQ_NUMBER_FRAME;
}
client->connecting_frame_timeout = connecting_frame_timeout_bf;
return 0;
}
int hdlc_timeout_handler(struct Client* client, int delta_time){
client->connecting_frame_timeout -= delta_time;
if (client->connecting_frame_timeout <= 0){
return ERR_FRAME_TIME_OUT;
}
return 0;
}

45
emulate/hdlc/client.h Normal file
View File

@ -0,0 +1,45 @@
#ifndef CLIENT_H
#define CLIENT_H
#include <stdint.h>
#include <stdbool.h>
#include "hdlc.h"
#define ERR_INVALID_DATA_SIZE -1
#define ERR_ALL_BUFFERS_FILL -2
#define ERR_INVALID_PARAMS -3
#define ERR_INVALID_STATE -4
#define ERR_FRAME_TIME_OUT -5
#define ERR_INVALID_SEQ_NUMBER_FRAME -6
#define ERR_TIMEOUT_ANSWER -7
enum HDLCState {
UNINITIALIZED_STATE = 0, // состояние до инцилизации
IDLE_STATE, // Состояние ожидания начала
READY_STATE, // Состояние принятия
CONNECTING, // состояние соединения
DISCONNECTING, // состояния отключения
RECIVING // состояние приема и отправки
};
struct Client{
enum HDLCState state;
int connecting_frame_timeout; //-1
uint8_t current_index_frame;
hdlc_state_t current_state_hdlc;
hdlc_control_t frameS;
hdlc_control_t frameI;
uint8_t* data_i_frame;
size_t len_data_i_frame;
hdlc_control_t frame_rej;
};
void init_hdlc_client(struct Client* client, int connecting_frame_timeout);
void hdlc_connect(struct Client* client);
int hdlc_send_data(struct Client* client, uint8_t* data, size_t data_len);
int hdlc_get_raw_frame(struct Client *client, uint8_t* buffer, size_t lenBuffer);
//принимает буффер с уарта
int hdlc_decode_recived_raw_data(struct Client* client, uint8_t buffer[], size_t len_buffer, uint8_t* recived_data, size_t* len_recived_data);
int hdlc_timeout_handler(struct Client* client, int delta_time);
#endif //CLIENT_H

41
emulate/hdlc/fcs.c Normal file
View File

@ -0,0 +1,41 @@
#include "fcs.h"
/*
* CRC-Type: CRC16 CCIT
* Polynomial: 0x1021 (x^16+x^12+x^5+1)
* Lookup Table: Reflected
*/
static const unsigned short fcstab[256] = {
0x0000, 0x1189, 0x2312, 0x329b,
0x4624, 0x57ad, 0x6536, 0x74bf, 0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c,
0xdbe5, 0xe97e, 0xf8f7, 0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c,
0x75b7, 0x643e, 0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff,
0xe876, 0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5, 0x3183,
0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c, 0xbdcb, 0xac42,
0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974, 0x4204, 0x538d, 0x6116,
0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb, 0xce4c, 0xdfc5, 0xed5e, 0xfcd7,
0x8868, 0x99e1, 0xab7a, 0xbaf3, 0x5285, 0x430c, 0x7197, 0x601e, 0x14a1,
0x0528, 0x37b3, 0x263a, 0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960,
0xbbfb, 0xaa72, 0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630,
0x17b9, 0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738, 0xffcf,
0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70, 0x8408, 0x9581,
0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7, 0x0840, 0x19c9, 0x2b52,
0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff, 0x9489, 0x8500, 0xb79b, 0xa612,
0xd2ad, 0xc324, 0xf1bf, 0xe036, 0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5,
0x4f6c, 0x7df7, 0x6c7e, 0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7,
0xc03c, 0xd1b5, 0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74,
0x5dfd, 0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c, 0xc60c,
0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3, 0x4a44, 0x5bcd,
0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb, 0xd68d, 0xc704, 0xf59f,
0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232, 0x5ac5, 0x4b4c, 0x79d7, 0x685e,
0x1ce1, 0x0d68, 0x3ff3, 0x2e7a, 0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a,
0xb0a3, 0x8238, 0x93b1, 0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb,
0x0e70, 0x1ff9, 0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9,
0x8330, 0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78 };
FCS_SIZE calc_fcs(FCS_SIZE fcs, unsigned char value) {
return (fcs >> 8) ^ fcstab[(fcs ^ value) & 0xff];
}

18
emulate/hdlc/fcs.h Normal file
View File

@ -0,0 +1,18 @@
#ifndef FCS_H
#define FCS_H
#define FCS_INIT_VALUE 0xFFFF /* FCS initialization value. */
#define FCS_GOOD_VALUE 0xF0B8 /* FCS value for valid frames. */
#define FCS_INVERT_MASK 0xFFFF /* Invert the FCS value accordingly to the specification */
#define FCS_SIZE unsigned short
/**
* Calculates a new FCS based on the current value and value of data.
*
* @param fcs Current FCS value
* @param value The value to be added
* @returns Calculated FCS value
*/
FCS_SIZE calc_fcs(FCS_SIZE fcs, unsigned char value);
#endif

262
emulate/hdlc/hdlc.c Normal file
View File

@ -0,0 +1,262 @@
#include "hdlc.h"
// HDLC Control field bit positions
#define HDLC_CONTROL_S_OR_U_FRAME_BIT 0
#define HDLC_CONTROL_SEND_SEQ_NO_BIT 1
#define HDLC_CONTROL_S_FRAME_TYPE_BIT 2
#define HDLC_CONTROL_POLL_BIT 4
#define HDLC_CONTROL_RECV_SEQ_NO_BIT 5
// HDLC Control type definitions
#define HDLC_CONTROL_TYPE_RECEIVE_READY 0
#define HDLC_CONTROL_TYPE_RECEIVE_NOT_READY 1
#define HDLC_CONTROL_TYPE_REJECT 2
#define HDLC_CONTROL_TYPE_SELECTIVE_REJECT 3
static hdlc_state_t hdlc_state = {
.control_escape = 0,
.fcs = FCS_INIT_VALUE,
.start_index = -1,
.end_index = -1,
.src_index = 0,
.dest_index = 0,
};
int hdlc_set_state(hdlc_state_t *state) {
if (!state) {
return -EINVAL;
}
hdlc_state = *state;
return 0;
}
int hdlc_get_state(hdlc_state_t *state) {
if (!state) {
return -EINVAL;
}
*state = hdlc_state;
return 0;
}
void hdlc_escape_value(char value, char *dest, int *dest_index) {
// Check and escape the value if needed
if ((value == HDLC_FLAG_SEQUENCE) || (value == HDLC_CONTROL_ESCAPE)) {
dest[(*dest_index)++] = HDLC_CONTROL_ESCAPE;
value ^= 0x20;
}
// Add the value to the destination buffer and increment destination index
dest[(*dest_index)++] = value;
}
hdlc_control_t hdlc_get_control_type(unsigned char control) {
hdlc_control_t value;
// Check if the frame is a S-frame (or U-frame)
if (control & (1 << HDLC_CONTROL_S_OR_U_FRAME_BIT)) {
// Check if S-frame type is a Receive Ready (ACK)
if (((control >> HDLC_CONTROL_S_FRAME_TYPE_BIT) & 0x3)
== HDLC_CONTROL_TYPE_RECEIVE_READY) {
value.frame = S_FRAME;
} else {
// Assume it is an NACK since Receive Not Ready, Selective Reject and U-frames are not supported
value.frame = S_FRAME_NACK;
}
// Add the receive sequence number from the S-frame (or U-frame)
value.seq_no = (control >> HDLC_CONTROL_RECV_SEQ_NO_BIT);
} else {
// It must be an I-frame so add the send sequence number (receive sequence number is not used)
value.frame = I_FRAME;
value.seq_no = (control >> HDLC_CONTROL_SEND_SEQ_NO_BIT);
}
return value;
}
unsigned char hdlc_frame_control_type(hdlc_control_t *control) {
unsigned char value = 0;
switch (control->frame) {
case I_FRAME:
// Create the HDLC I-frame control byte with Poll bit set
value |= (control->seq_no << HDLC_CONTROL_SEND_SEQ_NO_BIT);
value |= (1 << HDLC_CONTROL_POLL_BIT);
break;
case S_FRAME:
// Create the HDLC Receive Ready S-frame control byte with Poll bit cleared
value |= (control->seq_no << HDLC_CONTROL_RECV_SEQ_NO_BIT);
value |= (1 << HDLC_CONTROL_S_OR_U_FRAME_BIT);
break;
case S_FRAME_NACK:
// Create the HDLC Receive Ready S-frame control byte with Poll bit cleared
value |= (control->seq_no << HDLC_CONTROL_RECV_SEQ_NO_BIT);
value |= (HDLC_CONTROL_TYPE_REJECT << HDLC_CONTROL_S_FRAME_TYPE_BIT);
value |= (1 << HDLC_CONTROL_S_OR_U_FRAME_BIT);
break;
}
return value;
}
void hdlc_get_data_reset() {
hdlc_get_data_reset_with_state(&hdlc_state);
}
void hdlc_get_data_reset_with_state(hdlc_state_t *state) {
state->fcs = FCS_INIT_VALUE;
state->start_index = state->end_index = -1;
state->src_index = state->dest_index = 0;
state->control_escape = 0;
}
//int hdlc_get_data(hdlc_control_t *control, const char *src,
// unsigned int src_len, char *dest, unsigned int *dest_len)
int hdlc_get_data(hdlc_control_t *control, uint8_t *src,
size_t src_len, uint8_t *dest, size_t *dest_len){
return hdlc_get_data_with_state(&hdlc_state, control, src, src_len, dest, dest_len);
}
//int hdlc_get_data_with_state(hdlc_state_t *state, hdlc_control_t *control, const char *src,
// unsigned int src_len, char *dest, unsigned int *dest_len)
int
hdlc_get_data_with_state(hdlc_state_t *state, hdlc_control_t *control, uint8_t *src,
size_t src_len, uint8_t *dest, size_t *dest_len){
int ret;
char value;
unsigned int i;
// Make sure that all parameters are valid
if (!state || !control || !src || !dest || !dest_len) {
return -EINVAL;
}
// Run through the data bytes
for (i = 0; i < src_len; i++) {
// First find the start flag sequence
if (state->start_index < 0) {
if (src[i] == HDLC_FLAG_SEQUENCE) {
// Check if an additional flag sequence byte is present
if ((i < (src_len - 1)) && (src[i + 1] == HDLC_FLAG_SEQUENCE)) {
// Just loop again to silently discard it (accordingly to HDLC)
continue;
}
state->start_index = state->src_index;
}
} else {
// Check for end flag sequence
if (src[i] == HDLC_FLAG_SEQUENCE) {
// Check if an additional flag sequence byte is present or earlier received
if (((i < (src_len - 1)) && (src[i + 1] == HDLC_FLAG_SEQUENCE))
|| ((state->start_index + 1) == state->src_index)) {
// Just loop again to silently discard it (accordingly to HDLC)
continue;
}
state->end_index = state->src_index;
break;
} else if (src[i] == HDLC_CONTROL_ESCAPE) {
state->control_escape = 1;
} else {
// Update the value based on any control escape received
if (state->control_escape) {
state->control_escape = 0;
value = src[i] ^ 0x20;
} else {
value = src[i];
}
// Now update the FCS value
state->fcs = calc_fcs(state->fcs, value);
if (state->src_index == state->start_index + 2) {
// Control field is the second byte after the start flag sequence
*control = hdlc_get_control_type(value);
} else if (state->src_index > (state->start_index + 2)) {
// Start adding the data values after the Control field to the buffer
dest[state->dest_index++] = value;
}
}
}
state->src_index++;
}
// Check for invalid frame (no start or end flag sequence)
if ((state->start_index < 0) || (state->end_index < 0)) {
// Return no message and make sure destination length is 0
*dest_len = 0;
ret = -ENOMSG;
} else {
// A frame is at least 4 bytes in size and has a valid FCS value
if ((state->end_index < (state->start_index + 4))
|| (state->fcs != FCS_GOOD_VALUE)) {
// Return FCS error and indicate that data up to end flag sequence in buffer should be discarded
*dest_len = i;
ret = -EIO;
} else {
// Return success and indicate that data up to end flag sequence in buffer should be discarded
*dest_len = state->dest_index - sizeof(state->fcs);
ret = i;
}
// Reset values for next frame
hdlc_get_data_reset_with_state(state);
}
return ret;
}
//int hdlc_frame_data(hdlc_control_t *control, const char *src,
// unsigned int src_len, char *dest, unsigned int *dest_len)
int hdlc_frame_data(hdlc_control_t *control, uint8_t *src,
size_t src_len, uint8_t *dest, size_t *dest_len){
unsigned int i;
int dest_index = 0;
unsigned char value = 0;
FCS_SIZE fcs = FCS_INIT_VALUE;
// Make sure that all parameters are valid
if (!control || (!src && (src_len > 0)) || !dest || !dest_len) {
return -EINVAL;
}
// Start by adding the start flag sequence
dest[dest_index++] = HDLC_FLAG_SEQUENCE;
// Add the all-station address from HDLC (broadcast)
fcs = calc_fcs(fcs, HDLC_ALL_STATION_ADDR);
hdlc_escape_value(HDLC_ALL_STATION_ADDR, dest, &dest_index);
// Add the framed control field value
value = hdlc_frame_control_type(control);
fcs = calc_fcs(fcs, value);
hdlc_escape_value(value, dest, &dest_index);
// Only DATA frames should contain data
if (control->frame == I_FRAME) {
// Calculate FCS and escape data
for (i = 0; i < src_len; i++) {
fcs = calc_fcs(fcs, src[i]);
hdlc_escape_value(src[i], dest, &dest_index);
}
}
// Invert the FCS value accordingly to the specification
fcs ^= FCS_INVERT_MASK;
// Run through the FCS bytes and escape the values
for (i = 0; i < sizeof(fcs); i++) {
value = ((fcs >> (8 * i)) & 0xFF);
hdlc_escape_value(value, dest, &dest_index);
}
// Add end flag sequence and update length of frame
dest[dest_index++] = HDLC_FLAG_SEQUENCE;
*dest_len = dest_index;
return 0;
}

108
emulate/hdlc/hdlc.h Normal file
View File

@ -0,0 +1,108 @@
//
// Created by 79513 on 15.12.2023.
//
#ifndef HDLC_H
#define HDLC_H
#include "fcs.h"
#include <errno.h>
#include "stdint.h"
/** HDLC start/end flag sequence */
#define HDLC_FLAG_SEQUENCE 0x7E
/** HDLC control escape value */
#define HDLC_CONTROL_ESCAPE 0x7D
/** HDLC all station address */
#define HDLC_ALL_STATION_ADDR 0xFF
/** Supported HDLC frame types */
typedef enum {
I_FRAME,
S_FRAME,
S_FRAME_NACK,
} hdlc_frame_t;
/** Control field information */
typedef struct {
hdlc_frame_t frame;
unsigned char seq_no :3;
} hdlc_control_t;
/** Variables used in hdlc_get_data and hdlc_get_data_with_state
* to keep track of received buffers
*/
typedef struct {
char control_escape;
FCS_SIZE fcs;
int start_index;
int end_index;
int src_index;
int dest_index;
} hdlc_state_t;
/**
* Retrieves data from specified buffer containing the HDLC frame. Frames can be
* parsed from multiple buffers e.g. when received via UART.
*
* @param[out] control Control field structure with frame type and sequence number
* @param[in] src Source buffer with frame
* @param[in] src_len Source buffer length
* @param[out] dest Destination buffer (should be able to contain max frame size)
* @param[out] dest_len Destination buffer length
* @retval >=0 Success (size of returned value should be discarded from source buffer)
* @retval -EINVAL Invalid parameter
* @retval -ENOMSG Invalid message
* @retval -EIO Invalid FCS (size of dest_len should be discarded from source buffer)
*
* @see hdlc_get_data_with_state
*/
int hdlc_get_data(hdlc_control_t *control, uint8_t *src,
size_t src_len, uint8_t *dest, size_t *dest_len);
/**
* Retrieves data from specified buffer containing the HDLC frame. Frames can be
* parsed from multiple buffers e.g. when received via UART.
*
* This function is a variation of @ref hdlc_get_data
* The difference is only in first argument: hdlc_state_t *state
* Data under that pointer is used to keep track of internal buffers.
*
* @see hdlc_get_data
*/
int hdlc_get_data_with_state(hdlc_state_t *state, hdlc_control_t *control, uint8_t *src,
size_t src_len, uint8_t *dest, size_t *dest_len);
/**
* Resets values used in yahdlc_get_data function to keep track of received buffers
*/
void hdlc_get_data_reset();
/**
* This is a variation of @ref hdlc_get_data_reset
* Resets state values that are under the pointer provided as argument
*
* This function need to be called before the first call to hdlc_get_data_with_state
* when custom state storage is used.
*
* @see hdlc_get_data_reset
*/
void hdlc_get_data_reset_with_state(hdlc_state_t *state);
/**
* Creates HDLC frame with specified data buffer.
*
* @param[in] control Control field structure with frame type and sequence number
* @param[in] src Source buffer with data
* @param[in] src_len Source buffer length
* @param[out] dest Destination buffer (should be bigger than source buffer)
* @param[out] dest_len Destination buffer length
* @retval 0 Success
* @retval -EINVAL Invalid parameter
*/
int hdlc_frame_data(hdlc_control_t *control, uint8_t *src,
size_t src_len, uint8_t *dest, size_t *dest_len);
#endif //HDLC_H

121
emulate/main.c Normal file
View File

@ -0,0 +1,121 @@
#include <windows.h>
#include <stdio.h>
#include "hdlc/client.h"
#include "stdint.h"
#include "stdbool.h"
#include "protocol/protocol.h"
int main() {
struct Client hdlc;
HANDLE Port;
init_hdlc_client(&hdlc, 200);
//Открыть COM-порт
Port = CreateFile("COM3", GENERIC_READ | GENERIC_WRITE,
0, NULL, OPEN_EXISTING,
0, NULL);
if (Port == INVALID_HANDLE_VALUE) {
DWORD errorCode = GetLastError();
printf("Create file err: %lu.\n", errorCode);
return 1;
}
COMMTIMEOUTS timeouts1 = {0};
// Установка таймаутов чтения/записи
timeouts1.ReadIntervalTimeout = 100;
timeouts1.ReadTotalTimeoutConstant = 100;
timeouts1.ReadTotalTimeoutMultiplier = 50;
timeouts1.WriteTotalTimeoutConstant = 50;
timeouts1.WriteTotalTimeoutMultiplier = 50;
if (!SetCommTimeouts(Port, &timeouts1)) {
printf("err add timeout COM port.\n");
CloseHandle(Port);
return 1;
}
bool flag_connect = false;
while (!flag_connect){
uint8_t buffer_recive_connect[6];
DWORD received;
BOOL success = ReadFile(Port, buffer_recive_connect, sizeof buffer_recive_connect,
&received, NULL);
if (!success)
{
printf("Failed to read from port");
return -1;
}
hdlc_decode_recived_raw_data(&hdlc, buffer_recive_connect, sizeof buffer_recive_connect, 0, 0);
if (hdlc.state == READY_STATE){
struct Client tmp;
hdlc_connect(&tmp);
uint8_t buffer_send_connect[10];
hdlc_get_raw_frame(&tmp, buffer_send_connect, sizeof buffer_send_connect);
//Write frame from port 1
DWORD written;
BOOL success_write_send = WriteFile(Port, buffer_send_connect, sizeof buffer_send_connect,
&written, NULL);
if (!success_write_send){
DWORD errorCode = GetLastError();
printf("WriteFile err: %lu.\n", errorCode);
return -1;
}
if (written != sizeof buffer_send_connect){
printf("Failed to write all bytes to port");
return -1;
}
flag_connect = true;
}
}
struct message mess;
char str_v[] = "its working! wow! postavte 3 ";
mess.numbers[0] = 123.0;
mess.numbers[1] = 456.0;
mess.numbers[2] = 7.0;
mess.len_numbers = 3;
strcpy(mess.str, str_v);
mess.len_str = sizeof str_v;
uint8_t data[64];
size_t len_data;
protocol_encode(mess, data, &len_data);
int err = hdlc_send_data(&hdlc, data, sizeof(data));
printf("%d\n", err);
uint8_t buffer_for_ex_data[72];
hdlc_get_raw_frame(&hdlc, buffer_for_ex_data, sizeof buffer_for_ex_data);
DWORD written_data;
BOOL success_write_data = WriteFile(Port, buffer_for_ex_data, sizeof buffer_for_ex_data,
&written_data, NULL);
if (!success_write_data){
DWORD errorCode = GetLastError();
printf("WriteFile err: %lu.\n", errorCode);
return -1;
}
if (written_data != sizeof buffer_for_ex_data){
printf("Failed to write all bytes to port");
return -1;
}
while (true){
}
CloseHandle(Port);
return 0;
}

View File

@ -0,0 +1,53 @@
#include "protocol.h"
void protocol_decode(uint8_t encode_message[], size_t len_encode_message, struct message* decode_message){
int count_number = 0;
for(int i = 0; i < len_encode_message; i++){
if (encode_message[i] == FLAG_NUMBER){
if (count_number < 3){
union convert_float sample;
for (int z = 0; z < sizeof sample.buf; z++){
i++;
sample.buf[z] = encode_message[i];
}
decode_message->numbers[count_number++] = sample.fVal;
decode_message->len_numbers++;
}
}
if (encode_message[i] == FLAG_WORD){
i++;
decode_message->len_str = encode_message[i];
for (int z = 0; z < encode_message[i]; z++){
i++;
decode_message->str[z] = encode_message[i];
}
}
}
decode_message->len_numbers = count_number;
}
void protocol_encode(struct message message, uint8_t encode_message[], size_t* len_encode_message){
size_t count = 0;
if (message.len_numbers > 0){
for (int i = 0; i < message.len_numbers; i++){
encode_message[count++] = FLAG_NUMBER;
union convert_float sample;
sample.fVal = message.numbers[i];
for (int z = 0; z < sizeof sample.buf; z++){
encode_message[count++] = sample.buf[z];
}
}
}
if (message.len_str > 0){
encode_message[count++] = FLAG_WORD;
encode_message[count++] = message.len_str;
for (int i = 0; i < message.len_str; i++){
encode_message[count++] = message.str[i];
}
}
*len_encode_message = count;
}

View File

@ -0,0 +1,32 @@
#ifndef PROTOCOL_H
#define PROTOCOL_H
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "stdio.h"
#define FLAG_NUMBER 0
#define FLAG_WORD 1
struct message{
float numbers[4];
size_t len_numbers;
char str[64];
size_t len_str;
};
union convert_float{
float fVal;
uint8_t buf[4];
};
union convert_char{
char* cVal;
uint8_t buf[64];
};
void protocol_decode(uint8_t encode_message[], size_t len_encode_message, struct message* decode_message);
void protocol_encode(struct message message, uint8_t encode_message[], size_t* len_encode_message);
#endif //PROTOCOL_H

View File

@ -4,26 +4,25 @@ void protocol_decode(uint8_t encode_message[], size_t len_encode_message, struct
int count_number = 0; int count_number = 0;
for(int i = 0; i < len_encode_message; i++){ for(int i = 0; i < len_encode_message; i++){
if (encode_message[i] == FLAG_NUMBER){ if (encode_message[i] == FLAG_NUMBER){
union convert_float sample; if (count_number < 3){
for (int z = 0; z < sizeof sample.buf; z++){ union convert_float sample;
i++; for (int z = 0; z < sizeof sample.buf; z++){
sample.buf[z] = encode_message[i]; i++;
sample.buf[z] = encode_message[i];
}
decode_message->numbers[count_number++] = sample.fVal;
decode_message->len_numbers++;
} }
decode_message->numbers[count_number++] = sample.fVal;
decode_message->len_numbers++;
} }
if (encode_message[i] == FLAG_WORD){ if (encode_message[i] == FLAG_WORD){
int count_word = 0;
i++; i++;
union convert_char sample; decode_message->len_str = encode_message[i];
for (int z = 0; z < encode_message[i]; z++){ for (int z = 0; z < encode_message[i]; z++){
i++; i++;
sample.buf[z] = encode_message[i]; decode_message->str[z] = encode_message[i];
} }
decode_message->str = sample.cVal;
decode_message->len_str = count_word;
} }
} }
decode_message->len_numbers = count_number; decode_message->len_numbers = count_number;
@ -45,10 +44,8 @@ void protocol_encode(struct message message, uint8_t encode_message[], size_t* l
if (message.len_str > 0){ if (message.len_str > 0){
encode_message[count++] = FLAG_WORD; encode_message[count++] = FLAG_WORD;
encode_message[count++] = message.len_str; encode_message[count++] = message.len_str;
union convert_char sample;
sample.cVal = message.str;
for (int i = 0; i < message.len_str; i++){ for (int i = 0; i < message.len_str; i++){
encode_message[count++] = sample.buf[i]; encode_message[count++] = message.str[i];
} }
} }

View File

@ -12,7 +12,7 @@
struct message{ struct message{
float numbers[3]; float numbers[3];
size_t len_numbers; size_t len_numbers;
char* str; char str[64];
size_t len_str; size_t len_str;
}; };

View File

@ -10,12 +10,19 @@ bool wait_for_connect = false;
void setup() { void setup() {
init_lcd(); init_lcd();
init_hdlc_client(&hdlc, 200); init_hdlc_client(&hdlc, 500);
char str[] = "wait for connect... "; char str[] = "wait for connect... ";
strncpy(wait.topLine, str, sizeof(str)); strncpy(wait.topLine, str, sizeof(str));
wait.value1 = 1.0f; wait.value1 = 1.0f;
wait.value2 = 20.0f; wait.value2 = 20.0f;
wait.value3 = 300.0f; wait.value3 = 300.0f;
char str_data[] = "wait for data... ";
strncpy(recive_data.topLine, str_data, sizeof(str_data));
recive_data.value1 = 4.0f;
recive_data.value2 = 50.0f;
recive_data.value3 = 600.0f;
UART_init(); UART_init();
} }
@ -24,20 +31,20 @@ void loop() {
print_lcd(&wait); print_lcd(&wait);
hdlc_connect(&hdlc); hdlc_connect(&hdlc);
uint8_t buffer[10]; uint8_t buffer[6];
wait.value2 = 21.0f;
hdlc_get_raw_frame(&hdlc, buffer, sizeof buffer); hdlc_get_raw_frame(&hdlc, buffer, sizeof buffer);
UART_send(buffer, sizeof buffer); UART_send(buffer, sizeof buffer);
wait.value2 = 21.0f;
bool recive_connect = false; bool recive_connect = false;
while(!recive_connect){ while(!recive_connect){
print_lcd(&wait); print_lcd(&wait);
uint8_t buffer_recive[10]; uint8_t buffer_recive[6];
UART_receive(buffer_recive, sizeof buffer_recive); UART_receive(buffer_recive, sizeof buffer_recive);
int err = hdlc_timeout_handler(&hdlc, 1); int err = hdlc_timeout_handler(&hdlc, 1);
@ -64,29 +71,17 @@ void loop() {
} }
} }
} else { } else {
bool flag_recive = false; print_lcd(&recive_data);
uint8_t data_recive[64];
size_t len_data_recive;
recive_data.value1 = 4.0f; uint8_t buffer_receive[74];
recive_data.value2 = 50.0f; UART_receive(buffer_receive, sizeof buffer_receive);
recive_data.value3 = 600.0f;
strncpy(recive_data.topLine, "Wait for data", sizeof(recive_data.topLine) - 1);
while (!flag_recive){ if (buffer_receive[0] != 126){
print_lcd(&recive_data); recive_data.value2 = 51.0f;
uint8_t data_receive[64];
size_t len_data_receive;
uint8_t buffer_recive_data[72]; int err = hdlc_decode_recived_raw_data(&hdlc, buffer_receive, sizeof buffer_receive, data_receive, &len_data_receive);
UART_receive(buffer_recive_data, sizeof buffer_recive_data);
// int err = hdlc_timeout_handler(&hdlc, 1);
// if (err == ERR_FRAME_TIME_OUT){
// hdlc_get_raw_frame(&hdlc, buffer_data, sizeof buffer_data);
// UART_send(buffer_data, sizeof buffer_data);
// continue;
// }
int err = hdlc_decode_recived_raw_data(&hdlc, buffer_recive_data, sizeof buffer_recive_data, data_recive, &len_data_recive);
if (err < 0){ if (err < 0){
if (err == ERR_INVALID_SEQ_NUMBER_FRAME){ if (err == ERR_INVALID_SEQ_NUMBER_FRAME){
uint8_t buffer_rej[10]; uint8_t buffer_rej[10];
@ -94,16 +89,19 @@ void loop() {
UART_send(buffer_rej, sizeof buffer_rej); UART_send(buffer_rej, sizeof buffer_rej);
return err; return err;
} }
return err; //return err;
} }
struct message resp; if (hdlc.state == SEND){
protocol_decode(data_recive, len_data_recive, &resp); recive_data.value2 = 51.0f;
struct message resp;
recive_data.value1 = resp.numbers[0]; protocol_decode(data_receive, len_data_receive, &resp);
recive_data.value2 = resp.numbers[1]; recive_data.value1 = resp.numbers[0];
recive_data.value3 = resp.numbers[2]; recive_data.value1 = resp.numbers[0];
strncpy(recive_data.topLine, resp.str, sizeof(recive_data.topLine) - 1); recive_data.value2 = resp.numbers[1];
} recive_data.value3 = resp.numbers[2];
strcpy(recive_data.topLine, resp.str);
}
}
} }
} }

View File

@ -8,6 +8,12 @@
struct circular_buffer uartRxBuffer; struct circular_buffer uartRxBuffer;
struct circular_buffer uartTxBuffer; struct circular_buffer uartTxBuffer;
// #define HI(x) ((x)>>8)
// #define LO(x) ((x)& 0xFF)
// #define BAUDRATE 9600L // скорость передачи по UART
// #define BAUDRATE_REG (F_CPU/(16*BAUDRATE)-1)
void UART_init(void) { void UART_init(void) {
UCSR0B = (1 << RXEN0) | (1 << TXEN0) | (1 << RXCIE0) | (1<<TXCIE0); // прерывание по приему и передаче UCSR0B = (1 << RXEN0) | (1 << TXEN0) | (1 << RXCIE0) | (1<<TXCIE0); // прерывание по приему и передаче
UCSR0C = (1 << UCSZ01) | (1 << UCSZ00); UCSR0C = (1 << UCSZ01) | (1 << UCSZ00);
@ -15,16 +21,16 @@ void UART_init(void) {
UBRR0L = 103; UBRR0L = 103;
} }
void UART_send(uint8_t* data, size_t length) { void UART_send(uint8_t* data, size_t length) {
for (size_t i = 0; i < length; i++) { for (size_t i = 0; i < length; i++) {
if (!buffer_full(&uartTxBuffer)) { if (!buffer_full(&uartTxBuffer)) {
write_buffer(&uartTxBuffer, data[i]); write_buffer(&uartTxBuffer, data[i]);
} else { } else {
break; // если буфер передачи заполнен, то отправка прерывается break; // если буфер передачи заполнен, то отправка прерывается }
} }
} }
UCSR0B |= (1 << TXCIE0); // включаем прерывание по завершении передачи UDR0 = read_buffer(&uartTxBuffer);
//clear_buffer(&uartTxBuffer); UCSR0B |= (1 << TXCIE0);
} }
// Получение данных из буфера // Получение данных из буфера
@ -42,8 +48,8 @@ int UART_receive(uint8_t* data, size_t length) {
if (byteCount > length) { if (byteCount > length) {
overflow = 1; overflow = 1;
} }
clear_buffer(&uartRxBuffer); //clear_buffer(&uartRxBuffer);
return overflow ? -1 : byteCount; // Возвращает количество успешно принятых байт или -1 в случае переполнения return overflow ? -1 : byteCount; // Возвращает количество успешно принятых байт или -1 в случае переполнения
} }
// прерывание по завершению приема // прерывание по завершению приема